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a b s t r a c t 

In this paper, we axiomatically introduce fuzzy multi-measures on bounded lattices. In particular, we 
make a distinction between four different types of fuzzy set multi-measures on a universe X, considering 
both the usual or inverse real number ordering of this lattice and increasing or decreasing monotonicity 
with respect to the number of arguments. We provide results from which we can derive families of mea-
sures that hold for the applicable conditions in each case. 

1. Introduction 

Modern measure theory began to take shape in the late nine-
teenth century. Stolz and Harnack in 1884 and Cantor in 1885 de-
fined the measure of a bounded set of R and a bounded set of Rn, 
respectively. These measures have the disadvantage that the mea-
sure of the union of two disjoint sets can be smaller than the sum 
of the measures of the sets. This problem was solved in the case of 
finite unions when Peano and Jordan in 1890 introduced the notion 
of measurable set. However, this was not completely satisfactory, 
because, for example, the set of rational numbers in a bounded 
interval is not measurable. These difficulties were overcome when 
Borel [7] extended the class of measurable sets establishing a mod-
el in which the measure is countably additive. Lebesgue [34] fol-
lowed up Borel’s theory and related it to integration theory. 
When a measure is bounded on [0,1] and assigns the value 1 to 
the universal set, then not only can it be used to estimate the size 
of a set, but it also provides a model to measure the probability of 
an event occurring. The concept of probability measure was de-
fined by Kolmogorov [32] in 1933. 
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More than fifty years after the establishment of classical mea-
sure theory, the additivity requirement was questioned, and less 
restrictive theories began to emerge. For instance, Choquet pre-
sented the theory of capacities in 1954 [13], which calls into ques-
tion the classical concept of measure since capacities are increasing 
and continuous set functions. In the context of probability theory, 
the Dempster–Shafer or evidence theory [16,48] was developed in 
the second half of the twentieth century considering belief mea-
sures, which substitute the additivity requirement with superaddi-
tivity, and plausibility measures, which use subadditivity. 
Possibility measures [56] which are special plausibility measures, 
and the associated necessity measures, which are special belief 
measures, arose in the context of fuzzy sets, introduced by Zadeh 
in 1965 [54,18,19]. 

Fuzzy set theory provided a framework in which new models of 
measurement were developed, even for measuring vague concepts. 
Thus, Sugeno introduced the fuzzy measure and fuzzy integral in 
1974 [49], Ralescu and Adams [45] generalized these concepts to 
the case that the value a fuzzy measure can be infinite, Kruse 
[33], Wang [52] and Liu [36] studied some structural characteris-
tics of fuzzy measures and proved several convergence theorems 
for fuzzy integrals, whereas Bassanezi and Greco [2] studied the 
representability of functionals defined on fuzzy sets by fuzzy mea-
sures. Sugeno’s theory was used in knowledge-based systems that 
require a subjective evaluation for a family of non-fuzzy events 
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[49], but today’s systems often require the subjective and objective 
evaluation for a class of fuzzy events. This motivated authors such 
as Klement [29] and Qiao [43] to investigate fuzzy measures de­
fined on fuzzy sets. Moreover, the concept of fuzzy measure was 
generalized considering measures defined or with their values on 
general lattices. Noteworthy in this regard are investigations by 
Greco [22], Qiao [44], Klement and Weber [31], and Liu and Zhang 
[37]. 

Up to now, we have referred to measures as functions with only 
one argument. Nevertheless there are measurable properties, like 
similarity and inclusion measures [24,55], and overlap functions 
[8], that involve two elements, thus requiring functions with two 
arguments. Moreover, there are also properties that can refer to 
more than two or even a variable number of elements; for exam­
ple, we might want to study the incompatibility of several sets or 
predicates in systems modeling with more than one source of 
information. Therefore, it is worthwhile building a broader mea­
surement model that could be applied to a variable number of 
arguments. Different theoretical developments of multi-argument 
functions are reported in the literature, such as the thoroughly re­
searched aggregation functions [3,9,50,20]. It is well-known that 
some aggregation functions can be seen as fuzzy integrals with re­
spect to a system of fuzzy measures. This is the case of the arithme­
tic mean, which is the Choquet integral with respect to an additive 
and symmetric fuzzy measure. More recently, the class of basic 
generated universal fuzzy measures has been introduced by Mesiar 
et al. [39,40]. The integrals associated with this class of fuzzy mea­
sures include the generated OWA operators and the generated 
weighted means, which are examples of aggregation functions 
[17,42,38]. Also noteworthy in this context is another recent work 
by Mesiar and Komorniková on aggregation functions on bounded 
posets [41]. 

This paper, which further develops ideas first reported in [10], 
introduces a generalized model of fuzzy measures with multiple 
arguments defined on lattices, and it includes aggregation func­
tions as a particular case. We have previously introduced and stud­
ied several measures in the field of fuzzy and Atanassov’s sets, in 
particular contradiction measures [12,14] and incompatibility 
measures [11]. In both cases, we defined a mathematical model 
for functions with just two arguments. Now, we again address 
the fuzzy concept of incompatibility, but this time as part of a mul­
ti-argument function model that captures our previous research. 
Additionally, and as an instrument for modeling other fuzzy con­
cepts, such as compatibility and supplementarity, we address 
new measures. 

From the viewpoint of their application, we might want to 
know, for example, how compatible and how supplementary a 
set of fixed criteria are in any multi-criteria decision problem 
[4,23]. Recently, Liu et al. showed that decision making is based 
on an inclusion measure function which is based on a positive eval­
uation [35]. Consequently, this approach determines a specific vie 
to interpret compatibility. Additionally, lattice theory has been ap­
plied in mathematical morphology including image processing 
[53,46]. In particular, fuzzy lattices have been used in clustering 
and classification algorithms and in fuzzy lattice neurocomputing 
[25]. Fuzzy lattice theory has the ability to model uncertain infor­
mation and to combine different types of data [27]. Also, it has 
redesigned fuzzy inference systems [27,28], therefore fuzzy lattice 
reasoning is applied in computational intelligence [26]. Compati­
bility measures are a key concern in knowledge representation, 
as they are very useful in environments where information is un­
clear or possibly distorted as it comes from different hubs or 
sources. Notice that the concept of compatibility in fuzzy logic 
has been interpreted from different viewpoints. Some authors have 
looked at compatibility as the degree of inclusion, whereas others 
view it as the overlap between two sets, the degree of equality, 

similarity, etc. In this paper, we will interpret compatibility as a di­
rect extension of the classical case, where two sets are compatible 
if their intersection is not empty. 

The paper is organized as follows. Section 2 defines the multi-
argument fuzzy measure on a lattice, and puts forward some 
examples and properties. Section 3 focuses on two types of mul­
ti-measures on the lattice [0,1]x with the usual real number order­
ing, that is, compatibility measures and supplementarity measures. 
Section 4 addresses another two types of multi-measures on the 
lattice [0,1]x with reverse real number ordering, unsupplementa-
rity and incompatibility multi-measures. Section 5 shows some ba­
sic relations among multi-measures. Finally, Section 6 presents an 
example of application, and the paper ends with the conclusions. 

2. Multi-argument fuzzy measures on lattices 

Let C = (L, < t , 0i, 1i) be a bounded lattice [5,6] whose minimum 
and maximum elements are denoted by 0L and 1L, respectively. For 
each n e N, let us consider the set 

V = {(a1,.. .,a„)\aj e L, Vi e { 1 , . . . ,n}} 

and the order relation sgP induced by <L, that is, given 
d = (a1...,an),b = (b1...bn) eLn, 

a^Lnb < ^ dj^Lbi, Vi e {1 , . . . , n}. 

We have that L" with the order relation sgLn is also a bounded 
lattice, whose minimum element is 0L- = (0i,.">.,0ij and whose 
maximum element is 1L* = (1t,.")., 1L). We say that 
Cn = (L", sgt-,0Ln; 1Ln) is induced by C. Moreover, if C is complete, 
then Cn is also complete. 

We denote the bounded and complete lattice of real numbers 
([0,1], sg ,0,1), which is used throughout the paper, by I . 

Definition 2.1. Given a bounded lattice £ = (L, sgi,0i, 1i), the 
lattice Cn induced by C, for a fixed H E N , and the lattice of real 
numbers I , a map M:L" -> [0,1] is said to be a fuzzy measure on Cn 

or a fuzzy n-measure on C (or on L), if it satisfies: 

(i) M(0Li) = 0 and M(1tn) = 1 (boundary conditions). 
(ii) M is increasing with respect to the orders of the lattices Cn 

and I , that is, if d,b e Ln such that d^Lnb,M(a) sg M(b) holds 
(monotony condition). 

If n = 1 then M is said to be a fuzzy measure on C (or on L). 

We can extend the definition of fuzzy measure by considering 
any number of arguments as follows. 

Definition 2.2. Let C = (L, ^L,0L, 1I) be a bounded lattice and let 
Cn be the lattice induced by C, for each H E N . A map 
M •. [Jn€NLn —> [0,1] is said to be a multi-argument fuzzy measure 
or fuzzy multi-measure on C (or on L) if, for each H E N , the function 
M restricted to L", M\c, is a fuzzy n-measure. Moreover, 

(iii) M is increasing with respect to the argument n or n-increasing 
if M(a1 an) sg M(a1 an, an+1) holds for all n e N and 
for all a1 an, an+1 e L. 

(iv) M is decreasing with respect to the argument n or n-decreasing 
if M(a1 an) P M(a1 an, an+1) holds for all n e N and 
for all a1 an, an+1 e L. 

Remark 2.3. If M is a fuzzy multi-measure on C, note that: 

1. M is n-increasing (or dimension increasing) if and only if 
M(a1 an) sg M(a1 an, b1 bm) holds for all (a1 an) 
e L", (b1, bm) e Lm and n,m e N. 



2. M is n-decreasing (or dimension decreasing) if and only if 
M{ax an) P M{ax an, b\ bm) holds for all {ax an) 
e L", {b\ bm) e Lm and n, m e N. 

Example 2.4. Let X be a non-empty and finite set, and let V{X) 
denote the set of all subsets of X, that is, the power set of X Con­
sider the bounded lattice (V(X), c , 0,X), which is, in fact, a Boolean 
algebra, and let us define two multi-argument fuzzy measures on 
P(X). 

(a) Let Mi -. {Jn€NV(X)n —> [0,1] be the map defined for each 
(Au...,A„)eP(X)nas 

Mi(Ai,... ,A„ 
*. |^>i n---n4,| 

\X\ 

where \A\ means cardinal of the set A. Then JWj satisfies: 

(i) Mj(0 0) = O for all n-tuples of empty sets; and M/(-
X,. . . , X) = 1 for all n-tuples of coordinates X 

(ii) For each n e N,Mj(Ai,... ,An) sg Mj(Bi,... ,Bn) holds pro­
vided Ai,Bt e V{X) satisfy At c B, for each i e {1 n}. 

(iii) MJCA-I An,An+1) sg M,(A^ An) for all A],..., 
An,An+] e V(X) and neN. 

Hence, M/ is an n-decreasing multi-argument fuzzy measure on 
:P(X). M, provides an estimate of the relative size, compared with 
the universal set, of the intersection of any finite family of subsets. 

b) Let My •. {JnmV(X)n 

(Ai,... ,An) e V(X) as 
[0,1] be the map defined for each 

Mu(A\,... ,A„ ) = l̂ l u---u4,| 

m 
Then, Mu also satisfies axioms (i) and (ii) of fuzzy n-measure for 
each n E N and, also, axiom (iii). Therefore Mu is an n-increasing 
multi-argument fuzzy measure on ^(X). Mu provides an estimate 
of the relative size, compared with the universal set, of the union 
of any finite family of subsets. 

Example 2.5. Any aggregation function is a fuzzy multi-measure 
on I . Indeed, recall that an aggregation function [3,9,20,30] is a 
map A : nefJ0> 1]" ~* P> 1] sucn that 

1. .4(0,... ,0) = 0 and .4(1, . . . , 1) = 1. 
2. A{a) = a for all a e [0,1]. 
3. For each n e N, A(a-t,..., an) sg A{b], 

bi e [0,1] satisfy at sg £>,- for all i e {1,. 
,bn) holds provided ai} 

,n}. 

Thus, the occurrence of symmetric aggregation functions sug­
gests the following definition. We denote Sn = {n:{l n} -> 
{1 n}|7t is a bijection}, that is, Sn is the set of permutations of 
{1 n}. 

Definition 2.6. A multi-argument fuzzy measure M on a bounded 
lattice C = (L, sgi; 0i; \L) is symmetric if, for each n e N , the function 
M\L- is symmetric, that is, M(a^ an) = M(an^ an(n)) holds 
for any neSn and for any {ax an) e L". 

Example 2.7. The maps M, and Mu defined in Example 2.4 are both 
symmetric fuzzy multi-measures on ^(X). 

Example 2.8. Let us illustrate the property of symmetry with some 
aggregation functions: 

(a) The functions Max, Min : (JneN[0,1]" ^ [0,1], defined as 
Max {ax an) = max{a1 an} and Min {ax an) = 
min{a! an} for each (a^ an) e [0,1]", are symmetric 
fuzzy multi-measures on I . 

(b) For each k eN\ {1}, let Ak : UnewP) 1]" ~* P> 1] he the func­
tion defined for each {ax an) e [0,1]" as 

Ak(a-[,-- -,an) = QiTTaf-

Then {A}keN\n} is a one-parameter family of non-symmetric fuzzy 
multi-measures on I . 

(c) For each i, k eN\ {1}, let Atk • UnewIO) 1]" ~* P> 1] he a func­
tion defined, for each (a-i an) e [0,1] by 

Aik{dl,- • .,fln) = 

if n 6 i; 

a\ Y[ aj if n > i. 
i = i 

Then {Atk}nceN\{i} 's a two-parameter family of non-symmetric fuz­
zy multi-measures on I . 

Other fuzzy n- or multi-measures can be constructed by com­
posing a fuzzy n- or multi-measure with an appropriate function, 
as shown by the following result, which, although trivial, is 
useful for this purpose. To do this, we use the set A([0,1]) = 
{cp •. [0,1] —> [0, l]\cp is an increasing bijection}. 

Proposition 2.9. Let C = (L, sgi; 0 i; \L) be a bounded lattice. IfM is a 
fuzzy measure on Cn, or a fuzzy multi-measure on C, then for all 
cp e -4([0,1]), the composition cpoM is a fuzzy measure on Cn or, 
respectively, a fuzzy multi-measure on C. 

According to the following result whose proof is straightfor­
ward, aggregation functions defined on [0,1] in the same way as 
on any lattice provide two ways to construct fuzzy multi-measures 
from a given fuzzy measure. One way is to aggregate measures of 
lattice elements, whereas the other is to measure the aggregation 
of lattice elements. 

Proposition 2.10. Let C = {L,^L,QLAL) be a bounded lattice and 
m: L -> [0,1] be a fuzzy measure on C, it holds that: 

1. // A is a fuzzy multi-measure on I , then MA -. [Jn£NLn —> [0,1], 
defined for each (alt... ,an) eL" by 

MA(ai, ...,a„) = A(m(a-l),...,m(an)), 

is a fuzzy multi-measure on C. Moreover, if A is an aggregation func­
tion, then MA{a) = m{a) for all aeL. 
2. If T : [Jn£NLn —> L is a multi-argument function such that 

^(0^,...,0^) — 0^,^(1^,...,li) — li and J-(ai}...}an) ^J-(bi}...} 

bn), whenever at sg hbifor each i e {1, ... ,n\ and for all neN, then 
the multi-argument function M^ : Unew "̂ ~* P> 1]> defined for each 
(alt...,an) eL" by 

Mr(ai, ...,a„) = m(F(ai,...,an)), 

is a fuzzy multi-measure on C. Moreover, if T{a) = a for all aeL, then 
Mj:{a) = m{a) for all aeL. 

Example 2.11. Let us illustrate the methods in Proposition 2.10 
with some examples. 

(a) If Afn denotes the set of the first n natural numbers, consider 
the particular case A/3 = {1,2,3} and the power set of A/3 with the 
order c , thus {ViNi), c , 0,A/3) is a bounded lattice. Let 
v : ViNi) —> [0,1] be the map defined according to the arrange-



ment shown in Fig. 1. Note that v is a discrete fuzzy measure 
[17,21,42] since such a measure is defined as a set function m from 
V(Afn) on [0,1] that satisfies m(0) = 0,m{Mn) = 1 and is increasing, 
that is, m(A) sg m(B) whenever A<zB. 

From here, by means of an aggregation function A, we can 
define the fuzzy multi-measure MA -. LlneN^C^)" ~* 0> 1] defined 
for each (A1,... ,An) e V(M3)

n by 

MA{A1,...,An) = A(v(A1),..., v{An)). 

Let us examine different types of fuzzy multi-measures defined by 
several aggregation functions. 

1. If A = Max or A = Min, then MA is a symmetric fuzzy multi-
measure on V(Af3). 

2. For each fee N \ {1}, let A = A given in Example 2.8, where 
Ak{a1,... ,an) = a1n,v1a? for each (a1 on)e[0,1]n. Then 
JVLi, is a non-symmetric fuzzy multi-measure on ViN3). 

b) The mappings M, and Mu given in Example 2.4 can be 
obtained by means of the map m -. V(X) —> [0,1] defined by 
m(A) = j^t for all A e V(X), that is, a fuzzy measure on ^(X). Indeed: 

1. Consider the multi-argument function T :{\nmV(X)n ^ V(X) 
defined for each (A1,... ,A„) e V(X)n by X(A, . . . ,A„) = 
A1 n . . .nA„. Then, 

Mx(A1,... ,A„) = m(J(A, • . . ,A„)) = M,(A, . . . ,A„) 

holds for all (A1,... ,An) e V(X)n. 
2. Consider the multi-argument function U -. {JneNV(X)n —> V(X) 

defined for each (A1,...,An) eV(X)n by U(A1,... ,A„) = 
A1 u . . .uA„. Then, 

Mu(A1,... ,An) = m(U(A1,... ,An)) = Mv(A1,... ,An) 

holds for all (A1,... ,An) e V(X)n. 

In what follows, we study the particular instance of multi-mea­
sures on lattices of fuzzy sets. Given X ^ l , we consider the set 
of membership functions of the fuzzy sets on X, [0, 1]x = 
{,u:X->[0,1]}, with an order relation •< such that C = 
([0,1]x,^,lxA,/xv) is a bounded lattice, where \ih and jiy denote 
the minimum and maximum elements, respectively. For each 
H E N , if ln denotes [0,1]",£ induces the bounded lattice 
£" = On> ^n, P-A, flv) as 1„ = ([0,1]") = [0, 1]x x .".'. x [0, 1]x. Thus, a 
fuzzy multi-measure on £ is a multi-argument function 
M •. Unew'n ~* 0> 1] such that: i) M(p.A) = 0 and M(Ji.j) = 1; and ii) 
M(p.) sg M(a) holds for all p., a e lx such that p<„a. 

3. Fuzzy multi-measures on lattice ([0,1]x, <) 

In this section, we deal with multi-measures on [0,1]x with the 
order induced by the usual order of real numbers, which is denoted 
in the same way, that is, given \i, a e [0,1]x, \i sg a if and only if 
ji(x) sg a(x) for all xeX. In this case, jiA = ji<j, and ,uv = <"x, where 
^j(x) = 0 and ji(x) = 1 for all xeX. Thus C = ([0, 1]x, ^.,fit,fix), 
and we denote concisely ([0, 1]x,sg). 

Let us look at two types of multi-measures on([0,1]x,sg): multi-
measures that evaluate how compatible a set of fuzzy sets is and 
multi-measures that evaluate how supplementary the set is. 
Remember that, in classical logic, two statements are compatible if 
they can both be true at the same time. As we can identify a state­
ment on a universe X with the set of elements of X that satisfy that 
statement, we can translate this concept to set theory: A,B<zX are 
compatible if A n B ¥= 0. On the other hand, supplementarity can, in 
a sense, be understood as a symmetric property of incompatibility: 
A and B are supplementary ifA u B = X. These concepts are extended 
to the fuzzy set framework and studied in the following sections. 

3.1. Compatibility multi-measures on fuzzy sets 

In order to define compatible fuzzy sets, we need a function that 
models the intersection of fuzzy sets, that is, a t-norm. Remember 
that a t-norm [1,30,47] is a binary aggregation function T on the 
unit interval [0,1], which is commutative, associative, monotone 
increasing with respect to the usual order on the real line, and 
whose neutral element is 1. Some of the main t-norms are the 
so-called Lukasiewicz, product and minimum t-norms, which are 
defined, respectively, by TL(a,b) = max{0,a + b - 1}, TP(a,b) = a-b 
and Min (a,b) = min{a,b}, for each (a,b) e [0,1]2. 

Since a t-norm l i s associative and commutative, then it also de­
fines a symmetric multi-argument function on [0,1], which is also 
denoted by I, and thus a symmetric fuzzy multi-measure on [0,1], 
as follows: T :{Jn£N[0,1]n ^ [01] such that (1) T(a) = a for all 
a e [0,1]; (2) T(a1 an) = T(T(a1, Qn-1), on) for all n > 1. This 
multi-argument function T is also designated t-norm. Note that T 
is n-decreasing. Furthermore, T defines a multi-argument 
function on [0,1]x, which, since there is no risk of confusion 
thanks to the context, we denote by the same letter, as 
follows: I : |JneNlx ^ [0,1]x such that, for each (/1 , . . . ,fin) e 
ix,T(1,... ,fin) denotes the element of [0,1]x defined, for each 
x e X, by T(/1 <«n)(x) = K( 1 M ^nM). 

As in the classical case, given a t-norm I, two fuzzy sets on X, or 
their membership functions ji,oe [0,1]x, are I-compatible if there 
exists x e X such that T(ji(x), a(x)) ¥= 0 or, equivalently, if 
T(ji,a) ¥= /if,. This can be similarly generalized as follows. 

Definition 3.1. Given X ^ l and a t-norm I, the set {j1 ,un} 
c [0,1]x is said to be T-compatible if T(j1 \in) ¥= /if,. 

Fig. 1. Lattice {V{M3), c , 0, A/3), on the left side, and values of map v , on the right 
side. 

Observe that {/i} c [0,1]x is I-compatible if and only if \i ¥= ji<j, 
since T(ji) = \i. 

The following definition determines the conditions that a multi-
argument function must satisfy to fittingly assign a degree of com­
patibility to every { 1 ,un} c [0,1]x. 

Definition 3.2. Let T be a t-norm and X ¥= 0. A function 
C : Unew'n ~* 0> 1] is a T-compatibility multi-measure on [0,1]x if it 
is a symmetric and n-decreasing fuzzy multi-measure on ([0,1]x, sg) 
satisfying C(f1,..., fin) = 0, provided that {j1 /!„} c [0,1]x is 
not I-compatible. 

The following equivalent definition lists five axioms that char­
acterize the compatibility multi-measures. 



Definition 3.2*. Let T be a t-norm and X ^ 0. A function 
C : Unew'n ~* [®A] is a ^-compatibility multi-measure on [0,l]x if 
it satisfies, for each H E N , 

c.l C(fix ,Hx) = ^-
c.2C(ft / i , ) = 0 for all {fa ,un}c[0, l ]x such that 

T(fa Hn) = fa-
c3C(f t fti) = C(ft,(]) / ^ J holds for all neSn and 

Hi ft,e[0,lft. 
c.4 Given ^ fa, a\ an e [0,1]x, if ,̂- < cr,- holds for all 

! e {1 n}, then C ^ , . . . ,fin) < C(ffi,..., cn). 
c5C(f t / i ,+ 1)^C(/i , /i„) holds for all n e N and 

fa fa*i e [0 , l f . 

If C satisfies axioms c.l-c.4 for some fixed n e N, we say that C is a 
T-compatibility n-measure on [0,1]x. If n = 2 we simply say that C is a 
I-compatibility measure. 

Following on from Proposition 2.10, some compatibility multi-
measures can be constructed as discussed below. 

Proposition 3.3. Let X ¥= 0. // T and T0 are t-norms and 
m:[0, if -> [0,1] is a fuzzy measure on ([0, if, sgj, then the functions 
CT*m,Cm*T • Unew'n ~* [®A]> defined, for each (fa,...,fa) e lx and 
n e N, by 

n ,„ „, f° if To{Hi,---,Hn)=Ht 
L>T*m(fa, • • •) Hn) = 1 TI i w r, 

•0 if T0(fa, - - - , fa) = V<i 
m(T(fa,.. .,fa)) otherwise 

Cmtj (fa,...,H„) = 

are T0-compatibility multi-measures on [0, if. 

Proof. Since the functions are defined piecewise, then the exact 
result cannot be obtained as a particular case of Proposition 2.10. 
Hence we will check directly that the axioms of compatibility mea­
sures are satisfied for the case of Cj,m, the other case is similar. 

( C . l ) Cj,m(fa,- • • >Hx) = T(m(fa), • • • >m(< U x)) = T(l,. . . , 1 ) = 1 . 

(c.2) Cj,m satisfies axiom c.2 by definition. 
(c.3) As l i s symmetric, it follows that CT,m is symmetric. 
(c.4) If fa fa, o"! ane [0,1]x are such that fa < at for all 

! e {1 n}, we have: 
- If T0(ax an) = fa, then T0(fa fa) = fa, since T0 is 

monotonic increasing; hence Cj,m(fa,... ,fa) = 

- If r o ( " " l ""n) ^ m, t h e n Cj,m(fa,. • • >Hn) ^ 

Cj,m{o-i, • ••,On) holds either because T is increasing and 
m(fa) sg m(at) for all ie{\ n}, or because 
T0(fa fa) = fa. 

(c.5) Let fa fa, ,un+1 e [0,1]x. If T0(fa \m, fa+i) = fa then 
Cj,m (fa, • • •, fa > Hn+\) = 0 =? CT,m (fa, • • •, fa) '< otherwise it fol­
lows that Cj,m(fa,...,faj Hn+\) ^ ^T,m (fa J • • • > Hn) from T 
being n-decreasing. • 

Remark 3.4. Observe that: 

1. Even if T0 = T, for CT,m to be a I-compatibility multi-measure, it 
does not suffice to take Cj,m(fa, • • • >Hn) = ̂ (m(iui)> • • • ,m(Hn))> 
but it is necessary to define CT,m as 0 on the sets that are not 
r0-compatible, as is required to satisfy axiom c.2. Indeed, con­
sider T = ILand the function mv:[0, l ] x -> [0,1], defined for each 
H e [0,1 f by 

mv(fi) = sup fi(x), 
xeX 

which is a fuzzy measure on ([0,l]x,sg). If X=[0,1] and Hi< 
Hi e [0,1]x such that Hi(x) = x and H2W = 1 - x for all x e [0,1], then 
TL(HI,H2) = H<t- However, 

Ti(mv(Hi),mv(H2)) = ̂ (1 ,1) = 1. 

2. If T^To then Cm.TdU],... ,,un) = m(r((u1,... ,,un)) for all 

If we consider m = mv in the previous proposition, then we get 
the following result. 

Corollary 3.5. Let X¥=% and let T and T0 be t-norms, then the 
functions Cjtv, CV„T : [Jn€N Ix —» [0,1], defined for each (/*-,,..., fin) e 
lx and n e N, by 

0 i(T0(Hv-,Hn)=Ht 

CT,V(HI>- • • >Hn) — 

CV,T(HI>- • • >Hn) — 

T supjU, (x),..., sup,un (x) otherwise 
xeX xeX ) 

0 if T0(Hi,---,Hn) 

sup T(Hi(x),... ,H„(x)) otherwise 
xeX 

are T-compatibility multi-measures on [0, if. 

Now, let us look at some particular cases of compatibility multi-
measures depending on different t-norms. To do this, recall that if T 
is a t-norm and cp e A([0,1]), then the function V -. UnewP) 1]" ~* 
[0,1], defined for each (a^ a n )e [0 , l ] n by Vfa an) = 
(p~x{T{(p{ax) (p{an))\ is also a t-norm. We say that V is 
the t-norm (^-conjugated with T. For each cp e A([0A}) and for 
all a\ ane[0,1], we have that Tf (a ] ; . . . ,a„) = cp^ 
(max{0,j:lMai)-(n-r)})J^au...,an) = cp-\^Mai)) and 
Min"10 = Min. For more details about t-norms see [1,30]. 

Corollary 3.6. Consider the t-norm cp-conjugated with TL and the 
t-norm cp-conjugated with TP for each cp e A([0,1]), and the t-norm 
Min. Given X¥=%, 

1. Let CftV,C t̂L : Unew'n ~* [®A] be the functions defined, for each 

{H],...,Hn) e 'n an^ n e N, by 

C£v(/J1,-..,rt,) = 
if fLilh,...,^) = lh 

max 0, YA=-[suPlP(Pi(x)) - (n - 1) \ otherwise 

CtL(Hi, • ••,Hn) = max 0,sup^<p(/i,(x)) - (n - 1) . 

Then, for all \j/ e A([0,l]),^oC'v and f oCj tI are Tf-compatibility 

multi-measures on [0, if and, in particular, so are CftV and C%tL. 

2. Let Cj?tV,C^p : Unew'n ~* P) 1] ^e ̂ e functions defined, for each 

(/i^,..., fa) £ 'n an^ n e N, by 

9 _j° ^Tl!(fa,...,Hn)=Ht, 
Cp,v(fa>--->Hn) - \ FI"=]sup<p(/x1.(x)) otherwise ' 

[ xeX 
n 

Cf/tP(fa , . . . , H „ ) = supTT<p(/x1.(x)). 
xeX j = ] 

Then, for all \j/ e A([0A]),ij/ oCftV and foCj l f are Tf-compatibility 
multi-measures on [0, if and, in particular, so are Cp„v and CfJtP. 
3. Let C^intV, C^Min : \JneN Ix —» [0,1 ] be the functions defined, for each 

(fa,..., fa) £ 'n and n e N, by 



C M i n ( / * . j , . . . , fa) = minsup<p(/ij(x)), 

Cv*Min(/ll' ' ,ft,) = supmin(j9(rt-(x)). 

Then, for all \j/ e A([0, V\),\j/ °C^iniV and \j/ oCjtMin are Min-compatibil­

ity multi-measures on [0, if and, in particular, so are C^imv and C?Mia. 

Proof. It is sufficient to check that CftV = cp o CT,\, and 
CfJtT = cp o CV,T, where CT,\, and CVtT are the compatibility multi-
measures in Corollary 3.5, in the particular cases where T is Tf 
and Tf, Min. Then, taking into account Proposition 2.9, the results 
are as stated above. • 

Remark 3.7. The function mA:[0,l]x -> [0,1], defined for each 
ji e [0,1]x by 

mA(u) = inf fax), 

is also a fuzzy measure. Thus, we obtain results that are analogous 
to those of Corollaries 3.5 and 3.6 replacing supremum with infi-
mum in all cases. Note that, for mA,C^AimA = CfMia holds. 

Now, we introduce a new way of measuring the If-compatibil­
ity of (fa fa). Given {fa ,un}c[0,l]x , since Tf(fa,..., 
fa) ^ fa if and only if there exists x e X such that 
]C"=i<P(rt(x)) > n — 1, then a good way to assign a degree of In­
compatibility to {fa /!„} might be to fittingly take into account 
the difference between Yl'Li(P(lxi(x))I'(n ~~ 1) and 1 as follows. 

Proposition 3.8. Given X¥= 0 and cp e A([0,1]), let cf : Unew'n ~* 
[0,1] be the function defined: 

1. For each \i e [0,l]x, Cf (fa _ 0 if jU = JUB 

2. For each (fa,..., ,un) e lx with n > J, 

Cf(fi1,...,fin) = { 
0, sup J ] 2g^> _ i otherwise 

Then, /or all \j/ e A([0,1]), 4/ o Cf is a Tf-compatibility multi-measure 
on ([0,1 f,^) and, in particular, so is Cf. 

Proof. Taking into account Proposition 2.9, it suffices to prove that 
Cf is a If-compatibility multi-measure on ([0, l ] x , <). 

The proof of axioms c.l and c.3 follows directly from the 
definition of cf. Regarding the monotony condition, given 
(fa,..., fa), (ffi,..., o~„) e lx such that fa < at for all i e {1 n}, 
if n > l,S"=i<?'(Ati(x))/(n ~~ 1) ^ SiLi'?,(0"i(x))/(n — 1) holds for all 
xeX, as cp is an increasing function; hence Cf(fa,...,fa)^ 
Cf (&-[,... ,G„). Moreover, this inequality is satisfied trivially for 
the case n = l. Therefore, Cf is a symmetric multi-measure on 
([0, l ] x , sg). 

Furthermore, let us check that statements c.2 and c.5 are 
satisfied. 

(c.2) If n = 1, the axiom is satisfied by definition. If n > 1, given 
(fa,..., fa) e lx such that Tf (fa,..., fa) = fa, it follows that 
YA=I ^(r tW) < n — 1 for all x e X, and so Cf (fa ,..., fa) = 0. 

(c.5) If n = 1, let fa e [0,l]x, then, for all fa e [0,l]x, we have: 

fa ^ fa ^ Cf (fa, fa) < 1 = Cf(fa), 

fa = /ie ^Cf(fa,fa) = max^ 0, sup<p(/i2(x)) - 1 I = 0 = Cf(fa). 

Now, let n > 1. If (fa,... ,fa) = (fa,.n).,fa), then 

Cf(fa,...,fa) = \PCf(fa,...,fa+l) V/Vi e [0,l]x. 

If (fa,... ,fa) ^ (fa, .n).,fa), then 

Cf (fa,..., fa) = max \o,sup±C^l-f 

sup max 0 ,2^ y - 1 

Moreover, for all ,un+i e [0,1]x, also (fa,..., fa,fa+A) ^ (/xx,It
1.', fa) 

and then 

" + CD(U-(X)) 
Cf(fa,...,fa,fa+l) = sup max 0, T^ - 1 

*eX W " 

For each x GX, there are two possibilities: 

(a) YA=-\ lpl^:'>> s£ YA=I ^'^fK and then 

n+l 
m a x 0 , g ^ ' ( x ) ) - l ^ m a x 0 y^(?(Ati(x)) 1 

(b) A=-\ lpl^:'>> > A=I ^n-?) and this inequality is equivalent to 

(n - T)^2cp(fa(x)) + (n - \)cp(fa+l(x)) > n^cp(fa(x)), 

which is equivalent to 
n 

(n - T)cp(fa+1(x)) > y^cp(fa(x)). 
i=i 

Then 2"=i<?'(Ai,(x)) < n - 1, as cp(n„+-i(x)) sg 1, and thus 
A=\ (Pif-ii*)) < n also holds. Hence, 

max o | « - l = m a x o , g ^ M - n = o 

Therefore, 

sup max < 0, > ' - 1 > < sup max < 0, > ' - 1 
XEX I [=^ ^ I xeX I [=^ H — 1 

and we conclude that Cf(fa,... ,/xn,/xn+]) sg Cfifa, • • • ,fa)- • 

3.2. Supplementary multi-measures on fuzzy sets 

As applies in the case of compatible fuzzy sets, we need a tool to 
model the union of fuzzy sets in order to define supplementary 
fuzzy sets, and t-conorms are suitable functions for this purpose. 
Remember that a t-conorm [1,30] is a binary aggregation function 
S on the unit interval [0,1], which is commutative, associative, 
monotone increasing with respect to the usual order on the real 
line, whose neutral element is 0. The dual t-conorms of t-norms 
IL, TP and Min are, respectively, the so-called Lukasiewicz, 
probabilistic sum and maximum t-conorms, which are defined, 
respectively, by SL(a,b) = min{l,a + fa}, Sp(a,b) = a + b - a • b and 
Max (a,fa) = max{a,b}, for each (a,fa) e [0, l ] 2 . 

As in the t-norm case, a t-conorm S also defines the symmetric 
fuzzy multi-measure S : |JneN[0,1]" ^ [0,1], and the multi-argu­
ment function S : \JneN lx —> [0, l ] x . 

Given a t-conorm S, two fuzzy sets on X or their membership 
functions \i, a e [0,l]x are S-supplementary [15] if S(^(x),a(x)) = 1 
for all x eX, that is, if S(ji,o) = fa. This can be generalized similarly 
as follows. 

n n 



Definition 3.9. Given X ^ 8 and a t-conorm S, the set {fa fa] 
c [0,1]x is said to be S-supplementary if S(fa fa) = fa. 

Observe that {,u}c[0,l]x is S-supplementary if and only if 
H = fa since S(ji) = fa 

The following definition determines the conditions that a multi-
argument function must satisfy to fittingly assign a degree of sup-
plementarity to every {fa fa} c [0,1]x. 

Definition 3.10. Let S be a t-conorm and X ^ l . A function 
"5 : Unew'n ~* P; 1] 's an S-supplementarity multi-measure on [0,1]x 

if it is a symmetric and n-increasing multi-measure on ([0, l ] x , sg) 
satisfying S(fa;...; fa) = 0 provided that {fa fa] c [0,1]x is 
not S-supplementary. 

The following equivalent definition lists the axioms that charac­
terize the supplementary multi-measures. 

Definition 3.10*. Let S be a t-conorm and X ^ 0 . A function 
"5 : Unew'n ~* P; 1] 's an S-supplementarity multi-measure on 
[0,1]x if it satisfies: For each n e N 

s.l S(fa; •"•'-; fa) = 1. 
s.2 S(fa;...;fa) = 0 for all {fa ,un} c [0,1]x such that 

S(fa ^n) ^ fa-
s.3 5(/x ];...; fa) = S(fam;...; ^(n)) holds for all n eSn and 

fa H„e[0,lf. 
s.4 Given fa ,un, o^ an e [0,1]x, if fa < cr,- holds for all 

! e {1 n}, then S(fa;... ;/.*„) < 5 (c ] ; . . . ;a„). 
s.5 5(|i, ft,)<% i ^ , ) holds for all n e N and 

fa fa*\ e[0 , l ] x . 

If S satisfies axioms s.l-s.4 for some fixed n e N, we say that 5 is an 
S-supplementarity n-measure on [0,1]x. If n = 2 we simply say that S 
is an S-supplementarity measure. 

The methods for obtaining compatibility measures introduced 
in Proposition 3.3 can be adapted to the case of supplementarity as 
follows. The proof runs similarly. 

Proposition 3.11. Let X ^ 0 . If S and S0 are t-conorms and 
m:[0, l]x -> [0,1] is a fuzzy measure on ([0, if, sgj, then the functions 
Ss,m;Sm,s • Unew'n ~* P; H defined for each (fa;...; fa) e lx and 
n e N by 

Ss*m{fa; • • • ; fa) = 
0 if S0(fa;...;fa)^fa 

0 if S0(fa;...;fa)^fa 

m(S(fa;...; fa)) otherwise 
Smts(fa; • • •; fa) = 

are S0-supplementarity multi-measures on [0, if. 

Sm*S ( M i ; • • • ; M„) = { 
m(S(n-1;...;nn)) = m(nx) = 1 

if So(Mi;--;M„) ^Mx 
otherwise 

As in the case of compatibility multi-measures, we mention 
some particular cases of supplementarity multi-measures depend­
ing on different t-conorms. To do this, recall that if S is a t-conorm 
and cp e A([0;1]), then S^ : |JneN[0;1]" ^ [0;1], defined for each 
{a-i a n )e [0 , l ] n by Scp(a-i an) = cp^1(S(cp(a1) cp(an))), is 
also a t-conorm. We say that Sv is the t-conorm (^-conjugated with 
S. For each cp e A([0;1]) and for all ax ane [0,1], we have that 

S?(au...;an)=<p-*(min{l;YtM«)});%(<'u---;an)=<p-Hl-I\Li 
(1 - cp(at))) and Max"10 = Max (see [1,30]). Thus, we obtain the fol­
lowing result. 

Corollary 3.13. Consider the t-conorm Max and, for each 
cp e A([0;1]), the t-conorm cp-conjugated with SL and the t-norm 
cp-conjugated with SP. Given X ¥= 0, we have: 

1. Let SftA : n£f,J
x ^ [0;1] be the function defined for each 

(fa;...;fa) e lx and n e N by 

° ifS?(fa;...;fa)^fa 

min 1; yfoify(/Xj(x)) otherwise 

Then, for each \j/ e A([0A]);ij/ o SftA is an Sf-supplementarity multi-
measure on [0, if and, in particular, so is SftA. 
2. Let <Sj?tA : |JneNlx ^ [0;1] be the function defined for each 

(/i^;...; fa) e lx and n e N by 
(0 ifSj!(fa;...;nn)*nx 

P,A\H-I; '";Pn \ 1 - JJ(1 - inf<p(/ij(x))) otherwise 

Then, for each \j/ e A([0A]);ij/ o SftA is an Sf-supplementarity multi-
measure on [0, if and, in particular, so is Sp,A. 
3. Let 5^ax,A : Unew'n ~* P; 1] be the function defined for each 

(fa;...; fa) e lx and n e N by 

< S L X . A ( M I ; ••• ; /<*) = { 0 

max 

if Maxf/ i , ; . . . ;jin) lX 
inf^(/i f(x)) otherwise 

Then, for each \j/ e A([0A]);ij/ o 5^axiA is a Max-supplementarity multi-
measure on [0, if and, in particular, so is S^^. 
4. Let 5A,Max;<Sv,Max : Unew 'n ~* P; 1] ^e ^e functions, defined for 

each (fa;...; fa) e lx and n e N by 

if S(fa;...;fa) # fa 
SA,Miui(fa; • • •; fa) — „ , „ / , : (y\\ nthprwisp 

Sv*Max(fa ; • • • ; fa) — 

{ inf max( 
xeX Ki<n 

j sup max(/i,.(x)) 
ifS(/x];...;/x„)#/xx 

otherwise 

Remark 3.12. Observe that: 

1. Even if S0 = S, for Ss,m to be an S-supplementary multi-mea­
sures, it is not sufficient to just define Ss,m(fa; • •• ;fa) = 
S(m(fa);... ;m(fa)), but, in order to fulfill axiom s.2, it is neces­
sary to consider Ss,m as 0 on fuzzy sets that are not S-supple­
mentary. Indeed, let X ^ 0 and m:[0,l]x -> [0,1] be a fuzzy 
measure such that mA^m; if S = SL, and fa, fae [0,1]x such that 
fa = fa and fa(x) = a for all xeX and a e (0,1) being a fixed 
value, then 

Sl(fa;fa) 7^ fa; 

SL(m(fa);m(fa)) = mm{\;m(fa)} = m(fa) P a > 0: 

2. The multi-measure 5s,m is not worth considering when S P S0 

because it is a trivial measure. Indeed, 

Then, for each i/> e A( [0;1 ]); i/> o 5A,Max and i/> o 5v,Max ore S-supplemen­
tarity multi-measures on [0,1 ffor any t-conorm S and, in particular, so 
are 5A,Max ond 5v»Max-

Remark 3.14. We can take m = mv in Proposition 3.11. Neverthe­
less, Ss,\, is of no interest when the t-conorm S takes the value 1 
if and only if some of their arguments are 1, as is the case of the 
maximum and the strict t-conorms, that is, the t-conorms conju­
gated with SP. Indeed, in this case, Ss,\, is a trivial measure since 
if S(fa fa) = fa, then for each x eX there exists i e {1 n} 
such that fa(x) = 1, and so 

\fS0(il„...;iln)^ilx 

otherwise Sswf/^ ; . . . ; /^ ) = I &„(/*,;...;/J, ) = S(sup/i1(x);...;sup/iT1(x)) 



In the case of t-conorms conjugated with the Lukasiewicz t-con-
orm, there is yet another way to measure the Sf -supplementarity 
of {j1 ft,} c [0, 1]x. Note that Sf (f1,..., ft) = ft if and only 
if YA=1 ^(r tW) P 1 for all x e X; hence we can fittingly use the dif­
ference between 1 and S J l 1 ^ f t M ) . So, we can prove the follow­
ing result. 

Now, we list the five axioms of an incompatibility multi-
measure. 

Definition 4.1*. Let T be a t-norm and X^$. A function 
% '• Unew'n ~* [01] is a ^-incompatibility multi-measure on [0,1]x 

if it satisfies, for each H E N , 

Proposition 3.15. Given X ^ l and cp e A([0,1]), let S'p -. [Jnm lx —» 
[0,1] be the function defined: 

1. For each \i e [0, if by Sv(p.) = < 0 "~"x 
2. For each (f1,..., ft) e lx with rr> 1 if y 

^ ( f 1 , . . . , ft,) = min 1,max 0, inf^<p(ft(x)) - 1 

Then, for all i// e A{[0,1]),ij/ oSv is an Sf-compatibility multi-measure 
on ([0, if, sgj and, in particular, so is Sv. 

Remark 3.16. We have that S ^ f 1 f 2 ) = max{0,infxeX 

(<p(f1(x)) + <p(f2(x))) - 1} for each (f1 ,f2) e if, and the restric­
tion of Scp to i2 = [0, 1]x x [0, 1]x is just an Sf-supplementarity mea­
sure regarding the definition reported in [15]. 

i.1 X(ft,.".'., ft) = 1. 
i.2 J(f1 , . . . , ft) = 0 for all {f1 ft,} c [0,1]x such that 

K( 1 ft) ^ ft> 
i .3I(/1 , . . . , f t | )=I{/i1 ! |1) ft,(n)) holds for all neSn and 

f1 ft,e[0,1]x 

i.4 Given f1 ft,, 1 an e [0, 1]x, if ft < cr,- holds for all 
! e {1 n}, then J(o"1,... ,an) < X(f1,... ,fin). 

i.5 X(f1 , . . . , f t) sg I (/J-i,. • • , ft+1) holds for all n e N and 
f1 ft+1 e[0,1] 1 . 

If J satisfies axioms i.1-i.4 for some fixed n e N, we say that J is a 
7'-incompatibility n-measure on [0,1]x. If n = 2, we simply say that 
J is a I-incompatibility measure. 

Again, Proposition 2.10 provides a method to obtain incompat­
ibility multi-measures. But now the lattice to be considered is 
C = ([0, 1]x, P , f t , f t ) , and we need a fuzzy measure m':[0,1]x-> 
[0,1] on C. Thus, m' must satisfy: 

4. Fuzzy multi-measures on lattice ([0, l ]x >) 

In this section, we deal with multi-measures on C = 
([0, 1 ] x , ^ , f t , f t ) , where •< is the order induced by the usual re­
verse order of real numbers, which is denoted in the same way. 
In other words, if f,er e [0,1]x, \i P a if and only if f(x) P er(x) for 
all x e X. In this case, ft = ft and ft, = ft, then the lattice C is 
([0,1]x, P ,iix,m), and we denote concisely ([0,1]x, P). 

Let us look at two types of multi-measures on ([0,1]x, P). The first 
evaluates how incompatible a family of fuzzy sets is. The second eval­
uates how unsupplementary the family is, where the concepts of 
incompatibility and unsupplementarity are opposite to compatibility 
and supplementarity, respectively. In other words, given a t-norm T 
and a t-conormS, {f1,..., ft} c lx is J-incompatible if it is not I-com-
patible, and it is S-unsupplementary if it is not S-supplementary. 

4.1. Incompatibility multi-measures on fuzzy sets 

Although compatibility and incompatibility are opposites con­
cepts, the negation of a compatibility measure cannot be used to as­
sign degrees of incompatibility. Indeed, suppose that C is a non-
trivial I-compatibility multi-measure, that is, it takes one value 
a ¥= 0,1, and consider a strong negation N [51] (i.e. N:[0,1] -> [0,1] 
is an involutive and decreasing bijection). If a is achieved by C on 
(f1,... ft) e lx, then 0 < C(f1,... ft) = a < 1, and, on the one hand, 
it follows from axiom c.2 of Definition 3.2* that {f1 ft,} is 
I-compatible, and on the other hand, 0 = JV(1) < N(C(f1,...ft)) < 
JV(0) = 1 holds. Thus JV(C(f1,... fin)) cannot be considered as a de­
gree of the I-incompatibility of {f1 ft,} since the incompatibil­
ity measure of compatible sets should be 0. Therefore, it makes sense 
to propose a mathematical model for study incompatibility. 

Given a t-norm I, we have that {f1 ft,} c [0,1]x is T-incom-
patibleif it is not T-compatible, that is, if T( 1 jin) = ,ue. The fol­
lowing definition determines the requirements that a function 
should satisfy to be considered an incompatibility multi-measure. 

1. m'(fix) = 0 and m'(m) = 1. 
2. Given \i, a e [0,1]x, if \i P a then m'(i) sg m'(o). 

Proposition 4.2. // T and T0 are t-norms, S is a t-conorm and 
m':[0, if -> [0,1] is a fuzzy measure on ([0, if, PJ, where X ^ 0 , then 
the functions JStm/, Jm/,s : |JneNlx ^ [0,1], defined for each 
(H1,..., Lin) e lx and n e N by 

3-S*m' (P1 ! • • • ! A*n) = l 

Im'*T(P1 , • • • , Hn) = 

0 if T 0 Q 1 , . . . , / ^ ) ^ 

0 if r 0 ( f 1 , . . . , f t , ) 7^/4, 

m'(T(f1,. ..,ft,)) otherwise ' 

are T0-incompatibility multi-measures on [0,1 f. 

Proof. As in Proposition 3.3, the proof of i.1-i.3 is straightforward. 
Let us check the other axioms for Is*m', the other case is similar. 

(i.4) Given \ 1 fti, °1 , °"n e [0,1]x such that \n ^ °"i for all 
! e {1 n}, we have: 
- If r 0 ( ( 1 G"n) 5^ <"0, t h e n J S t m / (0"1 , . . . ,crn) = 0 sg 

^S*m'(f1 , • • • , f t ) . 

- If T0(1 an) = jit,, then T0(j1, n„) = m, because T0 

is monotonic increasing; besides, since S is increasing 
and m'(o-j) sg m'(ni) for all ie{1 n}, it follows that 
Zs*m'(o"1, • • •, o"n)= S(m'(c1),..., m'(an)) sg S(m'(f1),... , m' 
( A O ) =^S*m' ( f 1 , • • •, ft,). 

(i.5) Let \ 1 ft» î n+1 e [0,1]x. If T0( 1 Hml*n+1) ^ He, 
then I 0 ( 1 ft,) ¥= ji<6 and JStm/(f1,..., ft, ft,+1) = 0 = 
ŝ*m' (f1, • • •, ft) ; otherwise, it follows from S being n-increas-

ing that 
^S*m' ( f 1 , • • • , ft, ft+1 ) P ^S*m' ( f 1 , • • • , ft). O 

Remark 4.3. Observe that: 

Definition 4.1. Let T be a t-norm and X¥=$. A function 
X •. Unew'n ~* 0> 1] is a T-incompatibility multi-measure on [0,1]x if 
it is a symmetric and n-increasing multi-measure on ([0, 1]x, P) 
satisfying J(f1 , . . . , ft) = 0, provided that 7( 1 ft,) 5̂  ft. 

1. It does not make sense to replace the t-conorm S with a t-norm 
T in the definition of IS*M, because T(m'(i1) m'(ft,)) 
P T(m'(ji1) m'(jin), m'(^n+1)), and so axiom i.5 is not 
satisfied. 



2. As S is n-increasing and m' reverses the order, then m'oS is n-
decreasing. Thus, it is meaningless to replace the t-norm T with 
a t-conorm S in the definition of Xm,,T. 

3. If Isg I0, the second formula of Proposition 4.2 produces the 
trivial multi-measure 

^m'*r(jMi , . . . , fa) = < 
0 

m'(T(fa,... ,fa)) = 1 
if T0{fa,...,fa)^fa 
otherwise 

If m is a fuzzy measure on ([0,l]x,sg) and N:[0,1] -> [0,1] is a 
negation, then m'N = N o m is a fuzzy measure on ([0,1]x, P). The 
following result explains some possible incompatibility multi-
measures, as special cases of Proposition 4.2, considering 
m'v =NS o mv, where Ns is the standard negation (i.e. Ns(a) = 1 - a 
for each a e [0,1]). Obviously, m'A = Ns o mA can also be used in a 
similar way. 

Corollary 4.4. LetX¥= 0 and cp e A([0,1]). Consider the t-norms Min 
and the cp-conjugated with TL and TP. We have: 

1. If Xfv •. Unew'n ~* P> 1] !s the function defined for each 
(fa,..., fa) e lx and n e N by 

0 if Tf(/41,...,/4„)^/4B 

min^ 1, J ^ ( l — sup<j5(/ij(x))) > otherwise 

then, for each \j/ e A([0A]),ij/ oXfv, is a Tf -incompatibility multi-
measure on [0, if and, in particular, so is Xfv. 
2. If XftV, : Unew'n ~* P> 1] !s ^ function defined for each 

(fa,...,fa) e lx and n e N by 

if Tf (fa,..., fa)* 
2 p , V (/*!>• • • if^n) = 1 - JJsup(p(/ij(x)) otherwise 

i_i xeX 

then, for each \j/ e A([0A]),ij/ o xftV, is a Tf-incompatibility multi-
measure on [0, if- and, in particular, so is XftV,. 
3. If X^ax.v : Unew'n ~* P> 1] !s the function defined for each 

(fa,...,fa) e lx and n e N by 

( 0 if Min(/i], . . . , /i„) ^ / i B 

I M w ( f t > - - - > / 0 = | A ( ( x ) ) \ otherwise 
I Ki«n V XEX ' / 

then, for each \j/ e A([0A]),ij/ o^Sax.v !S a Min-incompatibility multi-
measure on [0, if and, in particular, so is X^^,. 
4. If JV'*Min : Unew'n ~* P> 1] !s ^ function defined for each 

(fa,..., fa) e lx and n G N b y 

(-0 if T(fa,...,fa)*fa 
v̂»Min (/^i, • • •, fa) = I i _ suDminu (x) otherwise > 

then, /or each ^e^([0 , l ] ) ,^ol v , ,M i l l is a 7'-incompatibility multi-
measure on [0, if for any t-norm T and, in particular, so is JV'.Min-

2. For each (fa,..., ,un) e lx with n> 1, by 

Jf (fa,... ,fa) = min < l,max< 0, (n - 1) - supY^ cp(fa(x)) 
{ { x<*tl 

then Xv is a Tf-incompatibility multi-measure on [0, if. 

Remark 4.6. We have that Xcp(fa,fa) = max{0,1 — 
supxeX (cp(fa(x))+cp(fa(x)))} for each ((u],(u2)elx, thus J<?||0],xx|0]]x 
is a If-incompatibility measure regarding the definition reported 
in [11]. 

Lemma 4.7. LetX^$ and cp e A([0,1]). The function 1% -. lx —> [0,1], 
with n e N \ { l j , defined for any (fa,..., fa) e lx by 

Fn(fa,...,fa) = maxU^-suP[±C^l 

is a Tf-incompatibility n-measure. 

Proof. Axioms i.l and i.3 can be proven by a simple computation. 

(i.2) If {fa ,un}c[0, l]x satisfies Tf(fa,...,fa)^fa, then 
there exists xeX such that YZ^iVil^O1)) > n — 1, thus, and 
taking into account that n > 1, it follows that 

sup '"' ' > 1. 
XEX n — i 

Therefore, I%(fa,..., fa) = 0. 
(i.4) If fa fa,0\ crn e [0,1]x satisfy fa^at for all 

! e {1 n}, as cp is increasing and n > 1, then 

v*ex, ZLMm) ^TLMm) 
n - 1 n - 1 

=> 1 - SUp ' " ' sj 1 - SUp ' " ' ' 
xex n — i xex n — i 

Hence, /^(ffi,... ,ff„) sg I%(fa,- • • ,fa)- • 

Remark 4.8. The above formula cannot be naturally extended to 
obtain a multi-measure. More precisely, there is no Tf -incompati­
bility multi-measure I -. Unew'n ~* [®A] such that J|,x = 1^ for each 
n > 1. Let us suppose that there exists such a multi-argument func­
tion J, then we will deduce a contradiction. Consider (fa, fa) e lx 

such that fa(x) = fa(x) = 0.4 for all xeX, then I(fa,fa) = 
If (fa ,fa) = max{0,1 - (0.4 + 0.4)} = 0.2. Now, let fa = fa, then 
I(fa,fa,fa)=If(fa,fa,fa) = max{OA-°-^±1}=0.h There-
fore I(fa,fa,fa) = 0.1 <I(fa,fa) = 0.2, and this contradicts 
axiom i.5 of incompatibility multi-measures. However, we can 
construct a multi-argument function, which is defined on each ele­
ment of \JneN Ix by means of some function /^, as it is shown in the 
next result. 

As in the case of compatibility, if If is the t-norm (^-conjugated 
with the Lukasiewicz t-norm, taking into account that 
Tf(fa,...,fa)=fa if and only if YTi=\cP{lii{x)) ^ n — 1> f°r aU 
x eX, we can find a If-incompatibility multi-measure by fittingly 
considering the difference between n - 1 and S l L i ^ A M ) , and 
thus we can prove the following result. 

Proposition 4.5. Let X ¥= 0 and cp e ,4([0,1]). IfX'p -. Unew'n ~* [®A] 
is the function defined: 

1. For each u e [0,1j , by Xv(u) = { ^ .fn ^ 

Proposition 4.9. Given cp e A([0,1]), let Tf be the t-norm cp-conju­
gated with the Lukasiewicz t-norm and let 1% be the n-measure on 
[0,1 f, with X¥=%, defined in Lemma 4.7. Consider the function 
if •. Unew'n ~* P> 1] defined recursively as follows: 

1. Ifn=1: for each 

x , „ 0 if u ^ fa 
fi€ [0,1]| ,Z?(AO 

jo 
i r LL —— \Xft. 

2. Ifn>1: for each (fa,..., fa) e lx 



I f (f1,... ,ft) = max | ( . m a x ^ I f (ft1, • • -ft, 1 ),C(f1, • • • ,ft,)|, 

where V(Af„) denotes the power set ofAf„ = {1,2,. . . , n}. 

Then, for all \j/ e A([0 1]),tj/ olf is a Tf-incompatibility multi-measure 
on ([0, 1]x, sgj and, m particular, so is if. 

Proof. Taking into account Proposition 2.9, it suffices to prove that 
If is a If-incompatibility multi-measure on ([0,1]x, <). The proof 
of axioms i.1, i.3 and i.5 follows directly from the definition of 
If. To prove the others, we need to use induction. 

(i.2) We have to prove that the statement ‘‘If f1 ftn e [0,1]x 

satisfy Tf (f1,..., ft,) ¥= ft,, then Tf (f1,..., ft,) = 0’’ is true 
for all n e N . 
Case n = 1: If ft e [0, 1]x satisfies Tf (ft) ¥= ft0, then Tf (ft) = 0 
by definition. 
Case n > 1: Suppose that the statement is true for n - 1, then 
we will prove it for n. Let 1 ftne[0,1]x such that 
Tf (f1,..., ft„) ¥= ft0, we deduce: 
- Tf(u, ,...,u, ) 5̂  ft for all fi1,...,!„ 1} e V(Afn), then 

J f (ft1 , . . . , ft, ) = 0 by induction hypothesis. 
- /^(f1,..., ft„) = 0 holds by Lemma 4.7. 
Hence, J f ( f 1 , . . . , f t n ) = 0 . 
Consequently, from the induction Principle we conclude that 
Tf satisfies axiom i.2. 

(i.4) We must prove that the statement ‘‘If f1 ftn, c 1 ""n e 
[0,1]x satisfy ft,- sg at for all ie{1 n}, then 

mr 1 
, an) sg J f (f1,..., ftn)’’ is true for all n e N. 

Case n = 1: Let ft, er e [0,1]x such that /i^ a. We have two cases: 

- If ft 5̂  fte, then cr ¥= fte; therefore Xf (ff) = if (ft) = 0. 
- If ft = ft0, then J f (ft) = 1 P lf{o~). 

Hence, lf{o) sg Xĵ (ft). 

Case n > 1: Assume that the statement is true for n - 1, then we 
will prove it for n. Let \ 1 ftn, 1 an e [0,1]x such that 
ft,- sg cr,- for all! e {1 n}, we deduce: 

Definition 4.10. Let S be a t-conorm and X ¥= 0. A function 

U : Unew'n ~* 0> 1] is an S-unsupplementarity multi-measure on 
[0,1]x if it is a symmetric and n-decreasing multi-measure on 
([0,1]x, P) satisfying W(f1,... ,ft„) = 0, provided that {f1 ftn} 

C [0,1]X is S(f1 ftn) = ftx. 

Definition 4.10*. Let S be a t-conorm and X^$. A function 
W : (JneNlx ^ [0,1] is an S-supplementarity multi-measure on 
[0,1]x if it satisfies, for each H E N : 

u.1 W(ftB, .n.'.,ft0) = 1. 
u.2 W(f1;.. . ,ft„) = 0 for all {f1 ftn}c[0,1]x such that 

S(ft1 ftn) = ftx. 
u.3U(/i1 , . . . , /(„)=W(/i I |1), . . . , /( l W) holds for all neSn and 

f1 ftne[0,1]x. 
u.4 Given \ 1 ftn, o 1 a„ e [0, 1]x, if ft,- sg cr,- holds for all 

! e {1 n}, then W ( 1 , . . . , cn) < W(f1;... ,ft„). 
u.5 W(f1;.. .,ftn+1) s£ W(f1, • • • ,ftn) holds for all n e N and 

f 1 ftn+1 e [ 0 , 1 ] x . 

If W satisfies axioms u.1-u.4 for some fixed n e N , w e say that U 
is a [/-unsupplementarity n-measure on [0,1]x. If n = 2 we simply 
say that S is a [/-unsupplementarity measure. 

Following from Proposition 2.10, we can prove the next result 
which is a certain extend dually analogous to Proposition 4.2. 

Proposition 4.11. Let X^$. If T is a t-norm, S and S0 are 
t-conorms and m':[0, l]x -> [0,1] is a fuzzy measure on ([0, if, PJ, 
then the functions UTtm>Mm>*s • Unew'n ~* 0,1] defined, for each 
(ft1,..., ftn) e lx and n e N, by 
7, , 1 „ , f0 ifS0(ft1,...,ft„)=ftx 

i-iTtm>(ft, .. . , ft„) = 

0 if S0(ft1,...,ft„)=ftx 

m ' ^ f 1 , . . . , ftj) otherwise 
Um'tsiP1, • • • , ft,) = ̂  

are S0-unsupplementarity multi-measures on [0,1]X. 

Remark 4.12. Observe tha t : 

- The induction hypothesis assures that If (at1,..., cr, 1) s£ 
lf(u, , . . . , « , ) holds for any \U, • • •, in-1 I e V{Nn), and thus 

max X? (<7,- , . . . <7; 1) ^ max ifiti, , . . . ft ). 

- /„ (f1,..., On) < 1'n (f1 > • • • > ftn) holds by Lemma 4.7. 

Hence, lf(1,..., a„) sg 2"f (f1, • • •, ft„). 

Therefore, we can claim that if satisfies axiom i.5. by the 
induction Principle. • 

4.2. Unsupplementarity multi-measures on fuzzy sets 

As for incompatibility, although unsupplementary is the oppo­
site to supplementary, it is not possible to assign degrees of unsup­
plementarity by means of a negation of a supplementarity multi-
measure. Hence we establish a mathematical model to measure 
the unsupplementarity property. 

Given a t-conorm S, we have that {f1 ftn}c[0,1]x is 
S-unsupplementary if it is not S-supplementary, that is, if S(ft1, 
. . . , ftn) ̂  ftx. The following definition determines the conditions 
that a multi-argument function must satisfy to fittingly assign a 
degree of unsupplementarity to every {f1 ftn} c [0,1]x. 

1. It does not make sense to replace the t-norm T with a t-conorm 
S in the definition of Uj,m,, because S(m'(1) m'(ftn)) 
^ ( m ( f t 1 ) m'(Hn), m'(ftn+1)), and so axiom u.5 is not 
satisfied. 

2. As T is n-decreasing and m' reverses the order, then m'oT is n-
increasing. Thus, it is meaningless to replace the t-conorm S 
with a t-norm T in the definition of Um<tS. 

As before, we can replace land S by the t-norms and t-conorms, 
respectively, conjugated with the basic triangular norms and con-
orms in Proposition 4.11. 

As in the case of supplementarity, if Sf is the t-conorm <p-conju-
gated with the Lukasiewicz t-conorm, taking into account that 
Sf (f1,..., ft„) = ftx if and only if ]T"=1 (p(ft,(x)) P 1 for all x e X, we 
can use the difference between YA=1 ^(ft (X)) and 1 to assign degrees 
of Sf-unsupplementarity. So, we can prove the following result. 

Proposition 4.13. Let X ^ l and cp e A([0,1}). The function 
Uf : Unew 'n ~* [01] defined for each (f1,..., ftn) e lx by 

Uf (f1, • • •, ft„) = max \ 0,1 - inf^<p(ft(x)) 

is an Sf-unsupplementarity multi-measure on [0,1 f. 



5. Some relations among the four types of multi-measures Table 1 
Candidate skill level in Example 1. 

Now we show some basic relations among the multi-measures 
introduced in Sections 3 and 4. To do this, we consider a t-norm T 
and a t-conorm S that are dual operators with respect to a strong 
negation N, that is, S(a,b) = N(T(N(a), N(b))) or T(a,b) = 
N(S(N(a),N(b))) for all a, b e [0,1]. 

Proposition 5.1. Given a strong negation N, let T be a t-norm and S 
be its N-dual t-conorm. IfX ¥= 0, then: 

1. If C is a T-compatibility multi-measure on [0, if, then the function 
U : Unew 'n ~* 0; 1]> defined for each (/1;...; fin) e ix by 

M(j1; .. . ; fJ-n) = C{N o ( 1 ; . . . ; N o |Xn); 

is an S-unsupplementarity multi-measure on [0, if. 
2. // U is an S-supplementarity multi-measure on [0, if, then the 

function C : [JneN 1„ —» [0;1], defined for each (/.1;...; fin) e ix by 

C(JJ1; ... ;/•*„) = U{N o | 1 ; . . . ; N o |xn); 

is a T-compatibility multi-measure on [0, if. 

Proof. We give the proof only for the first case because the second 
is similar. Let us check the axioms. 

(u.1) U(fJq;.").;fJq) =C(No(u0;;.
n.).;No(u0) =C(fix;.").;fix) = 1 for 

each H E N . 
(u.2) Let { j 1 /in} c [0,1] such that S( 1 jin) = \ix. This 

equality is equivalent to 

T(N o p1;.. . ; N o / l J =N o pLx = pLt; 

since S is the t-conorm N-dual of T. Then, from axiom c.2 of compat­
ibility multi-measures, we obtain 

U(]1 ;...;/in)= C(N o f 1 ; . . . ; N o fin) = 0: 

(u.3) As C is symmetric, it follows that U is symmetric. 
(u.4) If j 1 <un,o1 ff„6[0,1] satisfy ^ < a, for all i e 

{1 n}, then Noer, sg JVô t,-. Thus, from axiom c.4 we have 

W(<1;...; <7„) = C(N o <1 ; . . . ; N o <7„) ^ C(N o fj1;... ;N o fj,n) 

= U(ji1;...;ii„): 

u.5) Taking into account axiom c.5, we have 
W(/1 ; . . . ;/in+1) = C(N o | 1 ; . . . ; N o fin;N o fin+1) 

^ C(N o fj1;... ;N o fj,n) = W(/1 ; . . . ; /xn) 

for all n e N and / 1 ,un+1 e [0,1]x. D 

In the same way as in Proposition 5.1, we can prove the follow­
ing result. 

Proposition 5.2. Given a strong negation N, let T be a t-norm and S 
be its N-dual t-conorm. Then, 

1. If I is a T-compatibility multi-measure on [0, l]x, then the function 
S : Unew 'n ~* [0; 1]> defined for each (/.1;...; /xn) e ix by 

iS(/1 ; . . . ; fin) = I(N o | 1 ; . . . ; N o |xn); 

is an S-supplementarity multi-measure on [0, l]x. 
2. If S is an S-supplementarity multi-measure on [0, if, then the 

function X : \JneN ix —> [0;1], defined for each (/1;...; fin) e ix by 

I(f1; ...; [£„) = S(N o | 1 ; . . . ; N o |xn); 

is a T-incompatibility multi-measure on [0, if. 

John ( l 1 ) 
Mary ( l 2 ) 
Peter ( l 3 ) 
Alex ( l 4 ) 

X 1 

0.2 
0.7 
0.2 
0.9 

*2 

0.6 
0.3 
0.9 
0.3 

*3 

1.0 
0.1 
0.9 
0.4 

x4 

0.5 
0.4 
0.8 
0.3 

*5 

0.2 
0.6 
0.4 
0.5 

x6 

0.8 
0.3 
0.5 
0.5 

6. An example 

This section shows a simple example to demonstrate the advan­
tage of using the measures introduced in the paper in different 
real-life situations, and then in expert systems and other areas of 
computational intelligence. 

A fashion company is being set up and needs to select people 
who have high-level skills in: fashion design (x1), clothing (x2), im­
age (x3), marketing (x4), social relations (x5) and leadership (x6). 

The aim is to form a team of people that accounts for all the 
skills. Table 1 shows four candidates and their respective skill level. 

Let us see the extent to which different teams have all skills, 
that is, let us measure their supplementarity. Consider the supple-
mentarity measures of Corollary 3.13. We will fix <p = id in all cases. 

If we regard a team formed by John and Mary, then 
SL,A{[1;[12) = 0 as SL(I1, f2) ^ l*x (for example, 5 i((1;(u2)(x1) = 
min{1;0:1 +0:7} = 0:8 ¥= 1). Similarly, we obtain S^rX^;^) = 0 
for i, je{1 4}, with i ̂ j, as SL(^,,^) ^ \ix. The same occurs 
when considering SPtA and 5Max*A since SMax sg SP sg SL. Thus, the 
two-member teams are insufficient to meet company expectations. 

If we analyze the three-member teams, then we obtain: 

- For John, Mary and Peter, 

Si»A(f1;^2;f3) = min { 1;y înfytj(Xj) i = min{1;0:2 + 0:1 +0:2} = 0:5; 

3 / \ 

5P*A(^1; ̂ 2;^3) = 1 ~ TT ( 1 ~ infy^Xj) } = 1 ~ 0:8 • 0:9 • 0:8 = 0:424; 
i = 1 ' 

SMax,A(f1;M2;f3) = maxinfft(Xj) = 0:2: 

- For John, Mary and Alex, 

SuAifJ1;f2;f4) = min{1;0:2 + 0:1 +0:3} = 0:6; 
SptAiH1;f2;f4) = 1 -0 :8 -0:9 • 0:7 = 0:496; 

SMaxtA{f1;fJ2;fJ-4J = 0:3: 

- For John, Peter and Alex, 

SuA(fJ1;3;fJ4) = min{1;0:2 + 0:2 + 0:3} = 0:7; 
5ptA(^1;^3;^4) = 1 -0 :8 -0:8 • 0:7 = 0:552; 

SMax*A(P1;^3;^4) = 0:3: 

- For Mary, Peter and Alex, 

SL*A(/X2;/X3;/X4) = min{1;0:1 +0:2 + 0:3} = 0:6; 

SptA(fi2; f3; fJ-4) = 1-0 :9 -0:8 • 0:7 = 0:496; 

5Max*A(/^2;f3;^4) = 0:3: 

So, the team formed by John, Peter and Alex appears to be the 
most competent of the three-member teams. 

Finally, if we need more supplementarity, that is, higher levels 
of all the skills, we can consider all four candidates at once: 

SuA(f1;fJ2;3;fJ-4) = min{1;0:2 + 0:1 +0:2 + 0:3} = 0:8; 

.SptA^1 ; /2 ; /3 ; /4) = 1-0 :8 -0:9 -0:8 -0:7 = 0:5968; 

SMax*A [fJ1; A*2; A*3; A*4) = 0:3: 



In this way, if we need a fixed degree of supplementarity, new can­
didates can be added so that this is achieved. Note that the first 
measure is more sensitive to the changes, and hence could be more 
significant. 

If the company can employ no more than two of the candidates, 
even if not all expectations are met, measures of unsupplementa-
rity can help to discern which is the best team. So, considering 
the measure UL, we have: 

UL{f1,\i2) = max{0,1 - min{0.9,0.9,1.1,0.9,0.8,1.1}} = max{0,0.2} = 0.2, 
UL(H1,H3) = max{0,1 - min{0.4,1.5,1.9,1.3,0.6,1.3}} = max{0,0.6} = 0.6, 
UL(H1,H4) = max{0,1 - min{1. 1,0.9,1.4,1.8,0.7,1.3}} = max{0,0.7} = 0.3, 
UL(n2,n3) = max{0,1 - min{0.9,1.2,1.0,1.2,1.0,0.8}} = max{0,0.2} = 0.2, 
UL(ii2,ii4) = max{0,1 - min{1.6,0.6,0.5,0.7,1.1,0.8}} = max{0,0.5} = 0.5, 
UL(H3,H4) = max{0,1 - min{1.1, 1.2,1.3,1.1,0.9,1.0}} = max{0,0.1} = 0.1. 

So, the best two-member team should be the one with the least 
unsupplementarity, and is hence the team formed by Peter and 
Alex. 

7. Conclusions 

In this paper, first, we introduce an axiomatic model of multi-
measures on a bounded lattice, illustrating some examples for lat­
tices of classical sets. We also set out two methods for building 
multi-measures. Next we study two types of multi-measures in 
the particular case of a lattice of fuzzy sets ([0,1]x,sg), namely, 
T-compability and S-supplementarity measures. Afterwards we 
address two kinds of multi-measures on ([0,1]x, P), T-incompatibil-
ity and S-unsupplementarity, which are to a certain extent opposite 
to the former. Both assume the classical case. Moreover we establish 
some relationships between given pairs of multi-measures. 

The main novelty of this axiomatic model is that it provides 
functions that measure the degree to which a property is verified 
by a subset of elements of any bounded lattice, regardless of the 
cardinality of that subset. This contrasts with most of the measures 
proposed in the literature that can only be used to measure one 
element or to compare two elements. In particular, our proposal 
extends the model of aggregation functions which refer to the lat­
tice ([0, 1],sg) only. 

The example given in Section 6 applies the presented functions 
to a particular decision-making problem. It clearly illustrates the 
advantage of using these functions, which are able to discern the 
extend to which a property is satisfied when new elements are 
added for comparison. 

We intend to pursue two main lines of research in the future. 
On the theoretical side, we will further study the continuity of 
the introduced measures and other structural properties, and de­
velop analogous measures in the area of Atanassov’s fuzzy sets. 
On the practical side, we will use these measures in approximate 
reasoning, clustering, expert systems, patter recognition, etc. 

Acknowledgement 

This work has been partially supported by DGI (Spain) Projects 
TIN2011-29827-C02-01, TIN2009-07901, MTM 2009-10962, 
TIN2012-32482 and by UPM-CAM. 

References 

[1] C. Alsina, M. Frank, B. Schweizer, Associative Functions: Triangular Norms and 
Copulas, World Scientific, Singapore, 2006. 

[2] R.C. Bassanezi, G.H. Greco, Functional representable by fuzzy measures, 
Journal of Mathematical Analysis and Applications 133 (1988) 44-56. 

[3] G. Beliakov, A. Pradera, T. Calvo, Aggregation Functions: A Guide for 
Practitioners, Springer-Verlag, Berlin, 2007. 

[4] D. Ben-Arieh, Z. Chen, Linguistic-lables aggregation and consensus measure for 
autocratic decision making, using group recommendations, IEEE Transactions, 

on Systems, Man and Cybernetics-Part A: Systems and Humans 36 (3) (2006) 
558–568. 

[5] G. Birkhoff, Lattice Theory, American Mathematical Society, Providence, 1940. 
[6] T.S. Blyth, Lattices and Ordered Algebraic Structures, Springer-Verlag, London, 

2005. 
[7] É. Borel Leçons sur la théorie des fonctions (in French), Gauthier-Villars, Paris, 

1898. 
[8] H. Bustince, J. Fernández, R. Mesiar, J. Montero, R. Orduna, Overlap functions, 

Nonlinear Analysis 72 (2010) 1488–1499. 
[9] T. Calvo, A. Kolesarová, M. Komorníková, R. Mesiar, Aggregation operators: 

properties, in: T. Calvo, R. Mesiar, G. Mayor (Eds.), Classes and Construction 
Methods in Aggregation Operators: New Trends and Applications, Physica-
Verlag, Heilderberg, 2002, pp. 1–104. 

[10] E.E. Castiñeira, T. Calvo, S. Cubillo, Multi-arguments fuzzy measures on some 
special lattices, in: Proc. of 11th International Conference on Computational 
and Mathematical Methods in Science and Engineering, (CMMS-2011), 
Benidorm, Spain, 2011, pp. 319–330. 

[11] E. Castiñeira, S. Cubillo, W. Montilla, Measuring incompatibility between 
Atanassov’s intuitionistic fuzzy sets, Information Sciences 180 (2011) 820– 
833. 

[12] E.E. Castiñeira, C. Torres-Blanc, S. Cubillo, Measuring contradiction on A-IFS 
defined in Finite Universes, Knowledge-Based Systems 24 (2011) 1297–1309. 

[13] G. Choquet, Theory of capacities, Annales de l’Institut Fourier 5 (1954) 131– 
295. 

[14] S. Cubillo, E. Castiñeira, Measuring contradiction in Fuzzy Logic, International 
Journal of General Systems 34 (1) (2005) 39–59. 

[15] S. Cubillo, E.E. Castiñeira, W. Montilla, Supplementarity measures on fuzzy 
sets, in: Proc. of 7th Conference of the European Society for Fuzzy Logic and 
Technology (EUSFLAT-LFA 2011), Aix-Les-Bains, France, pp. 897–903. 

[16] A.P. Dempster, Upper and lower probabilities induced by multi-valued 
mapping, Annals of Mathematical Statistics 38 (1967) 325–339. 

[17] D. Dennenberg, Non-Additive Measure and Integral, Kluwer Academic 
Publisher, Dordrecht, 1994. 

[18] D. Dubois, H. Prade, Evidence measures based on fuzzy information, 
Automatica 21 (1985) 547–562. 

[19] D. Dubois, H. Prade, Possibility Theory, Plenum Press, New York, 1988 
(translated from the French original published in 1985). 

[20] M. Grabisch, J.L. Marichal, R. Mesiar, E. Pap, Aggregation Functions, Cambridge 
University Press, Cambridge, 2009. 

[21] M. Grabish, T. Murofushi, M. Sugeno (Eds.), Fuzzy Measures and Integrals. 
Theory and Applications, Physica-Verlag, Heidelberg, 2000. 

[22] G.H. Greco, Fuzzy integrals and fuzzy measures with their values in complete 
lattices, Journal of Mathematical Analysis and Applications 126 (1987) 594– 
603. 

[23] F. Herrera, E. Herrera-Viedma, Linguistic decision analysis: steps for solving 
decision problems under linguistic information, Fuzzy Sets and Systems 115 
(1) (2000) 67–82. 

[24] J. Jacas, J. Recasens, Fuzzy T-transitive relations: eigenvectors and generators, 
Fuzzy Sets & Systems 72 (1995) 147–154. 

[25] V. G Kaburlasos, V. Petridis, Fuzzy Lattice Neurocomputing (FLN): a 
novel conectionist scheme for versatile learning and decision making by 
clustering, International Journal of Computers and Their Applications 4 (3) 
(1997) 31–43. 

[26] V. G Kaburlasos, Towards a unified modelling and knowledge representation-
based on lattice theory-computational intelligence and soft computing 
applications, Studies on Computational Intelligence, vol. 27, Springer, 
HeidelbergGermany, 2006. 

[27] V. G Kaburlasos, A. Kehagias, Novel fuzzy inference system (FIS) analysis and 
design based on lattice theory, Part I: working principles, International Journal 
of General Systems 35 (1) (2006) 45–67. 

[28] Vassilis G. Kaburlasos, Joannis N. Athanasiadis, Pericles A. Mitkas, FLR classifier 
and its application for ambient ozone estimation, Int. Journal on Approximate 
Reasoning 45 (2007) 152–188. 

[29] E.P. Klement, Fuzzy r-algebras and fuzzy measurrable functions, Fuzzy Sets 
and Systems 4 (1980) 83–93. 

[30] E.P. Klement, R. Mesiar, E. Pap, Triangular Norms, Kluwer Academic Publisher, 
Dordrecht, 2000. 

[31] E.P. Klement, S. Weber, Generalized measures, Fuzzy Sets and Systems 40 
(1991) 375–394. 

[32] A.N. Kolmogorov, Foundations of the Theory of Probability, Chelsea, New York, 
1950. 

[33] R. Kruse, On the construction of fuzzy measures, Fuzzy Sets and Systems 8 
(1982) 67–74. 

[34] H. Lebesgue, Measure and the Integral, Holden-Day, San Francisco, 1966. 
[35] H. Liu, S. Xiong, Z. Fang, FL-GrCCA: a granular computing classification 

algorithm based on fuzzy lattices, Computers and Mathematics with 
Applications 61 (1) (2011) 138–147. 

[36] X. Liu, Futher discussion on convergence theorems for seminormed fuzzy 
integral and semiconormed fuzzy integrals, Fuzzy Sets and Systems 55 (1993) 
219–226. 

[37] X. Liu, G. Zhang, Lattice-valued fuzzy measure and lattice-valued fuzzy 
integral, theorems for seminormed fuzzy integral and semiconormed fuzzy 
integrals, Fuzzy Sets and Systems 62 (1994) 319–332. 

[38] R. Mesiar, A. Mesiarová, Fuzzy integrals, in: V. Torra, Y. Narukawa, A. Valls 
(Eds.), Modelling Decisions For Artificial Intelligence, LNAI 3131, Springer, 
Berlin, 2004, pp. 7–14. 

http://refhub.elsevier.com/S0950-7051(13)00227-X/h0005
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0005
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0010
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0010
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0015
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0015
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0020
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0020
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0020
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0020
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0025
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0030
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0030
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0035
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0035
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0040
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0040
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0040
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0040
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0045
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0045
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0045
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0050
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0050
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0055
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0055
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0060
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0060
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0065
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0065
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0070
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0070
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0075
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0075
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0085
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0085
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0090
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0090
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0095
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0095
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0100
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0100
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0100
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0105
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0105
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0105
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0110
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0110
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0115
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0115
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0115
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0115
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0120
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0120
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0120
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0120
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0125
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0125
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0125
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0130
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0130
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0130
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0135
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0135
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0140
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0140
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0145
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0145
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0150
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0150
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0155
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0160
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0160
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0160
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0165
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0165
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0165
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0170
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0170
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0170
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0175
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0175
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0175


[39] R. Mesiar, A. Mesiarová, L. Valásáková, Generated universal fuzzy measures, in: 
V. Torra, Y. Narukawa, A. Valls, J. Domingo-Ferre (Eds.), Modelling 
Decisions For Artificial Intelligence, LNAI 3885, Springer, Berlin, 2006, pp. 
191–202. 

[40] R. Mesiar, A. Mesiarová-Zemánková, L. Valásková, Basic generated universal 
fuzzy measures, International Journal of Approximate Reasonning 46 (2007) 
447–457. 

[41] R. Mesiar, M. Komorniková, Aggregation functions on bounded poset, in: C. 
Cornelis et al. (Eds.), 35 Years of Fuzzy set Theory, STUDFUZZ 261, Springer-
Verlag, 2010, pp. 3–17. 

[42] E. Pap (Ed.), Handbook of Measure Theory, North Holland/Elsevier, 
Amsterdam, Boston, 2002. 

[43] Z. Qiao, On fuzzy measure and fuzzy integrals on fuzzy sets, Fuzzy Sets and 
Systems 37 (1990) 77–92. 

[44] Z. Qiao, Fuzzy integrals on L-fuzzy sets, Fuzzy Sets and Systems 38 (1990) 61– 
79. 

[45] D. Ralescu, G. Adams, The fuzzy integral, Journal of Mathematical Analysis and 
Applications 75 (1980) 562–570. 

[46] G.X. Ritter, G. Urcid, Lattice algebra approach to single-neuron computation, 
IEEE Transactions on Neural Networks 14 (2) (2003) 282–295. 

[47] B. Schweizer, A. Sklar, Associative functions and statistical triangle 
inequalities, Publicationes Mathematicae-Debrecen 8 (1961) 169–186. 

[48] G. Shafer, A Mathematical Theory of Evidence, Princeton University Press, 
Princeton, 1976. 

[49] M. Sugeno, Theory of Fuzzy Integrals and its Applications, Ph.D. Dissertation, 
Tokyo Institute of Technology, 1974. 

[50] V. Torra, Y. Narukawa, Modelling Decisions: Information Fusion and 
Aggregation Operators, Springer-Verlag, Berlin, 2007. 

[51] E. Trillas, Sobre funciones de negación en los conjuntos difusos (in Spanish), 
Stochastica 3 (1) (1979) 47–60 (Reprinted (English version) in Advances of 
Fuzzy Logic. Eds. S. Barro et alri (Universidad de Santiago de Compostela), 
(1998) 31–43). 

[52] Z. Wang, Asymptotic structural characteristics of fuzzy measure and their 
applications, Fuzzy Sets and Systems 16 (1985) 277–290. 

[53] Y. Jamshidi Khezeli, H. Nezamabadi, Fuzzy lattice reasoning for pattern 
classification using a new positive valuation functions, Advances in Fuzzy 
Systems 2012 (2012), http://dx.doi.org/10.1155/2012/206121. 

[54] L.A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338–353. 
[55] L.A. Zadeh, Similarity relations and fuzzy orderings, Information Sciences 3 

(1971) 177–200. 
[56] L.A. Zadeh, Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets and 

Systems 1 (1978) 3–28. 

http://refhub.elsevier.com/S0950-7051(13)00227-X/h0180
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0180
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0180
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0180
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0185
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0185
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0185
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0190
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0190
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0190
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0195
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0195
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0200
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0200
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0205
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0205
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0210
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0210
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0215
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0215
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0220
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0220
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0225
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0225
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0230
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0230
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0235
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0235
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0235
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0235
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0240
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0240
http://dx.doi.org/10.1155/2012/206121
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0255
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0260
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0260
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0265
http://refhub.elsevier.com/S0950-7051(13)00227-X/h0265

