
One-dimensional linear analysis of 
the compound jet 

By A N G E L S A N Z A N D JOSfi M E S E G U E R 

The stability of an infinitely long compound liquid column is analysed by using a 
one-dimensional inviscid slice model. Results obtained from this one-dimensional 
linear analysis are applicable to the study of compound capillary jets, which are used 
in the ink-jet printing technique. Stability limits and the breaking regimes of such 
fluid configurations are established, and, whenever possible, theoretical results are 
compared with experimental ones. 

1. Introduction 
During the last two decades fine jets of ink have been increasingly used for printing 

purposes. Developments in ink-jet technology have motivated numerous scientists 
to investigate the details of the breaking of capillary jets emerging from nozzles. A 
review of the state of the art in this field at the end of the 1970s can be found in Bogy 
(1979). This review should be complemented by some subsequent significant papers: 
Chaudhary & Redekopp (1980), Bogy (1981), Entov & Yarin (1984), among others. 

Recently a new ink-jet printing method (the compound jet) has been developed 
at the Lund Institute of Technology in Sweden (Hermanrud & Hertz 1979; 
Hermanrud 1981; Hertz & Hermanrud 1983). A compound jet, as sketched in figure 1, 
is generated as follows. A fine nozzle is submerged below the surface of a stationary 
fluid (ink). By forcing a suitable ' inner' fluid through this nozzle under high pressure 
a liquid-into-liquid jet is generated in the stationary fluid (the 'outer ' fluid). Owing 
to viscous forces the outer fluid will be accelerated by the inner fluid close to the 
interface between the two fluids. Therefore when the jet emerges into the air it 
consists of a cylindrical core of fluid (the inner jet) surrounded by a concentric layer 
of different fluid (the outer jet), both travelling at essentially the same speed. 

Published papers concerning compound jets deal mainly with experimental work. 
Theoretical developments in this field have been limited to rough analyses which are 
quite far from the sophisticated studies on single capillary jets. However, regarding 
the partial similarity between compound jets and compound liquid columns, the work 
of Bauer (1982) and Sanz (1983) should be noted. In the first paper the linear stability 
of an infinitely long liquid column is analysed by using a three-dimensional model 
based on previous work of Tomotika (1935), whereas the second is devoted to the 
study of liquid bridges surrounded by another liquid. 

In the present paper the linear stability of the compound jet is studied through 
a one-dimensional inviscid model which is a generalization of that of Lee (1974) for 
single capillary jets. This model has been selected instead of more complicated 
one-dimensional models (Weber 1931; Green 1976; Entov & Yarin 1984) because, in 
spite of its relative simplicity, the results obtained are in agreement with experimental 
evidence, both in the case of single capillary jets (Pimbley & Lee 1977) and in the 



case of slender liquid bridges (Sanz 1983; Mcseguer & Sanz 1985). Amongst the 
different types of instability appearing in a compound jet (Hertz & Hermanrud 1983) 
we analyse capillary instability only, which is the most interesting in ink-jet printing 
applications in order to predict the size of the resulting drops after the jet breakup. 
The remaining instabilities (sinuous and varicose instability) are outside the scope 
of this paper, and they seem to be more easily dealt with by means of an experimental 
approach rather than a theoretical one. We assume that viscosity effects (if 
low-viscosity liquids are involved) are important only in the nozzle region, where the 
compound jet is set up, and that these effects can be neglected in the study of capillary 
instability, which appears in a region far from the nozzle. A similar hypothesis is used 
in, for instance, the analysis of the response of a boundary layer to a small 
disturbance: it is assumed not to be affected by the viscosity of the fluid, even though 
viscosity was of course essential for the setting up of the velocity distribution in the 
undisturbed boundary layer. 

Finally, theoretical results have been compared with available experimental results 
(Hertz & Hermanrud 1983) and reasonable agreement has been found. 

2. General equations for the one-dimensional compound jet 
According to Bogy (1979), studies on capillary-jet instability could be classified 

in two main categories: temporal-instability and spatial-instability analyses. Keller, 
Rubinow & Tu (1973) showed the suitability of spatial instability analyses for 
describing the behaviour of capillary jets. These authors also verified the agreement 
between results obtained from the temporal or the spatial approach when the jet 
velocity is much higher than the capillary velocity, which is the case in ink-jet 
printing. Therefore in this paper we analyse temporal instability, since its formulation 
is simpler than that of spatial instability. To perform this study it must be assumed 
that the reference system is moving with a velocity equal to the mean jet velocity, 
so that equations of motion become similar to that of a compound liquid column. 

Let us consider a compound jet as sketched in figure 1, and concentrate on the 
region far enough from the nozzle. To carry out the analysis of this liquid 
configuration several assumptions are introduced: 

(a) internal movement in the compound jet is due only to capillary-pressure 
gradients generated by the deformation of interfaces; 

(b) the dynamics of the compound jet is not affected by the surrounding air; 
(c) since only axisymmetric configurations are considered, the problem is inde­

pendent of the azimuthal coordinate; 
(d) both liquids are inviscid,f with constant and uniform properties (density and 

surface tension); 
(e) in each of the liquids the axial velocity, as well as the pressure, depends on the 

axial coordinate and the time, but not on the radial coordinate. 
This last hypothesis, which is the more drastic assumption introduced by the 

| The effect of viscosity within the one-dimensional model used could be accounted for through 
an unsteady boundary layer a t the interface between the two liquids, to accommodate the shear 
stresses and the velocity jump . The thickness of this boundary layer would be S ~ (v/rf (Schlichting 
1960), where T is a characteristic dimensional growth factor and v the kinematic viscosity (almost 
the same in both liquids). As we shall see, T ~ (pa/o°R°ay, where &°, p° and R° are respectively 
the surface tension, density and radius of the outer jet. Thus 8/R° ~ (p2p°/(T0R°y — 0.16, for the 
values quoted in Hertz & Hermanrud (1983): a° = 2 x 10~2 N m _ 1 , p° = 103 kg m~3, 
E" = 3 x 10"4 m and v = 2 x 10"6 m2 s - 1 . 
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FIGURE 1. Geometry and coordinate system for the compound jet. 

one-dimensional model, is justified in the case of compound jets because perturbation 
wavelengths involved in jet breaking are generally larger than the jet radius 
(Meseguer 1983; Sanz 1983). 

Under these hypotheses the equations of motion are drastically reduced. The radial 
momentum equation becomes uncoupled and the problem formulation reduces to the 
continuity equation and axial momentum equation, plus suitable initial and boundary 
conditions. To generate the equation set for the compound jet the procedure is similar 
to that described in Lee (1974), Meseguer (1983) and Sanz (1983). In the following 
F* stands for the interface radius, W^ for the axial velocity and P 3 for pressure; pi 
and a? are density and interfacial tension respectively. The superscript j denotes the 
liquid (i for inner and o for outer, see figure 1), whereas the subscripts t and z indicate 
time and spatial derivatives respectively. The equations for the compound jet are as 
follows. 
(a) Inner jet: 

(a 1) continuity equation 
(Fi\ + (WiFi% = 0, (2.1) 

(a 2) axial momentum equation 

Jfj+PFiJP2 = — p . (2.2) 

(b) Outer jet: 
(b 1) continuity equation 

(Foi-Fl2)t + [W°(Fo2-Fi2)]z = 0, (2.3) 

(b 2) axial momentum equation 

W7+JPW° = — p . (2.4) 

P1, P° and the external pressure P 6 are related through 

Pi-P° = <riP(Fi), P°-Pe = <T°P(F°), (2.5) 

^ = [l + ̂ T 1 ! 1 1 ^-^} - (2-6) 



To put these equations in non-dimensional form, we take as reference the properties 
of the outer liquid: undisturbed interface radius R°, density p° and surface tension 
(T°. To that purpose, we introduce 

— /,o°R03\i- ( <r° \i (T° — 
P = R°P, z = R°z, t = ( ^ r j l W = (j^)W, 1* = ^ , (2.7) 

where the overbarred quantities are dimensionless. We introduce also the parameters 

R} o1 a-1 

B = v> p = ?' a = ^ (2-8) 

R1 being the undisturbed inner-jet radius. Then (2.1)—(2.6) yield the following 
dimensionless equations (with the overbars dropped from now on): 

(Fi2)t + (WiFi% = 0, (2.9) 

W\+WW\ = —%, (2.10) 

(F02-Fi2)t + [W0(Fo2-Fi2)]z = 0, (2.11) 

W°+W°W°Z=-P°Z, (2.12) 

P-po^arPiF1), (2.13) 

P°-F* = P(F°), (2.14) 

j i+ in ) 2 
p(Fi) = [i + ifytyll—A^-FiJ. (2.15) 

Note that P, IF3, t, etc. are now dimensionless variables, and that the undisturbed 
interface shapes are F1 = R and F° = 1. 

In conclusion, the problem formulation consists of four nonlinear differential 
equations, which, once initial and boundary conditions are fixed, allow the calculation 
ofF\F°, IF1 and W°. 

3. Linear analysis 

Let e be a small parameter, measuring, for instance, the initial deviation of the outer 
interface shape from the cylindrical one. If e is small enough, ignoring e2 terms, the 
variables involved in the problem may be rewritten as 

P = R + ef, F° = 1 +e / ° , W1 = ew\ W° = ew°, etc. (3.1) 

P(P) now takes the form t 

W = ^ e ( / L + ^ > (3.2) 

P(F°)=l-e(f°z+f°). (3.3) 

After substituting these expressions in (2.9)—(2.14) the following linearized problem 
i S 0 b t a i n e d : 2ft + Rwi = 0, (3.4) 

p™l = *(fL+§)+fL+fl (3-5) 

2f°-2Rft + w°(l-R2) = 0, (3.6) 

<=./?«+/?• (3.7) 



FIGURE 2. Qualitative influence of a (inner to outer surface-tension ratio) and p (inner to outer 
density ratio) on the variation with the inverse wavenumber rnT1 of the roots T\ and T\ of (3.10). 
Arrows indicate the variation of the root curves as er or p increase. 

This system of four equations with four unknown functions can be reduced to one 
single equation. Differentiation of (3.4) with respect to time and of (3.5) with respect 
to z allow us to eliminate wl between these two equations. In a similar way w° may 
be eliminated between (3.6) and (3.7), and eliminating/1 between the two resulting 
equations yields 

2p 84/0 

R2 9<4 + 1 P °" 66/0 / p_ _a 
Rjdt2dzi + { P + R2 + R3 

+ 
a(l-R2) 

2R 
a8/0 

.a? 

84/0 

dt2dz2 

1 \ 88/0 

Yy 82
6 

1 84/0" 
R 2 ^ 

To analyse temporal instabilities we try solutions like 

f° = C ~jt+\mz 

= 0. (3.8) 

(3.9) 

so that the following dispersion equation results: 

R2 1 + p -
i-R-

R2 

at 1 
f l - m 2 ) + -

R\R2 -m' 

1 
+ °~2R m * ( 1 ~m2) {R2~m' 

0. (3.10) 

For each value of the wavenumber m there are four roots + T1; + T2 which determine 
four superposed evolutions. As can easily be demonstrated, the discriminant of (3.10) 
is always positive, hence T\ and T\ are real numbers, and time evolutions of the 
compound jet are oscillatory or grow exponentially, as one would expect from an 
in viscid model. 

In figure 2 the variation with the inverse wavenumber m_ 1 of the growth factors 
T\ and T\ is shown. If the dimensionless perturbation wavelength A = 2izmr1 is smaller 
than 2%R both roots are negative; this means an oscillatory motion, the compound 
jet is stable under such short-wavelength perturbations. If A is large enough (A > 2n) 
both roots are positive: the compound jet breaks. There is a middle region 
(2KR < A <2n) in which one root is positive and the other negative, which corresponds 

3 FLM 159 



FIGURE 3(a,fe). For description see facing page. 



F I G U R E 3. Maximum growth factor r m versus inverse wavenumber m _ 1 of compound jets with inner 
to outer density ratios p = 0.5 (a), 1 (6) and 2 (c). Numbers on the curves indicate the values of 
the inner to outer radius rat io R (solid lines) and the inner to outer surface-tension ratio a (dashed 
lines). Details on the box outlined in (c) are shown in (d). 

3-2 
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also to breaking evolutions. Therefore there is a stability limit (A = 2nR) depending 
only on the value of R, and two breaking regimes. 

Within time-stability studies, it is generally accepted that capillary jets break 
owing to the fastest-growing spatial harmonic (Lee 1974; Bogy 1978). Therefore the 
optimum condition for breaking means maximum T. AS can be seen in figure 2, the 
upper branch r\ presents one or two maxima, depending on the values of R, p and 
a, whereas in the lower branch T\ there is one maximum only. From the point of view 
of instability, the lower-branch roots are irrelevant, because, for each value of the 
wavenumber m, the upper-branch roots are always larger. 

The variation with m"1 of the maximum growth factor rm for several values of R, 
p and a is plotted in figure 3 (in figure 3 (6) maxima of the lower-branch roots have 
also been represented). Analytical expressions of r m for some extreme cases are shown 
in table 1. Concerning upper-branch maxima represented in figure 3, there is a middle 
region where no maxima exist. For instance, in the case p = 1, R = 0.5 and <r->0 
(figure 36) there is a maximum at mT1 K, 0.7 and a second one at m"1 « 1.4; when 
a increases, the first maximum increases, whereas the second vanishes at a « 0.26 
(at this point the fading maximum becomes an inflexion point, see figure 2). Each 
point (R, a) of the inflexion curve ABC defines the points of a second curve A 'BC 
corresponding to the other maximum, so tha t curves ABC and A 'BC split the 
maximum-roots region into two zones. Therefore two possibilities appear. 

(I) Above A 'BC there is one maximum only, which determines the optimum 
condition for breakup. When p = 1, R ~ 1 and a^O (the compound jet becomes a 
single jet) the optimum condition for breakup is reached at rrT1 = \/2, with a 
maximum growth factor r m = 1 / A / 8 , which are the same values as those calculated 
by Lee (1974) for the single jet. If R > y/2 (R = \f1 means both inner and outer jets 
have the same cross-sectional area) r m occurs at m_ 1 > 1 regardless of the value of er; 
this seems to indicate that the breaking process will be determined by the outer 
interface. In contrast, when R < \/2 the maximum growth factor occurs at mrx < 1, 
and the breaking process is mainly driven by the inner interface. 

(II) Between ABC and A 'BC, for each pair (R, a) there are two relative maxima. 
Since the inflexion curve ABC vanishes at m_ 1 = 1 when R = \/2, points of the 
two-maxima region can only be reached from compound-jet configurations having 
R < \/2 and low values of <r. Of these two optimum breakup conditions, that having 
the highest value of r m will develop faster and will become dominant in the breaking 
process. When cr^O the highest r m occurs at m"1 ~ \/2; but, as a increases, both 



pi 

FIGURE 4. Minimum jet radius flm versus time t. Inner-jet breaking time <{, is obtained when its 
minimum radius F^ vanishes. In the outer-jet case there are two possibilities, and breaking time 
<g is reached when its minimum radius F^ vanishes (a) or when the outer interface reaches the inner 
one (b). 

values of r m become of the same order, and, in general, determination of which one 
is dominant would require a more detailed analysis. 

When p 4= 1 the behaviour of the compound jet is similar to that described above, 
the main differences appearing close to m_ 1 = \/2, where, even when or^O, the 
compound jet does not behave as a single jet. In this case, Tm increases as R grows 
when p < 1, and the contrary occurs when p > 1. This behaviour can be explained 
by inner-jet inertial effects, which cause time evolution to be retarded as the density 
ratio p grows. 

4. Breaking regimes 
To discuss the possible breaking regimes of the compound jet, we introduce two 

new parameters: the amplification A =f1/f°, defined as the ratio of the maximum 
(or minimum) inner-interface deformation to the maximum (or minimum) outer-
interface deformation, and the linear breaking time t{,. 

The amplification is calculated by eliminating w° between (3.6) and (3.7) as 
explained above. Thus the following relationship is obtained: 

RAt=f?t+l(i-&)(rgzgz+fiz); 
therefore, for each pair (T, 

A - R 
l—R2 

(4.1) 

(4.2) 

Concerning <{,, according to (3.1), (3.9) and (4.2), the time evolutions of the 
minimum inner and outer jet radii are respectively 

Fi
m = R-Ce.AeTt, FL = l - C e e T (4.3) 
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F I G U R E 5(a,b). For description see facing page. 



FIGURE 5. Amplification A versus inverse wavenumber mr1 of compound jets with an inner to outer 
density ratio p = 0.5 (a), 1 (b) and 2 (c). Numbers on the curves indicate the values of the inner 
to outer radius ratio R (solid lines) and the inner to outer surface-tension ratio a (dashed lines). 
The shaded area in (c) indicates the region in which breakup occurs by the meeting of the inner 
and outer interfaces. 

I n t h e following, we assume C = 1, so t h a t init ial condit ions are fixed only by the 
small p a r a m e t e r e. The inner- jet b reak ing t ime is reached when the m i n i m u m rad ius 
vanishes , F^ = 0 ; in consequence 

1 In — 
T eA' 

(4.4) 

On the o the r hand , there are two possibilities in calcula t ing t^, depending on whe the r 
the ou te r interface reaches the inner one or no t , as sketched in figure 4. I n the former 
case t h e break ing condi t ion for t h e ou te r j e t is 1 — e (exp Tt%) = R — eA (exp -rig), a n d 
the breaking t ime is 

tl = - In 
\ - R 

T e(l-A)' 

whereas in the second ease the breaking condi t ion is F°n = 0 and t h e n 

t° — 
1 i 1 
— In — 

(4.5) 

(4.6) 



The variation with m~l of the amplification A corresponding to maximum growth 
factors r m is shown in figure 5. I t must be stated that A can be either positive or 
negative. According to (4.2), A = 0 implies 

T2 = i ( l - i ? 2 ) ( » l 2 - T O 4 ) , (4.7) 

the highest values of T2 being obtained when R = 0; hence 

T2 = i(TO2-ra4). (4.8) 

This zero-amplification curve coincides with the upper boundary AC of the 
lower-branch root region (see figure 3). Points within this region give A < 0, which 
means that outer and inner interface deformations are just in phase opposition. 
However, as already stated, lower-branch maxima are not significant, because they 
produce slower evolutions than upper-branch maxima. 

As figure 5 shows, most of the compound-jet configurations have A > 1. Inner-
interface deformations are larger than outer-interface deformations, which seems to 
indicate that the inner jet will break before the outer jet. However, as mT1 increases, 
A decreases, in such a way that A < 1 close to m"1 = y/2. This means that 
inner-interface deformations are smaller than those of the outer interface, and could 
indicate that there is another breaking regime in which the outer interface reaches 
the inner interface before the minimum inner-interface radius vanishes. Some A < 1 
cases have a quite clear meaning. For instance, when p = 1, a = 0 (single jet) the 
amplification is A = R < 1: fluid surfaces distort like the outer interface, the 
deformation being proportional to the undisturbed fluid-surface radius. When p 4= 1 
the explanation is not so simple, and we should compare the breaking times of both 
inner and outer jets, t^ and t^ respectively. The outer interface will reach the inner 
interface when t^ — t^ > 0, or, according to (4.4) and (4.6), A/R = k, 0 < k < 1; that 
is, A = kR < 1. As shown in figure 5, this breakup by interface meeting is possible 
if the breaking perturbation wavelength is large enough. Additional insight can be 
obtained from (4.2). After substituting kR for A, we have 

1 1— R2 l—R2 

T^2T^kR^m2-m4) = i^kR^ <4-9> 

This expression gives, for each value of m, R and k, the growth factor r r for which 
a breakup by interface meeting would occur. TT increases as k increases, the highest 
values, r r = T0, being obtained when k = 1 (A — R). Therefore, if for a given 
wavenumber m the maximum growth factor r m is smaller than T0, breakup by 
interface meeting could occur. In contrast, if r m > T0 the inner jet will break faster 
than the outer one. According to figure 3, the former breaking regime would only 
take place in the case p > 1. In figure 5(c) the region of breakup by interface-meeting 
(A ~ R) has been plotted. 

5. Experiments versus theory 
In order to evaluate the suitability of the one-dimensional model in predicting the 

behaviour of compound jets, theoretical results here obtained have been compared 
with experimental results reported by Hertz & Hermanrud (1983). Two different 
compound jets are considered, in the first one a mixture of water (80 %) and glycerol 
(20%) is used as outer liquid, and the same mixture, but dyed, as inner liquid. In 
the second compound jet the inner liquid is the same as in the first jet, whereas the 
outer fluid is a dimethyl silicone oil. 



For the first jet (a = 0, p= 1, R = 0.488) theory predicts the same behaviour as 
the single jet: breaking should occur at the optimum m_ 1 = \/2 (see table 1), which 
is in agreement with the value measured in figure 5 from Hertz & Hermanrud (1983), 
m_ 1 = 1.4. Furthermore, as can be seen from that figure, A ~ R: inner-jet deforma­
tions are proportional to outer-jet deformations. 

The second jet (a ~ 2.6, p ~ 1, R = 0.488) seems to be more interesting for 
comparison purposes. In this case the corresponding theoretical value for the 
optimum m~l is 0.72, and the values for TO-1 measured in figure 5 from Hertz & 
Hermanrud (1983) are mT1 = 0.64 (in the first wave) and rnr1 = 0.60 (mean value 
along the jet), close enough to theoretical value to consider the agreement between 
theory and experiments as significantly good, in spite of the errors involved in these 
estimations. 

Concerning the amplification A, two factors mainly prevent us from making 
definitive conclusions on this point. The first one is the magnitude of the errors 
involved in making measurements from photographs shown in figure 6 from Hertz 
& Hermanrud (1983), especially of the deformation of the outer interface, even if a 
cathetometer is used. The second factor concerns the lack of data on the outer-liquid 
refractive index, needed to correct the optical distortion of the inner interface. A value 
A « 3 could be guessed in the last two waves before inner-jet breaking (for which 
the linear model would not be suitable), the theoretical prediction for optimum 
breaking condition being A = 2.59. 

6. Conclusions 
The behaviour of compound jets has been analysed by using a one-dimensional 

inviscid model which includes the main characteristics of such capillary jets. The 
influence of the parameters involved (R, p, a) has been studied through a linearized 
analysis, and, amongst other features, the existence of two breaking regimes should 
be pointed out. A better definition of these breaking regimes would require the 
extension of the analysis to nonlinear approximations of the model presented in §2, 
or even the numerical integration of the complete set of equations, but these tasks 
are outside the scope of this paper and should be undertaken in future work. 

In addition, theoretical results have been compared with experimental ones, and, 
concerning the inverse wavenumber m_1, the results here obtained agree with those 
of Hertz & Hermanrud (1983). An interesting point for future experiments could be 
the exploration of jets lying in the coupled-breaking region (which the majority of 
the figures here deal with), and especially the interface-meeting region. 
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