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Abstract

The aim of this work is to develop an automated tool for the optimization of
turbomachinery blades founded on an evolutionary strategy. This optimiza-
tion scheme will serve to deal with supersonic blades cascades for application
to Organic Rankine Cycle (ORC) turbines. The blade geometry is defined
using parameterization techniques based on B-Splines curves, that allow to
have a local control of the shape. The location in space of the control points
of the B-Spline curve define the design variables of the optimization prob-
lem. In the present work, the performance of the blade shape is assessed by
means of fully-turbulent flow simulations performed with a CFD package, in
which a look-up table method is applied to ensure an accurate thermodynamic
treatment. The solver is set along with the optimization tool to determine the
optimal shape of the blade. As only blade-to-blade effects are of interest in this
study, quasi-3D calculations are performed, and a single-objective evolution-
ary strategy is applied to the optimization. As a result, a non-intrusive tool,
with no need for gradients definition, is developed. The computational cost
is reduced by the use of surrogate models. A Gaussian interpolation scheme
(Kriging model) is applied for the estimated n-dimensional function, and a
surrogate-based local optimization strategy is proved to yield an accurate way
for optimization. In particular, the present optimization scheme has been ap-
plied to the re-design of a supersonic stator cascade of an axial-flow turbine.
In this design exercise very strong shock waves are generated in the rear blade
suction side and shock-boundary layer interaction mechanisms occur. A sig-
nificant efficiency improvement as a consequence of a more uniform flow at
the blade outlet section of the stator is achieved. This is also expected to pro-
vide beneficial effects on the design of a subsequent downstream rotor. The
method provides an improvement to gradient-based methods and an optimized
blade geometry is easily achieved using the genetic algorithm.
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Chapter 1

Introduction

1.1 Background

Nowadays, computational methods are employed to cover a wide range of
engineering applications. In the field of turbomachinery, for example, several
optimization tools have been developed to help in the design of improved
machines, with higher efficiency, reduced losses, and better performance [1,2].

These optimization tools cannot always be developed using analytical
techniques. Complex problems, such as non-linearities in the governing equa-
tions and non-practical solutions, have to be solved using approximations.
As a consequence, heuristic techniques started to grow. These methods pro-
vide a wide range of solutions to a vast amount of complex problems. By
definition, a heuristic technique is that which employs a practical methodol-
ogy as the approach to problem solving. The methodology that they utilize
is not guaranteed to reach the optimum, but the outcome is considered a
reasonable approach to the real solution considering the problem difficulty.
In particular, a genetic algorithm (GA) is a heuristic method that provides
an interesting approach to solve problems, by mimicking how nature works.
Genetic algorithms are built over the concept of natural selection proposed
by the neo-Darwinism. The popularity and power of GAs is mainly based
on the fact that the specifications of the problem are, hypothetically, of any
kind [3].

In the last years, many optimization techniques coupled with computa-
tional fluid dynamics codes (CFD) have been developed. The advantage of
using genetic algorithms along with CFD-based schemes are many and varied.
For instance, they can easily approach multiobjetive optimization and their
implementation is usually non-intrusive, which enables to build automatic
tools to resolve complex engineering problems [1].
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The field of turbomachinery is in constant development, and it presents
many challenges that can benefit from those techniques. Turbomachinery de-
sign processes comprise optimization at several stages, from the preliminary
design [1] to the blade shape definition [2], passing through the axisymmetric
design (span-wise blade design). The optimization problems involve many
objectives and constraints, and thus the use of evolutionary strategies can be
widely found in literature.

1.2 Motivation

Many studies have been performed to improve optimization methods and to
help in the design of innovative and enhanced components of turbomachinery.
Also, CFD methods and their coupling with optimization techniques have
arisen in the last decade. However, an automated tool (Fig. 1.1) for the
shape-optimization of turbomachinery blades applicable to general cases has
not been developed yet. This study aims to create a mechanism whose final
purpose is to provide an easy way to build high-performing blade shapes
both in the early steps of the design of new turbomachinery models and in
the improvement of current configurations. Traditionally, developing new
machines does not necessarily include the blade shape modeling. With this
tool, this step can be easily overcome and can be included from the beginning
of the process.

Optimization Tool

Problem Parameters

Initial Blade Optimized Blade

Figure 1.1: Black-Box Scheme of Optimization Tool1.

The implicit purpose of this study is to create a tool that is able to extract
the minimal physical data of the problem and work with a purely numerical
optimization. By doing so, the optimization scheme can be easily imple-
mented, as only a mathematical function is aimed to optimize. This enables
to develop a tool for an extensively wide range of engineering applications.

In Chaper 2, the methodology employed in the development of the shape-
optimization tool is described. For information about how to implement the
algorithm, please see Chapter 3. In Chapter 4, a supersonic blade cascade of

1A black box function or process is a function or process that without been explicitly
described and given a list of a finite number of points in the input space, corresponding
outputs can be obtained.
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an axial ORC turbine is optimized to validate this tool. Lastly, in Chapter 5,
the main conclusions and outcomes of this work are discussed.
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Chapter 2

Methodology

In this chapter we define the different methods used in the development of
the shape-optimization tool. The procedure strongly relies on the combined
used of four modules :

1. Geometry Parameterization.

2. Computational Fluid Dynamics (CFD) simulation codes.

3. Genetic Algorithms.

4. Surrogate Models.

For the different optimization steps, the main characteristics and the-
oretical founding will be defined in the following sections. In Section 2.1,
the geometry parameterization technique used in this study is described; in
Section 2.2, some key features of the CFD tool used for the evaluations of
the high-fidelity model are shown; in Section 2.3, the genetic algorithm is
presented; and in Section 2.4, the surrogate-based optimization strategy is
illustrated. For information about how to connect the different parts and
how to implement a robust algorithm, please see Chapter 3. Please notice
that each section contains its own notation and symbols, which are described
at the moment they are used. In Fig. 2.1 one can observe that all the different
sections are interrelated in the optimization tool presented in this study.
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Figure 2.1: Components of the optimization tool.

2.1 Geometry Parameterization

Geometry Parametrization is the first module to be executed in the opti-
mization tool developed in this research. It assumes that the end user has
specified the initial shape of a blade, as described in the Black Box Scheme of
Fig. 1.1. The objective of this module is to parameterize the geometry that
defines the blade shape, so that it can be manipulated in the next modules.
Throughout this dissertation, we will use the terms blade shape, geometry,
and curve interchangeably.

The optimization strategy has been set to work with a limited number
of design variables. This is because, in shape-optimization, the position of
every point in the curve cannot be provided to the optimization algorithm as
variables. Not only because that would consume a lot of computational time,
but also the result would not be useful for a subsequent design. Therefore,
our approach uses a method to create the shape of a blade as a function of
a bounded number of variables. As a matter of fact, those variables have to
provide local effects on the final shape of the curve.

The method that has been used in this work involves the use of a spe-
cial type of 2-D curve called B-Spline, taking into account that a three-
dimensional blade geometry can be constructed using several two-dimensional
blade sections. The next subsection (2.1.1) introduces B-Spline curves and its
properties, in order to explain why this method has been chosen to determine

16



the shape of the blade, and to lay the foundations for subsequent explana-
tions on how this method is applied. For further information, a full account
of the theory of B-Splines and the mathematical representation can be found
in Refs. [4,5]. The following subsection (2.1.2), Interpolation Procedure, ex-
pands on the explanation of how the initial blade geometry is reproduced
using B-Spline curves. Finally, the last subsection about geometry parame-
terization (2.1.3), Automated Algorithm, describes how these concepts have
been computationally applied.

2.1.1 B-Spline curves

Since the introduction of B-Splines in the nineteenth century , they have been
recognized as powerful tools both in application and theory [5]. Nowadays,
they are widely used in industry and design due to very interesting properties:

• They involve piecewise curves with components of degree n.

• They provide local support, so a change in the position of a control
point only affects the curve in a given interval that can be specified by
the degree of the individual curves.

• They can be defined to pass through the first and last control points.

• They are contained in the convex hull of their control polygon. This
allows more control on the shape by changing the control points.

• Their smoothness and continuity can be controlled by the multiplicity
of the knot sequence.

• An affine transformation applied to a B-Spline curve can be constructed
from the affine images of its control points

To fully understand the mathematical insight of B-Splines, it is important
to define the properties of the basic building blocks: linear interpolations.
This will led the reader to the concept of Bézier curves that will be eventually
generalized in B-Splines.

Linear Interpolation

The basics of any computation in geometrical modeling are the linear in-
terpolations. Let p0 and p1 be two points in the space. The straight line
between them has the form:

x(t) = (1− t) · p0 + t · p1 (2.1)
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where t is a parameter. If t = 0 then x(t) = p0, and if t = 1 then x(t) = p1.
Therefore, this can be conceived as an affine mapping from the interval [0, 1]
to the space (in our case, R2).

At this point we can define an important concept that will be very useful:
the blossom1, a n-variate function b[t1, t2...tn] that is completely characterized
by the following axioms:

1. Symmetry - The order of the blossom argument does not matter.

b[t1, t2, ..., tn] = b[tσ(1), tσ(2), ..., tσ(n)]; (2.2)

where σ is any permutation of {1, 2...n}

2. Multiaffinity - The blossom is affine with respect to all its arguments.

b[α r + β s, t2...tn] = α b[r, t2, ..., tn] + β b[s, t2, ..., tn]; (2.3)

3. Diagonality - If the arguments are equal, then the blossom draws a
polynomial curve.

b[t, t, ..., t] = b[t<n>] = b[t] (2.4)

Taking a careful look at the blossom structure and the affine interpolation
defined previously, it can be inferred that a blossom of the form b[t] can
represent a linear interpolation with parameter t between two points. The
latter are given for the values of the blossom b[0] and b[1]. In the following
sections this concept will arise and become useful.

Bézier Curves

Given a set of points p0, p1, ..., pn and a parameter t we can define different
sets of points given by:

pri (t) = (1− t) · pr−1i (t) + t · pr−1i+1 (t); (2.5)

where r = 1, ..., n and i = 0, ..., n− r.
The set of initial points are called Bézier points (or Control points), and

are written as pi = p0i (t). These points define the Bézier polygon (or Control
polygon), and Eq. 2.5 is called the de Casteljau Algorithm. The points p(t) =
pn0 (t) define the Bézier curve, whose parameter n is the degree of the curve.

1In numerical analysis, a blossom is a functional that can be applied to any polynomial,
but this concept was invented for the use in Bézier and B-Spline curves mainly [6].
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One can observe that each point of a generation r is generated by affine
interpolation of two points of the previous generation r − 1. If the points of
the last generation n are written as a function of the original points and a
parameter t only, then the Bézier curve is generated.

Another way of representing Bézier curves (but more abstract), is by the
concept of blossoming. We can define any point involved in the de Casteljau
Algorithm as the following:

pri (t) = b[0<n−r−i>, t<r>, 1<i>]; (2.6)

where <> represents how many times the variable appears2. In this way we
can express the Bézier points as blossom values: pi = b[0<n−i>, 1<i>]. The
same way, a point on the curve is defined by pn(t) = b[t<n>].

A graphical idea of this concept can be extracted from Fig. 2.2.

Figure 2.2: Bézier Process.

In this figure, one can observe what “blossoming” stands for. All the
necessary points for the Bézier process can be generated from the previous
points. Starting with p0, p1 and p2 as the initial points, and considering a
second-degree curve, one can define their blossoming formulations by taking
into account that the only input to the blossom functional is the t parameter
in each of the subsequent processes. For example, considering the blossom
b[1, 0], the first parameter is 1, which means that in the linear interpolation
between p0 and p1, and between p1 and p2 is t = 1. Therefore the generated
points are p1 and p2 respectively. The second parameter is 0, which means
that in the linear interpolation between the previous points, i.e. p1 and p2,
the parameter is 0. Therefore, the final point is p1 .It can be shown that
b[1, 0] = b[0, 1], so the blossom symmetry property is complied. Following
this process, all the intermediate points can be obtained by blossoming the
mathematical flower of the successive interpolations.

2Recall: blossoms are symmetric
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B-Spline Curves

B-Splines are a generalization of Bézier curves. In the latter, the control
points were expressed in a blossom as pi = b[0<n−i>, 1<i>]. The variables of
this blossom were 0 and 1, both repeated depending on the degree and the
position of the point. Then, each set of {0<n−i>, 1<i>} can be obtained from
a sequence of {0, 1}. From the second-order curve depicted in Fig. 2.2, the
following sequence can be extracted as an example:

If we generalize this sequence we have the so-called Knot Sequence:

u = {ui} (2.7)

This sequence can contain any number, whose particularization to Bézier
curves would be only 0’s and 1’s. Actually, as it will be explained in the
following subsection, Interpolation Procedure, the spacing between the values
is more important than the values themselves.

Hence, given a set of points p0, p1, ..., pn and a knot sequence {ui}, we can
define different sets of points over an interval U = [um, um+1]:

pri (u) = b[u<r>, Un−1−r
i ] (2.8)

where U r
i is a set of U that contains r + 1 successive knots and um is its

(r − i) th element3.
Consequently, the set of control points is written as pi = b[Un−1

i ]. Equa-
tion 2.8 is called the de Boor Algorithm and it is the generalization of the de
Casteljau Algorithm. The points described as x0 = pn0 (u) form the B-Spline
curve.

In summary, an n-degree B-Spline consists of applying the de Boor Al-
gorithm with a knot sequence {ui}i=0...K to a control polygon pj,j=0...L, such
that L = K−n+1. To have a better understanding, B-Splines are formed by
dividing the knot sequence in intervals whose size depends on the degree of
the curve. Then, a “blossom” is applied to the initial points in that interval

3Please notice a change in the notation. The parameter t (that defined the curve
previously) is now written as u. This is more convenient since the parameter covers the
range in the knot sequence {ui} and its influence on the final curve will depend on the
subset Ur

i .

20



and many individual Bézier curves are created. These curves are intrinsi-
cally connected between each other because they share the initial blossoming
points in a degree given by the multiplicity of the knot.

This is the reason why B-Splines can control the shape locally, without
changing the degree and without modifying the continuity at the given point.
One of the points can have more or less importance depending on the spacing
in its knot sequence. The parameter used to build the curve (i.e. t or u,
depending on the notation) would range from u0 to umax.

Observations and Comments

In Fig. 2.3 one can observe the difference between the construction of Bézier
curves and B-Splines using the same control points. In B-Spline curves
(2.3b),the shape is better defined by the control points. The B-Spline has
an uniform knot sequence and multiplicity m = 3 in the ends. It can be
observed the differences between Bézier curves and B-Splines. The same
control points produce two different shapes. Note that the curve in 2.3b is
more locally influenced by the relative position of the fourth control point.

(a) Bézier Curve (b) B-Spline Curve

Figure 2.3: Differences between Bézier curves and B-Splines.

In Fig. 2.4 one can observe the influence of the multiplicity of the knot
sequence in the ends. If the parameter u goes from the minimum to the
maximum of the knot sequence, we need to establish a multiplicity of, at
least, n in the ends so that the curve goes through them4. In this example,
n = 3, and the internal knot sequence is uniform.

4This is commonly called Clamped Ends.
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(a) m = 3 (b) m = 2 (c) m = 1

Figure 2.4: Ends multiplicity influence.

In Fig. 2.5 one can observe an example of controllability of the shape by
changing the knots sequence and maintaining the control points. The knot
sequence has the same structure in all of them: {0, 0, 0, ui, 1, 1, 1}, while the
value ui changes in the different figures. The explanation for this is not
straightforward. Analyzing how the points on the curve are generated, it can
be inferred that, the smaller the interval in the knot sequence, the closer the
curve is to the control polygon (blue dots) in that region. Therefore, the
importance of the knots sequence is given by the interval between the knots
and not by the values themselves. In Fig. 2.5c, the smallest knots interval
is placed in the first half of the curve and therefore the curve attaches to
the control polygon; Fig. 2.5b is the balanced case; and Fig. 2.5c gets the
smallest interval at the end of the curve.

(a) ui = 0.1 (b) ui = 0.5 (c) ui = 0.9

Figure 2.5: Knots sequence influence.

In Fig. 2.6 one can observe the influence of the multiplicity of an internal
knot on the smoothness of the curve. In general, a knot of multiplicity r
produces a local B-Spline with smoothness Cn−r. In this example, the knot
sequence in Fig. 2.6a and Fig. 2.6b is {0, 0, 0, ui, 0.5, 1, 1, 1}, differring only
in the value ui. In both figures, the degree of the curve is n = 3, and the
end knots have multiplicity r = 3. Therefore, the smoothness of the B-spline
curve in the end knots is the same: C0. However, the smoothness in the inner
knots differ in each case. In the first case, Fig. 2.6a, the inner knots have
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multiplicity r = 1, resulting in a smoothness C2. In Fig. 2.6b, a multiplicity
of r = 2 results in a lower smoothness C1.

(a) ui = 0.3 (b) ui = 0.5

Figure 2.6: Multiplicity influence in the smoothness.

In Fig. 2.7 one can observe the influence of the position of the control
points on a B-Spline curve. In this example, B-Spline curves for different
position of the fourth control point are depicted. This gives an idea of the
local controllability, important feature of B-Splines.

Figure 2.7: B-Spline curves for different position of one control point.

In Fig. 2.8, one can observe the application of B-Splines to the design
of the shape of a blade. In addition, one can observe the influence of the
degree n of the curve in the final shape. In this example, the suction side
of a blade is represented by B-Spline curves with the same control points
(number of control points L = 10), a uniform knot sequence, but different
degrees of the curve. This small difference produces very different blades.
The first two, illustrated in Fig. 2.8a and 2.8b, do not present second order
continuity. As a consequence, its use is not recommended to build blade
geometries. Therefore, a tool to create proper blade shapes using B-spline
curves requires a degree n ≥ 3, yielding a second order continuity in all
inner points. Figures 2.8c and 2.8d are considered admissible blade shapes,
because they show, respectively, a cubic B-Spline and a quartic B-Spline.
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(a) n = 1 (b) n = 2

(c) n = 3 (d) n = 4

Figure 2.8: Suction side of a blade for different curve degrees. Admissible
blade shapes yield a second order continuity in all inner points. Because this
only happens in curves whose degree n ≥ 3, (a) and (b) are not admissible
shapes, but (c) and (d) are.

2.1.2 Interpolation Procedure

Once the basics of B-Spline curves have been explained, this section explores
how these curves have been used to represent blade shapes in our optimization
tool. Throughout this dissertation, we will use the term data points to define
the parameters that represent the initial shape of the blade, given by the
user. Our optimization tool creates an approximate representation of this
shape using a B-Spline curve, defined and manipulated by control points. In
order to create this B-Spline, the data points need to be interpolated. Our
optimization tool has used the least square interpolation method.

It is assumed that P + 1 data points pi are given, with i = 0...P , and
we seek to find the approximated B-Spline curve x(u) of degree n and K + 1
knots uk, with k = 0...K. This B-Spline curve will be defined by L+1 control
points dj, with j = 0...L, such that L = K − n+ 1.

For this problem, the P + 1 data parameters wi assigned to each given
point need to be defined to find the least squares approximation. Then, the
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error of the approximation for a given point can be expressed as ‖pi−p(wi)‖.
Therefore, the objective is to minimize the sum of all the approximation
errors:

f(x) =
P∑
i=0

‖pi − x(wi)‖ (2.9)

In this application, it is useful to write a B-Spline in the form:

x(u) =
L∑
j=0

djN
n
j (u) (2.10)

where Nn
j (u) are called B-Splines and provide a local support. They can be

defined recursively in the form:

Nk
j (u) =

u− uj−1
uj+k−1 − uj−1

Nk−1
j (u) +

uj+k − u
uj+k − uj

Nk−1
j+1 (u); (2.11)

N0
j (u) =

{
0 if uj−1 ≤ u < ui,
1 if otherwise

(2.12)

This notation refers to the general form of each of the individual B-Spline
bases, providing the local support to each control point (Eq. 2.9). Once
defined the B-Splines, we can rewrite:

f({dj}L0 ) =
P∑
i=0

‖pi −
L∑
j=0

djN
n
j (wi)‖ (2.13)

If a least squares approach is now carried out, the final formula for the
L + 1 normal equations (represented by the parameter k = 1...L) is derived
(for more information, see [4]):

L∑
j=0

dj

P∑
i=0

Nn
j (wi)N

n
k (wi) =

P∑
i=0

piN
n
k (wi); (2.14)

This equation leads to the linear system:
m0,0 m0,1 . . . m0,L

m1,0 m1,1 . . . m1,L
...

...
. . .

...
mL,0 mL,1 . . . mL,L

 ·

d0
d1
...
dL

 =


h0
h1
...
hL

 (2.15)

The linear system 2.15 can be written as A · x = B, where A is a sym-
metric, square matrix. In this case, the system is solved by using Cholesky
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Decomposition, since matrix A can be ill-conditioned (nearly singular), de-
pending on the relative position of the points.

As matrix A is a symmetric, square, and real matrix, it is positive def-
inite. It is known that Cholesky decomposition is unique when the matrix
is of this kind:

A = L · L∗ (2.16)

where L is lower triangular.

Equation 2.15 can be then written and solved as:

L · L∗ · x = B
L · y = B ⇒ y
L∗ · x = y ⇒ x

(2.17)

It is worth mentioning that the least squares approximation does not
necessarily pass through any of the original data points, but an additional
operation can be performed to guarantee that the resulting geometry passes
through the first and last data points. A way to do that it is to fix the first
and last control points of the interpolating curve. As we have decided to use
a multiplicity of m = n in the ends, we can assure that the B-Spline will pass
through the first and last control points. Hence, by making them equal to
the original points we can assure this to happen.

This connection is carried out simply by setting the first and last points
in the least squares approximation matrices. Accounting for Eq. 2.15, we
make the following modifications:


m̂0,0 0 . . . 0 0

0 m1,1 . . . m1,L−1 0
...

...
. . .

...
...

0 mL−1,1 . . . mL−1,L−1 0
0 0 . . . 0 ˆmL,L

 ·

Pfirst
d1
...

dL−1
Plast

 =


h0
ĥ1
...
ˆhL−1
ĥL

 (2.18)

Hence, the new components turn out to be:

m̂0,0 = h0
Pfirst

ˆmL,L = hL
Plast

ĥi = hi −mi,0 · Pfirst −mi,0 · Plast
(2.19)
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Data Parameters

When dealing with a least squares interpolation, a sequence of data parame-
ters {wi} has to be selected. From the different methods of determining the
sequence, a centripetal parameterization ( [7]) has been chosen, due to sharp
turns that the blade may experience.

Let w0 = 0 and S =
∑P

i=0

√
‖pi − pi−1‖. Then we can write the rest of

parameters:

wi = wi−1 +

√
‖pi − pi−1‖

S
(2.20)

Knot Sequence

The sequence of knots {ui}, i = 0...K, has to be decided as well. We need
to remember that the influence of the knot sequence is given by the spacing
between its points. Hence, another sequence of spacing {Si} defined from 1
to K can be defined. Then a knot sequence can be obtained:

u0 = 0
ui = ui−1 + Si

(2.21)

This spacing function is very important for the interpolation. Above all
when the points lay in a big gradient region, such as the trailing edge. Then,
in that area, we can set a smaller spacing, so that the points are closer to
the curve and the interpolation yields better results. Therefore, a linear
distribution is set for the beginning and the end of the sequence, and an
uniform spacing is set for the intermediate points, such as:

Figure 2.9: Example of a spacing distribution of a knot sequence, observing
the restrictions adopted in the optimization tool.
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where the uniform part of the spacing sequence goes from K/d to K ·
(1 − 1

d
). In those cases, d is a number that can be used from two different

perspectives. One perspective is making it simpler and defining this value at
the beginning of the procedure. Or, as the method adopted in this work, the
value of d can be optimized through an iterative method for a given number
of control points.

Also, it should not be forgotten that in the end knots the multiplicity is
equal to n, therefore the spacing needs to be recalculated with n − 1 zeros
in the beginning and in the end.

NURBS improvement

Although the interpolation algorithm (see Chapter 3) has been designed for
the use of B-Splines, it is worth mentioning that for complex geometries, the
NURBS method has been employed to improve the interpolation and reduce
the error in relation with the original curve. NURBS stands for non-uniform
rational basis spline, and its mathematical implementation is very similar
to a normal B-Spline, with the exception that we assign a weight to each
B-Spline basis in the construction of the curve.

If we consider Eq. 2.10 and assign a weight to each basis, then we need
to normalize the sum. Eventually we get:

x(u) =

∑L
j=0 djωjN

n
j (u)∑L

j=0 ωjN
n
j (u)

(2.22)

To implement the interpolation code, we have made an evaluation with
slightly different weights to generate an interpolated curve whose error has
been reduced.

2.1.3 Automated Algorithm

One automated scheme has been developed to compute the B-Spline from
given control points (Fig. 2.10), and another code has been developed to
obtain the control points from a given curve (Fig. 2.11). The two algorithms
use the theory described in sections 2.1.1 and 2.1.2 respectively.

Algorithm 1 (Fig. 2.10) has been designed using the blossoming expression
of the B-Spline points. Each initial point is presented as a set of knots from
the knots sequence (taking n knots), and we compute each new intermediate
point using the de Casteljau Algorithm from Eq. 2.5. Eventually we find the
points that belong to the B-Spline curve.
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B-Splines Generator

{uj}

CPi, n x(t)

Figure 2.10: Algorithm 1 generates a B-Spline curve from given control
points.

Similarly, Algorithm 2 (2.11) makes use of the B-Spline functions that
have been discussed in section 2.1.2, along with a least squares approxima-
tion.

CP generator

{uj}, {wi}

xi, n,NCP CPi

Figure 2.11: Algorithm 2 generates control points by interpolating the data
points defining the original blade shape.

A third algorithm has been developed to compute the error of the inter-
polation method. If we assign to the points on the interpolated curve xi the
same data parameter wi as to the given points pi, then we can calculate the
mean square error as follows:

MSE =

∑P
i=0 ‖p(wi)− x(wi)‖2

P + 1
(2.23)

At this point, a tolerance for the interpolation can be set, and an algo-
rithm that computes recursively the interpolating curve can be built, increas-
ing the number of control points until it meets our tolerance criterion.

This third algorithm can be defined to improve 2.11. If we use the concept
of tolerance and error described by Eq. 2.23 we can couple it with Fig. 2.10
to generate the curve and to check if it meets the required tolerance.

Error Function

Tolerance, xi

xapprox(t) MSE, pass?

Figure 2.12: Algorithm 3 to compute the error.

The use of the algorithms described in this section will be discussed and
validated in Chapter 4.
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Big gradient region

The trailing edge of a blade is an area with a strong gradient. This area shall
be separated when computing the B-Spline. In order to do that, the gradient
in each point5 is computed, so that the area with the strongest gradient can
be separated. Once that happens, there are two possibilities:

1. To compute that region in the same way as the rest of the curve is
computed. That means that a number of control points need to be
interpolated using the algorithms described previously.

2. To consider that region as a common radius, which is used to connect
the suction side with the pressure side of the blade.

There needs to be some discussion on both methods prior to their val-
idation. On the one hand, the method of the common radius has many
advantages, as it reduces the number of design variables by limiting the
interpolation to the other region. This leads to an improvement of the com-
putation speed. Moreover, it avoids the error from the connection of both
parts. This will lead to a better interpolation and less mean square error.
Furthermore, optimization is performed more accurately, since we can still
play with the parameters defining the common radius, such as equal tan-
gents on one side of the blade. On the other hand, this method does not
provide much accuracy in the shape of the trailing edge. In the future, this
automated optimization tool might be used for another blade shape whose
trailing edge is not a common radius. Also, the relative position and size of
the trailing edge might change during the optimization process when moving
the first and last control points of the whole blade. Both methods have been
tested out, and the final decision will be explained in Chapter 4.

5Discretized as the difference between the point and its neighbor.
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2.2 CFD Solver

Fluid mechanics equations are solved for only a limited number of simplified
flows that cannot be used for engineering and design purposes. Tradition-
ally, the common approach is to perform a simplification of the equations,
based on approximations and dimensionality, and the acquisition of param-
eters from experimental data. However, when the problem comprises a large
number of dimensionless parameters, or when the experiments to be set are
too complex, this approach is not enough. With the evolution of computer
science, CFD techniques were developed to fill that gap. Computational
Fluid Dynamics is a broad field that is widely used in engineering for design,
analysis, and research [8]. CFD enables to simulate and understand fluids
without performing experiments, and measuring flow variables at desired lo-
cations. However, CFD methods need to be considered with prudence, since
solutions are always approximate and they do contain approximation errors:

• Modeling errors: approximations in the model, due to idealizations of
the differential equations.

• Discretization errors: approximations in the discretization and in the
solution methods.

• Convergence errors: approximations due to the iterative process.

In CFD there are many solution methods. We should take into account
that a solution method needs to be: (a) Consistent - the numerical scheme
must tend to the differential equation when the space and time discretization
tend to zero; (b) Stable - the round-off error due to the finite algebra must
remain bounded iteration after iteration; and (c) Convergent - the numerical
solution must tend to the exact solution when the space and time discretiza-
tion tend to zero. For sufficiently small grids, the rate of convergence depends
on the order of the truncation error. Before performing a CFD simulation,
one should define the time and length scales in which the flow system is mod-
eled. The solution methods most widely used can be summarized in three
categories:

• Finite Difference Method (FD)

• Finite Volume Method (FVM)

• Finite Element Method (FEM)

In particular, for the CFD techniques used in this study, the Finite
Volumes Method uses the integral forms of the conservation equations,
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and the solution domain is divided into small control volumes (CVs). Surface
integrals for each CV are considered as the sum of integrals over the different
CV faces. The value of each of them can be approximated either in terms of
the value of the variable in different locations on the face, or in terms of the
nodal values. Volume integrals are computed directly with the nodal values
or with a higher-order approximation, taking into account more locations
than just the center of the CV. In addition, boundary conditions need to
be treated separately. Their values should be known (variable value, flux,
or other conditions) and, since there are no nodes outside the boundary,
sometimes we need to use one-sided interpolation or extrapolation to retrieve
the value at the boundary. Moreover, the selection of a well-defined grid is
essential in every CFD problem. The locations of the different evaluations
along the process are defined by the numeric grid of the problem. We shall
go from a continuous media (real world) to a discrete distribution of nodes
(computation).

ANSYS-CFD package

ANSYS-CFD is a general fluid dynamics tool developed by ANSYS, a well-
established engineering software developer that has been providing services
to manage simulation processes and data for more than 40 years.

The package used in this study includes the tools for the different simu-
lation stages, such as TurboGrid (geometry and mesh generator), CFX-Pre,
CFX-Solver (preprocessor and solver respectively), and CFD-Post (post-
processor).

Specifically, ANSYS-CFX [9,10] is a well-validated and widely used CFD
analysis tool that provides efficient parallel calculation from different pro-
cessing cores. The code is wrapped in an intuitive GUI user environment. In
the following sections, the ANSYS-CFX Solver theory will be summarized.
For more information about the physics behind the equations, please refer to
fluid-dynamics books, such as [11].

Figure 2.13: ANSYS logo.

2.2.1 Governing Equations

In this section, we describe the general equations that are used to simulate
the flow in the cases studied. For all fluid mechanics problems, the mass
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(Eq. 2.24), momentum (Eq. 2.25), and total energy (Eq. 2.26) conservation
equations must be obeyed. They are also called Navier-Stokes equations in
their conservation form.

∂ρ

∂t
+∇ · (ρU) = 0 (2.24)

∂(ρU)

∂t
+∇ · (ρU×U) = −∇p+∇ · τ + SM (2.25)

∂ρhT
∂t
− ∂p

∂t
+∇ · (ρUhT ) = ∇ · (λ∇T ) +∇ · (U · τ) + U · SM + SE (2.26)

where ρ is the density, U is the velocity vector, S is the source vector (M
stands for momentum and E for energy), λ is the thermal conductivity, p is
the static pressure and T is the temperature. τ and hT are the shear stress
and the specific total enthalpy respectively, and are defined by:

τ = µ

(
∇U + (∇U)T − 2

3
δ∇ ·U

)
(2.27)

hT = h+
1

2
U2 (2.28)

where µ is the dynamic viscosity and h is the specific enthalpy.
This set of equations represents the basic pillars of fluid mechanics and

they need to be coupled with constitutive equations of state, that relate ρ
and h with p and T . In the most general case, this can be written as6:

ρ = ρ(p, T )

dh =
∂h

∂T
|pdT +

∂h

∂p
|Tdp = cpdT +

(
v − T ∂v

∂T
|p
)
dp (2.29)

cp = cp(p, T )

where v is the specific volume and cp is the specific heat capacity.
A wide range of constitutive equations can be found in any CFD solver.

However, in this study, a real gas approach, with a look-up table (LuT) is
employed, and therefore no further derivation is needed in this regard.

2.2.2 Turbulence Model

In most engineering applications and, above all, in the cases studied in this
work, turbulence plays a very important role. Turbulence is a very complex
flow feature that needs a model to be treated computationally.

6Remember that v = 1/ρ
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In principle, the Navier-Stokes equations should describe turbulent flows.
However, real cases involve length scales much smaller than the smallest finite
volume mesh. For this reason, models need to be specifically developed to
account for the effects of turbulence without recourse of a prohibitively fine
mesh. There are several ways to handle it:

1. RANS-based models

2. Large Eddy simulations

3. Detached Eddy simulations

4. Hybrid models

5. Direct Numerical simulations

In general, turbulence models seek to modify the original Navier-Stokes
equations by the introduction of averaged and fluctuating quantities and
therefore generating the Reynolds Averaged Navier-Stokes equations
(RANS). In this study, this type of model is used to treat turbulence. Simu-
lations using RANS greatly reduce the computational effort. However, addi-
tional unknown terms containing products of fluctuating quantities appear.
These quantities can be considered new stresses and they are commonly
known as turbulent or Reynolds’ stresses.

A variable, for example a component of the velocity vector Ui, is divided
into an average component U i and a time varying component ui:

Ui = U i + ui (2.30)

The governing equations in this case turn out:

∂ρ

∂t
+

∂

∂xj
(ρUj) = 0 (2.31)

∂ρUi
∂t

+
∂

∂xj
(ρUiUj) = − ∂p

∂xi
+

∂

∂xj
(τij − ρuiuj) + SM (2.32)

ρhT
∂t
− ∂p

∂t
− ∂

∂xj
(ρUjhT ) =

∂

∂xj

(
λ
∂T

∂xj
− ρujh

)
+

∂

∂xj
(Ui (τij − ρuiuj)) + SE

(2.33)

where:

hT = h+
1

2
UiUi + k = h+

1

2
UiUi +

1

2
u2i (2.34)
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Turbulence models complete the RANS equations by providing an expres-
sion to compute the Reynolds stresses and fluxes, as they provide a closure
to the turbulence problem. In fact, there are three RANS-based turbulence
models:

1. Linear Eddy Viscosity Model

2. Nonlinear Eddy Viscosity Model

3. Reynolds Stress Model

In this study, a Linear Eddy Viscosity Model is used. In it, the
turbulence is considered as small eddies that are forming and dissipating,
and in which Reynolds stresses are assumed to be proportional to mean
velocity gradients. In this hypothesis, the Reynold stresses and Reynolds
fluxes can be related through:

− ρuiuj = µt

(
∂Ui
∂xj

+
∂Uj
∂xi

)
− 2

3
δij

(
ρk + µt

∂Uk
∂xk

)
(2.35)

− ρuiφ = γt
∂φ

∂xi
(2.36)

where φ is a general scalar variable. µt and γt are the eddy viscosity
(sometimes called turbulent viscosity) and eddy diffusivity, and are related
by the turbulent Prandtl number (γt = µt

Prt
)

Among the linear eddy viscosity models, the κ-ω model is one of the
most used, as it provides two extra transport equations to represent the
turbulence of the flow. It then allows to account for the convection and
diffusion of turbulent energy (history effects) of the fluid. κ stands for the
first transported variable, the kinetic energy (turbulence energy). On the
other hand, ω represents the specific dissipation and it determines the scale
of the turbulence.

In this model, the turbulence viscosity is related with the turbulence
kinetic energy and turbulent frequency as follows:

µt = ρ
κ

ω
(2.37)

In this model, the parameters κ and ω are given by the following transport
equations:

∂κ

∂t
+

∂

∂xj
(ρUjκ) =

∂

∂xj

[(
µ+

µt
σκ

)
∂κ

∂xj

]
+ Pκ − β′ρκω + Pκb (2.38)
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∂ω

∂t
+

∂

∂xj
(ρUjω) =

∂

∂xj

[(
µ+

µt
σω

)
∂ω

∂xj

]
+ α

ω

κ
Pκ − βρω2 + Pωb (2.39)

where β′, β, α, σκ, σω are model constants. Pωb and Pκb are the additional
buoyancy terms.

The direct use of this model commonly leads to an over-prediction of the
eddy-viscosity. To account for that, the Shear Stress Transport (SST)
model is employed. In this model, the proper behavior can be obtained by a
limiter to the formulation of the eddy-viscosity:

ντ =
a1κ

max(a1ω, S · F
(2.40)

where ντ = µτ
ρ

,F is a blending function, and S is an invariant measure of the
strain rate.

2.2.3 Flow Near the Wall

It is important to mention the way in which the flow is modeled near to a
no-slip wall. Actually, in the cases that are considered in this study, the
boundary layer-turbulence interaction will be of primary importance. As an
extension of the method of Launder and Spalding, the near wall velocity is
given by:

u+ =
1

κ
ln(y+) + C (2.41)

where u+ and y+ are, respectively, the near wall velocity and the dimension-
less distance from the wall and can be expressed as:

u+ =
Uτ
uτ

=
Uτ(
τω
ρ

)1/2 (2.42)

y+ =
ρ∆yuτ
µ

(2.43)

where uτ is the friction velocity, Uτ is the known velocity tangent to the wall
at a distance of ∆y, τω is the wall shear stress, κ is the Karman constant and
C is a log-layer constant (function of the wall roughness).

An automatic wall treatment, which is based on ∆y = ∆n, will be em-
ployed. The specification of a small number of mesh elements next to the
wall (∆n) is crucial to produce accurate results, as it maintains a low y+.
As a rule of thumb, a y+ value around 1 or less than 1 is recommended for
highly accurate simulations, like heat transfer predictions.
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2.2.4 Solution Theory

As it was described at the beginning of this section, analytical solutions
to the Navier-Stokes equations are only available for very simple flows and
conditions. A numerical approach is adopted for the rest of cases and the
exact Navier-Stokes equations are replaced by algebraic approximations that
can be solved using a numerical method.

As it was mentioned, the finite volume methodology is used in this work,
and therefore, the conservation equations for mass, momentum and energy7

(Eq. 2.24, Eq. 2.25, and Eq. 2.26) are integrated over each control volume.
The divergence theorem is applied to convert volume integrals -with diver-
gence and gradient operators- to surface integrals.

Once this formulation is correctly described, the volume integrals and
surface integrals are discretized within each element sector and at integration
points of each surface, respectively.

For its part, the Convection Term (sometimes referred as Advection
Term) requires approximated values of the variable (φ in general form) at
points other than the nodes. Depending on the scheme used, the robustness,
computational load and accuracy will vary. The general formulation is:

φip = φup + β∇φ ·∆r (2.44)

where φip, φup are the values at the integration point and the upwind node
respectively, and r is the vector from up to ip.

The selection of the values of β and∇φ yields different schemes (1st Order
Upwind, Central Difference Scheme and High Resolution Scheme).

On the other hand, the Diffusion Terms formulation follows the stan-
dard finite-element approach, using shape functions to evaluate spatial deriva-
tives. The linear set of equations that arise by applying the finite volume
approach can be written in the form:∑

nbi

anbi φ
nb
i = bi (2.45)

where i identifies the control volume or node, and nb, the neighbor.
Instead of a segregated approach (that solves in a ”guess-and-correct”

nature8), ANSYS CFX uses a coupled solver, which solves for u, v, w, p as a
single system. In this approach, fully implicit discretization at any given time
step is employed. For steady-state problems, a time-step scheme is equally
used to guide the solution to a steady state.

7Or any other scalar quantity to which the transport equation is applied.
8In this approach, the momentum equations are solved with a guessed pressure. Then,

a correction equation for the pressure is obtained.
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In addition, ANSYS CFX uses a Multigrid accelerated Inomplete Lower
Upper (MG ILU) factorization technique for solving the discrete system of
linearized equations.
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2.3 Genetic Algorithms

For the last decades, the interest in single and multi-objective optimization
has grown dramatically. A wide range of heuristic methods has been devel-
oped as a result. These techniques are designed to solve problems quickly,
normally at the expense of accuracy. An important application of heuristic
methods is the design of Evolutionary Algorithms (EAs) [3], among others.
These have become very interesting for a quite large number of applica-
tions, due to many advantages that make them outperform other optimiza-
tion methods:

1. Possibility of dealing with oscillating or smooth-less objective functions.

2. Identification of a number of possible solutions.

3. Capability to deal in an easy manner with multi-objective optimization.

4. Capability to consider a wide range of configurations.

5. They can be used according to non-intrusive methods.

6. They can be very general and easy to adapt to different problems, as
well as different evaluating functions and optimization strategies.

Furthermore, in contrast to local optimization methods, evolutionary al-
gorithms are global optimization methods. Hence, EAs are best suited to
optimization problems with multiple local optima, and where gradient meth-
ods are too computationally expensive or not readily available. In many
optimization problems, EAs quickly identify promising regions of the design
space where the global optimum might be located. Therefore, hybrid opti-
mization strategies can be used. Those combine the global search capabilities
of EAs with gradient-based algorithms that efficiently perform a local search.

Genetic Algorithms (GAs) are evolutionary algorithms that do not con-
sider any gradient information. This fact makes them capable of moving out
of a local minimum. A gradient-based method usually remains within an
interval near a local suboptimal solution, and a well-designed GA can likely
reach the true optimum.

Genetic Algorithms base their operation on the natural selection and evo-
lution described by the neo-Darwinian theory. It is very interesting to under-
stand how a genetic algorithm imitates nature to perform the optimization.
In Fig. 2.14 one can understand how a genetic algorithm interprets a member
of the solutions population.
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Figure 2.14: Formulation of a GA.

An initial database containing a given number of random solutions rep-
resents the initial population of living beings. Each of the members of the
population has its own and unique features (phenotype). In optimization
language, each member of the database has a mathematical meaning, e.g. a
numerical value. This phenotype is codified into a unique genotype, which
corresponds to a binary representation of the number9. The genotype com-
prises a set of genes that can take different values, as it occurs in the binary
codification.

As it can be seen in Fig. 2.15, once each member is represented as a
string of alleles, the evolution process takes place. First, two members of the
population chosen at random (or with a dependency on a fitness function)
reproduce and give birth to a certain number of children. As it occurs in
nature, the offspring will have features from both parents. In order to do so
mathematically, the binary strings are cut off and combined. This assures
that offspring is formed from parenthood passing on certain genes10. Later,
each member of the population may suffer random mutation in their genes,
to maintain diversity. This helps explore different areas of the design space
and search for the global optimum. Finally, the members of the population
are confronted and the selection of the best individuals takes place. Only
those that comply with an specified criteria will pass to the next generation.
This process is then repeated until the convergence criterion is met.

2.3.1 JEGA Library

JEGA (Java Engine for Genetic Algorithms) is a framework that offers mech-
anisms to work with genetic algorithms. JEGA provides a flexible and exten-

9One can come up with a different codification, but binary numbers are commonly
used to represent the genotype in genetic algorithms.

10Actually, the reality is another. Each member of the population is formed by the
genotype of n design variables, and a genetic algorithm can be set to either produce
different combinations of design variables or change the variables themselves.
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Figure 2.15: GA Process.

sible problem-solving environment for computational models. The database
was written by John Eddy [12] and it contains two main genetic algorithms:
SOGA and MOGA, for single and multiple-objective problems respectively.

Each design variable is represented, when required, as a single 32 bits
signed integer. This saves a great deal of computational time. It is worth
mentioning that in those cases where the genetic algorithm works with this
representation, the code multiplies the real number by 106 and then trun-
cates. This only allows a precision of six decimal places. The initial popula-
tion is created from random numbers within the design variable bounds.

A check of duplicity is performed to assured uniqueness among members,
to encourage diversity. This “clone testing” is carried out always after creat-
ing a new member. In this way we avoid wasting both computation time and
memory, and clustering within a suboptimal solution. The fitness function
is assigned to each set of objective functions, applying the L2 norm.

When crossover takes place, a hierarchic distribution according the fitness
is established (merit function). To assure that the best individuals are more
likely to reproduce, they appear more times in the mating pool. Each chosen
mating pair produce a given number of children, by randomly selecting a
crossover point in their chromosomes. For mutation, children are randomly
selected and different methods can be used. A bit can be negated or the
value of the design variable can be mutated to a value inside the bounds. The
selection and children insertion into the population is given by the Pareto
dominance or their fitness, depending on the selection method used.

The different methods and parameters of the genetic algorithm will be
chosen according to the specific application and thus will be commented in
Chapter 4. However, some of the possibilities are worth mentioning.
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For the initialization type we have:

- Simple Random. It creates design with random variable values accord-
ing to a uniform distribution.

- Unique Random. It behaves as Simple Random, but it does not allow
repetition.

- Specified population.

For the crossover type we have:

- Multipoint Binary. It performs switching chromosomes of parents at N
crossover points, over any design variable.

- Multipoint Parameterized Binary. It performs switching chromosomes
of parents at N crossover points, but in each design variable individu-
ally.

- Multipoint Real. This is a special case, since it does not convert the
number (design variable) into binary, but it computes the crossover
using the real value.

- Shuffle Random. It creates a random shuffle of the parent design vari-
able values.

For the mutation type we have:

- Replace Uniform. It chooses a random valid value for a randomly
chosen variable.

- Bit Random. It just convert 0 into 1 and viceversa in the binary coding
of a randomly chosen variable of a randomly chosen design.

- Offset Normal. Introduces a random offset from a Gaussian distribution
of mean of zero and an specified standard deviation.

- Offset Cauchy. Similar, but with a Cauchy random variable.

- Offset Uniform. Uniformly distributed random offset.

For the replacement type we have:

- Roulette-Wheel. Each design is assigned a portion of the wheel pro-
portional to it fitness relative to the others. Portions of the wheel are
chosen at random. A design can be selected a number of times (regular
Roulette-Wheel) or only once (Unique Roulette-Wheel).
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- Below-Limit. Keep all designs for which the fitness is below a certain
limit. For this type, also a shrinkage percentage is specified to assure
that a given population size is maintained (for diversity issues).

- Elitist. This method simply chooses a given number of designs, taking
the most fit.

- Favor Feasible. This method first checks for feasibility (when con-
straints are specified). If no winner appears, then it computes the
fitness.

For the convergence type we have:

- Average Fitness Tracker. Keep track of the average fitness of the pop-
ulation and assess if it does not change in a given percent over a given
number of generations.

- Best Fitness Tracker. It works in a similar manner, but it tracks the
best fitness of the population instead of the average.

To have a further understanding, some of the parameters will be studied
for an optimization example (see Appendix A.1).
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2.4 Surrogate-Based Optimization

The optimization performed in this tool needs to be limited in time. CFD
codes are excellent tools but the time required for each evaluation is not
desirable. A regular evaluation can easily take from minutes for simple prob-
lems to many hours or even days for complex applications. Furthermore, a
genetic algorithm requires a large amount of objective function evaluations,
ranging from tens to hundreds generations, with dozens of individuals in each
one. This would be too taxing and a new method needed to be developed.

The optimization tool developed in this study is the perfect example of
the use of surrogate models [13, 14]. As a summary, a surrogate model (also
known as meta-model or response surface) is a function that relates design
variables with performance (objective function) in an approximate way, to
reduce the overall computational cost of the optimization process. A mathe-
matical representation is selected for the objective function with no relation
with the physical phenomena of the real problem. The parameters of this
function are updated within the optimization process, as it evolves (surrogate
training). An initial database is sometimes required but the computational
cost is considerably reduced.

Surrogate models theory is very extensive and many schemes have been
developed. In this study, the Kriging model is used as the mathematical ap-
proximate objective function or non-linear constraint, Latin Hypercube Sam-
pling (LHS) technique is employed, and different optimization approaches are
considered and tested for the betterment of the shape-optimization tool.

2.4.1 Surrogate Model

In this study, the Kriging statistical model will be employed. Kriging [15]
is a set of interpolation methods, sometimes called Gaussian Processes, that
were initially developed for geostatistics problems and nowadays they are
widely used in many fields. The most common form of a Kriging model is as
follows:

f̃(x) = g(x)Tβ + r(x)TR−1(f −Gβ) (2.46)

where x is the current point vector, composed by n design variables; g(x) is
the vector of evaluations of the trend basis functions; β is the vector of the
least squares estimates of the trend basis function coefficients; r(x) is the
correlation vector with the data points; R is the correlation matrix for all of
the data points; f is the response values vector; and G is the matrix of the
trend basis functions evaluations at all data points.

The terms in the correlation vector (r(x)) and correlation matrix (R)
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are computed using a Gaussian correlation function and depend on a vector
θ of correlation parameters, which are computed using a MLE procedure11.

The Kriging model is guaranteed to pass through all the response data
values, and the predicted response values f̃(x) decay to the trend function
g(x)Tβ when the point x is far from any of the data points. The mathe-
matical model of Kriging can be understood as the linear combination of a
known function of the variables and the realization of a stochastic process:

f̃(x) = y(x) + Z(x) (2.47)

where f̃(x) is the unknown deterministic response, y(x) is the known function
of x and, Z(x) is a realization of a stochastic process with zero mean and
non-zero covariance. For more details about the mathematics of Kriging,
please refer to [14,16]

Approximation Type

To determine the Kriging parameters, the Surfpack library, developed by [17],
is employed. In this case, it uses a global search method called DiRect algo-
rithm (dividing rectangles), a derivative free global optimization method that
balances global search in promising regions with global search in unexplored
regions. For ill-conditioning cases, it selects points that meets a constraint
on the condition number and that provides useful information for the cor-
relation lengths. The latter are obtained via maximum likelihood estimate.
Then, the set of points used to build the model is the one associated with
the most likely set of correlation lengths.

However, some other characteristics of the model should be taken into
account. There exist different methods to determine correlation parameters
(those governing the mean and correlation functions), apart from the DiRect
method. The Surfpack library provides three more approximation types:
Loca, Sampling and None. The Local optimization method makes use of
the ConMin public library (constrained function minimization) of nonlinear
programming optimizers. Sampling stands for a method in which several
random guesses are generated and the one with greatest likelihood is picked.
None stands for a method with no optimization, as it just picks the center
of the feasible region. On the other hand, the trend function can be built
in different ways: constant, linear, quadratic, and reduced quadratic. A re-
duced quadratic trend function is such that includes the main effects, but

11The Maximum Likelihood Estimation (MLE) is a method to find the value of the
parameters of an statistical model which assigns to the known sample distribution the
maximum likelihood in the model.
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not mixed/interaction terms. In this study, a reduced quadratic expression
is employed.

Sampling Plan

As it has been mentioned before, Latin Hypercube Sampling (LHS) is em-
ployed as the sampling strategy. LHS method divides uniformly the design
space for each factor and combines randomly these levels to specify the final
sampling points.

Among several sampling plans, LHS has been favored by many authors
[14], since it efficiently samples large design spaces and provide sets of points
whose projections onto each variable axis are uniform.

2.4.2 Surrogate-Based Local Framework

In a surrogate-based local optimization (SBLO or SBLM), also called Trust
Region or Move Limits optimization technique, the optimization algorithm
operates directly on a surrogate model, which can be generated through dif-
ferent methods. Since the surrogate model has a limited range of accuracy,
this algorithm checks the goodness of the approximation by comparing with
the high-fidelity expensive tool and updating its parameters. The main fea-
ture of the local optimization is the use of a trust region approach, which
defines de extent of the approximation.

SBLO method needs to generate and update the data fit in each trust
region, performing high-fidelity evaluations over a design of experiments.
Although it is a local approach, each sampling in the trust region can be
performed globally, which allows to extract the relevant global design trends.
The global data fit (using Kriging model, for instance) can manage poorly-
behave response variations, and it generates smooth, differentiable surro-
gates. SBLO methods are not intended for smooth continuous optimization
problems, since direct gradient-based optimization can be more efficient for
such applications. On the other hand, SBLO with global data fits is better for
most engineering problems, where response quantities may be discontinuous,
non-smooth, or with multiple local optima.

If we formulate the optimization problem as follows:

min
xl≤x≤xu

f(x) (2.48)

The surrogate-based problem can be described:

min
‖x−xkc‖∞≤4k

f̃k(x) (2.49)
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where f̃k(x) is the surrogate objective function, k refers to the sequence of
approximate optimization subproblems subject to a trust region constrain
4k. This surrogate-based approach based on the objective function (direct
surrogate approach) is attractive both from its simplicity and potential for
improved performance. After each of the k iterations, the predicted value
is assessed by computing the trust region ratio ρk, which can be defined as
follows:

ρk =
f(xkc )− f(xkopt)

f̃(xkc )− f̃(xkopt)
(2.50)

where xc is the center of the trust region (which was the optimum of the
previous step) and xkopt is the optimum in the current step. Therefore, ρk is
a measure of the ratio between the improvement in the truth model and the
improvement in the surrogate model.

Once ρk is computed, this value is used to define the step acceptance and
trust region size of the next iteration4k+1. These are defined by the contrac-
tion and expansion thresholds and factors. If the typical values of 0.75 and
0.25 are applied for the expansion and contraction thresholds respectively,
the trust region ratio logic becomes as in Table 2.1

TR Ratio Accuracy Acceptance next TR Size
ρk ≤ 0 Poor Reject Shrink

0 ≤ ρk ≤ 0.25 Marginal Accept Shrink
0.25 ≤ ρk ≤ 0.75 Moderate Accept Retain
0.75 ≤ ρk ≤ 1.25 Good Accept Expand

1.25 ≤ ρk Moderate Accept Retain

Table 2.1: Trust Region Ratio Logic

A negative value of ρk always means a poor accuracy because an im-
provement in the truth model means an impairment in the surrogate model
or vice-versa.

In this way, the calculated step is accepted or rejected based on the trust
region ratio. In our case, also a filter is applied. As still we are not working
with constrains, the only filter applied is the concept of Pareto optimality
to the objective function and only accept the step if it is better than any
previous step.

SBLO might be thought to be guaranteed to find local instead of global
optima. However, this method can often find global minimum, due to the
random sampling used in each trust region, which solves the problem a little
differently each time.
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For SBLO, the initial and maximum size of the trust region should be
considered carefully, as well as the contraction and expansion factors. Con-
traction and expansion thresholds are also indicated. The stopping criteria
is double. On the one hand, a maximum number of SBLO iterations is set,
but also a soft convergence criterion can be used to stop the process. This
criterion limits the number of consecutive iterations with improvement less
than the convergence tolerance (the tolerance value and the iterations num-
ber must be specified).

The process of a SBLO can be summarized in the following steps:

1. Generates trust region (upper, lower bounds of design variables) in the
design space.

2. Performs high-fidelity evaluations over the specified trust region and
generates Kriging parameters. The number is determined by the sample
size and it has a minimum defined by the number of design variables12

3. Performs optimization of the Kriging mathematical model.

4. Evaluates the optimum with the high-fidelity tool.

5. Generates new trust region by setting the previous optimum as the
center if the step is accepted or recalculating the step shrinking the
trust region.

6. Begin process until a maximum number of iterations or the soft con-
vergence criteria is met.

The goodness of this strategy and some of the parameters will be studied
for an optimization example (see Appendix A.2). For its implementation,
please refer to Section 3.1.

2.4.3 Surrogate-Based Global Framework

In this work, the influence of different surrogate models will be studied. There
are some cases in which a global approach needs to be taken into account.
For example, for future applications to mutliple-objective optimization.

In a surrogate-based global optimization (SBGO), the optimization algo-
rithm is not supported by a trust-region approach. It starts from an initial
sample of points and the optimizer operates on that surrogate. This ap-
proach should be used carefully, as there is no guarantee of convergence. It

12As a rule of thumb, a minimum of 5 times the number of design variables normally
holds.
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should be used either when there exists the need of using an initial database
or when the surrogate needs, somehow, to be updated globally.

This global approach was initially designed for multiobjective genetic al-
gorithms. Instead of creating one set of surrogates for the individual ob-
jectives, the idea would be to select points along the Pareto frontier, which
will be then used to supplement the existing set of points that was used to
construct the model. The surrogate becomes more accurate as the iterations
progress.

The process of a SBGO can be summarized in the following steps:

1. Generates initial random sample, using a design of experiments method.

2. Evaluates all members of the sample with high-fidelity tool and con-
struct mathematical model.

3. Obtains the optimum of the mathematical model.

4. Evaluates optimum with high-fidelity tool and adds it to the sample.

5. Updates mathematical model (recalculates parameters) with the new
sample.

6. Repeats the process as many times as specified.

The goodness of this strategy and some of the parameters will be studied
for an optimization example (see Appendix A.3). For its implementation,
please refer to Section 3.1.
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Chapter 3

Implementation

Once defined the methodology used in each module of the optimization, a
way to implement them computationally needs to be developed. In the next
page, the main scheme of the optimization tool is shown. In the following
sections, each different module of the tool is explained in detail.

For this study, an environment for the optimization is provided. Dakota
is a General Public License (GPL) software developed by Sandia National
Laboratories, two major US Department of Energy R&D national labora-
tories. Dakota Toolkit is defined by the authors as ”a multilevel parallel
object-oriented framework for design optimization, parameter estimation,
uncertainty quantification, and sensitivity analysis” [16].

Specifically in this work, Dakota provides the optimization algorithms, i.e.
the single-objective and multi-objective genetic algorithms (JEGA library),
as well as the surrogate models (Surfpack library) and schemes. Special care
must be taken to interconnect Dakota with the high-fidelity CFD codes and
the parameterization algorithms.

Figure 3.1: Dakota logo.
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3.1 Main Scheme

For surrogate-based global optimization, the following approach is applied:
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The figure explains in detail the whole process when a global strategy is
followed. From left to right, following the arrows, one can understand the
evolution of the optimization procedure. The yellow boxes stand for the user
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main inputs, necessary for operation. All of them need to be specified before
the optimization process is triggered. Most should be provided in the Input-
File Algorithm, right before Dakota is initialized. However, in the scheme,
the yellow boxes are placed in those spots which they provide information
to.

All the process starts with the Baseline specification, providing the points
of the blade geometry to be optimized. The number of points is arbitrary1,
and they should be provided in a two columns file (two coordinates). Once the
Problem Design module is provided with this information, the Initialization
Algorithm can operate as described in Section 3.2.1, providing the control
points with which the optimization tool will work. The Selection Algorithm
(Section 3.2.2) generates the design variables and subsequently the design
space in which the optimization will be performed. Input-File Algorithm
stands for a simple code that generates, from user specifications, the input
file that Dakota can interpret. It is at this point when the optimization is
set in motion and therefore special care must be taken to avoid unexpected
computational errors (Section 3.2.2).

Once Dakota is provided with the required input file, the optimization
process is initialized and the sampler based on the Latin Hypercube generates
a set of points that will be used by the surrogate scheme to estimate the meta-
model parameters. Each member of this initial sample is evaluated using
the High-fidelity Tool module (Section 3.3). Only the design variables are
provided to the module and the only output is the objective function value.
This is only applicable when zero-constraints single-objective functions are
used. When using the code for multi-objective or when constraints must be
placed, the output of the High-fidelity tool (a single file) must contain all the
information. For further reading, please refer to [16]. Both input and output
will be provided using a single file containing the information according to
[16]. Once the surrogate model has a real value for each individual in the
sample, the mathematical estimated function is built. From this moment on,
the optimization process forgets about the physical content of the problem
and focuses only on the optimization of the estimated function.

A genetic algorithm, as it was explained in Section 2.3, only needs the
value of the objective functions and constraints to work. These values are
used to assess the fitness of the individuals in the population, to determine
both their probability for crossover (in some evolutionary strategies) and,
more importantly, their chances to survive to the next generation. Once
convergence has been reached, the best individual is sent to the surrogate
model for assessment. Convergence is attained when the specified number

1A number ranging in the hundreds is recommended
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of generations is reached and when the rate of evolution between the last
and the next-to-last is below a certain limit (for some types of evolutionary
strategies). The surrogate model will be then checked for convergence after a
given number of maximum iterations. If convergence has not been attained
yet, the optimum provided by the genetic algorithm is included in the initial
population, performing a new high-fidelity evaluation and re-estimating the
mathematical surrogate parameters.

If the surrogate model convergence is reached, then the best individual
found in the last “surrogate-iteration” is then returned as the optimized
value. The parameterization algorithm (Section 2.1) converts the optimized
design variables into a geometry that will be considered the result of the
optimization.
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On the other hand, for surrogate-based local optimization, the following
approach is applied:
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The operation of this scheme is almost the same as for the global op-
timization. The only difference falls on which individuals are used by the
surrogate model to estimate the mathematical parameters. In the previous
case, the sample was obtained right from the beginning and it was updated
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and trained with a single individual in each “surrogate iteration”2. In this
new case, as it is described in Section 2.4.2, the region in which the sampler
provides the random individuals depends on the current trust region. These
“moving limits” are updated in each surrogate iteration and new individuals
are evaluated with the high-fidelity tool. In this case, the surrogate conver-
gence assessment module not only checks to terminate the process but it also
computes the trust region ratio (Equation 2.50) to determine the trust region
size and position in the next iteration.

3.2 Problem Design Algorithms

It should not be forgotten that Dakota environment is designed for purely
optimization purposes. An input file containing the design variables and
their limits, and defining the high fidelity tool to evaluate the fitness should
be provided to Dakota. Therefore, previous to start the optimization pro-
cess, the desired design space and control points of an interpolated geometry
should be defined and included into Dakota’s input file. Also, errors may
appear during the optimization process that should be prevented. For that
reason, a set of problem design algorithms needed to be performed.

3.2.1 Initialization Algorithm

If Algorithms 2.10, 2.11, 2.12 are coupled together, a tool that generates
the interpolated control points, evaluates the precision of the interpolation
and generates the approximated B-Spline is developed. If the knot sequence
is optimized, and the data parameters and degree of the curve are fixed as
indicated, a complete algorithm (Fig. 3.2) that computes the required number
of control points for a specified blade shape is built.

This algorithm is used at the beginning of the optimization tool to de-
termine the number of required control points and the best knot sequence to
optimize a given blade shape.

Once the control points, data parameters, knot sequence and weights
are obtained as an output of the previous algorithm, one can wonder if the
spacing between control points might be modified for a more precise control
of the design variables of the problem. This is, indeed, very useful for the
Selection of Design Variables (see next section), as it might be valuable to
have a more dense distribution of the control points in the fixed part of
the blade, as it is not desired a variation of the geometry in that part as a

2Actually, it could be updated with more than one individual, for multi-objective
optimization above all (Pareto front).

56



Figure 3.2: Initialization Algorithm.

consequence of the different location of the adjustable control points. In case
the user chooses to modify the spacing, the knot sequence obtained via the
Algorithm in Fig 3.2 will not be longer used for the interpolation.

3.2.2 Selection of Design Variables

Algorithm 3.2 is very useful to construct the geometry by interpolating for
a given tolerance. However, in this problem, the number of design variables
must be chosen according to the user criteria. This will be done by observing
the optimization results that have been obtained previously [2] and compar-
ing them with the results of the previous initialization algorithm for a large
number of control points. We will set then the position of the Throat and we
will divide the geometry into two parts: fixed, and adjustable. The control
points belonging to the fixed part will not be modified and they will be a
constant during all the optimization process. The adjustable control points
will become the design variables for the optimization algorithm.

As explained in the previous section, the user can modified the spacing
of the control points as desired. This can be done graphically through the
Selection of Design Variables module.
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(a) Points Selection. (b) Design Space Selection.

Figure 3.3: Example of Selection Algorithm results.

Automatic Topology and Meshing

The shape-optimization tool developed in this work needs to have a high
level of automation. The mesh definition for each geometry must be defined
automatically. The so-called Automatic Topology and Meshing (ATM) from
ANSYS Turbogrid is employed. This method enables to create high-quality
hexahedral meshes and topologies with no need to adjust manually the con-
trol points. It provides with mesh creation tailored specifically to the needs
of the given bladed geometry. The ATM Optimized topology is an H-O grid
and works well with rounded leading and trailing edges.

Failure Mitigation

This tool is expressively designed to cover a very wide range of blades. As
new turbines and blade designs evolve, geometries become more complex and
well-rounded, and shape blades are no longer used. Geometries can be very
sharp or with sudden turns. The ATM Optimizer is a very powerful tool,
but it has limitations. Our experience indicates that negative volumes may
appear in the grid when the topology becomes too complex for the ATM
Optimized. This is due to a very large width difference between leading
and trailing edge. In this present work, the space design will be limited so
that this problem does not appear. For further research, new topology and
meshing algorithms will be proposed.

Taking into account the long time that the shape-optimization tool takes
to get a final result, it is important to make sure that the different geometries
that are evaluated in the surrogate model do not yield any error. In order to
do that, a simple program has been created (Fig. 3.4). This algorithm creates
the mesh of all the future evaluations and tells the user if the optimization
tool will find any error in the process.
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Figure 3.4: Mesh-Checking Algorithm.

It is important to notice that this algorithm can be used when all the
following conditions are met:

• A surrogate-based GLOBAL strategy is used. This is due to the fact
that a local strategy uses different trust regions along the optimization
process, therefore only the first trust region could be analyzed with this
algorithm.

• The LHS sampler is used WITH a seed specification.

When the Failure Mitigation Tool cannot be employed, a script has been
programmed to detect mesh errors and propose ways to solve them. For
example, our experience indicates that the ATM Optimized proposed by
ANSYS sometimes performs poorly the B-Spline interpolation that is initially
proposed. In the case that an error of this kind is detected, a Piecewise-
Linear interpolation will be assigned to the geometry. In other cases, the
initialization file differs too much from the given geometry and, when using
a coarse mesh, it can produce a blow-up. In this case, the script will indicate
to the Solver not to specify a initialization file.

3.2.3 Number of Cells Selection

In every algorithm that works with CFD tools, the number of cells to be
imposed in the mesh is a critical issue. It can mean accuracy, convergence
and computational time. To find a compromise between these variables,
several number of cells have been computed for a given geometry. In blade
optimization, entropy generation is very important and therefore this value
should be compared for different mesh sizes. This study will be performed
before each application.
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In Figure 3.5 one can observe an example of this study. The entropy
generation between the inlet and the outlet of a transonic blade is depicted.

Figure 3.5: Entropy Generation discrepancy.

As an extra plot to be considered, the Mach Number distribution in a
given position downstream has been depicted and compared for different
number of cells (Fig. 3.6).

Figure 3.6: Mach Distribution discrepancy.
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In this example, the value for 400,000 cells has been considered the true
value. As a result of the previous study, a value of 50,000 cells seems to
be enough for the successive optimization evaluations. This will define two
different objective function assessments: Low-Fidelity for the coarse mesh
and High-Fidelity with the fine mesh with large number of iterations.

Apart from the Mach distribution and the entropy production, it is inter-
esting to check the influence on the objective function values that are used
in this study. As it will be described in Chapter 4, the standard deviation
of the pressure distributions half chord downstream will be commonly the
parameter to optimize. Therefore, in Fig. 3.7 one can see an example of the
discrepancy using a different number of cells.

Figure 3.7: Pressure Standard Deviation discrepancy.

Although the pressure seems to depend a little stronger on the number
of cells, it is still allowed its use with 50k cells for optimization. A further
conclusion on this topic will be provided in Section 4.4, once real optimization
results are available for assessment.
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3.2.4 Timesteps Selection

In this work, it is critical to find an optimum number of iterations for each
high-fidelity evaluation that takes into consideration and finds the compro-
mise between accuracy and timing. It should be considered that the algo-
rithm will need a number ranging from 100 to 200 evaluations for the global
surrogate scheme, and about 500 to 1000 evaluations when the local scheme
is needed. Hence, depending on the power of the machine in which the shape-
optimization tool is launch we should determine a maximum time for each
evaluation. In order to do that, a similar study to one in the previous sec-
tion should be perfomed. As an example, the value of a objective function,
in this case, the standard deviation of the Pressure distribution half chord
downstream a transonic blade, has been computed for different values of cells
and for different number of timesteps.

Figure 3.8: Objective Function as a function of the timesteps for 400k cells.

As a result, it can be identified a critical value of 150-200 iterations for
each evaluation. The goodness of this selection will be checked once the
algorithm is applied to a given geometry to optimize (Chaper 4). For fur-
ther information about time-steps and computational cost, please refer to
Section 5.1.

Apart from the previous analysis, it is important to take into account that
the simulations that will be performed will use an initialization file, which
means that the Solver will start solving the current problem interpolating
from given results, which always means a faster convergence, above all in our
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Figure 3.9: Objective Function as a function of the timesteps for 50k cells.

case, in which new geometries differ very little from each other.

3.3 High-Fidelity Tool

As it was explained in Section 2.2, a high-fidelity, fully turbulent and ther-
modynamically accurate simulations will be performed to solve the fluid-
mechanics problems. These evaluations serve to assess the fitness function of
the different members of the genetic algorithm population. Specifically for
those cases with transonic applications, high-fidelity simulations that take
into account real gas effects are of the greatest importance [2].

Special attention should be taken to provide correct instructions to the
different parts of the simulation code during the Dakota evaluations3. The
optimization environment calls the simulation code when needed and the
results are returned to the environment. No gradients nor further information
are required, so only one objective function is supplied. Any other data of
the simulations will be updated along the optimization process, but it is not
stored, fact that saves memory space and reduces optimization costs.

The process that the high-fidelity tool performs can be summarized as
follows:

1. When the optimization process needs to evaluate the fitness of one

3Python has been chosen as the language to work with in this study.
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member of the sample, it will call the simulation code via a python
script.

2. The script first calls the parameterization algorithm. This algorithm
is entirely written in Python. The environment provides a .in file that
contains the design variables. The parameterization algorithm retrieves
the fixed control points from a .txt file that the Problem Design Al-
gorithm has generated after the initial interpolation. The adjustable
control points are defined with the values of the design variables. With
the complete set of control points, the parameterization algorithm gen-
erates the B-Spline curves that define the blade geometry. This set of
points is stored in a .crv file that the mesh generator will be able to
interpret.

3. The script then calls the mesh generator. Through an already generated
topology (from a previous case or the Baseline), it uploads the curve
through the .crv file generated previously. Once the new points are
inserted and the topology is defined, the mesh is generated and stored
in a .gtm file.

4. The preprocessor is called and the new mesh is uploaded to an already
created .pre file with the problem conditions. The solver input file is
generated from this step.

5. The solver is triggered, specifying the number of processors working
in parallel, the wall clock time per evaluation or maximum number
of iterations, the initialization file and the solver precision. After the
specified time is completed, the results file .res is then stored for post-
processing. In some cases, this file will also be used as the initialization
solution for the next evaluation.

6. The post-processor, specific for turbomachinery problem will initialize
the turbine components and will generate a .csv file with the required
information (the desired objective function).

7. In some cases, the data provided by the post-processor is not directly
employed for optimization. An evaluation script is then applied. For
instance, this script can compute the standard deviation of a given
distribution, when uniformity of a given flow variable is sought.

8. The value of the objective function is retrieved to the optimization
environment, which will interpret this value, normalize it and correctly
assign a fitness function value to the member of the sample.
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All the simulations are performed in batch mode, using session files that
need to be generated before the optimization is started. Those session files
are short Perl scripts that the CFD toolkit is able to interpret as user inputs.

In Fig. 5.4, one can have a graphical idea of what is happening in each
step of the high-fidelity tool.

(a) TurboGrid (b) Pre-Processor

(c) Solver (d) Post-Processor

Figure 3.10: High-Fidelity Tool Example.
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Chapter 4

Application: Supersonic ORC
turbine

As an application of the shape-optimization tool, the optimization of the
convergent-divergent blade of a supersonic ORC turbine is performed (Fig-
ure 4.1).

Figure 4.1: Supersonic blades (Mach Distribution).

Organic Rankine Cycles (ORC) have been proved to be a promising tech-
nology for small scale heat recovery systems. The main difference of an ORC
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system with a convectional Rankine cycle is the working fluid, which in the
case of ORC is a high-molecular organic fluid, instead of steam, commonly
used in Rankine cycles. The use of this working fluid enables the achievement
of high efficiencies, since it takes advantage of the dry expansion and high
pressure differences.

An ORC turbine commonly involves highly supersonic flows, as a high-
molecular fluid has a low speed of sound. The design of ORC turbines is then
strongly characterized by real gas effects of the working fluid, and it should
be taken into account when optimizing blade geometries, which are crucial
in the improvement of the efficiency [2]. These features are easily supported
by the shape-optimization algorithm that has been developed in this work
and therefore its application to the improvement of the blade geometry of an
ORC turbine stator is studied for assessment.

Strong real gas effects are considered in high-fidelity simulations of the
blade-to-blade flow using an accurate CFD code. This can only be achieved
by the development of a non intrusive tool. The evolutionary strategy cou-
pled with surrogate models turns out to be excellent in this regard.

The optimization process for different parameters is performed. How-
ever, in the first place, the validation of the interpolation method needs to
be carried out. In order to do so, the CFD solver is launch with the real ge-
ometry and with the interpolated or approximated B-Spline obtained with a
limited number of control points and the least squares approximation. Once
the interpolation method is validated, the optimization is ready to start.
Ultimately, we will discuss the optimization results in the next chapter.

4.1 Shock waves and Entropy Production

A converging-diverging blade cascade of the stator of a supersonic ORC tur-
bine is studied. When observing the 2D distribution of the Mach Number
downstream the blade, in Fig. 4.1, one can notice shock waves patterns in
the flow.

An analysis of the phenomena that take place in the flow is carefully
considered. In Fig. 4.2 the investigation of the flow features is performed.
They can be divided into three categories:

- Wake Pattern. In fluid mechanics, a wake is the region of the flow
that is disturbed downstream of a moving body. They are produced be-
cause the two flows from the pressure and suction side of the blade get
together. Specifically this effect comes from the boundary layers inter-
action on the two sides of the profile. Wakes spread outward from the
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Figure 4.2: Shock Waves Distribution.

body until its energy is overcome or lost. In this case, the wake spread
after the trailing edge of the blade until it mixes out and diffuses. It
can be understood as a velocity defect and it will always happen. They
can be therefore be seen very clearly in a Mach Number or Velocity
distribution.

- Fishtail Shock Pattern. When the two jets in the trailing edge
get together and collide, two reflecting shocks are produced due the
acceleration of the supersonic flow. Two oblique shocks are formed at
the trailing edge of the blade. It is indeed a compression shock wave
because the low base pressure formed immediately behind the trailing
edge makes the flow expand around it and then it is recompressed by
a strong shock wave at the point where the suction and pressure side
flows meet.

- Compression Wave. The generated compression wave is produced by
the effect on the blade wall of the pressure side leg of the fishtail shock
pattern generated at the adjacent blade trailing edge. The curvature of
the blade in the suction side intensifies the effect and the boundary layer
- shock wave interaction is of greatest importance. The strong local
recompression in the collision point provokes an abrupt enlargement
of the boundary layer. Although the shock wave might be weak when
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arriving to the wall, an extra dissipation is likely to occur within and
downstream of the point. Even if the boundary layer was laminar, the
interaction will certainly cause transition, as the reflected shock will
cause a significant increase of boundary layer momentum thickness.

These shock waves result in the non-uniformity of the flow downstream,
affecting the efficiency of the stage. The two shock waves produced down-
stream of the blade mix out after propagating for some distance and this
produces losses due to a large entropy generation that takes place in mixing
and diffusion processes. In fact, the mechanisms for entropy generation are:

- Viscous Friction. It can occur in boundary or free shear layers, in-
cluding mixing processes (leakage jet), due to the fact that the rate of
shear strain is not the same as the vorticity and so viscous dissipation
is not confined to boundary layers.

- Non-equilibrium Processes. Like the ones in very rapid expansions
or shock waves. The entropy creation occurs due to the heat conduction
and high viscous normal stresses within the shock wave.

- Heat Transfer.

Actually, for most machines the flow is closely adiabatic and hence the
entropy is generated only as a result of irreversibilities, which contributes
significantly to the loss of efficiency [18], such as viscous effects in boundary
layers, viscous effects in mixing processes and shock waves.

Therefore, main aim of the shape-optimization is to produce a more uni-
form flow downstream, which leads to weaker shock waves and reduction of
the pressure losses. Moreover, the interaction between the generated shock
waves and the boundary layer will be also attenuated, which will reduce the
risk of boundary layer separation and will lead to further reduction of vis-
cous losses. Moreover, a more uniform flow in the outlet will eventually help
improve the efficiency of the subsequent rotor of the turbine stage.

4.2 Validation of Parameterization Algorithms

In Fig. 4.3 the interpolation result for different number of control points is
depicted. The assessment of the interpolation method using the convergent-
divergent blade is very appropriate, as the ratio between the leading and
trailing heads is large.

To validate the interpolation method, we first use the algorithm described
previously in Fig. 3.2. This algorithm is simplified as in Fig. 4.4.
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(a) NCP = 10 (b) NCP = 12

(c) NCP = 15 (d) NCP = 20

Figure 4.3: Different Number of Control Points.

Figure 4.4: Simplified Initialization Process.

Only the baseline geometry points and the specified tolerance are provided
to the algorithm. As a outcome of the process, an interpolated geometry,
with its respective control points, is generated. To have a more graphical
idea of the interpolation error, the code has been running for a large number
of control points and the MSE has been computed1. The MSE as a function
of the number of control points is depicted in Fig. 4.5a.

As expected, the error of interpolation decreases with the number of con-
trol points defining the curve. One can observe that the error strongly decays

1Recall from Section 2.1.3: MSE =
∑P

i=0 ‖p(wi)−x(wi)‖2
P+1
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(a) Gross. (b) Logarithmic

Figure 4.5: Error of Interpolation.

at the beginning, remaining roughly steady after reaching, approximately, 25
control points.

At this point, the validation of the “trailing edge issue” has to be per-
formed, as it was discussed in Section 2.1.3. We came across two different
methods to deal with the big gradient region. In Fig 4.6 we can observe
interpolations for different number of control points, using the first method
(Trailing edge as a B-Spline):

(a) NCP = 4 (b) NCP = 5

Figure 4.6: Different Number of Control Points for the big gradient region.

On the other hand, this region can be defined by a circumference, if we
consider the second method described (Traling edge as a Common Radius):
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Figure 4.7: Trailing Edge as a common radius

Therefore, it can inferred that a Common Radius should be used for this
blade geometry. The common radius method that will be used from this
point on provides equal tangent in the pressure side of the blade, allowing
for a much better pressure profile in the trailing edge (Fig. 4.8).

Figure 4.8: Detail of the Trailing Edge.

At this point, the number of control points used in the optimization and
design variables needs some discussion. By observing Fig. 4.5b a starting
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rough number of 30 control points seems appropriate. Furthermore, the knot
sequence has been modified to assign the desired number of control points to
each area. It is important to provide a good interpolation in the sonic and
geometrical throats, since even very small changes affects to the pressure
distribution on the blade2. Therefore, a knot sequence with a larger number
of control points in those areas of interest is chosen. Once the interpolation
result is obtained, the ”cutting” control points are decided and the geometry
is divided into different parts, as it can be seen in Fig. 4.10. It is important to
find the compromise between the interpolation accuracy and the number of
design variables. A large amount of the latter would yield to random shape
variations in the genetic algorithm and surrogate model, which would find
hard to optimize and to improve substantially the population in each cycle.

Figure 4.9: Interpolation result for 30 control points.

Now, the areas subjected to optimization are identified. Normally, the
exclusion of the leading and trailing edge is recommended. In Fig. 4.10 the
division has been established and the number of design variables is decided.

It is worth noticing that the trailing edge is set to move freely. In order
to do that, we set a constrain such as the trailing edge width remains fixed,
allowing it to move downwards during the optimization process. By doing
so, only one design variable is needed to describe the trailing edge location.

2It has been proved that a 1% error in the geometry yields a 4% error in the Pressure
Distribution.
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Figure 4.10: Division in fixed (red) and adjustable (green) areas.

4.2.1 CFD validation

The validation of the interpolation code is performed by carrying out simu-
lations with the CFD tool. A supersonic turbine blade cascade for an ORC
is computationally studied. A converging-diverging Bière blade with 6.5 cm
of cascade pitch is considered. The original diverging part of its geometry is
designed by means of the method of characteristics (MOC) and the leading-
edge portion is constructed with a high smoothness [2]. The original blade
performance is compared with the resulting blade from Algorithm 3.2.

Problem Conditions

As only blade-to-blade effects are of interest, quasi-3D calculations are per-
formed and planar 2D profiles are considered. To achieve these conditions, a
large number of blades is provided, in order for the radial effects to disappear
(large circumference). For the boundary conditions, the design requirements
are used.

The total pressure and total temperature at the inlet are fixed to 8.0
bar, 272◦C respectively, and a weak boundary condition with average static
pressure of 1.078 bar is placed at the outlet. The working compound is
the siloxane MDM3, whose thermophysical properties are calculated using a
Lookup Table (LuT) that was generated considering a Span-Wagner model

3Octamethyltrisiloxane, C8H24O2Si3
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(see Fig. 4.11). The importance of accurate fluid thermophysical descriptions
in ORC turbines has been demonstrated in several studies [2, 19, 20]. These
works showed that simulation methods not considering real gas effects are
expected to mislead the design indications where strong non-ideal effects
appear. In fact, the operating conditions of the present supersonic turbine
lead to relevant real-gas effects. For a investigation of the advantages offered
by a fully real-gas adjoint-based design methodology compared to approaches
based on simplified equations of state, please refer particularly to [2].

In Fig. 4.11 it can be observed how the thermodynamic diagram has been
divided with a grid according to the required accuracy. The data points have
been included into a LuT that is called by the code when the gas properties
are needed. Also, it can be observed how the problem conditions are far from
those of ideal gas simplification.

Figure 4.11: Thermodynamic diagram for the Siloxane MDM.

Turbulence effects are modeled using the κ−ω SST model and ensuring a
y+ below unity along the blade. This turbulence model is widely used in tur-
bomachinery and blade design, as boundary layer and shock waves influence
is of primary concern. As described previously, Siloxane MDM is treated as
a real gas via LuT interpolation method suitably defined (Fig. 4.11). An
outflow domain is placed at a distance of about three axial chords from the
trailing edge, allowing for the flow features to fade out. The flow is con-
sidered purely axial at the inlet and turbulence quantities are fixed (5%,
medium intensity).
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Original Case Results

First, a simulation with the original points, extracted for a general case using
MOC4 method, is performed. The goodness of the interpolation is measured
computing the pressure distribution as a function of the axial coordinate.

In Fig. 4.12a it is depicted the Mach Number contour plot of the original
distribution of points. In Fig. 4.12b, the pressure distribution is plotted.

(a) Mach number distribution. (b) Pressure distribution.

In Fig. 4.13, pressure on the blade as a function of the axial coordinate
can be observed for the Original distribution of points.

Figure 4.13: Pressure distribution (Original Case)

Comparison of Interpolated Case

For the interpolated blade shape, the results of the pressure distribution
along the axial coordinate are compared and the accuracy of the interpolation

4The Method of Characteristics (MOC) is a commonly used analytical method to de-
sign supersonic blades by solving ordinary differential equations on a suitable hypersurface.

77



is estimated. In Fig. 4.14 the difference in the pressure distribution along
the axial coordinate can be observed. Some differences are found but the
compromise with the number of design variables determines its acceptance.

Figure 4.14: Pressure distribution comparison.
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4.3 Optimization Process

A surrogate-based local method (trust regions method) will be applied to
assure convergence5, along with a Pressure-based objective function (stan-
dard deviation of the pressure profile in a circumferential line half chord
downstream).

The design space is depicted in Fig. 4.15. The trailing edge is allowed
to move, almost freely, downwards. The optimization parameters are those
indicated in Table 4.1.

Figure 4.15: Design Space.

With the parameters described in Table 4.1, the optimization process is
started, yielding the results depicted in Fig 4.16. It can be observed a rapid
reduction of the standard deviation of the pressure distribution half chord
downstream. In the next section, the consequences of this reduced standard
deviation will be studied. In the following graphs, Pini M. (2015)’s reference
line is the value obtained through the Adjoint Method in a previous study
of this research group [2]. The same blade was computationally studied and
optimized with a gradient-based method. This present work aims to provide
an automated tool for a wide range of blade geometries, and therefore the
optimization results will be evaluated and compared following already known
results.

5As it will be seen in the Conclusions, a global scheme will yield results in a faster
manner. However, convergence to the optimum is not assured and therefore for this thesis,
the result obtained with the local optimizer are shown. For further discussion, please refer
to Section 5.3.
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Genetic Algorithm

Generations 150
Population Size 50
Crossover Rate 0.8
Crossover Points 2
Mutation Rate 0.2
Mutation Type Replace Uniform

Surrogate-Based Method

Method Type Local
Sampling Type LHS
Sample Size 80
Iterations 20

Surrogate Model

Type Global - Kriging
Trend Function Reduced Quadratic

Correlation Params, Global
Correlation Lengths Internally Computed

Correction No Crrection

Trust Region

Initial Size 0.8

Minimum Size 10−5

Contract Threshold 0.25
Expand Threshold 0.75
Contraction Factor 0.5
Expansion Factor 2

Table 4.1: Optimization Parameters

Figure 4.16: Optimization Process.

Along with Fig. 4.16, the evolution of the trust region ratio in Fig 4.17
should be study to fully understand the evolution of the optimization process.
As it is observed, the reason of the flat region in iterations 2, 3 and 4 in
Fig. 4.16 is due to the poor behavior of the trust region accuracy during those
iterations. As it was explained in Table 2.1, the current step is rejected either
because of it poorly accuracy or because the Pareto-filter, which excludes new
values that do not improve an already-found optimum. Clearly, iterations 2,
3 and 4 yield the same optimum value. This trust region updating process
ensures convergence.
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Figure 4.17: Trust Region Ratio.

At the end of the process, a very nice reduction of the shock waves gener-
ated can be observed. The Pressure distribution, as it is shown in Fig. 4.18,
has much less standard deviation. To evaluate the goodness of the pressure-
based objective function, the Mach distribution is also plotted in Fig. 5.9, to
assess the new intensity of the shock waves.

Figure 4.18: Pressure distribution half chord downstream.
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(a) Baseline (b) Optimized

Figure 4.19: Mach Distribution.

It is of great importance to notice that the shock waves in this new case
are much weaker than in the Baseline geometry. Optimization has worked as
expected, using a surrogate-based local Kriging model, a genetic algorithm
and a B-Splines parameterization.
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4.4 Optimization Results

In this section, the physical consequences of the blade optimization are
shown. For comments about the optimization process itself, please refer
to Chaper 5 or Section 5.2.

As a result of the optimization process, the Mach number distribution
turns out to be as in Fig. 4.20.

Figure 4.20: Optimized - 2D Mach Distribution.

For this blade geometry, the flow is much more uniform downstream,
which will simplify the design of the subsequent rotor. The entropy pro-
duction and efficiency are improved due to the reduction of the shock waves
generated by the transonic flow. In the following section the study of the
efficiency is performed.

4.4.1 Analysis of Performance

The new performance of the new blade needs to be assessed to confirm that,
by assuring uniformity of the flow, a good way for optimization is provided.
For further information about the relation between entropy generation and
efficiency of turbines please see Appendix B.1.

A way to assess the new efficiency of the blade is by computing the total
pressure losses (also known as Stagnation Pressure Loss Coefficient), through
Eq.4.1. This is the most common way to define the losses for individual blade
rows and, in our case, this provides a good way to evaluate the performance
of the stator. In this regard, PT,in − PT measures the pressure energy loss
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employed to increase the dynamic pressure through PT,in−P . The expression
turns out:

Y =
PT,in − PT
PT,in − P

(4.1)

where PT,in stands for the total pressure (mass flow averaged) at the inlet
position, PT is the total pressure at the given position, and P refers to the
static pressure (area averaged) at the same given position.

In Fig. 4.21 one can observe the pressure losses for the baseline and that
of the Adjoint Method [2], to compare with the new geometry proposed in
this study. The two optimization results show a similar tendency. However,
the optimized geometry returns a lower value of the losses, increasing the
efficiency of the stage.

Figure 4.21: Optimized - Pressure Losses Coefficient.

The pressure losses have a very close relation with the entropy production,
being the latter the only source of losses in the blade, as no heat is added
and the viscous effects increase the entropy in the fluid (see Section 4.1)

By analyzing the entropy generation on the single blade row of the stator
of the turbine one can get an idea of how the whole performance of the stage
is. As it can be observed in Fig. 4.22, the entropy production (∆S = S−Sin)
is almost constant downstream, showing a value much lower than that of the
Baseline geometry. The latter keeps growing as the mixing of shock waves
occurs.
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Figure 4.22: Optimized - Entropy Production.

In fact, we can see in Fig. 4.22 that the entropy generation is uniform
downstream of the blade. On the contrary, for the Baseline the gradients
are large and there is a successive production of entropy along the wake
(Fig. 4.23a). When the shock waves are mixed out downstream, the diffu-
sion generates a large entropy production that compromises efficiency for the
Baseline geometry.

(a) Baseline (b) Optimized

Figure 4.23: Entropy Distribution.

Entropy is generated within the flow whenever a deleterious and irre-
versible process takes place. This “excess” of entropy is convected down-
stream through the machine and diffuses into the surrounding flow. The
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entropy generated and thus “concentrated” at the exit of the machine in-
cludes a contribution from every source within the machine and the loss of
machine efficiency is proportional to the average “concentration” of entropy
at the exit [18].

For the optimized case (Fig. 4.23b) the entropy production is uniform and
in straight lines from the trailing edge, which gives an image that the pressure
waves are much weaker, so that the optimization aim has been achieved. As
a consequence, shock losses are greatly minimized and the cascades is more
efficient.

4.4.2 Blade Shape

The blade shape after the optimization process turns out as in Fig. 4.24.

Figure 4.24: Optimized Blade Shape.

One can easily understand the goodness of this tool to optimize supersonic
ducts, in which a very small deviation on the baseline blade geometry yields
a great variation on the flow variables. The blades can be conceived as
convergent-divergent ducts. Therefore, a deep analysis of them, with an
approximate location of the throat can be depicted as in Fig. 4.25.
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Figure 4.25: Optimized Duct Throat.

As observed in the previous section, the shock waves are strongly weak-
ened in the optimized configuration. This is a direct consequence of the shape
of the new suction side of the blade. Thanks to the almost straight shape of
the rear suction side, no significant over-speed is observed in the semi-bladed
region (part of the blade that is bounded by only one blade wall).

4.4.3 Analysis of Shock Waves

As a measure of the shock waves, the pressure distribution on the blade is a
good measure. In Fig. 4.26, one can observe the pressure distribution over
the baseline configuration (Fig. 4.26a), the optimized geometry using the
Adjoint method described by [2] (Fig. 4.26b), and the optimized geometry
using genetic algorithms as it was described in this study ((Fig. 4.26c)).

(a) Baseline (b) Adjoint method (c) Genetic Algorithm

Figure 4.26: Compression Fan Waves.

The main effect appears in the trailing edge area, as it is depicted in
Fig. 4.27.
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(a) Baseline (b) Genetic Algorithm

Figure 4.27: Reflected compression shock waves.

In the optimized case in Fig. 4.27, the straight rear shape mitigates the
shock generation. In that case, the downstream shock is just produced by
the shock reflected on the blade wall. The shock reflection will cause a
local drop in the isentropic Mach Number, which will certainly reduce the
flow velocity along the rear suction side. Also, the boundary layer thickness
is not enlarged, as it happened in the Baseline configuration due to the
strong recompression. This leads to weaker shocks in the trailing edge, as
the cross section available for the fluid will not suffer a reduction because of
an increment in the boundary layer thickness.

4.4.4 Flow Rate

For any optimization performed, the variation of the mass flow should be
carefully considered. It should not be forgotten that the optimization is per-
formed over a current design. A large variation of the mass flow downstream
means that the blade span needs to be modified consequently so that the
nominal flux is complied. This would lead to an abrupt change on the design
of the whole turbine. The mass flow downstream could be modified due to a
change in the velocity flow angle.

The mass flow rate as a function of the blade span is as follows:

Baseline Optimized

ṁ ( kg
s·m) 15.88 15.27

ṁrel 1 0.96

For future work, a flow rate constraint will be applied to the optimization.
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Chapter 5

Conclusions and Future Work

It has been shown that genetic algorithms can efficiently be used for shape-
optimization. They have many advantages over gradient-based methods, as
genetic algorithms do not precise of more information than the value of the
objective function. This allows the user to use the tool for a wide range
of applications with the minimal variation in the original code. Not only
did genetic algorithms provide a non-intrusive tool, but also the final opti-
mum improved that of a gradient-based method (Adjoin method). Genetic
algorithms are very efficient to search for global optimum regions, being use-
ful when non-smooth, oscillating or/and non-regular functions need to be
studied.

5.1 Important Aspects

The curve-parameterization using B-Splines meant an intuitive way to con-
vert physical phenomena into solely-mathematical variables. The local sup-
port of B-Splines allowed a detailed shape-optimization, exploring alterna-
tives otherwise unperceived using standard blade geometries or analytical
approaches.

A surrogate-based local strategy successfully provides a low computa-
tional cost for shape-optimization in comparison to a direct utilization of
genetic algorithms with CFD codes. The randomness intrinsic to sampling
methods involved in the construction of effective trust regions (Latin Hyper-
cube in our case) allows for global search over the design space, as it was
shown when comparing with the global scheme.

The use of high-fidelity simulations that take into account real-gas effects,
fully-turbulent flow has been proved to successfully mimic the real transonic
flow of ORC turbines, providing an easy way for shape-optimization.
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Computational Cost

In computational physics and engineering it is very important to assess the
efficiency of an algorithm in terms of its computational cost. A tool can
provide great results but it might be too expensive in time, power or computer
resources.

It is worth mentioning that almost all computational time is consumed
by the CFD simulations, being the required time for the optimization via
genetic algorithm of the Kriging mathematical model almost negligible.

The computational cost would be extracted from the following formula:

Time ≈ i ∗ s ∗ te (5.1)

where i is the number of iterations of the SBLO, s is the number of samples
in each trust region, and te is the time per evaluation.

If we consider the minimum number of samples for Kriging to accurately
represent the objective function, s = 5 ∗ DV , where DV is the number
of design variables. te can be considered a linear function of the required
iterations per evaluation (time-steps), ts, resulting te ≈ k ∗ ts, where k is a
parameter that depends on the machine employed to run the code.

Formula 5.2 represents approximately the time consumed.

Time ≈ Kmachine ∗ i ∗DV ∗ ts
Kmachine = 5 ∗ time

iteration

(5.2)

For each different problem and prior to the optimization we need to de-
termine DV (as in Section 3.2.2 ), ts (as in Section 3.2.4 ) and Kmachine. The
latter is a function of the machine, but also it depends on the number of cells
employed in the mesh generation (as in Section 3.2.3 ). The only unknown
of the problem after launching the tool would be the number of iterations
for the SBLO (i), as it is common in any optimization problem based on
iterations. It has been proved, though, that roughly 10 iterations provide a
more than acceptable result for all the cases studied via the surrogate-based
local approach.
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5.2 Optimization Strategy Comparison

In the optimization case discussed in Section 4.3, the optimization strategy
followed was a surrogate-based local scheme.

However, once a good set of optimization parameters has been found
(Table 4.1) for the surrogate-based local method, the comparison with a
global scheme is provided, as in Fig. 5.1. A global scheme does not assure
convergence, although the final result is, for this case, the same. Hence, it
can be concluded that the local optimization scheme does search for a global
optimum, although its trust region approach.

Figure 5.1: Comparison between local and global schemes.

In Fig. 5.1 it can be observed the rapid evolution of the global optimiza-
tion strategy. In this case, the initial model is built using 80 samples, so for
the first 80 evaluations there is no optimization. From that point on, the
global scheme evolves very quickly and it reaches almost the minimum for
less than 100 surrogate iterations.

The values represented in the figure correspond to the low-fidelity (coarse
mesh) CFD simulations. It can be implied that the high-fidelity values will
follow a similar pattern.
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5.3 Publications

As an outcome of this work, several alternatives will be explored. As in
Chapter 4, surrogate-based local optimization with genetic algorithms is very
appropriate for application to ORC transonic turbines. As a result, a paper
for the ASME ORC 2015 Conference is submitted, resulting in the following
abstract:

AUTOMATIC DESIGN OF SUPERSONIC TURBINE PROFILES BY 

EVOLUTIONARY ALGORITHMS 

Giacomo Persico, Pablo Rodriguez Fernandez 

Laboratorio di Fluidodinamica delle Macchine 

Politecnico di Milano 

Via Lambruschini 4, I-20156 Milano, Belgium 

e-mail: giacomo.persico@polimi.it 

Web page: http://www.lfm.polimi.it  

 

ABSTRACT 

In this work an automated design tool for Organic Rankine Cycles (ORC) turbines is 

presented. Supersonic flows and real-gas effects feature ORC turbines and complicate 

significantly their design. From this perspective the design of ORC turbine blades cannot rely 

on simplified rules but needs the application of dedicated and automated tools to achieve an 

optimal blade shape. This study proposes a complete method to perform shape optimization of 

ORC turbine blades, constructed as a combination of a generalized geometrical 

parametrization technique, a high-fidelity Computational Fluid Dynamic (CFD) solver 

(including real gas and turbulence models) and an evolutionary algorithm.  

 

The blade geometry is defined using parameterization techniques based on B-Splines curves, 

that allow to handle both global and local control of the shape. The space location of the 

control points of the B-Spline curve define the design variables of the optimization problem. 

The performance of the blade shape is assessed by means of fully turbulent flow simulations 

performed with a CFD package, in which  a look-up table method is applied to ensure an 

accurate thermodynamic treatment. The solver is set in parallel along with the optimization 

tool to determine the optimal shape of the blade. As only blade-to-blade effects are of interest 

in this study, quasi-3D calculations are performed, and a single-objective evolutionary 

strategy is applied to the optimization. As a result, a non-intrusive tool, with no need for 

gradients definition, is developed. The computational cost is reduced by the use of  surrogate 

models. A Gaussian interpolation scheme (Kriging model) is applied for the estimated n-

dimensional function, and a surrogate-based local optimization strategy is proved to yield an 

accurate way for optimization. 

 

Application to ORC turbines optimization has been proved to be successful, also in 

comparison to previous approaches based on inviscid flows, resulting in a comprehensive 

method for a very wide range of applications. In particular the present optimization scheme 

has been applied to the re-design of a supersonic stator cascade of an axial-flow turbine. In 

this design exercise very strong shock waves are generated in the rear blade suction side and 

shock-boundary layer interaction mechanisms occur. A significant efficiency improvement as 

a consequence of a more uniform flow at the blade outlet section of the stator is achieved. 

This is also expected to provide beneficial effects on the design of a subsequent downstream 

rotor. The method provides an improvement to gradient-based methods and an optimized 

blade geometry is easily achieved using the genetic algorithm. It is confirmed that only a 

couple of iterations of the surrogate-based local optimizer are enough to enhance the 

performance of the blade, with a limited computational cost of the proposed methodology. 
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5.4 Research Lines

This study opened a wide range of research lines on the development of
shape-optimization tools for turbomachinery blades.

Specifically for the optimization of converging-diverging ORC blades:

1. Perform optimization using mass-flow constraint.

2. Perform multi-objective optimization to achieve high efficiency and de-
sired flow features.

3. Perform sensitivity analysis on operating conditions.

For the development of improved tools:

1. Write own genetic algorithm and Kriging model, to avoid the use of
external libraries and implement improvements and state-of-art evolu-
tionary strategies.

2. Write own optimization environment.

3. Create graphical user interface for the problem design algorithms.

4. Improve Topology and Meshing Design, to allow complex geometries
and large trailing-leading edges width differences.

5. Update parameters of the code along with the evolution of the process,
such as the mesh-size.
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Appendix A

Instructive Examples

A.1 Genetic Algorithm

In order to fully understand how a genetic algorithm works, a single-objective
example has been performed.

The Rosenbrock function (Fig. A.1) has been widely used as a perfor-
mance test for optimization algorithms. In this function, the global mini-
mum is inside a narrow parabolic shaped valley. Its importance in testing
optimization methods is due to the high difficulty of converging to the global
minimum. This has been proved to be located exactly at point (1, 1).

(a) 3D surface (b) Contours

Figure A.1: Rosenbrock function.

We perform the optimization of the Rosenbrock function by using the
single-objective genetic algorithm provided by the JEGA database. A pop-
ulation size of 30 random individuals has been chosen. This size will be
maintained all over the evolution. Crossover is performed with a rate of 1.
The mutation is defined as offset normal and the scale has been set to 1. The
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crossover carries out a 2 points cutting of the parenthood genotype. The re-
placement is elitist and the design variables (x, y) are bounded within the
interval [−2, 2] for both of them. The result of the optimization process is
shown in Fig A.2. It can be observed that the method converges to an area
near the optimum very fast (roughly 20 generations), with very little com-
putational cost. The genetic algorithm does not get stuck in the parabolic
valley due to the maintenance of diversity through successive mutations.

(a) Initial Population (b) Generation 2

(c) Generation 3 (d) Generation 5

(e) Generation 10 (f) Generation 20

Figure A.2: Genetic Algorithm Optimization.

The different parameters available for evolutionary strategy optimization
are very varied and their influence strongly differs from one case to another.
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However some example of this variance should be taken into account.
For the first optimization, the size of the population should be considered

and varied.

Genetic Algorithm

Number of Generations 50
Crossover Rate 0.8

Crossover Points 1
Mutation Rate 0.2
Mutation Type Replace Uniform

Figure A.3: Population Size influence in the convergence.

Empirical results from many authors suggest that population sizes as
small as 30 are quite adequate in many cases. An initial population of about
50 should contain sufficient alleles for the genetic algorithm to make useful
progress. In the previous graph, larger sizes produce an apparent better
performance. This is due to the small design space and high mutation rate.
Randomly, the process with such large number of members investigate more
regions of the space, but a greater computational cost, which can be avoided
with a size of 30 or 50 samples.

Regarding parenting, crossover rate value generates a great controversy.
It cannot be found a pattern for this value, which ranges from 0 to 1. For
different values we get:
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Genetic Algorithm

Number of Generations 50
Population Size 50
Crossover Points 1
Mutation Rate 0.2
Mutation Type Replace Uniform

Figure A.4: Crossover rate influence in the convergence.

An inexperience researcher may set a 100% crossover rate. However, as
it can be observed, the latter value produce the worse performance. The
mutation-crossover relation is of greatest importance. Some authors think
that mutation is more important than crossover, since it allows to search into
regions unreachable from an only-crossover approach.

In crossover, the number of points in which the parents are divided to
produce offspring is important:

Genetic Algorithm

Number of Generations 50
Population Size 50
Crossover Rate 0.8
Mutation Rate 0.2
Mutation Type Replace Uniform
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Figure A.5: Crossover points number influence in the convergence.

The effect observed in Fig. A.5 is similar to the one in Fig. A.3. A
larger number of crossover points necessarily involves more randomness, a
very important thing to take into account when designing a robust genetic
algorithm.

Among all factors, the mutation rate is one of the most important:

Genetic Algorithm

Number of Generations 50
Population Size 50
Crossover Rate 0.8

Crossover Points 1
Mutation Type Replace Uniform

Mutation not only has the role of helping to investigate further regions of
the design space, but also a secondary function should be considered. They
help to preserve a reasonable level of diversity. Not all authors agree and the
balance between crossover and mutation if often a problem.
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Figure A.6: Mutation rate influence in the convergence.

As it can be observed, both a small and a large mutation rate yield
undesirable performances. A balance must be found.

Not only the mutation rate is a parameter in the algorithm, but also
the mutation type can be considered. The “Replace” (uniform) method
introduces random variation by first randomly choosing a design variable of
a randomly selected design and reassigning it to a random valid value for
that variable. The “Offset” (normal) mutator introduces random variation
by adding a Gaussian random amount to a variable value. The random
amount has a specified standard deviation.

Genetic Algorithm

Number of Generations 50
Population Size 50
Crossover Rate 0.8

Crossover Points 1
Mutation Rate 0.2
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Figure A.7: Mutation type influence in the convergence.

Although the “Offset” method may produce better performance for dif-
ferent values of the standard deviation. However, observing inside the evolu-
tionary process, it can be observed that the mutated values often go outside
the bounds of the design space. Then, they need to be corrected, which
makes the dependency of the mutation parameters confusing. Personally, for
this work, a “Replace” method was used in most of the cases.
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A.2 Surrogate-based local method

In order to fully understand how a surrogate-based local optimization model
works, an example with the Rosenbrock function and a genetic algorithm is
performed. The GA remains the same for the different cases:

Genetic Algorithm

Number of Generations 100
Population Size 30
Crossover Rate 0.8

Crossover Points 1
Mutation Rate 0.2
Mutation Type Replace Uniform

We will start observing the evolution of the optimum-search process. As a
beginning, a sample size of 20 individuals will be sufficient, since the Rosen-
brock problem comprises only 2 design variables. Also, a local approach
for the correlation parameters may be used. No correction will initially be
needed.

Surrogate-Based Method

Method Type Local
Sampling Type LHS
Sample Size 20
Iterations 20

Surrogate Model

Type Global - Kriging
Trend Function Quadratic

Correlation Parameters Global
Correlation Lengths Internally Computed
Surrogate Correction No

Trust Region

Initial Size 0.4

Minimum Size 10−10

Contract Threshold 0.25
Expand Threshold 0.75
Contraction Factor 0.5
Expansion Factor 2

As it can be seen in Fig. A.8, the optimization process easily reaches the
optimum. Only 8 iterations (8 trust region generations) are needed for an
accurate value of optimization. The goodness of the surrogate-based local
model can be assessed by means of the trust region ratio, which is the actual
decrease in the truth model divided by the predicted decrease in the truth
model in the current trust region. In Fig. A.9, it can be observed such
evolution. For iterations 1, 2, 3, 4, 8 and 10 there is an excellent accuracy.
For excellent accuracy iterations, the model accepts the step and it iterates
in the trust region interior, retaining the trust region size. In iteration 5, the
model has a marginal accuracy and it starts reducing the trust region size.
In iterations 6 and 11, the model has a satisfactory accuracy, retaining the
trust region size. For iteration 7, 9, 12 and 13, SBLO has poor accuracy. For

102



these cases, it rejects the current step and it reduces the trust region size.
For iteration 9, it has poor accuracy again, it rejects the current step and it
reduces the trust region size.

Figure A.8: SBLO process - Objective Function.

Figure A.9: SBLO process - Trust Region Ratio.

In this case, the initial trust region - design space ratio was set to be 40%.
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A minimum size of the trust region was 1∗10−10. The contract threshold was
set to 0.25. This value has influence in the trust region iterations process.

(a) cth = 0.25 (b) cth = 0.5

Figure A.10: Contract threshold influence.
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A.3 Surrogate-based global method

In order to fully understand how a surrogate-based global optimization model
works, an example with the Rosenbrock function is performed.

A Kriging algorithm has been studied. In this first example, the following
parameters have been established:

Surrogate-Based Method

Method Type Global
Sampling Type LHS
Sample Size 20
Iterations 20

Surrogate Model

Type Global - Kriging
Trend Function Quadratic

Correlation Parameters Global
Correlation Lengths Internally Computed
Surrogate Correction Zeroth-order additive

The Kriging model that is considered in this study takes a initial sample
(generated by using the Latin Hypercube) and computes an initial set of
parameters. Then, using the optimization method (genetic algorithm), the
optimum of that given Kriging model is computed. Afterwards, the optimum
is evaluated with the real function and the value is then added to the Kriging
database, so that it is progressively updated. It is worth noticing that each
update for Kriging is performed in the surroundings of the optimum, which
makes the surrogate model more accurate in that area. In Fig. A.11 it can
be observed the discrepancy of the surrogate model value with the real value,
for each iteration (each update).

Figure A.11: Kriging Process.
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In this case, after around 15 iterations, the surrogate model accurately
simulates de exact value of the Rosenbrock function. This is very interesting,
since the approximating function provided by the Kriging model is easily op-
timized using the genetic algorithm, with very little computational cost. The
genetic algorithm used in this example comprises the following parameters:

Genetic Algorithm

Number of Generations 100
Population Size 30
Crossover Rate 0.8

Crossover Points 1
Mutation Rate 0.2
Mutation Type Replace Uniform

In Fig. A.12 it can be observed the influence of the number of the ge-
netic algorithm generations on the optimum value, which is the best fitness
function found in the given population. After 40 generations, a further im-
provement in the population cannot be observed.

Figure A.12: Surrogate-Based Genetic Algorithm.

It is interesting to observe the evolution of the meta-function during the
successive iterations. The trend basis function evolution can be observed in
Table A.1. It has been checked that after the iteration #15 the trend basis
functions do not change.
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βT g(x) = k + c0 ∗ x0 + c1 ∗ x1 + c2 ∗ x20 + c3 ∗ x21
k c0 c1 c2 c3

1 -7.019 -1.98935 -4.01441 20.1636 1.96377
2 -2.05748 -0.708016 -1.73948 13.0873 0.5934
3 -2.14219 -0.650096 -1.76705 13.3625 0.596203
4 -2.14221 -0.650122 -1.76704 13.3624 0.596229
5 -2.1422 -0.650124 -1.76704 13.3625 0.596228
6 -2.05785 -0.715655 -1.73592 13.0671 0.598957
7 -2.05743 -0.714577 -1.73607 13.0683 0.598247
8 -2.05723 -0.714156 -1.73614 13.0687 0.597948
9 -2.06282 -0.688705 -1.74566 13.1377 0.584822

10 -2.06281 -0.688686 -1.74566 13.1377 0.584821
11 -2.06952 -0.68316 -1.74882 13.1644 0.583785
12 -2.07257 -0.678155 -1.75012 13.1783 0.582866
13 -2.07258 -0.678197 -1.75012 13.1782 0.582886
14 -2.07258 -0.67818 -1.75012 13.1782 0.582881
15 -2.07258 -0.678179 -1.75012 13.1783 0.582881
16 -2.07258 -0.678179 -1.75012 13.1783 0.582881
. . . . . . . . . . . . . . . . . .

Table A.1: Trend basis functions for surrogate-based global optimization.

As an exercise, we observe the influence of the number of initial samples
on the convergence of the surrogate model in Fig. A.13. Please notice the
different scale of the y-axis for N = 10.

(a) N = 10 (b) N = 20

(c) N = 30 (d) N = 40

Figure A.13: Initial sample size influence in the convergence.

It can be concluded that it exists a minimum size of the initial sample. For
lower values, the model is not triggered in the right direction and it will never
get redirected. Also, for high values of the initial sample, the model finds
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hard to adapt to the optimization surroundings, as it was initially defined in
the whole area.

Depending how the data in the surrogate mathematical model is com-
puted we can have the comparison in Fig. A.14. From this set of figures,
it can be concluded that both DiRect and ConMin algorithms provide good
solutions. For non-optimized methods, the meta-values differ too much from
the real ones.

(a) Global (b) Local

(c) Sampling (d) None

Figure A.14: Optimization type influence in the convergence (N=30).

Also, the trend functions can be computed using a quadratic approach,
as they were obtained in all previous example. Let’s take a look at other
approach, as in Fig. A.15. “Reduced Quadratic” stands for a method that
uses quadratic polynomials but only taking into account main effects.

Kriging surrogate model supports the use of correction factors that im-
prove the local accuracy. This factors will correct the approximation to
match truth values, gradients and/or hessians. The correction can be per-
formed by adding an offset or by the multiplication by a factor. If both
methods are used, the approximation usually matches the previous correct-
ing point as well. For an extensive discussion about correction in surrogate
models, please refer to [21]. In Fig. A.16 one can get a rough idea of this
application.
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(a) Quadratic (b) Reduced Quadratic

(c) Constant (d) Linear

Figure A.15: Trend function type influence in the convergence (N=30).

(a) Additive-Multiplicative Ze-
roth Order Correction (b) No correction

Figure A.16: Correction influence (N=30).
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Appendix B

Derivations

B.1 Efficiency

A deep analysis on the turbine efficiency must be followed to assess the
goodness of the proposed solution. In order to do that, with permission of
the reader, we recall the basics of fluidmechanics. For notation purposes we
define the substantial derivative as the derivative following a particle:

d

dt
=

D

Dt
=

∂

∂t
+ v · ∇ (B.1)

The extended integral of a fluid volume is used in fluidmechanics to eval-
uate the variation of a given property ϑ over a fixed volume:

d

dt

∫
Vf

ϑdV =

∫
Vf

∂ϑ

∂t
dV +

∫
Sf

ϑ(v · n)dS (B.2)

If we evaluate the energy ρ(e + v2

2
) in Eq. B.2, we get the integral form

of the energy conservation equation for a fluid volume:

d

dt

∫
Vf

ρ(e+
v2

2
)dV =

∫
Vf

∂ρ(e+ v2

2
)

∂t
dV +

∫
Sf

ρ(e+
v2

2
)(v · n)dS (B.3)

Taking into account the sources of energy variation on the fluid volume:

d

dt

∫
Vf

ρ(e+
v2

2
)dV ==

∫
Sf

(n · τ)vdS +

∫
Vf

ρfm · vdV−∫
Sf

(q · n)dS +

∫
Vf

(Qr +Qq)dV

(B.4)
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The final expression using the divergence theorem and the conservation
of energy in a stationary system ( d

dt

∫
Vf
ρ(e+ v2

2
)dV=0) turns out:

∫
Vf

(
∂ρ(e+ v2

2
)

∂t
+ divρv(e+

v2

2
)− div(τ · v)− ρfmv+

+divq − (Qr +Qq))dV = 0

(B.5)

Applying the mass conservation equation and rearranging we get to the
differential form of the energy equation:

ρ
De

Dt
= div(τ · v)− v · divτ − divq +Qr +Qq (B.6)

If we try to rewrite Eq. B.6 avoiding the tensor expression1 of τ we get:

div(τ · v) = −p∂vj
∂xj

+ τ ′ij
∂vi
∂xj

= −pdivv + φv (B.7)

where φv stands for those powers generated by the viscous effects2.
With this definition we rewrite Eq. B.6 as follows:

ρ
De

Dt
= −pdivv + φv − divq +Qr +Qq (B.8)

Now we seek to get the entropy equation in a differential form. We
consider the first principle of thermodynamics and the entropy definition:

dq = Tds = de+ pd(
1

ρ
) = de− p

ρ2
dρ (B.9)

Therefore we can write the substantial derivative of the entropy as follows:

T
Ds

Dt
=
De

Dt
− p

ρ2
Dρ

Dt
(B.10)

Combining Eq. B.10 and Eq. B.8 we finally get:

ρT
Ds

Dt
= φv − divq +Qr +Qq (B.11)

1The stress tensor (fs = nτ) can be divided in the pressure and viscous terms: τ =

−p · I + τ ′. The viscous term can be expressed following the Navier-Poisson law: τ ′ij =

µ( ∂vi

∂xj
+

∂vj
∂xi

) + λdivvδij
2Rayleigh viscous stresses
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In turbomachinery, and more specifically for turbines, we can define a
manometric or hydraulic efficiency3 of the turbine4 as follows:

ηTh =
Hu

Hn

(B.12)

where Hu and Hn are the useful and net head respectively.
If we write Hu = Hn −Hi.l., then the internal losses head Hi.l. turns out:

Hi.l. =
φ̂v
gG

(B.13)

And the final expression for the efficiency:

ηTh = 1− φ̂v

W + φ̂v
(B.14)

One could actually compute the viscous losses in terms of the entropy by
integrating the former over the streamline. However, this process is complex
and the results are not better than those that quantify the entropy production
and the pressure losses.

3This efficiency does not take into account organic (mechanic) nor volumetric losses
4We extrapolate the definition for only this stage (stator) of the machine
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Información PFC

Presupuesto

Este proyecto ha sido financiado con una beca Erasmus.es del Ministerio
de Educación, Cultura y Deporte, además de una significante ayuda del
programa Atlantis, de la Unión Europea. Los recursos computacionales
y de mantenimiento empleados en Politecnico di Milano han sido propor-
cionados tanto por la universidad como por el grupo de investigación de
turbomáquinas. En la siguiente tabla se especifican los costes totales del
proyecto, teniendo en cuenta una estancia de 6 meses.

Concepto Precio en EUR
Licencia académica ANSYS 3,000

Mantenimiento Cluster 3,000
Recursos Humanos 11,000

TOTAL 17,000
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Diagrama de Gantt
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Escuela de Acogida para PFC

Este proyecto ha sido realizado con la colaboración del grupo ”Fluidodinam-
ica delle turbomacchine”, perteneciente al departamento de enerǵıa del Po-
litecnico di Milano. Esta prestigiosa universidad italiana ubicada en Milan,
región de Lombardia, fue etablecida en 1863 y actualmente se encuentra en la
posición 28 del ranking mundial de universidades de ingenieŕıa y tecnoloǵıa.

El grupo de Fluidomecánica de Turbomáquinas tiene su propio laborato-
rio y es uno de los más notables en el area de la ingenieŕıa energética. Desar-
rolla su actividad en el campo de la fluidodinámica numérica y experimen-
tal, con atención particular a los aspectos inherentes de las turbomáquinas
generadoras y motoras, tanto con fluidos compresibles como incompresibles.
Concretamente, el grupo de fluidodinámica numérica ha desarrollado sus pro-
pios códigos de cálculo para la descrición del campo fluido y la evaluación
de las prestaciones de los diferentes componentes de la turbomáquina. Los
numerosos contratos de investigación llevados a cabo tanto para la industria
italiana como industrias internacionales son testimonio de la gran competen-
cia de sus proyectos.
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Escuela de Acogida para Realización de Estu-

dios

Durante el curso académico 2013-2014 recib́ı la beca EAGLES, perteneciente
al programa Atlantis, de intercambio académico de doble t́ıtulo entre difer-
entes instituciones europeas y americanas: Universidad Politécnica de Madrid
(Madrid, España), Politecnico di Milano (Milán, Italia), Drexel University
(Philadelphia, EEUU) y University of Connecticut (Connecticut, EEUU).
Espećıficamente en mi caso, he realizado un año de estudios de Máster en
Drexel University y una estancia de investigación en Politecnico di Milano.

La beca EAGLES (Engineers As Global Leaders for Energy Sustain-
ability) es un prestigioso programa transatlántico de doble t́ıtulo en el área de
sostenibilidad energética. El objetivo del consorcio EAGLES es la creación de
ingenieros capaces de enfrentarse a los problemas globales actuales de sosteni-
bilidad energética. A través de este programa, los estudiantes adquieren am-
plias habilidades en análisis cient́ıfico, computación y modelado matemático,
además de un profundo conocimiento de los complejos desafios en la pro-
ducción energética actual. Además, el contenido académico se complementa
con un desarrollo personal que prepara a los futuros ingenieros como ĺıdered
globales en el campo de la ingenieŕıa. Para lograr los objetivos anteriores, el
proyecto es financiado por la Unión Europea y el Departamento de Educación
de los Estados Unidos, a través del programa Atlantis.

EAGLES ofrece:

1. Una experiencia internacional significativa en varias instituciones euro-
peas y americanas.

2. Una oportunidad única para internacionalizar las credenciales académicas.

3. Financiación para estudiar en Europa y Estados Unidos durante un
año, consiguiendo un doble t́ıtulo en sostenibilidad energética.

4. Una oportunidad para aprender y mejorar un idioma adicional (además
del inglés).

Drexel University es una institución americana fundada en 1891 y
ubicada en Philadelphia, en el estado de Pennsylvania, en la costa este
de los Estados Unidos. Drexel es conocida por sus programas de ”Edu-
cación Cooperativa” de universidad-empresa y sus actividades de investi-
gación, con numerosos proyectos y financiación pública y privada. Durante
mi estancia en Drexel University (de Septiembre 2013 a Junio 2014), me
especialicé en métodos matemáticos, fluidomecánica, transferencia de calor
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avanzada y f́ısica de plasmas. Estos cursos pertenecen al departamento de
ingenieŕıa mecánica, del cual recib́ı finalmente el t́ıtulo de Master of Sci-
ence. Al mismo tiempo, para complementar la educación recibida en clase,
comencé un proyecto de investigación en computación y análisis de descargas
de plasma en fluidos supercŕıticos, lo que me permitió poner en práctica los
conocimientos aprendidos en clase y preparame para el presente trabajo.

123



Resumen del Proyecto

El proyecto aqúı descrito pertenece al programa EAGLES, de enerǵıa y
sostenibilidad, enmarcado en el convenio Atlantis de intercambio académico
entre instituciones europeas y americanas. Como aspecto importante se en-
cuentra la internacionalización de las habilidades académicas y de investi-
gación. Como consecuencia, se ha realizado enteramente en inglés, y a con-
tinuación se proporciona un resumen explicativo en español de la metodoloǵıa
que se ha llevado a cabo, aśı como de los resultados y conclusiones más gen-
erales. Para información precisa sobre los procedimientos de optimización y
métodos empleados, por favor consúltese el documento en la lengua original.

Introducción

Hoy en d́ıa, los métodos numéricos y computacionales son una rama muy
importante en cualquier campo de la ingenieŕıa. Sobre todo en aquellos casos
donde las soluciones análiticas sean inaccesibles, ya sea por complejidad del
problema matemático o la imposibilidad de realización de experimentos.

De manera espećıfica, el amplio campo de las turbomáquinas está en
constante desarrollo. Desde el diseño preliminar de la turbomáquina hasta la
definición de la forma exacta de los álabes en cada etapa. Muchos estudios
se han llevado a cabo para mejorar métodos de optimización y ayudar en el
diseño de turbomáquinas. Por otro lado los métodos CFD son ampliamente
utilizados. Sin embargo, una herramienta de optimización automática de las
geometŕıas de los álabes con un amplio campo de aplicación aún no ha sido
desarrollada.

En este estudio se propone la creación de un algoritmo de optimización
para álabes de turbomáquinas que de manera automática, mediante la es-
trategia evolutiva y metamodelos, ayuda en el diseño aerodinámico de los
álabes.

De manera espećıfica para este trabajo, se propone la optimización de
la geometŕıa del estátor de la primera etapa de una turbina transónica de
un ciclo orgánico de Rankine (ORC). Como resultado se demuestra que la
optimización de este tipo de turbinas mediante la estrategia evolutiva es muy
efectiva. Además, un análisis de diferentes metamodelos permite evaluar su
eficacia, y aśı ayudar al diseño de álabes de turbinas de la manera más
automática posible.

Metodoloǵıa

El algoritmo se caracteriza por la implementación conjunta de cuatro módulos:
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1. Algoritmos de Parameterización

2. Códigos de CFD

3. Metamodelos

4. Algoritmos Genéticos.

El método es de naturaleza sencilla, aunque su implementación conlleva
cierta complejidad. La finalidad de la herramienta es la optimización de
las caracteŕısticas f́ısicas del álabe. Para ello, una técnica de optimización
debe ser seleccionada. En este trabajo se ha demostrado que los algorit-
mos genéticos, de naturaleza heuŕıstica, ofrecen una potente alternativa a los
métodos del gradiente. Estos algoritmos, como se verá a continuación per-
miten crear una herramienta de carácter no intrusivo, empleando la mı́nima
información f́ısica del problema. Sólo será necesario el valor de la función ob-
jetivo, obtenida mediante el uso de un código de simulación computacional
(CFD) de alta fidelidad. El acople de algoritmos genéticos y códigos CFD,
realizado de forma directa, conlleva un alto coste computacional, por lo tanto
se hace necesario el empleo de metamodelos que simplifiquen la evaluación
de la función objetivo durante el proceso de optimización. Por último y
no menos importante, las técnicas de parameterización caracterizan la her-
ramienta, pues simbolizarán el enlace entre el fenómeno f́ısico (geometŕıa que
conllevará un cierto flujo fluido) y la optimización matemática (algoritmo
genético). A continuación se explicarán cada uno de los módulos individ-
uales y su implementación. Por favor, para una información más detallada y
completa, véase el documento en la lengua original.

En la siguiente página se puede ver un diagrama completo de la her-
ramienta optimización.

125



 
  

  
  

  
  

  
  

  
  
  

  
  

  
  

  
  

  
  

  
  

  
  
  

  
  

  
  

  
  

  
  
  

  
  

  
  

 S
h

ap
e-

O
p

ti
m

iz
at

io
n

 S
ch

em
e 

 
  

  
  

  
  

  
  

  
  
  

  
  

 P
ab

lo
 R

o
d
rí

g
u

ez
 F

er
n

án
d

ez
 

 

         

   

         

   

         

   

 

B
as

el
in

e 

  
 
  

  
  
 

In
it

ia
li

z
a

ti
o

n
 

A
lg

o
ri

th
m

 

  
 
  

 

In
p

u
t-

F
il

e 

A
lg

o
ri

th
m

 

  
  

 
 
  

 

 
  

 
  

 

 

.i
n
 

T
r
u

st
 

R
e
g

io
n

 

S
a

m
p

le
r
 

(L
H

C
) 

S
u

r
r
o
g
a

te
 

M
o

d
el

 

  
 
  

 

  
 
  

  
 
 

  
  

 

.c
sv

 

P
o

p
u

la
ti

o
n

 

D
a

ta
b

a
se

 

C
r
o

ss
o

v
e
r 

&
 

M
u

ta
ti

o
n

 
S

e
le

c
ti

o
n

 

G
A

 

C
o
n

v
er

g
en

ce
 

C
h

ec
k

in
g

 

P
a

ra
m

e
te

r
iz

a
ti

o
n

 

A
lg

o
ri

th
m

 

O
p

ti
m

al
 S

h
ap

e 

  
 
  

  
 
 

  
  

 
 
  

O
p

ti
m

u
m

  
 
 
  

S
u

rr
o
g
a
te

 

C
o
n

v
er

g
en

ce
 

C
h

ec
k

in
g

 

N
O

 

Y
E

S
 

N
O

 
Y

E
S

 O
p

ti
m

u
m

  
  

 
  

  
 
  

 
  

 
  

  

  
 
  

 
  

 
  

 

P
ar

a
m

et
er

s 
S

iz
e
 

#
 G

en
er

at
io

n
s 

It
er

at
io

n
s 

P
a

ra
m

e
te

r
iz

a
ti

o
n

 

A
lg

o
ri

th
m

 

E
v
a

lu
a

ti
o

n
 

A
lg

o
ri

th
m

 

S
el

ec
ti

o
n
 

(U
se

r)
 

T
o

le
ra

n
ce

 

U
S

E
R

 I
N

P
U

T
S

 

         

   

M
e
sh

 

A
lg

o
ri

th
m

 

P
r
o

b
le

m
 D

e
f.

 

A
lg

o
ri

th
m

 

S
o

lv
er

 

A
lg

o
ri

th
m

 

T
u

r
b

o
G

ri
d

 

C
F

X
-P

r
e
 

P
o

st
 

A
lg

o
ri

th
m

 

C
F

X
-S

o
lv

e
r
 

C
F

X
-P

o
st

 

.c
rv

 

.g
tm

 

.g
tm

 

.d
ef

 

.d
ef

 

.r
es

 

.r
es

 

.c
sv

 

#
 T

im
es

te
p
s 

A
N

S
Y

S
-C

F
D

 

D
a

k
o

ta
 

In
it

ia
li

z
er

 

G
en

et
ic

 A
lg

o
ri

th
m

 

H
ig

h
-F

id
e
li
ty

 T
o
o

l 

S
es

si
o
n

 F
il

es
 

C
o
n

st
ru

ct
io

n
 

(U
se

r)
 

 

B
as

el
in

e 

  
 
  

  
  
 

 

D
ak

o
ta

 

B
o

u
n
d
s 

P
ro

b
le

m
 D

e
si

g
n

 

         

   

T
y
p
e
 

M
O

D
U

L
E

 

 
 

  
  

  
  

T
R

 i
n
it

ia
l 

 
 

 
 
 
 
  

 
 

 
 

 
 
 
 
  

 
 

S
a
m

p
le

 



Algoritmos de Parameterización

Por su naturaleza automática y computacional, como entrada al código se
proporcionan los puntos del álabe original. Dado que el algoritmo de opti-
mización tiene necesariamente que trabajar con un número limitado de vari-
ables de diseño, tanto un método de parameterización como de interpolación
debe ser desarrollado.

En este estudio, se trabajará con B-Splines, un tipo especial de curvas que
tienen en cuenta efectos locales y globales de la geometŕıa a través de un cierto
número de puntos, llamados puntos de control. Estos serán considerados
variables de diseño, o entrada, para el algoritmo genético de optimización.

Para nuestra aplicación, una B-Spline puede escribirse de la forma:

x(u) =
L∑
j=0

djN
n
j (u) (5.15)

donde dj son los puntos de control y las funciones Nn
j (u) se denominan

bases de B-Spline. Estas bases pueden hallarse de manera recursiva siguiendo
la fórmula:

Nk
j (u) =

u− uj−1
uj+k−1 − uj−1

Nk−1
j (u) +

uj+k − u
uj+k − uj

Nk−1
j+1 (u); (5.16)

N0
j (u) =

{
0 if uj−1 ≤ u < ui,
1 if else

(5.17)

Las B-Splines aqúı descritas de forma simplificada se caracterizan por
una alta controlabilidad. Además de los puntos de control, las bases de B-
Spline necesitan como parámetro una sequencia de nudos que caracterizarán
el soporte local. Estas curvas pueden ser de diferentes grados. En este estudio
trabajaremos con curvas de tercer grado, pues se ha demostrado que estas
curvas pueden definir perfectamente la forma de los álabes que se estudiarán.

Un ejemplo de B-Spline generada a partir de unos puntos de control se
muestra a continuación:
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Figure 5.1: B-Spline (n=3).

En la siguiente figura se puede observar cómo es posible reproducir la
geometŕıa aerodinámica de un álabe mediante el uso de B-Splines de tercer
grado. En este ejemplo se observa únicamente la parte de succión:

Figure 5.2: Ejemplo de parametrización.

Además del algoritmo de parameterización, el cual genera la curva B-
Spline a partir de unos determinados puntos de control, necesitamos desar-
rollar un algoritmo de interpolación que lleve a cabo el proceso contrario:
a partir de los puntos de la curva ya especificados, generar unos puntos de
control que regeneren la forma original dentro de unas tolerancias.

Para la interpolación llevaremos a cabo un ajuste de mı́nimos cuadrados,
que puede definirse como la minimización de la siguiente función:

f(x) =
P∑
i=0

‖pi − x(wi)‖ (5.18)
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Teniendo en cuenta la definición de B-Spline en Eq. 5.15, podemos escribir
esta última expresión como:

f({dj}L0 ) =
P∑
i=0

‖pi −
L∑
j=0

djN
n
j (wi)‖ (5.19)

De esta expresión podemos extraer un sistema de minimización por mı́nimos
cuadrados dado por:

L∑
j=0

dj

P∑
i=0

Nn
j (wi)N

n
k (wi) =

P∑
i=0

piN
n
k (wi); (5.20)

Este sistema lineal puede interpretarse como un sistema matricial, resol-
uble mediante descomposición de Cholesky, adecuada para nuestro caso:

A · x = B
L · L∗ · x = B
L · y = B ⇒ y
L∗ · x = y ⇒ x

(5.21)

La implementación del algoritmo de parameterización y del algoritmo
de interpolación permitirá la reproducción exacta de la geometŕıa a partir
de un número limitado de puntos, que serán las variables de diseño de la
herramienta de optimización.

En el siguiente gráfico se representa el algoritmo de interpolación me-
diante el cual se inicializa la herramienta de optimización. A partir de los
puntos del álabe original se generan los puntos de control adecuados para una
cierta tolerancia (para información detallada sobre cada uno de los bloques,
por favor véase la versión en lengua original):

129



Figure 5.3: Algoritmo de Inicialización.

Códigos CFD

Las ecuaciones de la fluidomecánica tienen solución para un limitado número
de aplicaciones, normalmente con fluidos y consideraciones muy simplifica-
dos. En ingenieŕıa y diseño estos casos son muy excasos y tradicionalmente se
recurŕıa a datos experimentales. Según evoluciona la ingenieŕıa, los casos son
más y más complejos, lo que llevó a la invención de códigos computacionales
capaces de simular los casos reales, y en cierta medida sustituir la necesidad
de costosos y complejos experimentos. La Mecánica de Fluidos Computa-
cional (CFD por sus siglas en inglés) es hoy en d́ıa un campo muy amplio y
que es extensamente usado en ingenieŕıa de diseõ, análisis e investigación.

Los métodos CFD son, sin embargo, aproximaciones a la realidad y cuyos
resultados deben ser considerados con cautela. Una solución computacional
a un problema ingenieril contiene aproximaciones en el modelo empleado,
aproximaciones en el método de resolución y aproximaciones en el proceso
iterativo de convergencia. Para minimizar estos errores, los códigos CFD
más potentes cuentan con técnicas de discretización y solución muy avan-
zadas, dejando al usuario la tarea de minimizar los errores por modelado y
convergencia.

En este estudio se empleará un código de volúmenes finitos desarrollado
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por ANSYS, una empresa de ingenieŕıa a nivel mundial ĺıder en software de
simulación. Se hará uso de una herramienta espećıfica para tubomáquinas,
permitiendo definir de manera automática la malla de discretización espacial,
espećıficamente creada para álabes de turbinas.

El proceso de simulación conlleva 4 etapas. En primer lugar, el diseño
de la malla es un proceso crucial, ya que se tratará de mallas muy densas
para asegurar la fiabilidad. Además, dada la naturaleza automática de la
herramienta, se empleará un generador de creación de mallas optimizadas
diseñado por ANSYS (ATM Meshing and Topology). En segundo lugar, el
pre-procesamiento del problema consiste en la asignación de las condiciones
de contorno y de fluido. Posteriormente los datos de la malla junto con
las condiciones son llevadas al Solver, el cual itera numéricamente y obtiene
una solución, cuyo post-proceso provee de los resultados requeridos para el
problema.

(a) TurboGrid (b) Pre-Processor

(c) Solver (Residuos) (d) Post-Processor

Figure 5.4: Ejemplo de simulación CFD.

Algoritmos genéticos

Para el proceso de optimización se empleará una estrategia evolutiva. Los
algoritmos evolutivos (EAs por sus siglas en inglés) son una serie de métodos
heuŕısticos desarrollados en las últimas décadas y de amplio uso en aquellos
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casos en los que la complejidad del problema no permita la obtención de
datos de gradiente o donde las funciones a optimizar no sean regulares. Los
algoritmos genéticos (GAs) pertenecen a esta categoŕıa y su funcionamiento
está basado en la teoŕıa de la evolución y selección natural neo-Darwiniana.

Los algoritmos genéticos permiten trabajar con funciones objetivo os-
cilantes e irregulares, aśı como con problemas multiobjectivo. Éstos permiten
identificar de manera sencilla un gran número de soluciones optimizadas y
pueden ser adaptados a problemas muy diferentes con una mı́nima intrusión
en el código. Es por ello que se emplearán en la herramienta automática de
optimización, lo que nos permitirá aplicarla a problemas muy dispares sin
necesidad de adentrarnos en el código.

En ese estudio se empleará la libreŕıa JEGA (Java Engine for Genetic
Algorithms), implementada en el entorno de optimización Dakota. JEGA
interpreta cada miembro de la población (conjunto de puntos de control que
definen una geometŕıa) como un entero binario de 32 bits, lo que permite
interpretarlo como un conjunto de cromosomas que caracterizan al individuo.
La libreŕıa tiene una amplia variabilidad en los parámetros de mutación,
cruce, selección y poblaciones, por lo que definiremos los parámetros deseados
dependiendo de la aplicación.

Metamodelos

El algoritmo genético de optimización basa su funcionamiento en la evalu-
ación de la función objetivo (función a optimizar) para cada miembro de la
población en cada una de las generaciones (iteraciones del algoritmo genético).
Esto conlleva un gran número de evaluaciones CFD, lo que implica un gran
coste computacional. Para evitarlo, en este trabajo se hace uso de los llama-
dos metamodelos, modelos sustitutivos o superficies de respuesta, dependi-
endo del autor.

Estos métodos se asemejan a técnicas de regresión, en las que a partir de
una muestra se aproxima una función de estimación. El metamodelo actuará
de la misma forma, creando una muestra aleatoria en el espacio de diseño
(mediante la técnica LHC) y generando una función matemática que intenta
simular el comportamiento de la función objectivo real, o sea la simulación
CFD. La muestra aletoria se genera en cada iteración del metamodelo y se
hace cada vez más precisa según avanza el proceso. De esta forma, el coste
computacional se reduce a la evaluación de la muestra, en lugar de cada
miembro de la población de cada generación.

El modelo matemático, cuyos parámetros se estimarán, se conoce como
modelo de Kriging o modelo Gaussiano y puede describirse como:
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f̃(x) = g(x)Tβ + r(x)TR−1(f −Gβ) (5.22)

donde x es el punto actual , compuesto por n variables de diseño; g(x) es el
vector de evaluaciones de las bases de la función de tendencia; β en el vector
de estimaciones de mı́nimos cuadrados de los coeficientes de la función de
tendencia; r(x) en el vector de correlación; R es la matriz de correlación; f
es el vector de respuestas; y G es la matriz de evaluaciones de la función de
tendencia.

En este estudio se empleará un proceso de optimización basado en un
metamodelo local. Éste puede describirse como sigue:

1. Generación de región de confianza en el espacio de diseño.

2. Evaluación CFD de la muestra.

3. Estimación de parámetros matemáticos de Kriging.

4. Optimización del modelo de Kriging y evaluación del óptimo mediante
CFD.

5. Generación de nueva región de confianza en torno al óptimo encontrado.

Resultados y Conclusiones

Como aplicación de la herramienta de optimización, se llevará a cabo el
rediseño del álabe del estátor de la primera etapa de una turbina supersónica
de un ciclo orgánico de Rankine (ORC por sus siglas en inglés). Al pasar
por la garganta del álabe, el flujo se vuelve supersónico y se generan ondas
de choque que provocan una disminución en la eficiencia de la turbina en
conjunto. El objetivo de la optimización consistirá en la reducción de la
intensidad de las ondas de choque. Analizando el flujo supersónico aguas
abajo del estátor tenemos:
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Figure 5.5: Distribución del Número de Mach tridimensional.

Para la herramienta de optimización consideraremos un espacio de diseño
entorno a la geometŕıa de partida. En primer lugar, deberemos realizar la
interpolación de la geometŕıa. Para ello, establecemos una tolerancia sobre
los resultados original y obtenemos la siguiente distribución de puntos de
control:

Figure 5.6: División en parte fija (rojo) y parte móvil (verde).

El espacio de diseño se establece imponiendo los ĺımites inferior y superior
a los puntos de control móviles, resultado:
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Figure 5.7: Espacio de Diseño.

Para el proceso de optimización, dado que se busca la reducción de las
ondas de choque, se optará por maximizar la uniformidad del flujo aguas
abajo. Una disminución de la desviación t́ıpica de la distribución circunfer-
encial de la presión media cuerda axial aguas abajo del álabe tendrá el efecto
deseado. A continuación se muestra el resultado final, en el cual “Pini M.
(2015)” hace referencia a los resultados publicados con anterioridad sobre el
mismo álabe, aplicando el método númerico del Adjunto, un método basado
en el gradiente que ofreció resultados muy interesantes.

Figure 5.8: Distribución de la presión.

Como puede observarse, los resultados son muy prometedores, pues la
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desviación t́ıpica se reduce considerablemente y mejora los resultados obtenidos
por Pini M. (2015). Para observar su efecto sobre la uniformidad del flujo
se tiene:

(a) Original (b) Optimizado

Figure 5.9: Distribución del Número de Mach.

Se puede observar cómo el método ofrece una manera sencilla y muy
eficaz de optimización, obteniendo resultados muy buenos con la mı́nima
información f́ısica del problema y con un coste computacional moderado.
Las ondas de choque producidas por el flujo transónico son muy reducidas
en el nuevo caso, con una variación mı́nima en la geometŕıa. Esto provoca
una disminución en las pérdidas, las cuales pueden evaluarse mediante el
coefficiente de pérdidas de presión (Fig. 5.10).

Figure 5.10: Coeficiente de Pérdidas de Presión.
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