UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIEROS EN TOPOGRAFÍA, GEODESIA Y CARTOGRAFÍA TITULACIÓN DE INGENIERO TÉCNICO EN TOPOGRAFÍA

PROYECTO FIN DE CARRERA

APLICACIÓN DE LA REALIDAD AUMENTADA EN DISPOSITIVOS MÓVILES PARA LA RECREACIÓN DE RESTOS ARQUEOLÓGICOS

Alumn(a/o): Roberto Doncel Muñoz

Tutor: Ramón P. Alcarria Garrido

(Cotutor): Ricardo Rodríguez Cielos

UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIEROS EN TOPOGRAFÍA, GEODESIA Y CARTOGRAFÍA TITULACIÓN DE INGENIERO TÉCNICO EN TOPOGRAFÍA

PROYECTO FIN DE CARRERA

APLICACIÓN DE LA REALIDAD AUMENTADA EN DISPOSITIVOS MÓVILES PARA LA RECREACIÓN DE RESTOS ARQUEOLÓGICOS

Madrid, Marzo de 2015

Alumn(a/o): Roberto Doncel Muñoz Tutor: Ramón P. Alcarria Garrido

(Cotutor): Ricardo Rodríguez Cielos

Resumen

El desarrollo de la tecnología móvil ha cambiado la forma de interactuar con el entorno, ofreciendo cada día nuevas soluciones con un alto componente visual y de geoposicionamiento. En este sentido los yacimientos arqueológicos y otros lugares históricos o de interés pueden verse altamente beneficiados de la llamada realidad aumentada.

En el presente trabajo se ofrece una nueva aplicación de la topografía y fotogrametría lejos de las concepciones clásicas relacionadas con el trabajo en obra, catastral o cartográfico. Se establece un estudio de los distintos avances en visión por ordenador y realidad aumentada para ofrecer una nueva forma de visitar el yacimiento arqueológico de Complutum.

El proyecto se resume en los siguientes puntos:

- Levantamiento y recreación de los restos del parque arqueológico de Complutum.
- Estudio de las distintos avances en la visión por ordenador, así como de las soluciones en Tracking tanto 2D como 3D.
- Desarrollo de una aplicación para dispositivos Android que implemente estas funciones para recrear el yacimiento mediante realidad aumentada.

Agradecimientos

La página de agradecimientos. Esa página que sé que será leída por ojos curiosos, miradas cotillas buscando en estas líneas su nombre, acompañado de unas palabras escritas con más o menos gracia que les enorgullezcan, les llene y les saque una sonrisa. Pero también sé que muchos de los que se las merecen no las leerán, no sabrán nunca lo importantes fueron en mi vida.

Y es que perdónenme ustedes si no personalizo, pero sé que no podría nombrar a todos. Porque lo siento, pero simplemente no alcanzo a recordar sus nombres, sus rostros, ni siquiera los momentos que pasé con ellos. La familia, los amigos, todo aquel que en algún momento puso paz en esta aturullada cabeza que busca su orden, su camino, la razón por la que seguimos en este mundo de mierda que se empeña en demostrarte que por mucho empeño que le pongas, siempre estarás a merced de su tornadiza voluntad. Aquellos que me recuerdan que se trata de vivir y no pensar en respirar siquiera. Todos los que han tenido la paciencia para aguantar mis boberías y malas caras. Los que no han podido ver terminado el proyecto. Mis perrillas Jelka y Tara de las que tanto me acuerdo. Todos ustedes son merecedores de mis mejores palabras y mis mayores agradecimientos.

Pero el tiempo también me ha dejado heridas que nunca cicatrizan y marcan una vida. Una pequeña historia llena de pensamientos rotos, alguna pérdida y errores que ya no puedo enmendar. Momentos que rompen mi cabeza y despiertan a mis fantasmas, esos cobardes que se mueven de noche, en silencio y promueven mis desvelos.

Y vuelvo a disculparme por mi mala cabeza pues la mala perra tiene facilidad para recordar a quién le causó sus heridas. Pero gracias a todos esos malos ratos también, pues ahora sé que los palos duelen pero endurecen la piel, que nunca un mar en calma hizo a un marinero experto y que mi rabia, hecha con la bilis y el sudor de años de experiencia, me alimenta.

Sé que quizá no le he dedicado a la familia el espacio que se merece pero este trabajo os lo dedico familia porque todo, cada cosa que hago, la hago por vosotros.

No quiero que esta página quede como una nota melancólica, pues solo intenta unir el blanco y el negro de una manera productiva. Seguiremos a partir de mañana envidando al futuro y compartiendo momentos amigos, pero hoy no. Después del esfuerzo de este proyecto, hoy solo quiero tirarme en la cama, descansar y ver pasar la vida sin preguntarme donde me llevará mañana.

INDICE

1. COMPLU	TUM	1
1.1	Historia.	1
	1.1.1 El primer asentamiento en San Juan del Viso.	1
	1.1.2 Traslado al asentamiento definitivo.	1
	1.1.3 La decadencia de Complutum.	2
1.2	Urbanismo de Complutum.	3
1.3	Espacios Recreados.	5
	1.3.1 Fachada Monumental.	5 5
	1.3.2 Criptoportico.	6
	1.3.3 Curia.	7
	1.3.4 Decumano III.	9
	1.3.5 Basilica.	10
	1.3.6 Portico Sur.	12
	1.3.7 Termas Sur.	13
	1.3.8 Mercado.	15
	1.3.9 Ninfeo.	16
2. LEVANT	AMIENTO	18
2.1	Instrumental y material empleado.	18
2.2	Metodología de observación empleada.	21
2.3	Análisis del ajuste.	22
2.4	Levantamiento RTK.	25
2.5	Radiación de los puntos restantes.	26
	ÓN DE LA CARTOGRAFÍA	30
4. MODELA		31
	OR ORDENADOR Y REALIDAD AUMENTADA	34
5.1	Introducción.	34
5.2	Descriptores	36
	5.2.1 FAST	36
	5.2.2 Harris	37
	5.2.3 SIFT	40
	5.2.4 SURF	45
5.3	Comparativa entre los distintos descriptores	52
5.4	2D Tracking	61
	5.4.1 2D Tracking basado en el uso de marcadores.	61
	5.4.2 2D Tracking mediante el análisis de características naturales.	64
5.5	3D Tracking	73
	5.5.1 PTAM – Parallel Tracking and Mapping	74
	5.5.2 3D Tracking basado en modelos CAD.	83
	MANDO MUNDUS4D	85
6.1	Librerías especializadas.	85
	6.1.1 Elección de la más adecuada	88
6.2	MetaioSDK.	89
6.3	Implementando el SDK en Mundus4D.	90
6.4	Estructura básica de la Aplicación	91

		6.4.1 Activities secundarias.	92
		6.4.2 Activities primarias	93
		6.4.2.1 Launcher	93
		6.4.2.2 Menu Principal	94
		6.4.2.3 Real Aumentada	95
		6.4.3 Recorrido_Tracking	96
	6.5	Uso de los sensores como método de orientación.	98
	6.6	Creación de los TrackingMaps.	103
		6.6.1 Deficencias encontradas	105
	6.7	La importancia de Metaio Creator	112
	6.8	Carga de modelos 3D en MetaioSDK.	117
	6.9	Publicación de Mundus4D Complutum en Google Play.	118
		6.9.1 Creación del archivo de expansión e implementación del	
		gestor de descargas.	119
		6.9.2 Firma de Mundus4D Complutum.	123
7.		PUESTO	125
8.		JUSIONES Y TRABAJOS FUTUROS	128
9.	BIBLIC	GRAFÍA Y REFERENCIAS CONSULTADAS	131
10.	ANEX(OS .	134
	10.1	Reseña de estaciones.	134
	10.2	Ajuste de la red.	148
		10.2.1 Red constreñida B1 y E2002.	148
		10.2.2 Red constreñida de estaciones.	151
	10.3	Levantamiento RTK.	154
11.	PLANO	DE COMPLUTUM	194

1. Complutum

1.1 Historia

Los actuales restos visitables de Complutum se encuentran junto a Camino del Juncal, s/n Alcalá de Henares (Madrid), sin embargo no siempre fue esa su ubicación.

1.1.1 El primer asentamiento en San Juan del Viso

Los actuales restos conocidos de Complutum se remontan al siglo IV d.C. Sin embargo, sus inicios se sitúan sobre el vecino cerro de **San Juan del Viso**: una plataforma elevada en la margen izquierda del río Henares. Por los datos disponibles se sabe que fue el asentamiento de una primera población carpetana. De esta ciudad se desconoce casi todo. Se intuye un carácter agreste y defensivo característico de las ciudades y ciudadelas celtibéricas. Se la supone un **diseño clásico** concluyente con probablemente el período correspondiente al final de la República o la de César, allá por el siglo I a.C.

1.1.2 Traslado al asentamiento definitivo

Llegado cierto momento se emprendió el traslado a su actual emplazamiento en el otro margen del río. Datado entre la época de Augusto y la de Claudio, entre el cambio de Era y los años 50 del siglo I d.C. Entre los posibles factores se destacan:

- A. Los factores climáticos, mucho más favorable en la vega que en el cerro.
- B. Mejor calidad de tierras de cultivo y pastoreo.
- C. Acercamiento de las grandes vías de comunicación (como las que unían con Mérida y Zaragoza).
- D. Mayor cantidad de agua gracias al río Henares.

Destacar la actual zona conocida como **Fuente del Juncal**. Área repleta en la Antigüedad de fuentes y manantiales de aguas mineralizadas, considerándose milagrosas al menos hasta el siglo XVII.

Los primeros trabajos de traslación se concentraron en las cercanías de la Fuente del Juncal, que se convertiría en la barriada más antigua y occidental de la ciudad (Regio I). Más tarde, en la época de Claudio, se completará la trama urbana definitiva, obteniendo en el rango de "municipium" con el Edicto de Vespasiano en el año 73 o 74 d.C.

Hacia el siglo III d.C se acomete la reforma de edificios concretos, importantes y significativos como pueden ser la amortización de las termas o el criptopórtico.

En el siglo V se puede considerar que se produce otra reforma llevándose a cabo esta vez modificaciones arquitectónicas y cambios de uso sobre los viejos edificios de varias zonas de la ciudad, pero manteniendo en lo esencial el diseño urbano original.

1.1.3 La decadencia de Complutum

La decadencia de Complutum se gesto en los posteriores tres siglos, con áreas deterioradas o parcialmente abandonadas y la creciente ascensión en población y relevancia de el llamado suburbio **Campo Laudable**, ubicado en la actual catedral de Alcalá de Henares, con eminente carácter cristiano.

En el 711 con la invasión islámica se da la estocada definitiva. A partir del siglo VIII se vio inmersa en el sistema defensivo musulmán de la Marca Media, y el centro poblacional, con nombre árabe de Q'alat abd Al-Salam, se desplazó a las abruptas colinas de la margen izquierda del río Henares, a un cerro de 630m de altura en las estribaciones del Ecce Homo.

1.2 Urbanismo de Complutum

El Complutum de la época imperial, se caracteriza por un trazado ortogonal, en las que las calles se cruzan perpendicularmente. Se estima una superficie cercana a las 50Ha particionado en 6 barrios o regiones (REGIO I, REGIO II, REGIO III, REGIO IV, REGIO V y REGIO VI). Además habría que añadir el terreno ocupado por los suburbios a las afueras de la ciudad. La trama urbana se distribuye en manzanas de 30x30m, existiendo dos tipos de calles:

- Las principales: 12 metros de anchura y porticadas con la siguiente distribución. 3m de pórtico, 6m de calle y otros 3 de pórtico. A este tipo de calle corresponden el decumano III, IV y V.
- Las secundarias: calles no porticadas de 6m de anchura.

El decumano Máximo corresponde con el actual Camino del Juncal. Por su parte, el foro y el conjunto monumental se encuentran en la confluencia del decumano III y el cardo Máximo. Dentro del conjunto monumental, podemos distinguir la basílica civil, las termas sur, la curia, el pórtico sur, el mercado, el criptoportico, el ninfeo y la fachada monumental.

Urbanismo de Complutum.

A las afueras de Complutum se situaban los suburbios Norte, Oeste y Este. Los suburbios Norte y Oeste, muestran un carácter sagrado o religioso. Se encontraba densamente poblado por mausoleos, monumentos funerarios, fundaciones benéficas y jardínes. A reseñar la Fuente del Juncal y la casa de Hippolytus.

El suburbio Este se constituía por grandes barrios y palacios. A una milla desde Complutum se localizó el Campo Laudable que se convertiría con el paso del tiempo en el barrio episcopal. También se encontraría un pasillo ocupado por algunos establecimientos agropercuarios y grandes villas.

Al sur estarían localizadas las infraestructuras viarias, como el Puente de Zulema sobre el río Henares y algunos asentamientos en los cerros.

El foro

El foro sigue con el canon de urbanismo romano. Se situaba en el centro de la ciudad, en este caso, en la confluencia del decumano III y el cardo Máximo. Era una plaza rodeada de edificios con función administrativa, judicial, comercial y religiosa.

De Complutum solo hemos podido conocer su lado occidental, ya que el oriental ha quedado sepultado bajo los edificios colindantes al yacimiento correspondientes a la calle Gonzalo Gil. Sin embargo se cree que allí se encontrarían los espacios de temática religiosa, siguiendo con el estilo de urbanismo romano. Descubrir la fisonomía del foro se antoja harto complicada debido a que este sufría gran parte de la obra pública de la ciudad. Se distinguen dos programas constructivos básicos, uno data del siglo I d.C y el segundo del siglo III d.C

El primer foro de Complutum data de los años 50 d.C. Se componía por el Oeste de una basílica civil y junto a ella las termas norte. En la esquina suroccidental había una fuente pública. Al sur una zona comercial con un pórtico que albergaba varias tiendas-talleres (officinae). En el extremo occidental un mercado (macellum). Al norte un segundo pórtico y al este como se ha dicho antes se presupone la existencia de recintos religiosos.

Durante el siglo III se acomete una nueva reforma del foro con tintes de mejoras orientadas a las tareas de gobierno, judiciales y de la administración, en detrimento de los edificios dedicados al ocio.

Recreación del foro a finales del siglo III d.C.

Se amplío la basílica civil hacia el Oeste mientras que las termas norte desaparecieron para dejar paso a la curia. El extremo occidental del foro se engrandeció con un criptopórtico y una fachada monumental que provocó la desaparición de la fuente pública. El pórtico comercial se reformó con un nuevo solado y el edificio del mercado fue derruido para construir una plaza que hiciese las veces de mercado pero que a su vez pudiese utilizarse como espacio diáfano. Por último se construyeron las indispensables termas sur junto al mercado aprovechándose la infraestructura de evacuación de aguas que corría bajo el decumano IV.

1.3 Espacios recreados

1.3.1 Fachada Monumental

La fachada monumental aparece como respuesta a una necesidad escénica, monumental y barroca. El caminante al llegar siguiendo el Decumano III debía advertir la importancia del lugar al que se aproximaba.

Recreación de la fachada monumental y su situación en el plano.

Su construcción se emplaza dentro de las reformas llevadas a cabo durante el siglo III d.C, donde el acueducto pierde su función, se destruye la fachada occidental de las termas y se levanta el criptopórtico sobre el que se apoya la nueva fachada monumental.

Construida sobre un zócalo de opus caementicium, levantándose un alzado de sillares. Se disponían 8 plintos adelantados sobre los que se levantaban las columnas de piedras. Se presentaba revestida con mármoles blancos y cipollino de importación con calizas rojas traídas de canteras levantinas y grises de origen extremeño. Finalmente reseñar la existencia de una placa de mármol sobre la que se grabó una inscripción poética conmemorando la reforma llevada a cabo.

1.3.2 Criptopórtico

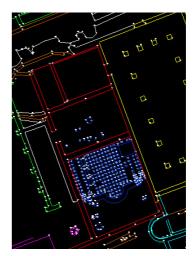
Los criptopórticos son estructuras subterráneas, sobre los que se podían edificar una o dos plantas más.

En Complutum su construcción coincide con la gran reforma del siglo III d.C. Se asienta sobre el acueducto que abastecía a las termas norte y a una fuente pública del siglo I. Construido en *opus caementicium* y con un suelo de *opus spicatum (colocación de ladrillos o piedras talladas en forma de espina de pez)*, la planta baja se cierra con una bóveda rebajada con una

cubierta plana. La planta superior también se cerraría con forma abovedada. Esta forma, aparte repartir los pesos, ayudaba a mantener una temperatura óptima.

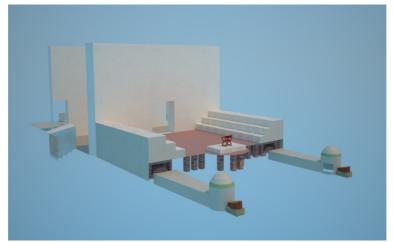
Hipótesis constructiva del interior del criptopórtico y su situación en el plano.

Funciones


Se busca crear una especie de tabularium (archivo municipal) y de paso servir de base a una gran fachada monumental. Por otra parte, ofrecía una entrada monumentalizada a la curia. Se complementa con esta construcción el espacio administrativo, jurídico y legilativo del municipium.

1.3.3 Curia

La curia se asienta sobre las antiguas termas norte, como parte de las profundas reformas llevadas a cabo en el foro a finales del siglo III d.C.


El antiguo **frigidarium** pasa a ser un espacio de tránsito desde la basílica, lugares que antes no tenía ningún tipo de conexión entre ellos. El **tepidarium**, a su vez, se convierte en otro paso más para llegar a la curia, con acceso desde la planta baja del criptopórtico. Situada sobre el antiguo **caldarium** se emplaza la curia. Dentro de ésta es probable la existencia de una especie de gradas donde se sentarían los senadores y en la parte sur de la misma, junto al ábside, el lugar presidencial donde se emplazaría la presidencia.

Reconstrucción de la Curia a finales del siglo III y su localización en el plano.

La calefacción desaparece parcialmente llegando por medio de los hypocaustums (calefacción subterránea) al caldarium y tepidarium.

Hipótesis del interior de la Curia y el sistema de calefacción.

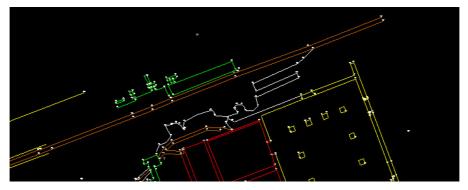
Funciones

Son las salas destinadas a la administración y el gobierno de la ciudad. Los romanos exportaron las curias a todas las ciudades que obtenían el estatus de *municipium*, pasando a tener estas su propio senado y funcionarios encargados de la administración central. No eran electos, sino designados por el gobierno central.

Las sesiones se realizaban bajo la presidencia de un cónsul o de un pretor. El presidente leía el texto del proyecto a discutir y se procedía a escuchar la opinión de los senadores. Por último,

se procedía a la votación realizada colocándose en hilera según su intención de voto y contando el número de senadores en cada fila.

1.3.4 Decumano III


Decumano es un término utilizado en el urbanismo romano para identificar las calles con orientación este-oeste.

Hipótesis constructiva de la parte del decumano III junto al foro.

El Decumano III consistía en una calle porticada de 12m de anchura. Se componía de una calzada central de 6m de ancho y a ambos lados un pórtico de 3m de ancho cada uno.

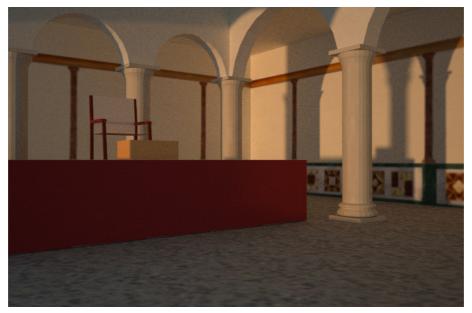
Bajo el Decumano III corre la cloaca encargada de desaguar y conducir el agua residual hacía el río Henares.

Levantamiento del decumano III junto con la cloaca.

1.3.5 Basílica

Se construyó en los años 50/60 del siglo I d.C, en época del emperador Claudio, para ser reformada en el último cuarto del siglo III. Su diseño se encuadra dentro de los cánones constructivos romanos de Basílica, que tiene su origen en el Norte y Centro de Italia, en época de Augusto.

Se compone de un espacio central rodeado por un pasillo (ambulacrum). Construida en opus caementicium sobre un zócalo de sillares de piedra, sus dimensiones hablan de 32,5 x 16,7m en planta. Se dispuso un suelo de opus signimun (un mortero de cal, arena, piedra y ladrillo triturado) elevado en el siglo III para hacerlo coincidir en altura con su edificio anexo, la curia, conformando un acceso hasta entonces inédito. Las paredes interiores estaban revestidas y decoradas con un revoco blanco y con mármoles de sustitución en distintos colores de canteras cercanas.



Recreación de la basílica civil junto con su situación en el plano.

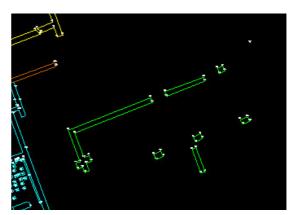
Su emplazamiento es completamente atípico en el mundo romano, ubicado junto a las termas. Hecho que lleva a preguntarse si realmente se trata de una basílica civil.

Funciones

En las basílicas civiles se desarrollaban actividades de diversa índole, como pueden ser importantes transacciones financieras, acuerdos comerciales, actos de culto, pero sobre todo eran el tribunal de justicia.

Hipótesis constructiva del interior de la basílica.

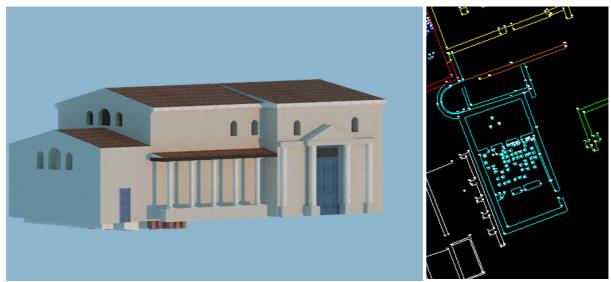
Se dispondría en el extremo Sur un tribunal elevado sobre una tarima de madera, donde se situarían el magistrado y las autoridades encargadas del juicio. En el lado norte, junto al paso a la curia, habría una cartela en opus sectile (recortar placas de mármol de diversos colores para componer las figuras geométricas, de animales o humanas) y cerca de él, una estatua en honor al gobernador, emperador o benefactor de la obra.


Se presupone aquí el lugar donde según la tradición se dictó sentencia contra los niños Justo y Pastor, condenados por las autoridades durante la persecución contra los cristianos decretada por el emperador Diocleciano.

1.3.6 Pórtico Sur

Recreación del Pórtico Sur a finales del siglo III.

El Pórtico Sur fue una zona comercial que como su nombre indica cerraba por el lado sur el foro. En se localizaban las tiendas y talleres de diferentes artesanos y artistas. Se cree que existiría su homólogo en el lado norte del foro, aunque todavía sin excavar.



Situación en el plano.

Se construyó en los años 60-70 del siglo I, sufriendo varias rehabilitaciones a lo largo del tiempo. En el caso de Complutum, el Pórtico Sur se veía cortado por un arco que permitía la entrada y salida del foro. Gracias a los restos encontrados se sabe que una de las tiendas perteneció a un pintor y mosaicista, así como su taller (officina) y la existencia de un bar (thermopolium).

1.3.7 Termas Sur

Con la reforma surgida en el siglo III donde las termas norte se amortizan en favor de la curia, Complutum se ve huérfana de un elemento fundamental en cualquier ciudad romana que se precie, por lo que se acomete la construcción de unas nuevas termas.

Recreación de las termas sur junto con su situación en el plano.

Las nuevas termas se situaron en el único sitio posible cercano al foro, entre el mercado y el pórtico sur, limitando por el norte con la basílica y cortando el Decumano IV. Sus dimensiones, bien por la falta de espacio o bien por el declive económico de la ciudad, se vieron reducidas.

Son del *tipo provincial o lineal*, es decir, una disposición lineal de ambientes. En los restos encontrados en Complutum se pueden precisar 4 espacios. El primero, junto a la basílica sería el compuesto por un frigidarium y un pequeño vestuario *(apodyterium)*. De este **frigidarium** se conocen tres momentos constructivos: En el primero, la piscina se adosa sobre el muro recto que cierra la sala por el Oeste. En la segunda, se coloca un nuevo solado a la estancia. En la tercera, se construye un ábside en el extremo oeste de la sala, se amortiza la anterior piscina para ser integrada por una semicircular.

Tras este primer espacio se sitúa el **tepidarium**, piscina de agua templada. Y por último, en la

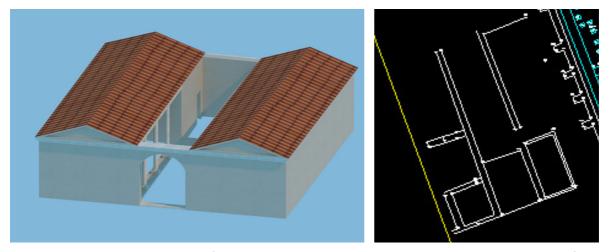
zona sur de las termas se sitúa el **caldarium**, piscina de agua caliente. Estas piscinas eran calefactadas a través de los hypocaustums.

El **praefurnium**, que es el espacio que le seguiría a continuación no tenía acceso a los usuarios de las termas pues era el lugar desde donde los operarios mantenían los hornos en funcionamiento

Interior de las termas sur con el frigidarium, tepidarium, caldarium y praefurnium.

Funciones

Las termas eran baños donde los romanos pasaban su tiempo de ocio. Fueron lugares ideales para la vida social de la ciudad. A ellas acudían los habitantes en busca, aparte del respectivo baño, tener una conversación relajada, disfrutar del recreo, fomentar las relaciones sociales o simplemente tomar un masaje. Las termas encontradas en Complutum, de tipo provincial, son modestas en comparación con otras de mayor envergadura, las cuales disponían de todo tipo de servicios, como podía ser una "palestra", patio central donde hacer ejercicio físico, un "laconium", baño de vapor, un "sudatio", sauna, o un "natatio", piscina apta para la natación.


Era un lugar muy apreciado por los habitantes y por tanto era difícil asimilar una ciudad sin estos servicios.

Las termas romanas en sus inicios fueron de uso privado para a partir del siglo II a.C pasar a ser públicos. Con Vespasiano Agripa los baños pasaron a ser de uso gratuito.

Aunque todos los ciudadanos podían asistir a los baños, existían diferentes horarios para hombres y mujeres. O bien podría existir una duplicación de espacios, uno para cada sexo.

1.3.8 Mercado

Los restos arqueológicos encontrados pertenecen a dos períodos distintos. Un primer período, de mediados del siglo I d.C, se compondría de un patio central de planta rectangular rodeado, a su vez, por unos pórticos con los diferentes puestos de venta. No se conserva mucho de este antiguo mercado. Como indicios más claros se apreciaría una pileta en *opus signinum (Pavimento o recubrimiento de pared de época romana formado por una mezcla impermeable de cal, arena y fragmentos de cerámica, a veces con decoración de teselas)* supuestamente para el despiece de la carne.

Reconstrucción del mercado existente a mediados del S.I y su situación.

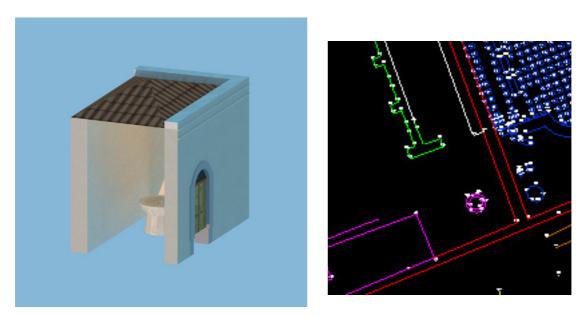
Este mercado tenía acceso a la vecina Casa de los Grifos, a cuyos propietarios se les atribuye también la posesión del mercado. A pesar de ser un lugar sucio y ruidoso se sitúa extremadamente cerca del foro. Teniendo acceso desde el decumano IV.

Tras la reforma del siglo III d.C el mercado o macellum pasa a ser una plaza abierta con una fachada del tipo escénico en su lado oriental., similar a la gran fachada monumental. De esta

fachada se conserva su base. Las tiendas pasaron a ser tenderetes móviles, hecho constatado por la existencia de marcas en el suelo dejadas por los postes al ser clavados.

Hipótesis constructiva del mercado del siglo III.

Añadir por último que el pavimento era de ladrillos, como se puede apreciar en un pedazo de suelo junto a la fachada escénica junto a las termas.


Funciones

Los macellum eran lo que son los mercados de hoy en día. Lugares donde adquirir los productos básicos y no tan básicos para el quehacer diario. En ellos principalmente se adquirían carnes, pescados, así como frutas y hortalizas. Principalmente en estos mercados se vendían productos básicos, aunque también se podían adquirir productos derivados, hechos con los mismos productos básicos o restos de por ejemplo el despiece de la carne. Así se podía conseguir por ejemplo, productos hechos con los huesos de animales antes despiezados.

1.3.9 Ninfeo

Se asocia el Ninfeo con la construcción de las Termas Norte en el siglo I d.C. Ya que según los indicios se muestra la existencia de un acueducto que llevaría agua a las termas y a una fuente, la cual sería la incluida dentro del ninfeo.

Ninfeo se señala como monumento consagrados a las ninfas, en este caso una fuente. A las ninfas se les considera una deidad, son personificaciones del culto a la naturaleza, en la mayoría de las veces identificadas con el flujo dador de vida de los manantiales.

Hipótesis constructiva del Ninfeo y su localización en el plano.

Poco o nada se sabe del ninfeo existente en Complutum, solo los restos de los escalones de piedra de su entrada y el pozo que ha quedado en el lugar dan ligera idea de lo que allí pudo haber.

2. Levantamiento

2.1 Instrumental y material empleado

El instumental utilizado se reduce a:

- 2 receptores GNSS Trimble R4.
- 2 receptores Leica GPS 500 para el levantamiento RTK.
- 1 Estación total Leica 1202.
- 2 Trípodes.
- Prisma reflector.
- 1 jalón.
- Flexómetro.
- Clavos de acero.
- Mártillo.
- Bloc de notas y material de escritura para la toma de notas y croquis.

Receptor Trimble R4

El receptor Trimble R4 se presenta como un sistema GNSS de prestaciones media. Se compone por una controladora inalámbrica de memoria y baterías integradas capaz de comunicarse con la antena mediante sistema bluetooth. La controladora monta una pantalla táctil a color operando sobre el sistema Microsoft Windows Mobile. Se incluyen diversas herramientas de exportación así como distintos sistemas de coordenadas, elipsoides o proyecciones.

Por su parte, la antena R4 ofrece distintas específicaciones de acuerdo a los tipos de señal capaz de recibir. Es imprescindible discernir cual es el tipo de antena utilizada antes de cargar los datos de calibración en el software de procesado. De acuerdo a las capacidades de nuestra antena, diseñada para captar señales tanto GPS como GLONASS se determinó que se trataba de una antena Trimble R4 modelo 3.

La altura del instrumento se mide al tope protector amarillo de la antena que queda situado aproximadamente en su sección media. Este es un dato de vital importancia, pues el software interno del receptor realiza

la reducción de la altura medida a la base de la antena de manera automática. Consecuentemente no habrá que establecer ningún desplazamiento vertical en el software de procesado.

Por último reseñar que no se pudo emplear estos receptores en el levantamiento RTK al carecer los equipos dispuestos en la escuela de una antena capaz de transmitir datos entre dos receptores. Las únicas antenas suministradas eran válidas únicamente para recibir información pero no emitirla.

Receptor Leica GPS 500

Utilizado para realizar el levantamiento RTK, el sistema integra una antena AT502 de doble frecuencia, el receptor SR520 que rastrea el código C/A en L1 y el código P en L2 ofreciendo una precisión de 3-10mm + 1ppm en modo estático rápido, un Terminal TR500, un radio modem y un adaptador con flexometro para facilitar en gran medida la lectura de altura de antena mejorando además la precisión de la medida.

Leica GPS 500 es un receptor con cierto tiempo en el mercado por lo que no ofrece ciertas características de última generación como una pantalla táctil o en color, conexiones inalámbricas o medios de almacenamiento actuales, aspecto para el cual utiliza tarjetas PC.

Leica 1202

Para completar el levantamiento se optó por la estación total Leica 1202, un equipo con un rendimiento más que suficiente para el trabajo a realizar. Sus características son:

- Precisión angular Hz y V: 6cc.
- Compensador de doble eje:

Rango de actuación del compensador: 7c.

Precisión del compensador: 2cc.

Precisión de nivel esférico: 6'/2mm.

- Medida electrónica de distancias:

Precisión en la medida electrónica de distancias: 1mm + 1,5ppm.

- Plomada laser para estacionamiento:

Precisión de 1,5mm a 1,5m de distancia. Con un tamaño de punto de 2,5mm a esa distancia.

- Anteojo:

30x de aumentos.

Rango de enfoque: $1,7m - \infty$.

2.2 Metodología de observación empleada

El objetivo era realizar un modelado fideligno del yacimiento con el fin de conseguir un modelo 3D lo más detallado posible ya que cada pequeño detalle podría resultar vital para resolver el espacio monumental, considerando los distintos niveles, altura de muros, columnas y curvatura de las bóvedas entre otros detalles.

Con semejantes premisas se concluyó que el método óptimo a utilizar sería un levantamiento apoyado en el uso del láser escáner.

Se planeó la observación de una red basada en el uso de GPS y complementada con taquímetro que permitiese desde cada una de las estaciones realizar el escaneado de forma que no se perdiese ningún detalle del yacimiento y a su vez obtener un modelo georreferenciado. Además si no fuese posible disponer del escaner, serían utilzadas, si fuese necesario, como estaciones desde las que obtener puntos en los muros o elementos verticales.

Los equipos GPS proporcionan una funcionalidad y economía de tiempo realmente reseñable permitiendo extender grandes redes sin recurrir a tediosas poligonales. Por otra parte tienen sus limitaciones pues si bien dan gran precisión obteniendo las líneas base entre puntos no sucede lo mismo con el posicionamiento absoluto. Hecho que dependiendo de la situación del operador puede resultar un inconveniente.

Otro punto a valorar es la influencia de elementos entorno a la antena que puedan provocar multipath, siendo bastante sensible el GPS a la existencia de árboles, fachadas o farolas. Por tanto el GPS no es totalmente operativo en zonas muy urbanizadas o con alto índice de vegetación árbolea.

Observación de la red

Se eligió el método estático rápido para su observación. Dicho método es válido siempre y cuando la longitud de líneas base o distancia entre estaciones sean menores a 20km. La precisión esperada se sitúa en orden de 1cm + 1ppm.

Se programó las observaciones con intervalos de toma de datos de 10s, máscara de elevación de 10° y tiempos de observación de 12min.

La observación de la red se dividió en 2 sesiones. En una primera sesión se estacionó de forma permanente un receptor GPS en el punto b1 y con un segundo receptor se observó los puntos de estación restantes.

En la segunda sesión se estableció como estación de referencia el punto e2002 y se procedió a observar el resto de estaciones repitiendo la metodología de observación. La red quedó conformada finalmente por 13 estaciones repartidas en todo el yacimiento de forma estratégica para obtener un modelado sin fisuras.

Lamentablemente, tras esperar durante un período de tiempo con el fin de poder usar el láser scaner de la escuela se desistió de la idea pasando a realizar un levantamiento convencional empleando receptores GPS. Tal cambio se tradujo en un aumento muy notable de la dificultad y carga de trabajo. Ya no era operativo obtener todos detalles del yacimiento así como la altura de muros, columnas o elementos auxiliares de forma rápida. En su lugar fue indispensable realizar un estudio y documentación a priori de los elementos imprescindibles a observar para describir el diseño del antiguo Complutum.

2.3 Análisis del ajuste

El proceso de ajuste se llevó a cabo con el software Leica Geo Office. Se realizó el ajuste de la red en dos pasos bien diferenciados:

— <u>Dar coordenadas a las estaciones b1 y e2002.</u> Para ello cada día de observación se estacionó el instrumental por un tiempo de observación mínimo de 4h 30min. Además se observaron las lineas base entre ambos puntos por el método estático rápido.

Ya en gabinete se realizó el ajuste enmarcando ambos puntos dentro del marco de referencia ETRS89. Se buscó enlazar por tanto con las estaciones permanentes GNSS más cercanas, obteniendo finalmente los mejores resultados usando las estaciones (ARAN, HENA, IGNE, YEBE). Para las estaciones permanentes se les presupone una precisión absoluta mejor a 1cm.

Resultados de la red constreñida para B1 y E2002:

<u>B1</u>

Coordenadas ETRS89:

Latitud: 40º 28' 24,57464 Desv. Típica: 0,003m. Longitud: 3° 23' 06.05586" Desv. Típica: 0,0024m. Altura elipsoidal: 633.4204 Desv. Típica: 0,0063m.

Coordenadas ETRS89 UTM30N:

Xutm: 467363,274m Desv. Típica: 0,003m. Yutm: 4480383,638m Desv.Típica: 0,0024m.

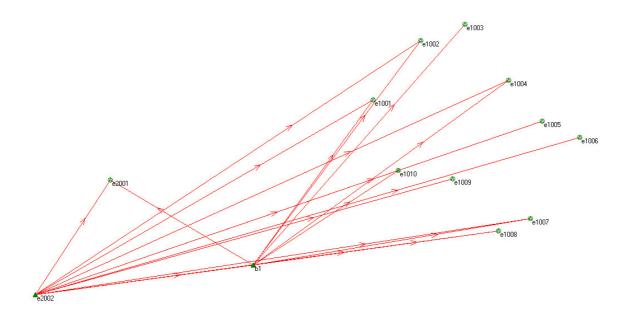
Altura ortométrica: 582,011m.

E2002

Coordenadas ETRS89:

Latitud: 40° 28' 24.21358" N Desv. Típica: 0,0032m. Longitud: 3° 23' 09.42947" W Desv. Típica: 0,0026m. Altura elipsoidal: 633.0269 m Desv. Típica: 0,0067m.

Coordenadas ETRS89 UTM30N:


Xutm: 467283,788m Desv. Típica: 0,0032m. Yutm: 4480372,853m Desv. Típica: 0,0026m.

Altura ortométrica: 581,620m.

Los detalles del ajuste pueden ser consultados en el anexo Red Constreñida b1 y e2002, al final del documento.

Dar coordenadas al resto de estaciones de la red. En este punto se consideran los puntos b1 y e2002 como puntos de control fijo y se ajusta la red conforme a las observaciones realizadas en las sesiones. Como se puede observar, los resultados finales invitaron a desechar las estaciones e1003, e1005, e1006 y e1009 ya que ciertas lineas base resultaban erróneas. En el ajuste final aparecen como puntos radiados, por lo que no son estaciones finales de la red. No supuso una complicación mayor debido a que la existencia de estos puntos no era indispensable en caso de no poder utilizar el laser-escaner como ocurrió finalmente, sin embargo, se

comprobó su bonanza interviniendo en el calculo de desorientación en el levantamiento taquimétrico.

Red constreñida de las estaciones.

Los detalles del ajuste final se pueden consultar en el anexo Red constreñida de estaciones.

COORDENADAS FINALES:

Estación	Xutm(m)	Yutm(m)	Alt. Elipsoidal	Alt. Ortométrica
b1	467363,274	4480383,639	633,420	582,011
e1001	467407,121	4480443,942	633,983	582,572
e1002	467424,577	4480465,716	634,016	582,605
e1003	467440,669	4480471,598	634,253	582,842
e1004	467456,523	4480451,155	632,894	581,482
e1005	467468,953	4480436,166	633,231	581,818
e1006	467482,502	4480430,211	633,643	582,230
e1007	467464,675	4480400,512	633,868	582,456
e1008	467452,829	4480396,123	633,815	582,403
e1009	467436,061	4480415,102	632,801	581,390
e1010	467416,366	4480418,152	633,369	581,958
e2001	467311,083	4480414,751	633,533	582,125
e2002	467283,789	4480372,853	633,027	581,620

PRECISIÓN DEL AJUSTE:

Estación	Desv. Típ X(m)	Desv. Típ. Y(m)	Desv. Típ. h(m)
b1	0	0	0
e1001	0,0007	0,0006	0,0017
e1002	0,001	0,0008	0,0021
e1003	0,0062	0,005	0,0112
e1004	0,0009	0,0007	0,0021
e1005	0,0016	0,0011	0,0044
e1006	0,0014	0,0012	0,0043
e1007	0,0008	0,0006	0,0017
e1008	0,0007	0,0007	0,0017
e1009	0,0013	0,0012	0,003
e1010	0,0005	0,0004	0,0013
e2001	0,0007	0,0007	0,0018
e2002	0	0	0

PRECISIÓN FINAL DE LAS COORDENADAS:

Estación	Desv. Típ X(m)	Desv. Típ. Y(m)	Desv. Típ. h(m)
<i>b</i> 1	0,003	0,002	0,006
e1001	0,004	0,004	0,009
e1002	0,004	0,004	0,009
e1003	0,008	0,006	0,014
e1004	0,004	0,004	0,009
e1005	0,005	0,004	0,010
e1006	0,005	0,004	0,010
e1007	0,004	0,004	0,009
e1008	0,004	0,004	0,009
e1009	0,005	0,004	0,010
e1010	0,004	0,004	0,009
e2001	0,004	0,004	0,009
e2002	0,003	0,003	0,007

Ajustadas las redes, por fin, se pudo dar coordenadas definitivas a los puntos obtenidos mediante el método RTK.

2.4 Levantamiento RTK

Para el levantamiento RTK se dispuso de dos receptores Leica GPS 500. Uno de ellos se estacionó como referencia en el punto b1 y con el restante se tomaron más de 2000 puntos con tiempos de observación de 30 posiciones a intervalos de obtención de 0,1s, necesarios para la recreación 3D del yacimiento y entender el urbanismo de Complutum.

Se puede consultar el listado completo de puntos en el anexo Radiación RTK.

El levantamiento por técnicas GPS tuvo que verse reforzado mediante observaciones con estación total dada la cercanía de una cubierta metálica existente en el emplazamiento que provocaba interferencias en la señal GPS. Concretamente la zona más afectada fue la perteneciente al mercado, edificación que linda directamente con la cubierta metálica. Además dada su geometría, se reforzó también la zona interior del criptopórtico. El equipo utilizado fue un Leica 1202.

Por último y a modo de comprobación se observaron los puntos de las estaciones cada día con el fin de comprobar que el instrumental no había sufrido alteraciones, o errores de configuración.

2.5 Radiación de los puntos restantes

Con el fin de dar coordenadas a puntos que por su localización es inviable hacerlo por el método RTK debido al efecto multipath, se resolvió ejecutar una radiación desde las estaciones e1001 y e1008. La desorientación se calculó a partir de las estaciones de la red. Se muestran las visuales ya promediadas entre CD y CI.

Estación	Visado	LH(g)	LV(g)	Dg(m)	Mira(m)	Instrumento(m)
e1001	e1002	173,5692	100,3005		1,3	1,465
e1001	e1003	186,6525	99,8888		1,3	1,465
e1001	e1004	221,31225	101,60015		1,3	1,465
e1001	e1005	238,5013	100,9447		1,3	1,465
e1001	e1006	242,0115	100,4201		1,3	1,465
e1001	e1008	281,98175	100,3247		1,3	1,465
e1001	e1010	308,62415	101,8029		1,3	1,465
e1001	b1	370,56585	100,6179		1,3	1,465
e1001	e2001	11,7558	100,3835		1,3	1,465
e1001	e2002	397,2521	100,4949		1,3	1,465
e1001	4001	289,2994	102,8987	30,5188	1,7	1,465
e1001	4002	291,0799	102,8472	34,138	1,7	1,465
e1001	4003	294,8637	103,0295	33,5125	1,7	1,465
e1008	e1001	399,9945	100,0152		1,3	1,484
e1008	e1004	52,829	101,2726		1,3	1,484
e1008	e1005	72,9259	101,1408		1,3	1,484
e1008	e1006	94,15665	100,4968		1,3	1,484
e1008	3001	389,8768	115,6813	5,5164	1,3	1,484
e1008	3002	370,8446	112,1667	7,0403	1,3	1,484
e1008	3003	392,2636	108,7842	10,5596	1,3	1,484
e1008	3005	367,2389	112,9106	7,3724	1,3	1,484
e1008	3006	354,2869	109,2136	10,1504	1,3	1,484
e1008	3007	375,3839	107,5169	12,7259	1,3	1,484
e1008	3008	388,5723	109,4775	10,624	1,3	1,484
e1008	3009	394,326	108,5441	11,9524	1,3	1,484
e1008	3010	396,4487	108,043	11,7349	1,3	1,484
e1008	3011	8,0713	104,893	19,3581	1,3	1,484
e1008	3012	397,0209	104,584	20,5766	1,3	1,484
e1008	3013	395,8484	104,4414	20,7806	1,3	1,484
e1008	3014	380,9405	105,652	15,7062	1,3	1,484
e1008	3015	379,2076	105,9236	15,4107	1,3	1,484
e1008	3016	376,6066	105,5732	16,2394	1,3	1,484
e1008	3017	372,9008	105,6182	17,1584	1,3	1,484
e1008	3018	359,0233	106,3799	14,8474	1,3	1,484
e1008	3019	360,1453	106,6372	14,3091	1,3	1,484
e1008	3020	366,4988	107,751	12,578	1,3	1,484
e1008	3021	367,7213	107,6915	12,8288	1,3	1,484
e1008	3022	347,753	106,449	13,648	1,3	1,484
e1008	3023	349,5486	107,3538	11,9544	1,3	1,484
e1008	3024	272,212	101,5995	20,6242	1,3	1,484
e1008	3025	272,2057	101,616	20,611	1,3	1,484
e1008	3026	393, 1493	103,3484	27,8007	1,3	1,484
e1008	3027	7,569	103,6926	37,2701	1,3	1,484
e1008	3028	6,172	103,6674	37,4897	1,55	1,484
e1008	3029	2,4239	103,6017	38,2347	1,55	1,484
e1008	3030	28,1567	100,5045	59,571	1,55	1,484
e1008	3031	48,7089	101,113	42,4034	1,3	1,484
e1008	3032	46,6782	101,0125	46,3653	1,3	1,484
e1008	3033	44,965	100,8984	50,357	1,3	1,484
e1008	3034	43,5281	100,8413	54,3808	1,3	1,484
e1008	3035	42,283	100,7664	58,4336	1,3	1,484
e1008	3036	34,8188	100,9344	48,491	1,3	1,484
e1008	3037	34,537	101,0104	44,2356	1,3	1,484
e1008	3038	51,8904	103,3191	26,4244	1,3	1,484
e1008	3039	48, 1844	103,3452	25,8297	1,3	1,484
e1008	3040	51,1537	103,0695	27,1863	1,3	1,484
e1008	3041	52,5697	103,0432	27,213	1,3	1,484

Debido a la poca distancia entre estaciones y que las visuales se han observado sin emplear pilares, utilizando en su lugar jalones con mira, hacen que el error de dirección adquiera una magnitud realmente reseñable difuminando las bondades del instrumental. Por suerte, el trabajo no requería grandes precisiones por lo que ha sido un método operativo.

La discrepancia entre las desorientaciones calculadas en función de la referencia visada debe ser menor al error total azimutal a priori (Ea), definido como:

$$e_{\alpha} = \sqrt{e_{\nu}^{2} + e_{d}^{2} + e_{l}^{2} + e_{p}^{2}} \cdot \sqrt{2} \approx 134^{cc}$$

Donde:

Error de verticalidad:

$$e_{\mathbf{v}} = 2^{cc}$$

Precisión del compensador automático.

– Error de dirección:

$$e_d = \frac{e_e + e_s}{Dm} = \frac{0.0015m + 0.005m}{43.477m} = 95^{cc}$$

Error de lectura:

$$e_t = 6^{cc}$$

Precisión acimutal del instrumento.

Error de punteria:

$$e_p = \frac{K^{ee}}{A} \left(1 + \frac{4A}{100} \right) = \frac{50^{ee}}{30} \left(1 + \frac{4 \cdot 30}{100} \right) \approx 4^{ee}$$

Estación	Visado	Desorientación
e1001	e1002	269,4528
e1001	e1003	269,4574
e1001	e1004	269,4586
e1001	e1005	269,4630
e1001	e1006	269,4589
e1001	e1008	269,4555
e1001	e1010	269,4628
e1001	b1	269,4573
e1001	e2001	269,4589
e1001	e2002	269,4597
	Des. Prom	269,4585

Estación	Visado	Desorientación
e1008	e1001	351,4428
e1008	e1004	351,4388
e1008	e1005	351,4448
e1008	e1006	351,4424
	Des. Prom	351,4422

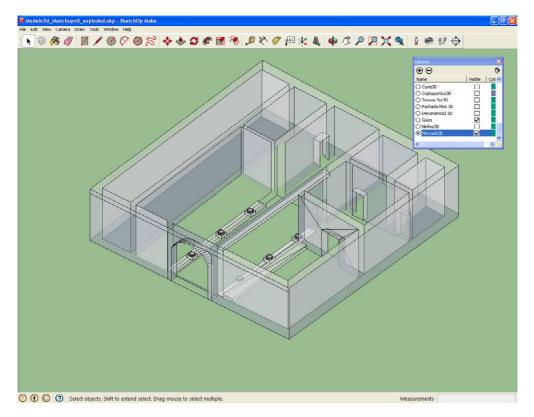
Punto	Xutm(m)	Yutm(m)	Alt. Elipsoid.(m)	Alt. Ortom.(m)
4001	467425,511	4480419,642	632,359	580,948
4002	467426,925	4480416,194	632,221	580,811
4003	467424,907	4480415,600	632,154	580,743
3001	467448,568	4480399,355	632,634	581,223
3002	467446,338	4480398,492	632,642	<i>581,231</i>
3003	467444,742	4480402,750	632,527	581,116
3005	467445,919	4480398,211	632,495	581,083
<i>3006</i>	467442,829	4480397,025	632,516	581,104
3007	467441,301	4480401,289	632,480	581,069
3008	467444,333	4480402,298	632,404	580,992
3009	467443,919	4480403,920	632,380	580,969
3010	467444,332	4480404,074	632,501	581,089
3011	467441,369	4480411,644	632,493	581,082
3012	467437,976	4480410,274	632,499	581,088
3013	467437,566	4480410,138	632,531	581,119
3014	467439,170	4480403,739	632,587	<i>581,175</i>
3015	467439,234	4480403,225	632,548	<i>581,136</i>
3016	467438,202	4480403,019	632,560	581,148
3017	467436,978	4480402,497	632,467	581,056
3018	467438,261	4480398,539	632,494	581,083
3019	467438,838	4480398,698	632,490	581,079
<i>3020</i>	467440,841	4480399,593	632,452	581,040
3021	467440,671	4480399,897	632,433	581,022
3022	467439,257	4480395,951	632,599	581,188
3023	467440,960	4480396,307	632,602	581,190
<i>3024</i>	467445,346	4480376,920	633,461	<i>582,050</i>
<i>3025</i>	467445,353	4480376,931	633,456	<i>582,045</i>
<i>3026</i>	467431,611	4480414,010	632,518	581,107
3027	467430,503	4480425,869	631,819	580,408
<i>3028</i>	467429,719	4480425,545	631,571	580,160
3029	467427,534	4480424,692	631,568	<i>580,156</i>
3030	467433,977	4480452,921	633,258	581,846
3031	467452,929	4480438,503	633,238	581,827
3032	467451,460	4480442,443	633,242	581,831
3033	467449,989	4480446,374	633,269	581,858
3034	467448,539	4480450,307	633,261	581,850
3035	467447,081	4480454,245	633,276	581,865
3036	467442,450	4480443,465	633,268	581,856
3037	467443,170	4480439,267	633,278	581,866
3038	467454,209	4480422,464	632,602	581,191
3039	467452,677	4480421,906	632,623	581,211
3040	467453,935	4480423,244	632,669	581,258
3041	467454,540	4480423,240	632,679	581,268

3. Creación de la cartografía

Como se ha dicho en las premisas del proyecto, se ha intentado utilizar para cada etapa la mayor cantidad de software gratuito buscando la reducción de costes. De acuerdo a este principio se buscó un software de edición CAD gratuito que cumpliese con los requisitos mínimos. Tras varias alternativas se escogió utilizar el software de diseño DraftSight.

DraftSight es un software de CAD desarrollado por la firma Dassault Systèmes bajo software propietario. Su uso es gratuito con la única condición de registrarse, también gratuitamente, en su página oficial como usuario. Como limitaciones más importantes a destacar sobresale que solo admite diseños en 2D y que en el momento de la realización de este proyecto no permitía importar ficheros de puntos.

Para solventar el problema de los ficheros de puntos se recurrió a un pequeño software encargado de importar el fichero de puntos y crear un archivo .dxf apto para el uso con DraftSight. El nombre de este software es toDXF y su desarrollador es Eduardo J. Renard. Como único punto débil reseñable es que no admite valores alfanuméricos en el nombre de los puntos. El software toma las coordenadas de los puntos y genera un número identificativo del punto en función de su posición en el fichero. Es un error que puede arruinar el trabajo de varios días si no hemos importado ordenados los puntos o tenemos intervalos vacíos entre una serie de ellos.


4. Modelado 3D

Perfiladas las líneas generales de Complutum, se procedió al modelado 3D de los edificios. Las recreaciones se basarían tanto en las descripciones y representaciones mostradas en los paneles informativos del yacimiento como en la página web oficial de Complutum y sobreto-do en las ilustraciones de la Guía-Catálogo de Complutum.

Desde un principio se encontraron versiones enfrentadas en función de la fuente que consultásemos debido a las distintas revisiones que se han producido de las hipótesis constructivas. Éste es un hecho que obligó a determinar sobre la marcha que hipótesis era la más actual. Se estableció la Guía-Catálogo de Complutum como fuente más fehaciente. Por su parte los paneles informativos y sobretodo la web oficial ofrecen algunas contradicciones que llevan a confusión

Como asistente de diseño gráfico y modelado 3D se seleccionó Sketchup por su simplicidad y facilidad de uso. De nuevo existe una versión gratuita denominada Sketchup Make y otra de pago, Sketchup PRO. La versión PRO incluye una serie de herramientas, importadores y exportadores de ficheros que resultarían de gran ayuda. Sin embargo, siguiendo con la política de costes mínimos se utilizó la versión gratuita MAKE combinada con plugins gratuitos disponibles en varias páginas especializadas.

El autor de este proyecto debe reconocer que se probaron diversos plugin con el objetivo de importar el fichero .dxf mostrando un rendimiento muy por debajo del incluido en la versión PRO. Fue este el momento oportuno para aprovechar la prueba gratuita de Sketchup PRO e importar el fichero .dxf que contiene la cartografía.

Modelado del Mercado S.I con Sketchup.

A partir de ahí se empleó un tiempo aproximado de 8 meses en la recreación del foro de Complutum. El mayor problema fue concretar la posición exacta de cada elemento conforme a las hipótesis consultadas. Un buen ejemplo es el pórtico sur, lugar del que casi nada se conserva y que fue construido en el SI y reformado en el siglo III. De acuerdo a las hipótesis, existía una salida desde el foro que lo cortaba en dos, sin embargo, en algunas recreaciones no se muestra tal salida ni tampoco es sencillo intuir los accesos a los distintos espacios. Otro problema más relevante fue el diseño interior de los edificios de los que poca información se tiene. Se decidió añadirlos por la importancia que le puede suponer al visitante, ya que la apariencia externa se ha incluido en los paneles, en cambio, el diseño interior y quizá más interesante por los elementos que se conservan, no ha sido así. Para entender y planificar su diseño se recurrió al servicio de arqueología cuya sabiduría y consejos hicieron posible el diseño final. También se recurrió al uso de documentales y publicaciones como apoyo y fuente de inspiración.

Terminado el diseño se exportó como fichero OBJ gracias al plugin gratuito OBJexporter de TIG. Este plugin puede ser descargado desde la web sketchucation, especializada en plugin y

recursos para Sketchup. También nos servimos de un segundo plugin llamado CleanUp disponible en la misma web para optimizar el modelo eliminando caras duplicadas o coplanarias.

Como inconveniente final se comprobó que al importar los modelos 3D con sus correspondientes texturas asociadas en MetaioSDK, estas se renderizaban de forma errónea. El problema fue resuelto asociando una única textura a cada polígono. Lamentablemente Sketchup no permite ejecutar este proceso de forma automática por lo que se debió completarlo de manera manual y asumir el aumento en el tamaño final del conjunto de texturas, ya que se creó un archivo .png para cada nueva textura.

5. Visión por ordenador y realidad aumentada

5.1 Introducción

El problema del reconocimiento del entorno a través de una cámara, además de conocer la posición relativa de los objetos respecto a ésta ha sido objeto de estudio desde los años 70. Varios son los sistemas actuales que permiten crear un modelo 3D a partir de varias imágenes pero o requieren un gran esfuerzo por el operador o el resultado final puede no ser lo suficientemente preciso u obligar a una revisión posterior con a fin de subsanar posibles errores, siempre supeditado a la precisión requerida por el trabajo.

Tracking de un objeto en una secuencia de video significa identificar continuamente su localización aunque el objeto o la cámara sufran movimientos. Existen una gran variedad de enfoques dependiendo del tipo de objeto, de los grados de libertad del objeto, la camera y el objetivo de su aplicación.

El Tracking 2D tiene como objetivo el seguimiento de la proyección imagen del objeto o partes de él cuyo desplazamiento 3D resulta en un movimiento que puede ser modelado como una transformación 2D. Se requiere entonces un modelo adaptativo para manipular los cambios de apariencia debidos a los efectos de la perspectiva o la deformación. Se provee la posición de la imagen del objeto en términos de centroide y escala o de una transformación afín. También se pueden usar modelos más sofisticados como plantillas deformables, mallas deformables 2D o modelos 2D articulados, sin embargo ninguno de estos métodos implica la recuperación de la posición actual en el espacio.

En el ámbito de la realidad aumentada el Tracking 2D hace referencia al seguimento de una superficie plana como pudiese ser una fotografía y determinar la posición de la cámara además de su orientación con respecto a ella.

En contraste el Tracking 3D realiza un seguimiento de un objeto 3D con el propósito de obtener los 6 grados de libertad que definen la posición de la cámara y la orientación relativa de la escena, o es decir, el desplazamiento de un objeto relativamente a la cámara.

Existen muchos métodos de seguimiento 3D descritos, tantos como la cantidad de aplicaciones y dispositivos usados, tales como lasers, trackers magnéticos o dispositivos de seguimiento por ultrasonidos. En este proyecto nos centraremos en los métodos que permiten basarnos en el uso de una única cámara como son los dispositivos móviles de hoy en día, aunque se ha visto en el mercado alguno con 2 cámaras separadas por una mínima distancia con el fin de conseguir imágenes estereoscópicas.

Su principal ventaja es su bajo coste y que es un sistema no invasivo. Además permite basarnos en características presentes naturalmente, como bordes, esquinas o texturas. Cierto que esto puede llegar a ser muy complicado de procesar porque se encuentran en muchos objetos cotidianos. Además la ocultación simplemente parcial de los mismos suele conllevar un error en el seguimiento. Por otra parte la cámara se puede mover rápidamente provocando imágenes desenfocadas o movidas. Otro factor a tener en cuenta será las condiciones de luz donde las reflexiones o una luz tenue o demasiado brillante puede imposibilitar el seguimiento. Para el ámbito de la arqueología se reducirá el estudio al Tracking de objetos rígidos, en contraste con otras vertientes del Tracking como puede ser la detección de rasgos faciales.

Dicho esto, se plantea un problema fundamental. ¿Qué elementos geométricos del objeto podemos extraer que proporcionen un conjunto de características en la imagen aptas para realizar el reconocimiento?

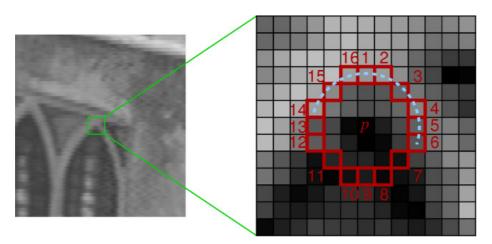
5.2 Descriptores

Actualmente en la mayoría de los casos se opta por usar descriptores que analicen los bordes de los objetos o localicen puntos singulares fácilmente reconocibles en la imagen. De ellos se busca que sean:

Invariante en rotación: Se dice que un descriptor es invariante en rotación cuando al ser rotada la imagen es capaz de identificar la misma entidad sin lugar a equívocos.

Invariante en escala: Un descriptor es invariante en escala cuando al ampliar o reducir la imagen se sigue identificando la misma entidad.

Por último, también es muy deseable que sean invariantes a los cambios de luminosidad.


A continuación se realizará un análisis de los principales algoritmos existentes para la detección de características de la imagen.

5.2.1 Fast Corner Detector (FAST)

Es un algoritmo desarrollado por Eduard Rosten y Tom Drummond [4], publicado en 2006 y revisado en 2010, basado en la detección de esquinas contenidas en la imagen. Su mayor virtud es su gran eficiencia comparado con otros "corner detectors", evitando hacer uso de la convolución y es invariante a la rotación en el plano.

La manera de proceder es la siguiente:

Se toma un pixel P como referencia. Se analiza entonces el conjunto de píxeles situados a una distancia r desde P. El conjunto de pixeles analizados suele moverse entorno a los 16 pixeles. Por último se considera el punto P como esquina cuando al menos n pixeles del total analizados muestran un valor de luminosidad mayor o menor al del pixel P. Este valor de n es arbitrario pero suele rondar entre los 9 y 12 pixeles.

Ejemplo de funcionamiento de Fast Corner Detector.

Se propuso un nuevo test para agilizar el proceso todavía más. En él se analizan unicamente 4 pixeles (1, 9, 5, 13). Primero se comprueba si 1 y 9 son píxeles con mayor o menor luminosidad. Si es así, se comprueba análogamente los pixeles 5 y 13. Para considerar *P* como punto candidato a ser una esquina al menos 3 de los cuatro pixeles analizados deben ser más o menos luminosos que *P*. Si pasa el punto *P* el test entonces se analizan el resto de los 16 pixeles siguiendo el algoritmo original.

Las principales limitaciones de este algoritmo radican en que no funciona correctamente con cambios de escala y se ve muy limitado cuando se aplica sobre imágenes movidas, el efecto "blur motion"

Dado su bajo coste computacional es muy usado como un primer filtro para seleccionar puntos de interés donde más tarde se aplicará un algoritmo más preciso pero también con una carga de operaciones mucho mayor.

5.2.2 Detector de esquinas de Harris

Desarrollado por Chris Harris y Mike Stephens [34] y publicado en 1988. Basicamente encuentra la diferencia en la intensidad para un desplazamiento (u,v) desde el punto a estudiar en todas las direcciones. Esto se expresa como:

$$S(x,y) = \sum_{u} \sum_{v} w(u,v) (I(u+x,v+y) - I(u,v))^{2}$$

Se aproxima por una serie de Taylor: I(u+x,v+y)

$$I(u+x,v+y) \approx I(u,v) + I_x(u,v)x + I_y(u,v)y$$

por lo que se obtiene sustituyendo:

$$S(x,y) \approx \sum_{u} \sum_{v} w(u,v) \left(I_x(u,v)x + I_y(u,v)y \right)^2$$

que escrito en forma de matriz:

$$S(x,y) \approx \begin{pmatrix} x & y \end{pmatrix} A \begin{pmatrix} x \\ y \end{pmatrix}$$

donde A es:

$$A = \sum_{u} \sum_{v} w(u, v) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

Basandose en la magnitud de los valores propios puede deducirse que:

- 1. Si $\lambda_1 \approx 0$ y $\lambda_2 \approx 0$ entonces este pixel (x,y) no tienen ningún rasgo de interés.
- 2. Si $\lambda_1 \approx 0$ y λ_2 tiene algún valor positivo grande, entonces existe un borde.
- 3. Si λ_1 y λ_2 tienen los valores positivos grandes, existe entonces una esquina.

Sin embargo el coste de calculo de los valores propios es elevado. Para reducirlo se recurre a la función Mc donde k es un parámetro de sensibilidad:

$$M_c = \lambda_1 \lambda_2 - \kappa (\lambda_1 + \lambda_2)^2 = \det(A) - \kappa \operatorname{trace}^2(A)$$

De esta forma no se calcula la descomposición en valores propios de la matriz A. Solo será necesario evaluar el determinante y la traza de A, que es la suma de los elementos de los elementos de la diagonal principal de A. k es un valor determinado empíricamente y se sitúa entre 0,04-0,15.

Cuando:

- 1. |Mc| es pequeño, λ_1 y λ_2 toman valores pequeños y por tanto no se encuentran rasgos de interés.
- 2. Mc < 0. λ_1 es mucho mayor que λ_2 o viceversa, entonces existe un borde.
- 3. Mc toma valores grandes, λ_1 y λ_2 tienen valores grandes, se deduce que existe una esquina.

En 1994, J. Shi and C. Tomasi propusieron una pequeña modificación para este algoritmo. En lugar de:

$$M_c = \lambda_1 \lambda_2 - \kappa \left(\lambda_1 + \lambda_2\right)^2$$

se propuso que $Mc = \min(\lambda_1, \lambda_2)$. Si es mejor que un valor umbral determinado se considera el punto como una esquina.

Ejemplo de funcionamiento del algoritmo Harris.

El mayor problema del detector de esquinas de Harris radica en que no es invariante a cambios de escala.

5.2.3 SIFT Detector

Es un algoritmo patentado, diseñado por David G. Lowe [2] de la universidad de Columbia, publicado en el año 2004. Es sin duda uno de los algoritmos estrella para el análisis de imágenes.

La secuencia de procesamiento es la siguiente:

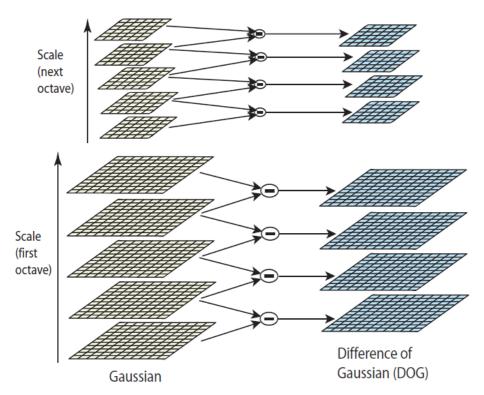
1. **Scale-space Extrema Detection:** En este primer paso se realiza una búsqueda sobre todas las escalas y localizaciones que pueden ser asignadas repetidamente en diferentes vistas del mismo objeto. La detección de las localizaciones que son invariantes a los cambios de escala de la imagen pueden ser encontrados buscando características estables en todas las posibles escalas, para ello se usa la función espacio-escala.

Se utilizará la función Gaussiana. Por ello el espacio-escala de una imagen queda definido por $L(x,y,\sigma)$, obtenida a partir de la convolución de un Gaussiano $G(x,y,\sigma)$ con la imagen de entrada I(x,y):

$$L(x, y, \sigma) = G(x, y, \sigma) * I(x, y),$$

donde G es:

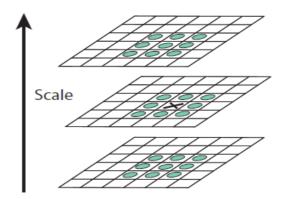
$$G(x, y, \sigma) = \frac{1}{2\pi\sigma^2} e^{-(x^2+y^2)/2\sigma^2}$$


Para hacer este proceso más eficiente se utiliza el "scale-space extrema" en la función diferencia de Gaussiano convolucionada con la imagen:

$$D(x, y, \sigma) = (G(x, y, k\sigma) - G(x, y, \sigma)) * I(x, y)$$
$$= L(x, y, k\sigma) - L(x, y, \sigma).$$

k es un factor que indica la separación entre las dos escalas a utilizar. El modo de proceder es el siguiente:

- Dado un valor inicial de σ , se calculan un número s de diferencias Gaussianas G, con σ variando de manera creciente hasta que $\sigma'=2\sigma$. Para obtener s intervalos enteros el valor de k en cada diferencia Gaussiana debe ser $k=2^{1/s}$.
- Una vez calculada una octava ($\sigma'=2\sigma$), la imagen se submuestrea tomando 1 de cada 2 pixeles y se vuelve a calcular otra octava de forma análoga. El número de veces a realizar este proceso es un parámetro a decidir.


Representación gráfica del proceso:

Representación del proceso "scale-space extrema".

Obtenidas todas las diferencias Gaussianas de este sistema piramidal se procede a buscar para cada nivel de la misma los extremos locales que pasarán a ser puntos clave.

Se considerará un extremo cuando para una determinada diferencia Gaussiana $D(x, y, \sigma)$ y a una escala determinada, un punto (x0, y0) es mayor a sus 8 puntos vecinos dentro de su nivel y a sus 9 puntos vecinos de cada uno de los niveles inferior y superior.

Representación de la detección de un posible extremo.

2. Keypoint localization: Una vez que se tienen los puntos candidatos se procede a procesarlos para obtener un resultado más preciso eliminando puntos con poco contraste, los cuales son inestables a cambios de iluminación y al ruido. Para ello se utiliza un desarrollo en serie de Taylor de grado 2 de la función diferencia Gaussiana entorno a un punto $(x0, y0, \sigma0)$.

$$D(\chi) = D + \frac{\partial D^T}{\partial \chi} \chi + \frac{1}{2} \chi^T \frac{\partial^2 D}{\partial \chi^2} \chi$$

D y sus derivadas son evaluadas siempre en el punto en cuestión $\chi = (x, y, \sigma)T$. Se toma la derivada de esta expresión igualándola a 0, obteniendo la localización del mínimo o máximo local:

$$\bar{\chi} = -\frac{\partial^2 D^{-1}}{\partial \chi^2} \frac{\partial D}{\partial \chi}$$

Sustituimos en la expresión anterior para obtener el valor del máximo local:

$$D(\bar{\chi}) = D + \frac{1}{2} \frac{\partial D^T}{\partial \chi} \bar{\chi}$$

El valor mínimo del máximo local del punto en valor absoluto debe ser mayor a 0,03 para ser considerado un punto característico.

Por otra parte se deberá eliminar también los puntos candidatos que proceden de una línea y no de una esquina. Esto se realiza procediendo de manera similar a la seguida en el algoritmo para la detección de esquinas de Harris.

Se parte de una matriz Hessiana para $D(x, y, \sigma)$ evaluada en un punto del espacio-escala determinado $(x0, y0, \sigma0)$. Ésta es una matriz que contiene las segundas derivadas de la función a estudiar. Tendremos una matriz 2x2 donde si sus valores propios α y β son uno grande y el otro pequeño significará que existe un borde.

$$\mathbf{H} = \left[\begin{array}{cc} D_{xx} & D_{xy} \\ D_{xy} & D_{yy} \end{array} \right]$$

Los valores propios de H son proporcionales a las curvaturas principales de D. Consideramos α el valor propio de mayor magnitud y β el menor. Podemos calcular la suma de los valores propios y su producto a partir de la traza y el determinante de la matriz:

$$Tr(\mathbf{H}) = D_{xx} + D_{yy} = \alpha + \beta,$$
$$Det(\mathbf{H}) = D_{xx}D_{yy} - (D_{xy})^2 = \alpha\beta.$$

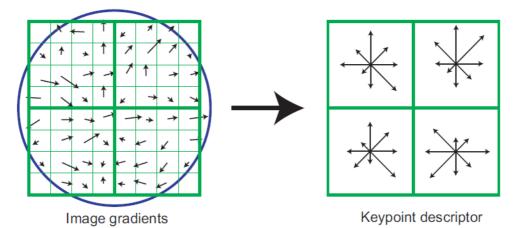
Si el determinante es negativo, las curvaturas tienen diferentes signos y el punto queda descartado.

Consideramos el radio r como la relación entre α y β . De esta forma obtenemos que $\alpha = r\beta$.

$$\frac{\operatorname{Tr}(\mathbf{H})^2}{\operatorname{Det}(\mathbf{H})} = \frac{(\alpha + \beta)^2}{\alpha\beta} = \frac{(r\beta + \beta)^2}{r\beta^2} = \frac{(r+1)^2}{r},$$

Se considera que el punto es válido cuando se cumple que:

$$\frac{\mathrm{Tr}(\mathbf{H})^2}{\mathrm{Det}(\mathbf{H})} < \frac{(r+1)^2}{r}.$$


El valor de *r* se recomienda establecerlo en 10 como umbral válido.

3. **Asignación de la orientación:** Mediante la asignación de la orientación conseguimos que los puntos claves sean invariantes a la rotación. Para cada punto de la imagen $L(x, y, \sigma)$ es posible determinar el módulo de su gradiente m(x,y) y la fase del mismo $\Theta(x;y)$:

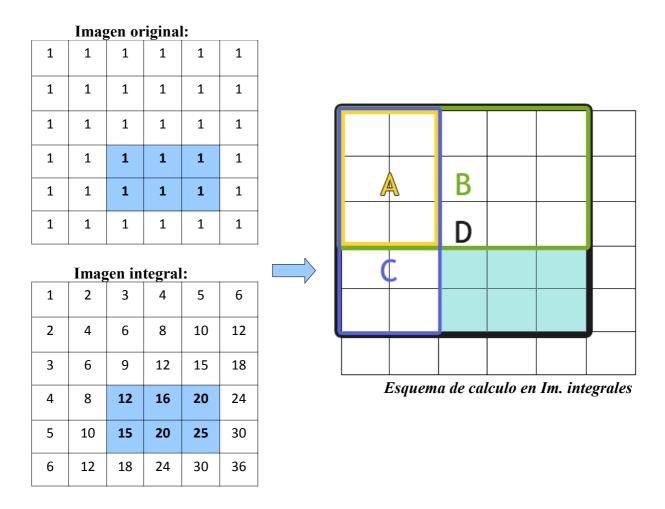
$$\begin{split} m(x,y) &= \sqrt{(\Delta L_x)^2 + (\Delta L_y)^2} \\ m(x,y) &= \sqrt{[L(x+1,y) - L(x-1,y)]^2 + [L(x,y+1) - L(x,y-1)]^2} \\ \theta(x,y) &= tan^{-1} \left(\frac{\Delta L_y}{\Delta L_x}\right) \\ \theta(x,y) &= tan^{-1} \left(\frac{L(x,y+1) - L(x,y-1)}{L(x+1,y) - L(x-1,y)}\right) \end{split}$$

La orientación de un punto clave queda determinada considerando las direcciones de todos los puntos de la imagen dentro de cierto entorno. Se produce entonces un histograma de direcciones ponderado por una ventana Gaussiana circular centrada en el punto clave. Cada máximo en el histograma corresponde a la dirección dominante en el gradiente local y será asignada al punto clave. Si en el histograma existiesen otros máximos secundarios de valor mayor o igual al 80% del máximo principal, estos se utilizarían para generar nuevos puntos claves con esa dirección.

4.**Creación del descriptor SIFT:** En este último paso buscamos asignar para cada punto clave un descriptor relativamente invariante o estable a cambios de iluminación y distorsiones. A partir de los valores de la magnitud y fase del gradiente del entorno del punto clave calculados en el punto anterior, con ventana Gaussiana centrada en el punto clave, se pondera los valores de módulo y fase de 4x4 subregiones en la vecindad del mismo con 8 orientaciones distintas para cada subregión. Se obtiene, por tanto, para cada punto clave un descriptor de 4 x 4 x 8 = 128 valores.

Representación simplificada de un descriptor SIFT.

**Ésta es una simplificación del paso. Se ha dividido en 2x2 subregiones en lugar de las 4x4 subregiones del algoritmo original. **


Las ventajas del algoritmo residen en el alto número de características encontradas, ya que según su autor, para una imagen de 500x500 pixeles se obtienen cerca de 2000 características estables, siempre dependiendo de la imagen a tratar. Por otro lado, se comporta muy bien en imágenes muy texturizadas con gran cantidad de detalles.

Sus inconvientes son como se ha podido deducir, una incapacidad notoria a la hora de procesar imágenes con pocos detalles o discriminando entre objetos con una apariencia similar o que se diferencien por el color debido a que el algoritmo SIFT solo trabaja en la escala de grises. Y el más importante de todos es el tiempo de procesado, siendo inviable en la mayoría de los casos para aplicaciones en tiempo real.

5.2.4 Speed-Up Robust Features (SURF)

El algoritmo SURF [3] surgió en 2006 como una alternativa al descriptor SIFT mejorando considerablemente su velocidad y robustez ante posibles transformaciones de la imagen. SURF hace uso de imágenes integrales de modo que se agilizan los posteriores procesos de calculo.

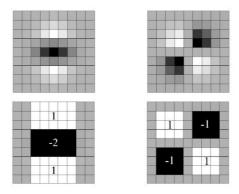
Las imágenes integrales son una estructura de datos y algoritmo para la rápida y eficiente generación de suma de valores en un subconjunto rectangular de una cuadricula. En el siguiente ejemplo básico se muestra el resultado al crear una imagen integral a partir de una imagen original donde cada pixel tiene un valor de 1.

Obtener la suma de los valores de los pixeles del área marcada en la imagen original supone recorrer los pixeles y tomar el valor de cada pixel para ser sumado, en cambio en la imagen integral se computa como las sumas y restas de 4 rectángulos:

- Imagen original = 1 + 1 + 1 + 1 + 1 + 1 = 6.
- Imagen integral = D(25) B(15) C(10) + A(6) = 6.

Fast Hessian Detector

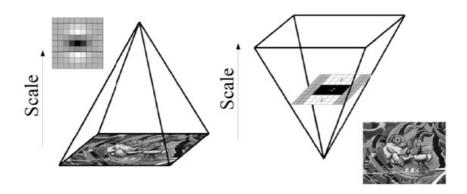
El descriptor SURF se basa en el uso del determinante de la matriz Hessiana H. Lo que diferencia a SURF de otros algoritmos es que no utiliza diferentes medidas para el cálculo de la posición y la escala de los puntos de interés individualmente. En SURF se utiliza el valor del determinante de la matriz Hessiana en ambos casos. Dicho esto, la matriz Hessiana se define para un punto p(x,y) y escala σ :


$$H(p,\sigma) = \begin{bmatrix} L_{xx}(p,\sigma) & L_{xy}(p,\sigma) \\ L_{xy}(p,\sigma) & L_{yy}(p,\sigma) \end{bmatrix}$$

Donde tanto $Lxx(p, \sigma)$, $Lxy(p, \sigma)$, $Lyy(p, \sigma)$ son la convolución de la derivada parcial de segundo orden de la Gaussiana $G(\sigma)$ con la imagen I en el punto p.

Los Gaussianos son óptimos para el análisis del espacio-escala pero necesitan ser discretizados y recortados, por lo que en SURF se recurre al uso de filtros de caja. Los filtros de caja aproximan las derivadas parciales de segundo orden de las Gaussianas y pueden ser evaluados con gran velocidad con imágenes integrales, independientemente de su tamaño.

Las aproximaciones de las derivadas parciales se denotan como *Dxx, Dxy y Dyy*. Por su parte el autor ofrece una aproximación propia del determinante de la matriz Hessiana como:


$$det(H_{aprox}) = D_{xx}D_{yy} - (0.9D_{xy})^2$$

Arriba: Derivadas Gaussianas de segundo orden en el eje y y en xy.

Abajo: Aproximación usando filtros de caja ponderados en la dirección y (Dyy) y xy (Dxy).

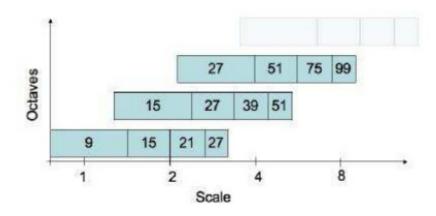
En el operador SURF, gracias al uso del filtro de caja e imágenes integrales, se reemplaza la creación de pirámides de imágenes suavizadas con filtro Gaussiano como ocurre en el algoritmo SIFT por la aplicación del filtro directamente en la imagen original. El espacio-escala es analizado por medio de ir elevando el tamaño del filtro en lugar de reducir el tamaño de la imagen.

Análisis del espacio-escala: SIFT(izq.) y SURF(dcha).

La escala más detallada que se obtiene corresponde a un filtro de caja de dimensión de 9x9, correspondiente a las aproximaciones de la derivada parcial de segundo orden de la Gaussiana con $\sigma = 1,2$.

El resultado obtenido tras aplicar la convolución con el filtro de dimensión 9x9 es considerado como la capa de escala inicial. Esta escala inicial es s= 1,2; la cual corresponde con una Gaussiana de σ = 1,2.

```
σaprox = Tamaño filtro actual * (Escala filtro base / Tamaño filtro base) \rightarrow σaprox = Tamaño filtro actual * (1,2/9)
```


Aumentando los filtros se van creando las sucesivas capas de la siguiente forma. Para cada octava, el incremento de tamaño del filtro es el resultado de doblar el incremento realizado en la octava anterior.

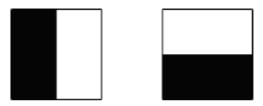
Ejemplo de las distintas octavas:

1º Octava o octava inicial -

$$9x9 \xrightarrow{6} 15x15 \xrightarrow{6} 21x21 \xrightarrow{6} 27x27$$
2° Octava -
$$15x15 \xrightarrow{12} 27x27 \xrightarrow{12} 39x39 \xrightarrow{12} 51x51$$
3° Octava -
$$27x27 \xrightarrow{24} 51x51 \xrightarrow{24} 75x75 \xrightarrow{24} 99x99$$

Donde 6, 12 y 24 son los incrementos en el tamaño del filtro para cada octava. Por su parte 9x9, 15x15, 21x21, 27x27.... son el tamaño del filtro.

Representación gráfica del tamaño de los filtros junto con su correspondencia a la escala (Scale) y la octava a la que pertenecen.

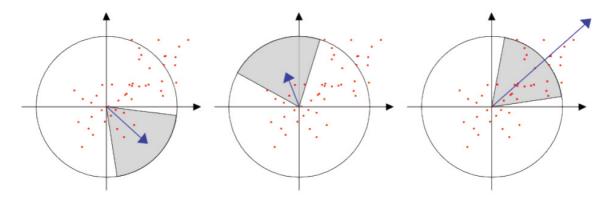

Para detectar un máximo local se siguen 3 pasos:

- 1. Se pasa un primer filtro, si la intensidad del pixel se encuentra por debajo de un cierto umbral se desecha.
- 2. Posteriormente cada pixel es comparado en el espacio escala con sus sus 26 vecinos más próximos, comprendidos por los 8 que le rodean en su escala y 9 en cada escala superior e inferior. Se considerará un máximo local si su intensidad es mayor que la de sus pixeles vecinos.

3. Se localiza con mayor precisión el punto interpolando los datos cercanos con precisión de sub-pixel. Esto se hace mediante el método de Brown, expresando el determinante de la función Hessiana $H(x,y,\sigma)$ como el polinomio de Taylor e iterando hasta que el error es menor a 0,5 pixeles. Si nunca se llega a cumplir, se desecha el punto.

Asignación de la orientación

Para otorgar las características invariantes a la rotación, SURF plantea el uso de los filtros de Haar.

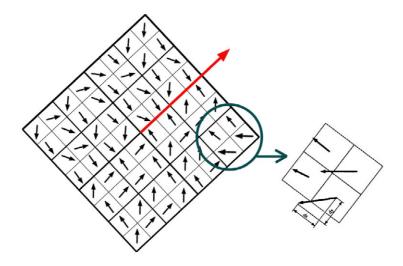


Filtros de Haar: El filtro de la izq. computa las respuestas en la dirección X y el de la derecha en la dirección Y.

El color negro se identifica con el valor -1 y el color blanco con el valor +1.

Para determinar la orientación de un punto se calcula la respuesta a los filtros de Haar en ambas direcciones, x e y, con tamaño de 4s para un conjunto de pixeles dentro de un radio de 6s del punto detectado. s es la escala a la que el punto fue detectado. Una vez que se han calculado las respuestas, se ponderan con una gaussiana centrada en el punto de interés de valor de desviación estándar de σ = 2,5s. Hecho esto, los resultados ya ponderados se representan como puntos en el vector espacio, con las respuestas en el eje s0 en el de ordenadas.

Finalmente se obtiene una orientación dominante mediante la rotación de un segmento de circulo cubriendo una sección de pi/3 alrededor del origen. En cada posición se suman las respuestas en x e y dentro del sector y usadas para formar un nuevo vector. Se concluye que el vector mayor representa la orientación final del punto de interés.


Proceso de asignación de la orientación.

Componentes del vector

Se construye una región cuadrada de tamaño 20s alrededor del punto de interés y orientado en conforme a la orientación calculada anteriormente. Después esta región se divide en 4x4 subregiones y se calcula las respuestas de Haar de tamaño 2s para una muestra de 2s puntos repartidos uniformemente. Refiriendo a cada respuesta al filtro de Haar en x e y como dx y dy, se ponderan las respuestas con una gaussiana de $\sigma = 3,3s$ centrado en el punto de interés y se obtiene un vector para cada subregion con el siguiente formato:

$$v_{subregion} = \left[\sum dx, \sum dy, \sum |dx|, \sum |dy| \right]$$

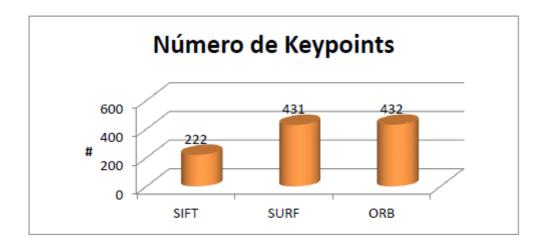
Representación gráfica del descriptor SURF

Por tanto cada subregión contribuye al vector descriptor global aportando 4 valores, para conformar una dimensión total del vector de 64 valores. Se ha obtenido de esta forma un descriptor invariante a la escala, rotación e iluminación.

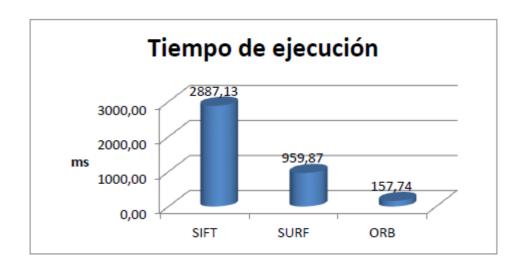
5.3 Comparativa entre los distintos descriptores

Los resultados mostrados a continuación son gracias al trabajo de terceras personas. El autor de este proyecto no es el autor de ninguna de las comparativas mostradas aquí ya que su fin no es realizar un análisis exhaustivo de los distintos descriptores sino ofrecer una visión general de ellos

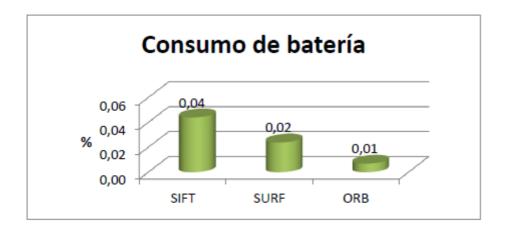
En el siguiente trabajo realizado por Miguel Ñauñay Ilbay, Luis Tipantuña Córdova, Geovanny Raura y Tatiana Gualotuña para la Facultad de Ingeniería en Sistemas e Informática de la Escuela Politécnica del Ejército en Sangolquí, Ecuador [7], se realiza una exhaustiva comparativa de la eficiencia de los algoritmos SIFT, SURF y ORB en dispositivos móviles bajo la plataforma Android.

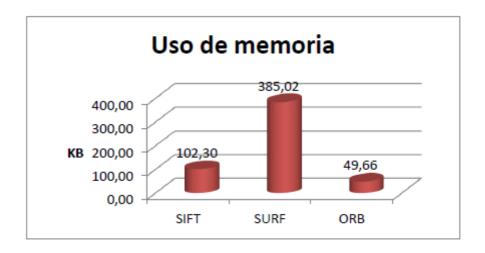

** El descriptor ORB (Oriented FAST and Rotated BRIEF) es un descriptor publicado en 2011 como una alternativa por su rápidez de calculo ante SIFT y SURF. Utiliza el algoritmo FAST para extraer puntos claves y BRIEF para la extracción de los descriptores. **

Se tomaron 100 logotipos distintos duplicados, en total 200 imágenes, de 640x480 pixeles y con una profundidad de color de 24 bits. 100 logotipos servirían para el entrenamiento y los otros 100 logotipos para la fase de pruebas o comprobación.


Los 100 logotipos designados para la fase de comprobación se dividieron en cuatro grupos en función de la transformaciones aplicadas: individuales, escala, rotación e iluminación.

RESULTADOS EN EFICENCIA

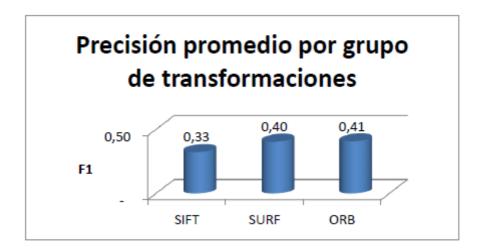

La gráfica a continuación resume el número promedio de descriptores o keypoints encontrados en una imagen de entrada por parte de los descriptores.


RESULTADOS EN TIEMPO DE EJECUCIÓN

CONSUMO DE BATERIA

USO DE LA MEMORIA

EFICACIA


La medida F1 es un valor ponderado entre precisión(P) y Recall(R) y es usada para determinar la precisión de los descriptores. Se define como:

$$F1 = \frac{2PR}{P+R}$$

Precisión(P) es el porcentaje de las imágenes que realmente están relacionadas a la imagen original. Su formula es: P = coincidencias(matches) correctas/Total de coincidencias(matches) encontradas.

Recall(R) es el porcentaje de imágenes que fueron identificadas como relacionadas con la imagen original respecto al número total de imágenes analizadas. Se calcula como: R = coincidencias(matches) correctas /correspondencias.

Las correspondencias se entienden como el número de imágenes que están relacionadas con la imagen original, es decir, que pertenecen a la misma escena.

De estás gráficas se desprende que:

- 1. Dado el conjunto de imágenes utilizado, los algoritmos ORB y SURF extraen un número mucho mayor de descriptores que SIFT.
- 2. El tiempo de calculo de SIFT triplica al de sus competidores. Pero aún en SURF sigue siendo demasiado elevado el tiempo de procesado para aplicaciones que requieren una ejecución en tiempo real. El que más se acerca a esta premisa es ORB.
- 3. El consumo de memoria es en cambio mucho más destacable para el algoritmo SURF. Se triplica al uso del algoritmo SIFT y casi es 8 veces mayor que para el algoritmo ORB.
- 4. La precisión promedio es bastante similar en los 3 algoritmos.

Como se ha dicho, la precisión promedio en la gráfica refleja unos resultados parejos, sin embargo, como apuntan los autores, el descriptor SURF tiene un mejor desempeño en imágenes que no han sufrido transformaciones y con imágenes con cambios de escala, alcanzando un 65% y 57% de precisión promedio.

Para terminar el estudio se añaden dos conclusiones:

- a) La elección de imágenes quizás no fue la más apropiada para estos algoritmos pues los logotipos pecan de falta de texturas, número de objetos que componen la imagen y transformaciones. Por otra parte, el número de keypoints extraídos por descriptor es muy variable en función de las características de la imagen analizada.
- b) La velocidad con la que se está desarrollando la tecnología móvil puede hacer que en un período de tiempo prudente, pueda hacerse uso de algoritmos que a día de hoy no resultan operativos.

En el siguiente trabajo *A comparative Study of Three Image Matching Algorithms: Sift, Surf and Fast* de *Maridalia Guerrero* [5], se realiza un análisis en profundidad de los descriptores y la eficacia con resultados muy diferentes.

En él se establecen 4 imágenes básicas de 457x630 pixeles en diferentes condiciones a las que se les genera una copia con una rotación no superior a 30°.

Figure 7. Windows (First Pair).

Figure 8. Brick Wall (Second Pair).

Figure 9. The Boat (Third Pair).

Figure 10. The building (Fourth Pair).

La siguiente tabla muestra las características o descriptores encontrados:

Features Detected								
Pair Image SIFT SURF FAS								
Window Pair	Α	859	770	86				
Willdow Pair	В	754	734	128				
Brick Wall Pair	A	1117	507	13				
	В	1106	516	6				
Boat Pair	A	484	209	50				
	В	604	326	294				
Building Pair	A	842	606	216				
	В	550	202	52				

De aquí se obtienen varias conclusiones:

- a) SIFT funciona muy bien con imágenes muy texturizadas, como se demuestra al analizar la foto de la pared de ladrillos y ver que su menor rendimiento corresponde con la imagen del barco.
- b) SURF también tiene una enfoque principalmente a imágenes texturizadas. Por contra parece sufrir con cambios de condiciones lumínicas.
- c) FAST ofrece un buen rendimiento en la imagen del edificio por la existencia de esquinas. Lamentablemente sufre en condiciones de imágenes poco contrastadas como sugiere la imagen más subexpuesta del barco y en la inesperada pared de ladrillos.

En las siguientes tablas se muestra el número de coincidencias(matches) y la eficacia determinada por 2*matches/total de características y expresada en porcentaje:

Table 4. Matching performance for SIFT

	SIFT			
	Features	# Matches	% Effectiveness	
Window	859	17	2%	
Pair	754	17	270	
Brick	1177	113	10%	
Wall Pair	1106		1070	
Boat Pair	484	23	4%	
	604	23	470	
Building	842	203	29%	
Pair	550		2970	

Table 5. Matching performance for SURF

	SURF				
	Features	# Matches	% Effectiveness		
Window	770	24	20/		
Pair	734	24	3%		
Brick Wall Pair	507	72	1.40/		
	516		14%		
Boat Pair	209	10	4%		
	326	10	470		
Building Pair	606	102	25%		
	202		2370		

Table 6. Matching performance for FAST

	FAST			
	Features	# Matches	% Effectiveness	
Window	86	17	160/	
Pair	128	17	16%	
Brick Wall Pair	13	5	53%	
	6		3370	
Boat Pair	50	10	10%	
	294	18	10%	
Building Pair	216	26	19%	
	52	20	1970	

Por último también y quizá el punto más importante, se analizó la calidad de los "matches". La autora realizó una detección manual de 20 características y procedió a encontrar sus homólogas en la imagen transformada.

Se dividieron los errores en 2 tipos:

- Tipo I: Los errores cometidos por parte del descriptor al no detectar los puntos que previamente han sido detectados manualmente por la autora.
- Tipo II: Errores cometidos en los "matches" generados automáticamente entre dos características.

SIFT Type Type Pair # Matches Type I % Type II % II Window 17 12 14 60% 82% 7 Brick Wall 53 55% 13% 11 75 8 5 40% 7% Boat Building 23 4 10 20% 43%

Table 7. Type I and Type II errors detection for SIFT matches

Table 8. Type I and Type II errors detection for SURF matches

SURF						
Pair	Type I %	Type II %				
Window	24	5	13	25%	54%	
Brick Wall	51	9	14	45%	27%	
Boat	10	2	0	10%	0%	
Building	74	0	9	0%	12%	

Se puede concluir que el algoritmo SIFT aunque proporciona más características tiene una eficacia menor en estas condiciones. Adicionalmente se concluye que los errores encontrados indican que los descriptores deben ser todavía refinados.

5.4 2D Tracking

Dentro del 2D Tracking se distinguen dos vertientes:

- 2D Tracking haciendo uso de marcadores.
- 2D Tracking mediante análisis de características naturales.

5.4.1 2D Tracking basado en el uso de marcadores:

Es quizás el sistema de realidad aumentada más fiable. El uso de marcadores o fiduciales ayuda a la extracción de características de una forma robusta y proporciona medidas fiables para estimar la pose. Dentro de ellos se consideran 2 tipos:

Puntos fiduciales

Los puntos fiduciales llevan muchos años siendo usados en fotogrametría. Pueden ser detectados con gran facilidad y medidos con una precisión mucho mayor que las características naturales

En particular, los fiduciales con forma circular propocionan los mejores resultados debido a que son relativamente invariantes a la distorsión perspectiva y a que su centroide puede ser calculado con una precisión mejor que el pixel.

Por supuesto, se considera conocidas con la suficiente precisión sus coordenadas en el espacio. Una vez detectados en la imagen tenemos un conjunto de puntos de los que se conocen sus coordenadas (X, Y, Z) en el terreno y sus coordenadas proyectadas en la imagen (u, v).

En sistemas para ordenadores se utiliza un sistema de coordenadas homogeneas, lo que permite integrar en una única matriz las matrices de rotación y traslación. La matriz de proyección P es definida por P=K[R|t], donde K es la matriz de calibración y [R|T] es la matriz de parámetos externos compuesta por la matriz de rotación R y el vector de traslación T.

La expresión general de la proyección perspectiva es:

Dentro de la matriz de calibración K:

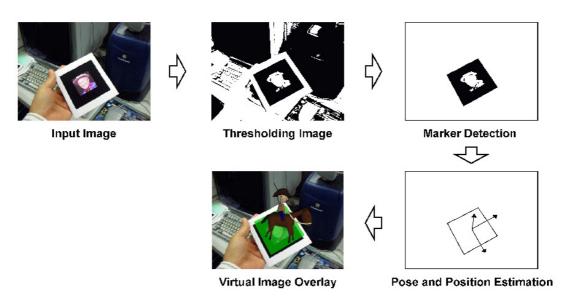
 α – Factor de escala en la dirección u. α = Ku*f (Ku es la resolución en la dirección u y f la focal).

β – Factor de escala en la dirección v. β=Kv*f (Kν es la resolución en la dirección u y f la focal).

S – Falta de perpendicularidad (oblicuidad) entre los ejes u y v.

u0 – Coordenada u del punto principal.

v0 – Coordenada v del punto principal.


Se pueden determinar los 11 parámetros de forma simultánea, no obstante se recomienda determinar los parámetros de matriz de calibración de forma separada y posteriormente determinar la pose de la cámara por algunos de los métodos existentes, como pueden ser la transformación lineal directa o la estimación de la pose a partir de un plano 3D.

Planos fiduciales

Los planos fiduciales son las soluciones más empleadas en aplicaciones de realidad aumentada. Su diseño se basa en un marco cuadrado negro sobre fondo blanco.

Existen varias soluciones de procesado dependiendo del autor, pero poniendo como ejemplo la librería ARToolkit, su sistema es el siguiente:

- 1. La imagen es primeramente transformada en una imagen binaria.
- 2. A continuación se buscan las regiones conectadas por pixeles negros. Las regiones cuyo contorno puede ser definido por 4 segmentos de lineas unidas se mantienen.
- 3. Se corrige la distorsión de perspectiva de cada región y se comparan con el patrón conocido de antemano por el software. La corrección se realiza aplicando la homografía H, cuyos parámetros han sido calculados a partir de las coordenadas de las esquinas detectadas en la imagen con sus respectivas en el patrón almacenado.

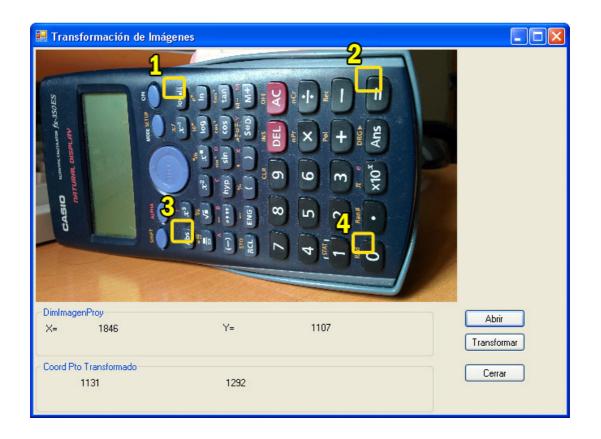
Resumen del proceso de tracking y superposición 3D a través de un marcador.

Se ha seleccionado como ejemplo el procedimiento seguido por la librería ARToolkit ya que es lo suficientemente robusto y ligero como para ejecutar con soltura aplicaciones en tiempo real. Otras soluciones en cambio, promueven la utilización del filtro kalman extendido.

5.4.2 Tracking 2D mediante análisis de características naturales o markless:

El Tracking 2D mediante análisis de características naturales de la imagen supone un paso adelante lógico en la tecnología de reconocimiento de imágenes y realidad aumentada. El uso de marcadores aunque es el método más eficiente hasta la fecha implica acondicionar el entorno en caso de, por ejemplo, recrear un yacimiento arqueológico. En su lugar el uso de características naturales supone no tener que llevar a cabo grandes preparativos.

La manera de proceder es similar a la utilizada en el tracking mediante uso de marcadores. Se considera una imagen bien texturizada o con gran cantidad de esquinas de fácil detección. Se aplica entonces la extracción de características o keypoints del fotograma por alguno de los descriptores existentes y se contrasta con los almacenados en la base de datos. Tenemos de nuevo una correspondencia entre coordenadas terreno y coordenadas imagen del punto pro-yectado. Se calcula la pose a partir de la obtención de los parámetros de homografía o resolviendo el modelo perspectivo.


Se realizaron varios ensayos con el propósito de comprobar su posible eficacia sobre elementos "planos" del yacimiento de Complutum y estudiar la influencia de pequeños relieves en la pared como pudiesen ser salientes.

Las pruebas consistieron en tomar ciertos objetos cotidianos con diferentes niveles de texturizados y grado de relieve. Se tomó entonces un mínimo de 4 puntos en cada imagen para transformar la imagen de acuerdo a un plano principal que se situaría perpendicular a la cámara y así corregir la perspectiva.

Como premisa fundamental se marcó el uso de una cámara no calibrada ya que es altamente improbable que el usuario final a la hora de recorrer el yacimiento usase un dispositivo con la cámara previamente calibrada.

Se diseñó una pequeña herramienta para transformar imágenes aplicando una transformación proyectiva bidimensional. Medidos 4 puntos en ambos sistemas, píxel y terreno, se calculan los parámetros de la transformación.

Punto	x'(cm)	y'(cm)	xp (pixel)	yp (pixel)
1	10	10	1055	268
2	17,2	10	2520	205
3	10	15,4	1109	1296
4	17,2	15,4	2485	1384

Las ecuaciones de la transformación proyectiva son:

$$X_{p} = \frac{a_{1}X_{T} + b_{1}Y_{T} + c_{1}}{a_{3}X_{T} + b_{3}Y_{T} + 1} \qquad \qquad Y_{p} = \frac{a_{2}X_{T} + b_{2}Y_{T} + c_{2}}{a_{3}X_{T} + b_{3}Y_{T} + 1}$$

Parámetros de transformación							
a1	a2	а3	b1	b2	b3	с1	c2
0,0073376719	0,0013527467	0,000111916	-0,001003509	0,0047549685	-6,768559E-005	3,5270127882	8,2978367917

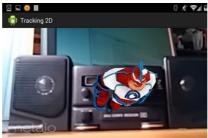
TEST 2D:

RESULTADOS

Una calculadora supone un trackable bastante texturizado, donde se pueden aproximar dos planos paralelos. Uno es el de la superficie del cuerpo de la calculadora y el otro el definido por la superficie de los botones. Su relieve es bajo con apenas un par de mm.

El tracking desarrollado fue óptimo, ofreciendo un resultado robusto sin apenas vibraciones apreciables en el modelo renderizado.

Prueba 2: TRACKING DE UNA MINIRADIO


Punto	x'(cm)	y'(cm)	xp (pixel)	yp (pixel)
1	10	10	114	102
2	31,3	10	2624	151
3	10	15,1	140	652
4	31,3	15,1	2566	771

Parámetros de transformación							
a1 a2 a3 b1 b2 b3 c1 c2							c2
0,0101937639	0,0003740973	5,49756E-005	-0,001042066	0,0084118457	-5,861675E-005	8,9470847203	9,1022277128

TEST 2D:

RESULTADOS

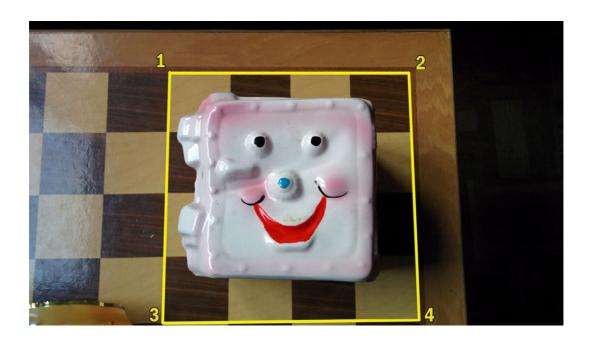
El tracking de la miniradio supone un incremento de la dificultad por ser un objeto menos texturizado, el nivel de relieve de los botones y el dial, mucho más pronunciado, sumado ello al factor de que el frente del cuerpo de la miniradio se posiciona en un plano distinto al definido por el frente de los altavoces. Aún con estos condicionantes el tracking se mostró robusto como se puede ver en el video adjunto.

Prueba 3: TRACKING DE UN PAQUETE DE CARAMELOS

Punto	x'(cm)	y'(cm)	xp (pixel)	yp (pixel)
1	10	10	648	79
2	31	10	2663	85
3	10	26,8	633	1762
4	31	26,8	2746	1714

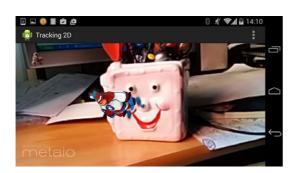
Parámetros de transformación							
a1	a1 a2 a3 b1 b2 b3 c1 c2						
0,0098721371	-0,000183393	-0,000015242	0,0003828789	0,0106954064	2,935335E-005	3,4970287992	9,1983227488

TEST 2D:

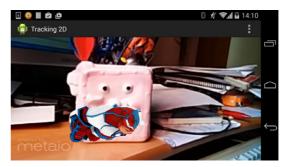


RESULTADOS

El propósito de la prueba era comprobar el tracking sobre curvaturas irregulares. Se dispuso un paquete de caramelos, bien texturizado y con ayuda de un tablero de ajedrez se rectificó la imagen. Los resultados de nuevo fueron sorprendentemente favorables ofreciendo un gran rendimiento incluso cuando se modificaba el relieve moviendo los elementos del interior.



Punto	x'(cm)	y'(cm)	xp (pixel)	yp (pixel)
1	10	10	843	308
2	26,8	10	2275	307
3	10	26,8	802	1806
4	26,8	26,8	2336	1791


Parámetros de transformación							
a1	a1 a2 a3 b1 b2 b3 c1 c2						
0,0116819796	-5,2408E-005	-6,0882E-006	0,0008025287	0,0126160421	4,811286E-005	0,0017765415	6,2553029815

TEST 2D:

RESULTADOS

Quizás la prueba más difícil de todas por dos motivos. Se conjugan un relieve acusado y poco texturizado con características difíciles de extraer, ya que no existen muchas esquinas bien definidas para un descriptor basado en la búsqueda de esquinas. Adicionalmente los elementos

que ofrecen un buen contraste con el entorno circundante como pudiesen ser los "ojos, nariz o boca" resultan muy extensos, irregulares y no contenidos en el mismo plano.

El tracking realizado arrojó un resultado mediocre, el sistema reconocía el patrón pero no con un resultado robusto provocando vibraciones en el modelo 3D renderizado, así como variaciones importantes en su posición al mover la cámara en diferentes ángulos.

CONCLUSIONES FINALES DEL ESTUDIO

Finalmente se demostró que se puede obviar el efecto del relieve en ciertas condiciones como son un patrón o trackable bien texturizado, respetar una cierta distancia y ángulo de visión y la existencia de elementos claves que se puedan aproximar sus posiciones al mismo plano.

Se demostró que el Tracking 2D podría resultar una alternativa viable al Tracking 3D en bastantes puntos del yacimiento arqueológico de Complutum. Entre las bondades con respecto al Tracking 3D se debe destacar que es un método más robusto al utilizar imágenes con mayor resolución que las utilizadas actualmente en el Tracking 3D para crear el Tracking Map.

Se pueden visualizar los test realizados en los videos adjuntos a la memoria

Por otra parte, dado que no se encontraba disponible el laser scanner, se relegó como una segunda opción en caso de que fallase el sistema final desarrollado mediante Tracking 3D, razonado en el aumento de la carga de trabajo que supondría obtener todos puntos necesarios a observar mediante intersección directa.

Como tercera opción se barajó la posibilidad de utilizar los paneles informativos como elementos trackables. Su debilidad es que sufren bastante la fuerza del sol llegando a impedir su lectura y su correspondiente deterioro, ignorando además el hecho de que pueden ser remodelados o cambiados de emplazamiento.

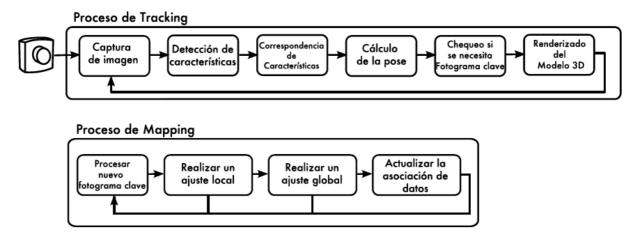
5.5 Tracking 3D

El problema del reconocimiento del entorno a través de una cámara además de conocer la posición relativa de los objetos respecto a ésta ha sido objeto de estudio desde los años 70. Varios son los sistemas actuales que permiten crear un modelo 3D a partir de varias imágenes pero o requieren un gran esfuerzo por el operador o el resultado final puede no ser lo suficientemente preciso u obligar a una revisión posterior con el fin de subsanar posibles errores. Siempre supeditado a la precisión requerida por el trabajo.

La tecnología monoSLAM

El término SLAM se traduce como mapeado y localización de forma simultánea. Es el problema de determinar la posición de un objeto en el espacio, mientras al mismo tiempo se determina la estructura del entorno que lo rodea. Por su parte la tecnología monoSLAM trata de llevar a cabo la misión anterior utilizando como sistema de visión una única cámara.

La dificultad de de este método reside en que una cámara con una pose desconocida se mueve con velocidades angular y lineal desconocidas, en un entorno de puntos de los que también se desconoce su posición.


Para nuestro cometido no será necesario llevar a cabo la localización y el mapeado de forma simultánea, sino que crearemos el mapa de reconocimiento previamente para después incluir el archivo resultante en la App final de tal manera que ésta solo tendrá que ocuparse del tracking.

A continuación se describe el único método encontrado con un carga computacional que pueda ser satisfecha por los actuales dispositivos móviles. En anteriores propuestas se utilizaba el algoritmo SIFT, siendo desplazado en el siguiente método por el uso de FAST. El método Parallel Tracking and Mapping (PTAM) fue desarrollado por *Robert Oliver Castle* en su tesis *Simultaneous Recognition, Localization and Mapping for Wearable Visual Robots* [18].

5.5.1 PTAM – Parallel Tracking and Mapping

En las últimas investigaciones de la tecnología de reconocimiento del entorno se separa el seguimiento "Tracking" de la creación del mapa de reconocimiento "Mapping". Esto se debe al largo tiempo empleado por anteriores métodos que utilizaban el EKF "Filtro de Kalman Extendido" y el FastSlamBased para referenciar el mapa de reconocimiento 3d y su covarianza.

El esquema general de funcionamiento es el siguiente:

Resumen del proceso de Tracking y Mapping seguido por PTAM.

Proceso de Tracking

La imagen tomada a través de la cámara se procesa obteniendo una imagen en escala de grises que será la utilizada para los posteriores cálculos del tracking mientras que la original es reservada para ser mostrada en el display. En la mayoría de aplicaciones basadas en la visión por ordenador se hace indispensable obviar las componentes RGB de la imagen debido al alto coste en operaciones que implica su procesado.

Con la imagen generada se crean 4 subimágenes de forma piramidal utilizando diferentes escalas y se procede a obtener las características o descriptores a cada escala utilizando el algoritmo FAST.

Se calcula una primera pose de la cámara a priori a partir de un modelo del movimiento de la cámara donde se asume una velocidad constante en presencia o ausencia de medidas.

Este modelo tiene como única finalidad la asociación de datos pero no es utilizado en el proceso de Tracking y Mapping.

Se extraen las características y se obtiene el valor ajustado de la pose en dos procesos:

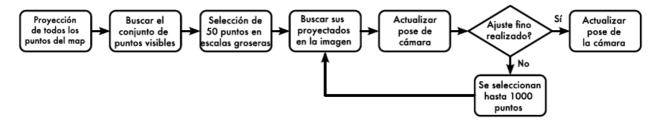


Diagrama del proceso de tracking en PTAM.

1. Se proyectan todos los puntos 3D al 2D para encontrar un subconjunto potencialmente visible.

Entonces se toma un subconjunto de puntos, el autor original recomienda unos 50 puntos, en las escalas más groseras. Se contrastan con los encontrados en la imagen tomada por la cámara y los que son encontrados en ambos son utilizados para corregir los valores de la pose haciendo un ajuste de Gauss-Newton o mínimos cuadrados, realizando hasta 10 iteraciones.

2. Se vuelve a realizar el proceso buscando un ajuste más fino tomando hasta 1000 puntos dentro de todas las escalas de la pirámide. En la elección de los puntos se dará prioridad a los incluidos en las escalas más detalladas completando los faltantes con las más groseras.

En estos ajustes ejecutados para obtener la pose μ ajustada, se busca hacer mínimo el error de reproyección:

$$\hat{\mu} = \arg\min_{\mu} \sum_{j} \rho\left(\frac{e_{j}}{\sigma_{j}}, \sigma_{T}\right)$$

Donde p es una medida robusta del error de reprovección e_i :

$$e_j = |x_j - x(K, \mu, X_j)|$$

K -> Parámetros de distorsión e intrínsecos de la cámara.

 μ -> Valores de la pose.

 X_i -> Coordenadas de los puntos 3D.

La varianza de la medida σ_j se asume que es isotrópica *(no varía en función de la dirección escogida para la medida)* y se tiene que escalar como 2^{2L} donde L es el nivel de la pirámide. En lugar de la ponderación clásica utilizada en el ajuste por mínimo cuadrado, se utiliza el estimador robusto de Huber M, con un umbral σ_T :

$$\rho(\beta) = \begin{cases} \beta^2/2 & \text{si } |\beta| \le \sigma_T \\ \sigma_T(|\beta| - \sigma_T/2) & \text{El resto de casos.} \end{cases}$$

Donde β se define como $\beta = (e_j / \sigma_j)$ y σ_T se establece como el valor de la desviación estándar.

Se debe realizar varias iteraciones hasta un número máximo de 10 para el ajuste grosero y otras 10 para el ajuste fino.

La porción de características encontradas correctamente es monitorizada para proporcionar una medida de la calidad del tracking.

Por otra parte se eligen dos umbrales arbitrarios. Si esta porción de características toma valores por debajo del umbral más alto, el tracking continua como antes, pero a los fotogramas se les impide pasar a ser fotogramas clave para el proceso de mapeo "Mapping", ya que la calidad de la imagen es probablemente pobre. En cambio si los valores obtenidos se sitúan por debajo del umbral más bajo, se asume que el tracking ha fallado y se pasa a usar un método de relocalización utilizado para recuperar la posición de la cámara.

Selección de los fotogramas clave

Los fotogramas clave son fotogramas que participan el proceso de creación del mapa de reconocimiento. Para obtener este estatus deben cumplir una serie de condiciones:

- a) El tracking debe ser considerado exitoso o válido.
- b) La cámara debe haberse trasladado una distancia mínima desde la toma del anterior fotograma clave.
- c) Entre un fotograma clave y el siguiente debe haber pasado un intervalo mínimo de 20 fotogramas.
- d) La cola de fotogramas pendientes de procesar tiene que ser menor a 3.

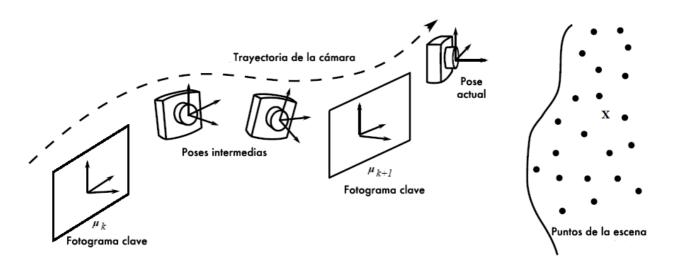


Gráfico del método de selección de fotogramas claves en PTAM.

La distancia mínima se basa en la distancia Euclidea entre los fotogramas y la profundidad promedio de los puntos de la escena.

Cada fotograma clave contiene las características extraídas de él y la lista de características encontradas que aparecen simultáneamente en la imagen y en el mapa de puntos, así como la mejor pose estimada obtenida del Tracker.

Creación del Mapa de Reconocimiento

Metaio, empresa de la que se hablará más adelante, proporciona una App gratuita que nos permite crear el mapa de reconocimiento de una manera sencilla. El resultado son dos ficheros donde uno contiene la nube de puntos con sus datos asociados y el otro contiene además de la nube de puntos y sus características, una imagen asociada que nos permitirá en el Creator, el software asistente de metaio, ver y situar correctamente el contenido 3D.

Metaio no permite modificar ni ver su algoritmo por lo que el método empleado es una incógnita. Sin embargo, su manera de proceder y las restricciones de movimiento hacia el usuario permiten pensar que el trabajo aquí expuesto ofrece una aproximación muy cercana a la forma de actuar del software de Metaio. Un ejemplo de ello, es la necesidad de realizar un movimiento paralelo de la cámara al empezar la creación del mapa.

En este trabajo se realza el hecho de que la creación del mapa de reconocimiento y el Tracking son procesos que corren de forma independiente pero simultáneamente.

El proceso de creación del TrackingMap o mapa de reconocimiento se resume en el siguiente esquema:

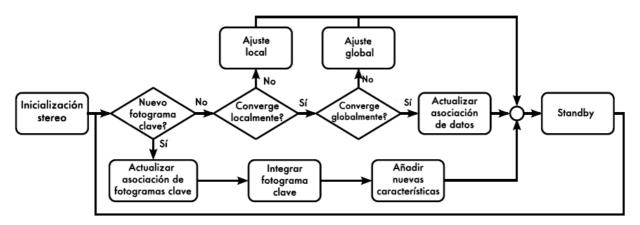


Diagrama del proceso de creación del mapa de reconocimiento.

Para iniciar el mapa se utiliza un algoritmo basado en 5 puntos para resolver el problema de determinar la posición relativa entre dos fotogramas continuos. Existen algunas variantes re-

solutivas pero en este caso se utiliza el algoritmo de Nister para obtener la posición relativa de los fotogramas, combinado con el algoritmo RANSAC.

** El algoritmo de Nister [35] plantea la relación entre dos conjuntos de puntos imagen, representado cada punto por su vector de 3 dimensiones, q y q', correspondientes a las coordenadas (x,y,l) en cada sistema proyectivo. Ambas proyecciones quedan relacionadas mediante la matriz fundamental. Sin embargo, se asume que ambas imágenes están libres de distorsiones, por lo que se emplea la matriz esencial(E) en lugar de la fundamental. Obteniendo que q'Eq = 0.

Para la resolución se determinan los coeficientes del polinomio de grado 10 y se descompone para finalmente recuperar los vectores de rotación R y traslación T mediante la descomposición en valores singulares de la matriz E.

Ransac es un algoritmo de estimación robusta que permite hallar un modelo matemático a partir de datos contaminados con numerosos valores que no se ajustan al modelo. En el caso de la resolución de la posición relativa, se toman un número aleatorio de muestras de dos o tres perspectivas, cada una conteniendo 5 puntos. Se ejecuta el algoritmo de Nister y por tanto, se generan una serie de hipótesis. Entonces se busca la mejor hipótesis de acuerdo a la medida robusta sobre todos los puntos participantes. Finalmente la mejor hipótesis se ajusta por un proceso iterativo.**

El primer punto de vista de cámara es seleccionado por el usuario. Su imagen y lista de características se convierten en el primer fotogramas clave, con pose $\mu_1 = \{R,t\}_1 = \{I,0\}$, siendo R la rotación y t la traslación. Para este primer fotograma se consideran 0 los giros w, phi y ka-ppa, así como las componentes de traslación Tx, Ty, Tz. De ello resulta que la matriz de rotación es igual a la matriz de identidad I.

La cámara entonces se mueve a una nueva posición de pose $\mu_2 = \{R,t\}_2$. Es muy importante tener cuidado de que las características puedan ser seguidas usando unicamente la imagen. Es aquí donde surge el problema de determinar la posición relativa entre los dos fotogramas que como se ha dicho antes se resuelve utilizando el algoritmo de Nister.

Q3 QI Q4 $\mu 2 = \{R,t\}$

Orientación relativa de los fotogramas

Orientación relativa a partir de 5 puntos conocidos en ambas imágenes.

 $\mu 1 = \{R,t\} = \{I,0\}$

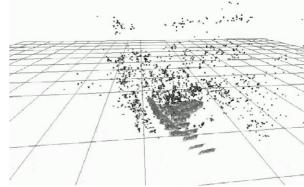
Las características encontradas por el detector FAST en las dos imágenes, son utilizadas para triangular el primer conjunto de puntos 3d Xj de la escena.

El autor asume que la traslación |t₂| se situará sobre los 100mm de forma que se pueda aplicar una escala razonable al modelo. La escala es arbitraria y no afecta a los cálculos posteriores. Habitualmente, muchas de las características 3D iniciales caen sobre el mismo plano, de forma que se encuentra un plano dominante en la estructura, y el mapa reorientado de modo que este plano define el plano Z = 0. Este plano no juega ningún papel especial en la estructura resultante calculada a partir de los cálculos de movimiento. Es simplemente una convención utilizada en las aplicaciones de realidad aumentada.

El tiempo estimado para inicializar el mapa depende del tiempo empleado por el usuario para desplazar la cámara cuidadosamente y seleccionar los fotogramas clave, pero el autor lo sitúa en un tiempo cercano a 2 segundos.

Con el mapa inicializado, se produce el tracking siguiendo el método explicado con anterioridad pasando algunos fotogramas claves para ser procesados. A ésta se le extraen las características o descriptores FAST para cada escala de la pirámide. Después un subgrupo de estas características son contrastadas con las existentes en el mapa y se estima una nueva pose.

Tras esto, se añaden las nuevas características de las que no se han encontrado correspondencias en el mapa.


Para encontrar la posición 3D de los puntos, se buscan correspondencias en los fotogramas clave espacialmente más cercanos y su posición es triangulada utilizando las poses estimadas de los fotogramas clave.

Se procede entonces a realizar un ajuste de Levenberg-Marquardt para optimizar la posición de todos los puntos 3D X_j contenidos en el mapa, así como de las pose de los fotogramas $\{\mu_k.\}$. La única pose que no interviene en el ajuste es la del primer fotograma que se considera fijo.

** El algoritmo de Levenberg-Marquardt es una modificación del clásico método de Gauss-Newton añadiendo características del método de gradiente descendente. Presenta una mejora en la robustez con respecto al método clásico, encontrando una mejor solución incluso si el punto inicial dista mucho del mínimo final. **

Ejemplo de creación de un mapa de reconocimiento.
Arriba: Correspondencia de las características en el escenario.
Derecha: Esquema del mapa con todos las características extraídas y los fotogramas clave.

En este ajuste se calculará la posición proyectada estimada dentro del fotograma k del conjunto de puntos X_i . Su formulación es la siguiente:

$$\{\hat{\boldsymbol{X}}\}, \{\hat{\boldsymbol{\mu}}\} = \arg\min_{\{\boldsymbol{X}\}, \{\boldsymbol{\mu}\}} \sum_{j} \sum_{k} v_{jk} \rho\left(\frac{e_{jk}}{\sigma_{jk}}, \sigma_T\right)$$

Donde el error cometido entre el punto observado en la imagen y el calculado es:

$$e_{jk} = |x_{jk} - x(K_k, \mu_k, X_j)|$$

Sabiendo que x_{jk} es el punto medido en la imagen. x es el punto proyectado a partir de los parámetros intrínsecos y de distorsión de la cámara K, μ_k la pose del fotograma y X_j el punto a proyectar.

El parámetro v_{jk} toma posibles valores atendiendo a dos posibles casos:

$$v_{jk} = \begin{cases} 1 & \text{Si el punto j se ha encontrado y es visible en k.} \\ 0 & \text{En cualquier otro caso.} \end{cases}$$

 σ_{jk} es el error presumible y σ_T es el umbral usado por el estimador Turkey M para determinar p:

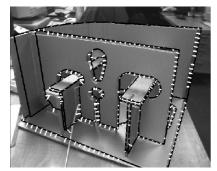
$$\rho(\beta) = \begin{cases} \frac{\sigma_T^2}{6} \left(1 - \left[1 - (\beta/\sigma_T)^2 \right]^3 \right) & \text{Si } |\beta| \le \sigma_T \\ \sigma_T^2/6 & \text{En cualquier otro caso.} \end{cases}$$

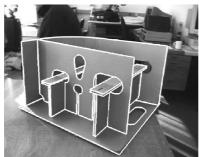
Debido a que este proceso se realiza por lotes y los datos son retenidos, se permite al proceso de creación del mapa o mapping retrasar el ajuste hasta que la carga de trabajo lo permita. Así cuando la cámara está explorando y nuevos fotogramas clave deben ser añadidos, se realizan pequeños ajustes en un limitado número de fotogramas clave.

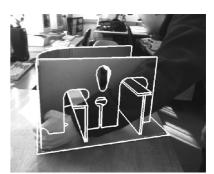
Experiencia final mostrada al usuario.

5.5.2 3D Tracking basado en modelos CAD:

El seguimiento a través de modelos CAD es una interesante solución para entornos poco texturizados. Se basa en la idea de crear un modelo CAD del objeto o del entorno y utilizarlo como referencia para realizar el seguimiento.


La manera de emplear el modelo CAD admite muchas variantes, algunas de ellas como Metaio, utilizan este modelo unicamente para calcular una primera pose de la cámara, después se pasa al método habitual de 3D Tracking mediante análisis de características naturales de la escena, extrayendo en tiempo real características del entorno y usándolas como referencias para el Tracking.


Otros, como el desarrollado por Changhyun Choi and Henrik I. Christensen [10] ofrecen un enfoque inverso. Primeramente se extraen las características del entorno y se emplean para calcular una primera pose. La primera pose ayuda seguidamente a realizar un seguimiento basado en el análisis de bordes de la imagen.


Otras vertientes de análisis son:

Optical Flow-Based: Estudia el movimiento aparente de la proyección imagen de un punto físico del objeto en una secuencia de imágenes. Es necesario considerar la intensidad del punto como constante.

RAPiD: Es muy extendido gracias a su bajo coste computacional. Se considera un conjunto de puntos de control 3D tomados en los bordes del modelo. Se determina el movimiento 3D de el objeto entre dos fotogramas consecutivos a partir del desplazamiento 2D de los puntos de control. Para cada uno de los siguientes fotogramas, se utiliza la pose calculada para estimar que puntos de control serán visibles así como su posición. Se ajustan los puntos de control a los contornos de la imagen y se estima la nueva pose.

Ejemplo del uso del algoritmo RAPiD.

Template- matching: Utilizado para detectar o reconstruir la posición de una imagen sometida a ciertas deformaciones.

Estimación de la pose haciendo el seguimiento de planos 3D: Se buscan planos 3D conocidos, existentes en la imagen. A través de las coordenadas del plano en el espacio y de las coordenadas de este proyectadas se calculan los parámetros de transformación por homografía. Se obtiene por tanto la pose de la cámara.

6. Programando Mundus4D

6.1 Librerías especializadas

En el mercado existen múltiples soluciones tanto libres como propietarias enfocadas a la visión por ordenador y la realidad aumentada. Entre las más interesantes se destacan:

OpenCV

OpenCV es una biblioteca libre de visión artificial desarrollada inicialmente por Intel. Su uso está muy extendido gracias además de a su potencia, a que se distribuye bajo licencia BSD, que permite que sea usada libremente para propósitos comerciales y académicos con ciertas condiciones.

Con más de 500 funciones, su programación se realiza en código C y C++ y se distribuye de forma multiplataforma para GNU/Linux, Mac OS X, Windows y se ha incluido una versión para Android en las últimas versiones.

OpenSURF

OpenSURF es una librería creada por Chris Evans. Proporciona una implementación libre del algoritmo SURF en diversos lenguajes como C#, Objetive C, Java, CUDA o Android.

ARToolkit

ARToolKit es una librería desarrollada inicialmente por Hirokazu Kato y apoyado por el laboratorio de tecnología en interface humano (HIT Lab) de la universidad de Washington, el

HIT Lab de la universidad de Canterbury en Nueva Zelanda y por ARToolworks Inc en Seattle.

Está enfocada hacia la realidad aumentada, ofreciendo diversas funciones como métodos para calibrar la cámara, administrar OpenGL, usar de marcadores, etc.

Se ha publicado un software multiplataforma para crear aplicaciones de realidad aumentada sin conocimientos de programación, **ATOMIC Authoring Tool**.

Se autoriza su uso de forma gratuita para usos no comerciales bajo licencia GNU GPL. Las licencias comerciales son administradas por ARToolworks Inc, debiendo contactar con ellos a fin de conocer las diversas tarifas.

BoofCV

BoofCV es una librería de código abierto escrita en java destinada a ser una solución para aplicaciones robóticas y de visión por ordenador en tiempo real. Sin llegar a ser tan completa como puede serlo OpenCV, ofrece multitud de funcionalidades para el procesamiento de imágenes como interpolación, reducción de ruido, covolucion, detección de puntos, lineas, calibraciones, etc.

Se distribuye bajo licencia Apache tanto para uso comercial como académico.

Por último, reseñar que el autor ha creado una aplicación para android donde se puede comprobar el rendimiento de las distintas utilidades.

D'Fusion Studio

Es un software de la empresa Total Inmersion diseñado para la creación de aplicaciones de realidad aumentada con distribución no comercial en su modo gratuito.

ARPA

Es otro kit de desarrollo pensado para la creación de aplicaciones de realidad aumentada basadas en el tracking 2D.

Vuforia

Vuforia provee un kit de desarrollo que facilita la creación de aplicaciones de realidad aumentada basadas en el 2DTracking. Incluye una serie de clases y métodos nativos preconstruidos que simplifican en gran medida el desarrollo. Se distribuye con soporte para iOS, Android y Unity3D libre del pago de tarifas por licencias.

En el momento de elegir la mejor solución a implementar en el proyecto, el sdk de Vuforia estaba escrito en C++ aunque posteriormente se lanzó una versión escrita en Java.

ARLab

ARLab ofrece una serie de SDK en función de las necesidades del desarrollador. Ofrece tanto tracking 2D como tracking 3D de elementos con formas básicas como esferas, cilindros o cubos. No se ofrece una versión gratuita de prueba sino que existen diferentes precios por App y SDK contratado.

ARmedia

Una de las opciones más interesantes sin duda es ARmedia. Ofrece tecnología de seguimiento 3D (3D Tracking). Permite el desarrollo de aplicaciones tanto para iOS como para Android. Ofrecen la posibilidad de probar el SDK, pero hay que solicitar una prueba gratuita a su servicio de ventas y en cambio ofrece 3 modalidades de suscripción: Entry: 1 mes, Pro: 6 meses, Business: 12 meses.

Metaio

Es la empresa líder del sector, o así se anuncian. Proveen todo tipo de servicios relacionados con la realidad aumentada, 2D Tracking, 3D Tracking, Tracking basado en ficheros CAD con soporte para iOS, Android y Windows. Ofrecen su SDK de forma gratuita mientras se mantenga la marca de agua en pantalla, exceptuando el tracking basado en uso de ficheros CAD. Para obtener una versión comercial de su SDK existen dos tarifas, una básica para la licencia en 2D Tracking y la licencia PRO que incluye 3D Tracking. Son licencias sin caducidad por lo que no requieren renovarlas.

6.1.1 Elección de la más adecuada

Para construir la aplicación se valoraron las distintas ofertas existentes en el mercado. Era de sentido común optar desde un primer momento por un kit de desarrollo que simplificase en gran medida el trabajo del desarrollador. Por tanto, librerías como OpenCV o BoofCV que ofrecen funciones realmente muy potentes pero que a su vez habrían conllevado un período de desarrollo de la aplicación mucho mayor fueron desechadas.

Los kit de desarrollo de realidad aumentada tienen la ventaja de administrar las distintas tareas del proceso. Administran la extracción de características o descriptores, buscan coincidencias en la base de datos, calculan la pose y renderizan el modelo 3D.

Otro filtro determinante es el lenguaje de programación. Librerías como OpenCV o el SDK de Vuforia a día de la elección se encontraban unicamente escritas en C++.

Android permite el uso de código C o C++ en sus aplicaciones pero añade un alto grado de complejidad al desarrollo. En el caso de querer utilizar código escrito en este lenguaje, se debe hacer uso de la herramienta Android NDK (Native Development Kit). El código nativo en C o C++ se escribirá en los archivos basados en JNI (Java Native Interface) acompañados de dos archivos Aplication.mk y Android.mk necesarios para el proceder del NDK.

Por ello, aunque se hicieron varios test de 2D Tracking con el SDK de Vuforia se relegó su uso a último recurso.

Finalmente la elección redujo a dos opciones, las que integran el 3D Tracking entre sus características. El SDK de ARmedia, y el de Metaio.

ARmedia por su parte muestra unas características realmente interesantes también. Al igual que Metaio, ofrece herramientas para crear el TrackingMap de forma sencilla siguiendo otros procedimientos que pueden ofrecer un rendimiento superior al Toolbox de Metaio. Sin embargo, solo ofrecen una prueba del SDK previo contacto con su departamento de ventas, lo que unido a la facilidad de uso de Metaio le dejan como segunda opción.

Se implementó finalmente el de Metaio por su facilidad de implementación y el hecho de no tener restricciones en el número de Apps creadas. Además, las herramientas auxiliares Toolbox y Metaio Creator poseen un diseño intuitivo.

6.2 MetaioSDK

Metaio provee un kit de desarrollo tanto para el sistema operativo Android como para IOS y Windows. Una de las principales ventajas es que facilita una serie de clases preconstruidas que nos simplifican en gran medida el desarrollo. La evidencia de esto se demuestra al renderizar un modelo 3D o al acceder a las funciones de la cámara del dispositivo.

Por otra parte ofrece la posibilidad de utilizar nuestro propio código maximizando la capacidad de personalización.

El SDK se oferta en tres modalidades:

- Una licencia básica que permite la publicación de aplicaciones basadas en el 2D Tracking.
- Una licencia Pro que incluye entre otros aspectos, la publicación de aplicaciones basadas en el 2D Tracking, su tecnología patentada de 3D Tracking tanto Markerless como basadas en datos CAD. También incluye una versión 100 % operativa de la herramienta Metaio
 Creator.
- La licencia gratuita o demo utilizada en este proyecto resulta a coste 0 asumiendo ciertas restricciones que se explicarán a continuación.

Versión gratuita

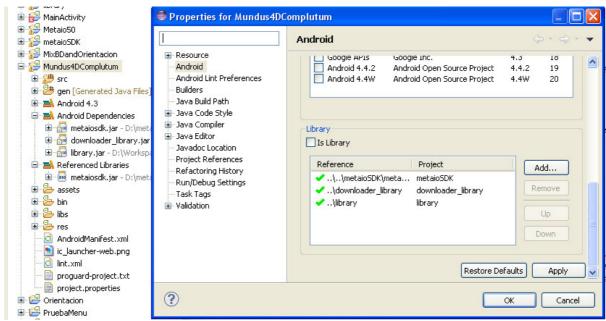
Dado el precio de las licencias (2950€ para la versión básica y 4950€ para la PRO), el presupuesto inexistente para este proyecto y sus fines académicos no se planteó la idea de desembolsar cantidad alguna en la adquisición de una licencia. Bien es cierto que Metaio ofrece un 50% de descuento en sus producto para estudiantes pero aún con ello resulta inviable para el proyecto. En su lugar se optó por utilizar la versión gratuita, la cual contiene ciertas limitaciones de uso

Esta versión no apta para uso comercial, permite utilizar la mayoría de funcionalidades del SDK aceptando la inclusión de la llamada marca de agua de Metaio durante el tiempo de ejecución del Tracking.

Metaio Creator

Metaio Creator es una herramienta indispensable cuya función principal en este proyecto fue situar de una forma gráfica el modelo 3D sobre la nube de puntos y posteriormente exportar los llamados Tracking configuration files que contienen todos los datos indispensables para realizar el Tracking.

Las limitaciones de la versión gratuita vienen dadas por la imposibilidad de importar más de dos "trackables", en nuestro caso los ficheros *.creator3dmap. También se ve mermada la opción de añadir modelos 3D a la escena permitiendo unicamente visualizar 2 modelos 3D simultáneamente. Este último hecho no influyó en el resultado final, pues el SDK permite añadir varios elementos a la escena.


Otra característica reservada a la versión de pago, quizá la más interesante, es el uso de "trackables" basados en datos CAD.

6.3 Implementando el SDK en Mundus4D

Metaio exige unos mínimos requisitos del dispositivo Android para su implementación:

- 1) Una versión de Android igual o superior Android 2.3 (Gingerbread).
- 2) Procesador basado en la arquitectura ARMv7.
- 3) Soporte para OpenGLES 2.0.

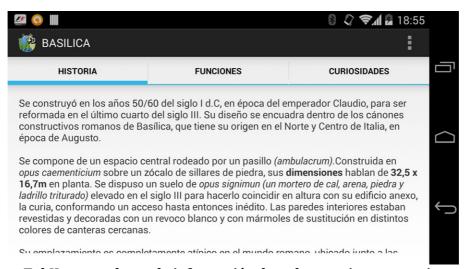
El SDK se entrega como una librería que deberemos añadir a nuestro proyecto. En la siguiente imagen se muestra la inclusión de la librería metaioSDK así como la inclusión de dos librerías más necesarias para subir nuestra aplicación a Google Play.

Librerías añadidas al proyecto.

Es indispensable registrar la App en la página de Metaio. Introduciendo el "package" de la aplicación el sistema nos otorga una firma que debemos introducir en la aplicación dentro de un fichero signature.xml dentro de la carpeta values.

Estructura del fichero signature.xml:

6.4 Estructura básica de la aplicación


La App se divide en 3 activities primarias (Launcher, MenuPrincipal y RealAumentada) y 5 secundarias (Historia_activity, Fuciones_activity, InfoActivity, Sabias y Plano_Mundus_Activity). Por activities primarias se entienden aquellas que son indispensables para el buen funcionamiento de la App en su misión de recrear el yacimiento. Por su parte, las activities secundarias son las creadas para complementar la App con información o funciones adicionales.

6.4.1 Activities secundarias

En Mundus4D las activities secundarias son utilizadas para ofrecer información adicional acerca del edificio recreado.

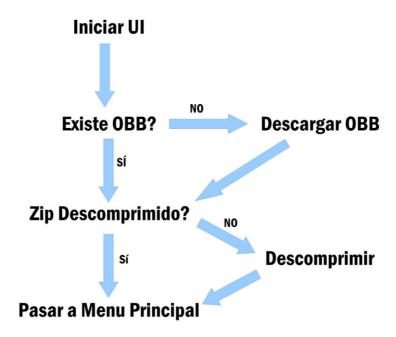
El apartado de información queda conformado por un Tab Host, proporcionando una interfaz de usuario distribuida en pestañas. Éste se crea extendiendo una activity específica llamada TabActivity. Google recomienda sustituir el uso de los TabHost por los llamados "Fragments" que ofrecen una mayor libertad en la distribución del contenido en pantalla. Sin embargo, se eligió utilizar TabHost por su sencillez a la hora de programar y dado el objetivo final de la App, cumplía sobradamente con los requisitos.

En Mundus4D el TabHost queda implementado en la clase InfoActivity. Dentro se crearon una serie de pestañas dependiendo de la información obtenida de cada espacio constructivo. Dentro de cada pestaña se implementaron las clases Historia_activity, Funciones_activity y Sabias. Como resultado se obtiene que pueden aparecer 3 pestañas Historia, Funciones y Curiosidades.

TabHost creado con la información de cada espacio constructivo.

El texto se introdujo conforme al formato Html. Esto es debido a que fue la única forma que encontré para cargar el texto desde el fichero strings.xml con la posibilidad de poder introducir texto en cursiva y negrita. El comando adecuado para leer en este formato y mostrarlo en pantalla a través de un TextView es:

```
//Objeto que hace referencia al TextView "Funciones" incluido en el layout.
TextView infoFunciones = (TextView)findViewById(R.id.Funciones);


//El método Html.fromHtml se encarga de leer el texto en formato html.
//El método setText carga el texto dado.
infoFunciones.setText(Html.fromHtml(getString(R.string.curia_f)));
```

Por último la activity Plano_Mundus_Activity consta solo de una imagen a modo de plano con los puntos adecuados donde utilizar la aplicación.

6.4.2 Activities primarias

6.4.2.1 Launcher.java

El archivo Launcher.java es el fichero que contiene a a clase Launcher, que extiende la activity inicial. En otras palabras, es la primera actividad que se desarrolla al iniciar la aplicación. Su objetivo principal es comprobar que existen todos los recursos necesarios en la aplicación e instalarlos si fuese necesario.

El funcionamiento de la activity está programado para que se ejecute de una forma secuencial y automática. El usuario no podrá realizar ninguna acción que no sea la de salir de ella dentro de ella. Se explicará más adelante en la sección donde se describe el proceso seguido para subir la App a Google Play y los problemas encontrados.

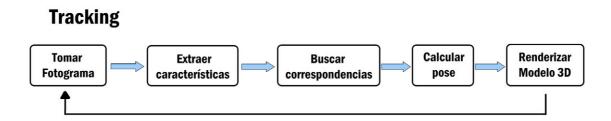
6.4.2.2 MenuPrincipal.java

El archivo Launcher.java es el fichero que contiene la clase MenuPrincipal, que extiende la activity encargada de gestionar el menú principal así como los menús secundarios donde se puede encontrar información acerca de la aplicación, Complutum e instrucciones de uso. La disposición en pantalla viene determinada por el "layout" o capa activity_menu_principal.xml:

Se dispone un LinearLayout con orientación horizontal, dividido en un ScrollView y otro LinearLayout.

ScrollView - Permite mostrar datos que por su tamaño o longitud es necesario que el usuario pueda desplazarse a lo largo de ellos. Como por ejemplo, un articulo de periódico de cierta longitud.

LinearLayout - Es un "layout" o capa que muestra los elementos contenidos en él, en forma de columna o fila. En este caso el LinearLayout contenido dentro del LinearLayout principal contiene a los TextView clickables que harán la función de botones dentro del menú principal.



Esquema del menú principal.

Cuando se crea la actividad se crean los objetos mediante programación para hacer que los TextView reaccionen ante la pulsación del usuario. Se define también el objeto ScrollView para poder variar su contenido de forma dinámica dentro del método *loadContenidoScroll-View(*).

6.4.2.3 RealAumentada.java

La clase RealAumentada es la encargada de producir todo el proceso de Tracking y renderizado del modelo 3D. Se extiende la clase especial *ARViewActivity* incluida en el SDK de Metaio que simplifica enormemente la programación. Ella se encarga de inciar la actividad, activar la cámara, mantener la pantalla activa, tomar los fotogramas a analizar y administrar los surface-View necesarios para el renderizado.

También se diseña el sistema de orientación implementando *SensorEventListener*, explicado su funcionamiento más adelante.

Por último se gestiona el desempeño del menú desplegable, el cúal ofrece 3 opciones básicas:

Seleccionar Edificio

Se despliega un cuadro de diálogo con los diferentes espacios recreados, a su vez cada espacio puede tener diversas opciones de visualización, como es el período histórico o la posibilidad de cargar unicamente el interior o el exterior del mismo.

ID Edificio	S.I	S.III	Exterior	Interior
F. Monumental		×	×	
Criptopórtico		×	×	x
Curia		×	×	x
Decumano	×		×	
Basílica		×	×	×
Pórtico Sur		×	×	
Termas Sur		×	×	×

Mercado	×	×	×	
Ninfeo	×		×	×

<u>Info</u>

Se despliega un TabHost con información acerca del edificio activo. Se pueden desplegar hasta tres pestañas: Historia, funciones y curiosidades.

Reposicionar

Al pulsar se realiza una llamada al método definido para cada edificio dentro de la clase *Recorrido_Tracking* pasando como argumento el ID del edificio y el azimut filtrado. Su objetivo es seleccionar nuevos parámetros y cambiar el TrackingMap cuando el posicionamiento no es correcto.

6.4.3 Recorrido_Tracking.java

El archivo Recorrido_Tracking contiene la clase del mismo nombre. Se trata de una clase creada a modo de base de datos. Android utiliza SQLite como sistema de gestión de base de datos. Sin embargo, se prefirió no utilizar este sistema por cuestiones de simplicidad y la poca familiarización del autor con las bases de datos.

La clase se divide en una serie métodos básicos:

- Maps_FM(), Maps_CR(), Maps_CU(), Maps_DEC(), Maps_BAS(), Maps_PS(),
 Maps_TS(), Maps_MER(), Maps_NI() que funcionan a modo de bases de datos.
- Por otro lado están los métodos *Seleccion_Map()* y *DistanciaMinima()*. El primero es llamado al filtrar los datos en alguno de los métodos anteriores y el segundo es llamado por *Seleccion Map* en caso de que sea necesario.

Recorrido_Tracking

Los TrackingMaps están introducidos ordenadamente de forma que se pueda recorrer el yacimiento en un sentido de manera continua sin que el usuario experimente un gran retardo en la búsqueda del TrackingMap válido. Por otra parte se llamaría al objeto de está clase a través del método *onTrackingEvent()*, empleado para realizar las acciones necesarias en función de la calidad del tracking.

Consideraciones

La clase Recorrido_Tracking está diseñada en base a la idea original de la App. Sin embargo, dado el mal desempeño mostrado en el terreno se decidió prescindir de ciertas funcionalidades, simplificando su funcionamiento. Hecho que provocó que algunos aspectos del código cayeran en desuso. Los motivos serán explicados más adelante, sin embargo se ha querido conservarlas como plantilla, para demostrar el trabajo realizado y porque era más rápido no usarlo que reescribir el código borrando las partes no utilizadas.

6.5 Uso de los sensores como método de orientación

Los dispositivos móviles actuales disponen de diferentes tipos de sensores para su correcto posicionamiento y orientación en el espacio. De dicha forma el dispositivo ofrece la posibilidad de estar constantemente geoposicionados. Con la evolución de los dispositivos estos sensores pueden verse modificados pero existen 3 básicos que suelen ser incluidos en todos ellos: los acelerómetros, el sensor de campo magnético y el receptor GPS.

Para este proyecto se prescindirá del uso del receptor GPS por su alto consumo de recursos y baja precisión (unos 10m), limitándonos a tener una orientación aproximada a partir de los acelererómetros y el sensor de campo magnético.

Un Acelerómetro se basa en la disposición de una masa unida a un muelle en reposo y contenida dentro de un tubo. En el caso de los dispositivos móviles su diseño es bastante más sofisticado. El acelerométro en cuestión mide las fuerzas de aceleración y permite conocer la inclinación del dispositivo con respecto a la dirección de la vertical. Sin embargo, si lo giramos a velocidad constante con respecto al eje vertical no obtendremos cambio en la lectura alguna. Es aquí donde interviene el sensor de campo magnético que busca suprimir esta laguna.

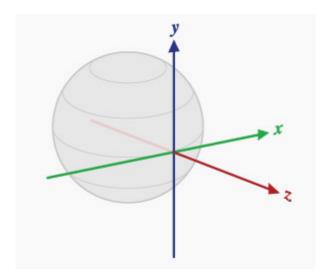
El sensor de campo magnético permite conocer la intensidad y dirección de un campo magnético.

El SDK de Android proporciona una clase con métodos preconstruidos con el fin de facilitarnos el acceso a los datos enviados por el sensor. Esta clase recibe el nombre de *SensorEventListener* que deberemos implementar al definir la clase.

```
public class MainActivity implements SensorEventListener{}
```

Al hacerlo se genera de forma automática un par de métodos que son:

 onAccuracyChanged(): En el especificamos que hacer cuando varía la precisión, por ejemplo, que avise al usuario cuando ésta sea muy baja. OnSensorChangedQ: Es sin duda la m\u00e1s importante ya que define que hacer cuando el sensor registra un cambio en el valor registrado.


Además podremos interferir en su funcionamiento a través de los métodos *onResume()*, *onPau-se()* y *onDestroy()*.

Se calcula a partir de los valores de los acelerometros y el campo magnético la matriz de rotación haciendo uso del método getRotationMatrix(), pasando como parámetros la matriz de rotación destino (MatrizRotacion), matriz de inclinación destino (null) porque no queremos crearla, y las matrices obtenidas anteriormente con los valores de los sensores.

```
boolean Resuelto = SensorManager.getRotationMatrix(MatrizRotacion, null,
ValAcelerometro, ValMagnetico);
```

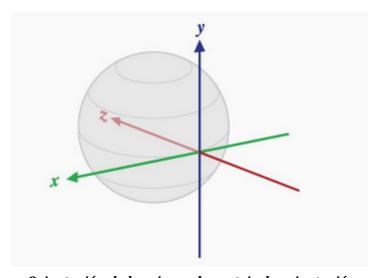
Características de la matriz de Rotación:

- El eje Y se encuentra con dirección al polo norte magnético y es tangencial a la superficie en el punto donde se encuentra el dispositivo.
- El eje Z toma la dirección de la vertical y sentido contrario al de la gravedad.
- El eje X es el producto de Y*Z y es tangencial a la superficie en el punto donde se encuentra el dispositivo y con sentido positivo hacia el Este.

Orientación de los ejes en la matriz de rotación.

Podemos construir esta matriz con dimensión 4x4 o 3x3. Para el proyecto usaremos la matriz de 4x4 que además es la aceptada por OpenGL ES para renderizar objetos.

El proceso retorna un valor de verdadero o falso reflejado en la variable Resuelto. Su significado se reduce a transmitir que se ha obtenido la matriz de rotación de manera satisfactoria (true) o (false) si el proceso falló.


Si el proceso terminó correctamente, pasamos a calcular la matriz de orientación con los parámetros de la matriz de origen (MatrizRotacion) y matriz destino (MatrizOrientacion).

```
if (Resuelto) {SensorManager.getOrientation(MatrizRotacion, MatrizOrientacion);}
```

Características de la matriz de Orientación:

El sistema de referencia de coordenadas utilizado es diferente al definido por la matriz de rotación:

- El eje Y es tangencial a la superficie donde se encuentra el dispositivo y con dirección al polo norte magnético.
- El eje Z se encuentra en la dirección de la vértical y por tanto perpendicular a la superficie donde se encuentra el dispositivo.
- El eje X es definido como un vector producto de Y*Z, tangente al punto de la superficie
 donde se encuentra situado el dispositivo y con sentido positivo hacia el Oeste.

Orientación de los ejes en la matriz de orientación.

Esta matriz es de 3 filas donde cada fila refleja:

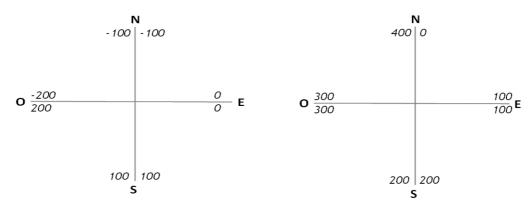
Fila[0]: Azimut de la dirección hacía el polo norte magnético alrededor del eje Z.

Fila[1]: Inclinación, rotación alrededor del eje X.

Fila[2]: Rotación alrededor del eje Y.

Todos los valores son entregados en radianes, por lo que bastaría con multiplicar por 200/PI para obtener sus correspondientes valores en grados centesimales. Pero como explicaré a continuación existen varios inconvenientes:

- 1. Estos valores son para el dispositivo en posición de retrato y la aplicación se utilizará en modo paisaje.
- 2. Los valores que proporciona se encuentran tanto con valores positivos como negativos.
- 3. El sensor de campo magnético no entrega un valor de campo constante.


PROBLEMA 1

El problema se ha resuelto simplemente tomando los valores de la fila [2] como los valores de inclinación.

PROBLEMA 2

2.a Azimutes.

Una vez obtenidos los valores en grados centesimales al ejecutar la aplicación se observó que el dispositivo produce valores que oscilan entre 0g y 200g para direcciones que en el terreno corresponderían a 100g y 300g; y -200g y 0g para valores correspondientes a 300g y 100g.

Azimut entregado por el dispositivo (izq.) y azimut corregido (dcha).

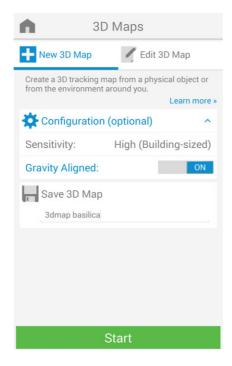
Como se ve el resultado no es directo sino que es necesario un estudio de signos.

2.b. Inclinación

El mismo problema existe al calcular el valor de inclinación del dispositivo, donde orientados con el dispositivo a cualquier azimut aleatorio, se produce el hecho de que para visuales correspondientes a la dirección del zenit el dispositivo entrega un valor de -200g cuando su correspondencia sería de 0g. Por el contrario este entrega valores de 0g para valores en la dirección y sentido de la plomada, debiendo ser su valor de 200g.

PROBLEMA 3

Debido a las limitaciones notorias del sensor del campo magnético se muestra con un rendimiento bastante inestable en los dispositivos probados. Las consecuencias son una sucesión de valores que pueden llegar a diferir entre sí entorno a los 10-20g. Se entiende que el tipo de sensor montado en estos dispositivos es destinado para uso doméstico y por tanto no es necesario excesiva precisión en el mismo. Por otra parte, en este proyecto se busca su uso como fuente de apoyo aproximada para filtrar resultados de nuestra base de datos, necesitando precisiones no mayores de +-10g.


Además, se busca reducir los picos que muestra en las discrepancias entre lecturas que pueden llegar a los 20g. Intentamos reducir la varianza obteniendo una serie de valores para posteriormente hallar su valor más probable.

Huelga decir que se produce un error de precisión en valores cercanos a 400g. Es del hecho de hacer el promedio entre valores cercanos a 400g y otros del entorno de 5 g. Sin embargo para el propósito de la aplicación no implica efectos notables en la misma.

De forma análoga se ha realizado otro promedio con las lecturas de inclinación con el fin de que el usuario disfrute de una experiencia más agradable.

6.6 Creación de los TrackingMaps

Metaio desarrolló una App gratuita disponible en Google Play con la que se pueden crear los TrackingMaps llamados 3D Maps de una forma fácil e intuitiva. A priori puede parecer la panacea pero como se demostrará más tarde, su funcionamiento tiene algunas fallas y el resultado final dista bastante de ser perfecto.

Menu de creación 3D Maps de Toolbox.

Para crear el TrackingMap solo se debe configurar dos opciones:

- *Sensitivity:* Establece un valor inicial para la escala del escenario. Ayuda a una óptima inicialización del Tracking. En el trabajo se seleccionó High (Building-sized) para establecer una escala adecuada al tamaño de los edificios.
- *Gravity Aligned:* Es una opción a activar si la escena contiene muchas características o descriptores situados en un plano vertical.

Configuradas estas dos opciones se pasa a crear el TrackingMap. La App nos pide que realicemos un primer movimiento paralelo a la escena evitando girar el dispositivo, en lo que llaman "Aprender el entorno".


Si el proceso fue correcto aparecerá una nube de puntos rojos correspondientes a las características encontradas. Ahora sí podremos girar el dispositivo y movernos alrededor de la escena para añadir más características.

Como resultado final se entregan dos ficheros: un .3DMAP y un archivo .CREATOR3DMAP.

Otra opción avanzada que ofrece es la llamada "Alinear 3D Map" en "Editar 3DMap". Consiste en repetir el proceso anterior pero añadiendo un marcador que fije una escala y la alineación. Todas las coordenadas de las características quedarán referidas al centro del marcador. Esto sería de gran ayuda para simplificar el posicionamiento de los distintos edificios, sin embargo fue aquí donde empezaron los problemas.

Se construyó para la ocasión un marcador a una escala acorde con las dimensiones del escenario. Se trata de un marcador de 85x85cm sobre un tablero de contrachapado de 90x90cm.

Marcador usado en el proyecto.

6.6.1 Deficencias encontradas

Deficiencia encontrada n1

Desde un primer momento se encontró que en el dispositivo de prueba, con Android 4.4, ocurría un error al crear el archivo alineado .*creator3dmap* usando el marcador. Los puntos de la nube de puntos no se correspondían con sus homólogos en la imagen. A continuación se adjuntan dos imágenes que confirman lo dicho, el archivo .*creator3dmap* no alineado (arriba) y el archivo .*creator3dmap* alineado (abajo).

Creator3dmap no alineado.

Creator3dmap alineado.

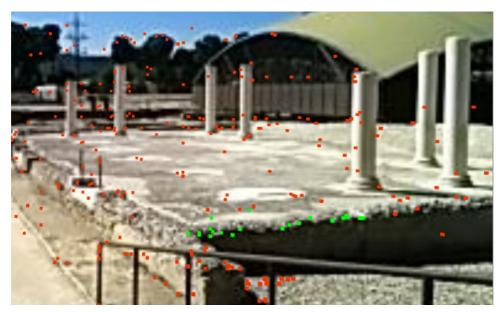
Se puede apreciar en esta prueba hecha en condiciones ideales como son un objeto bien texturizado sobre un fondo también muy texturizado y condiciones lumínicas invariantes, que en el archivo no alineado la nube de puntos se mantiene dispersa sobre toda la imagen manteniendo la correspondencia entre punto y su pixel en el fotograma mientras que en el archivo alineado está correspondencia se pierde totalmente.

Semejante error conlleva que al situar el modelo 3D sobre la nube de puntos utilizando la imagen como referencia no se produzca el deseado efecto de realidad aumentada al ejecutar la aplicación. El modelo se renderiza en una posición completamente errónea como demuestra la siguiente captura.

Error de correspondencia de alineación.

La recreación que se muestra con un tamaño mayor es una hipotética posición ideal y el modelo que aparece en pequeño en la parte baja de la imagen es el modelo renderizado al ejecutar la aplicación. Es un problema que podría haber sido subsanado calculando los parámetros correspondientes a la transformación tridimensional de semejanza entre ambos sistemas. Por desgracia Metaio no permite al usuario conocer las coordenadas de la nube de puntos.

En las etapas finales del proyecto, Metaio lanzó una nueva versión de la aplicación Toolbox subsanando este bug. Pero en cambio apareció otro. En frecuentes ocasiones, cuando se alineaba el 3dmap, el fichero aparecía sin nube de puntos. Estaba vacío, conservando unicamente la imagen.


Ambos bugs provocaron no poder usar los TrackingMaps alineados traduciéndose en un aumento de la carga de trabajo ya que fue necesario situar cada modelo a ojo perdiendo el rigor científico y la precisión del proyecto.

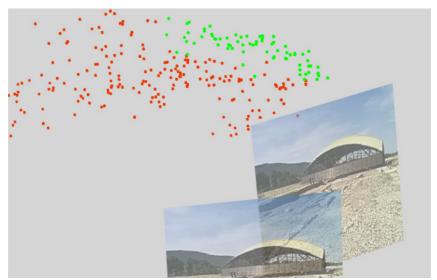
<u>Deficiencia encontrada n2</u>

El fichero .creator3DMap puede contener varios fotogramas que sirven de guías para situar el modelo sobre la nube de puntos. Por otra parte, de acuerdo a la documentación proporcionada por Metaio, la forma correcta de situar el modelo 3D es ayudándose de los fotogramas para dar la perspectiva y escala correcta.

Primeramente se posicionará el modelo atendiendo al primer fotograma. Conseguido el efecto se pasa a ajustar su posición en el segundo fotograma. Se vuelve a ajustar de acuerdo al primer fotograma y se repite el proceso con todos los demás fotogramas hasta que se obtenga una posición final válida para todos los fotogramas.

En la práctica se demostró que esto no se cumple, ya que la correspondencia de los puntos tomados desde un fotograma no se corresponde con su posición teórica en el siguiente.

Fotograma 1


Fotograma 2

Los puntos verdes se observan desplazados en el segundo fotograma con respecto al punto que según el primer fotograma deberían representar en el escenario. Semejante error conlleva que sea imposible encontrar una posición única para el modelo que satisfaga cualquier posición en el escenario.

Deficiencia encontrada n3

Otro problema encontrado es el debido al error al determinar la profundidad. El sistema entrega resultados erróneos en las coordenadas del punto de forma proporcional a la lejanía del objeto. Se vio que cuanto más alejado estuviese el punto, su error en la determinación de la profundidad era mayor. En casos extremos, como en el del ejemplo que se adjunta a continuación, estos puntos adolecen de tal error que su distancia al plano imagen es menor que cualquier otro punto de la escena cuando realmente son los puntos más alejados.

Error cometido al calcular la profundidad de la escena.

En descarga para Metaio hay que decir que una de las posibles causas de estos errores es debido a la pobre resolución utilizada en cada fotograma por la baja capacidad de procesamiento de los dispositivos móviles actuales. En concreto la App utiliza una resolución de 320x240 pixeles para cada fotograma clave. Un valor realmente bajo si se quieren obtener modelos precisos.

A tenor de los problemas encontrados se desechó la idea de intentar crear un TrackingMap único para cada edificio. En su lugar se apostó por intentar implementar un sistema que basándose en pequeños TrackingMaps con un único fotograma asociado, siguiendo la trayectoria del usuario a lo largo de su visita al yacimiento y cambiando entre los distintos Tracking-Maps cuando la calidad del tracking no fuese la deseada.

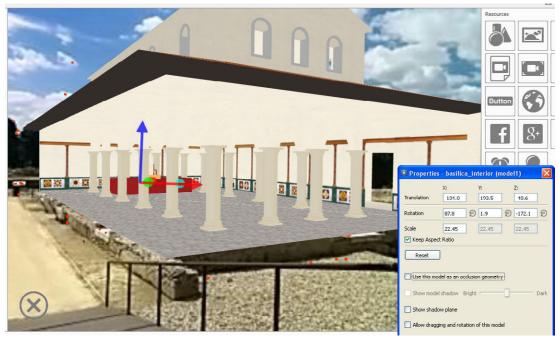
El sistema iría recorriendo las matrices de parámetros incluidas en la clase Recorrido_Tracking. Cuando la calidad del tracking descendiese de un cierto valor, el sistema cambiaría al siguiente TrackingMap o anterior en función del sentido de la marcha. El sistema determinaría que se ha cambiado el sentido de la marcha cuando tras probar los dos TrackingMaps siguientes al último válido no se encontrasen coincidencias o una calidad de tracking apta. En este caso se tomaría el último TrackingMap con resultado positivo como referencia y se tomaría en siguiente en sentido contrario. Además también se estudiaría cambiar el TrackingMap cuando el usuario girase el dispositivo ciertos grados de forma que el azimut filtrado y el último válido discrepasen.

La calidad del tracking como se ha explicado anteriormente es administrada desde el método *onTrackingEvent()* de la clase AdminMetaioSDK.

Cambio automático de los TrackingMaps en onTrackingEvent()

Todo el sistema fue desechado tras mostrar un mal desempeño en las pruebas realizadas fruto de que el sistema seguía entregando valores de la calidad del tracking muy elevados > 0,8 sobre 1, aún cuando el modelo se encontraba completamente fuera de su localización ideal.

Por último se intentó contactar con Metaio con el fin de resolver la incidencia sin obtener respuesta alguna.


6.7 La importancia de Metaio Creator

Como se explicó anteriormente Metaio Creator es una herramienta indispensable en la generación de los TrackingMaps usados en la App. En su versión completa ofrece importantes funcionalidades, muchas de vital importancia para personas no familiarizadas con la programación.

Se basa en un diseño muy intuitivo que guía al usuario a través de los distintos pasos. En este proyecto solo fue necesario realizar los mismos 4 pasos de forma repetitiva.

- 1. Importar el Trackable. Por trackable se refiere al archivo .creator3DMap creado con Toolbox.
- 2. Importar el modelo3D generado del edificio.
- 3. Posicionar el modelo sobre la nube de puntos.
- 4. Exportar el fichero TrackingMap en .zip. En Metaio lo denominan Tracking Configuration File.

Hay que decir que en un hipotético fichero .*creator3DMap* alineado no es necesario importar el modelo3D, ya que sabiendo la posición del marcador en el momento de crear fichero se conocen los parámetros de traslación, rotación y escala a aplicar. Estos parámetros no son exportados con el fichero .zip sino que debemos introducirlos en la App de forma manual.

Posicionamiento del modelo sobre el terreno.

Cada fichero .zip exportado contiene dos tipos de ficheros. Los ficheros .f3b que contiene el conjunto de características o descriptores contenidos en el TrackingMap o Trackable. El otro es un fichero Tracking.xml con ciertos aspectos básicos de configuración.

Ejemplo de fichero Tracking.xml:

```
<?xml version="1.0" encoding="UTF-8" ?>
<TrackingData>
 <Sensors>
  <Sensor subtype="ML3D" type="FeatureBasedSensorSource">
   <SensorID>FeatureBasedSensorSource_0
   <Parameters>
     <featureorientationassignment>gravity</featureorientationassignment>
     <MaxObjectsToDetectPerFrame>5</MaxObjectsToDetectPerFrame>
     <MaxObjectsToTrackInParallel>1</MaxObjectsToTrackInParallel>
   </Parameters>
  <SensorCOS>
       <SensorCosID>c74858378bf7cfb6578c4758fcbd8385</SensorCosID>
       <parameters>
             <mintriangulationangle>6</mintriangulationangle>
             <map>c74858378bf7cfb6578c4758fcbd8385.f3b</map>
             <MinMatches>15</MinMatches>
             <DesiredMatchesRatioExtensible>0.35</DesiredMatchesRatioExtensible>
             <NumExtensibleFeatures>250</NumExtensibleFeatures>
       </parameters>
   </SensorCOS>
```

```
</Sensor>
  </Sensors>
- <Connections>
    <COS>
       <Name>foro_1</Name>
       <Fuser type="SmoothingFuser">
              <Parameters>
                     <AlphaRotation>0.5</AlphaRotation>
                     <AlphaTranslation>0.8</AlphaTranslation>
                     <GammaRotation>0.5</GammaRotation>
                     <GammaTranslation>0.8</GammaTranslation>
                     <KeepPoseForNumberOfFrames>0</KeepPoseForNumberOfFrames>
              </Parameters>
       </Fuser>
       <SensorSource trigger="1">
              <SensorID>FeatureBasedSensorSource_0/SensorID>
              <SensorCosID>c74858378bf7cfb6578c4758fcbd8385</SensorCosID>
              <HandEyeCalibration>
                     <TranslationOffset>
                         <x>0</x>
                         <y>0</y>
                         <z>0</z>
                     </TranslationOffset>
                     <RotationOffset>
                         <x>0</x>
                         <y>0</y>
                         <z>0</z>
                        <w>1</w>
                     </RotationOffset>
              </HandEyeCalibration>
              <COSOffset>
                     <TranslationOffset>
                         <x>0</x>
                         <y>0</y>
                         <z>0</z>
                     </TranslationOffset>
                     <RotationOffset>
                         <x>0</x>
                         <y>0</y>
                         <z>0</z>
                        <w>1</w>
                     </RotationOffset>
              </COSOffset>
          </SensorSource>
        </cos>
     </Connections>
 </TrackingData>
```

El archivo se estructura en 2 apartados principales, <Sensors> y <Connections>.

Sensors> - Determina los parámetros generales con los que configurar el Tracker:

Los parámetros configurables en este apartado son:

- MaxObjectsToDetectPerFrame> Es el número máximo de trackables que pueden ser detectado por fotograma. Por defecto se establece en 5.
- <MaxObjectsToTrackInParallel> Es el número de trackables que pueden ser tracked "seguidos" por fotograma. No se recomienda alterar este valor que viene establecido en 1 por razones de rendimiento.
- <SensorCOS> En este subapartado se hace referencia a los archivos f3b incluidos en el fichero .zip. En el ejemplo mostrado solo se incluye el fichero c74858378bf7cfb6578c4758fcb-d8385.f3b.

Cada fichero .f3b tiene sus propios parámetros definidos:

- <MinMatches> Número mínimo de coincidencias que deben encontrarse para considerar que se puede efectuar una tracking aceptable. Tampoco se recomienda modificar este parámetro, establecido en 15.
- <DesiredMatchesRatioExtensible> Umbral del ratio entre las características encontradas y las contenidas en el archivo f3b.
- <NumExtensibleFeatures> Número de características extraídas en el momento actual.

Estos dos últimos valores son utilizados para el llamado "Extensible Tracking", es decir, en el ejemplo cuando en el proceso de tracking se encuentran una cantidad de correspondencias que no cumplen el ratio de 0,35 con respecto al número total de características incluidas en el fichero, se pasa a tomar hasta 250 características extraídas de la escena y se usan estas para realizar el tracking.

<Connections> - Incluye la relación de los distintos ficheros de características incluidos:

<COS> Hace referencia a cada uno de los sistemas de coordenadas de cada fichero de características. Existe uno para cada fichero de características añadido. Dentro de este se destacan los siguientes parámetros:

Name foro 1/Name> Nombre de referencia para el fichero de características.

<Fuser type="SmoothingFuser"> Modo de fusión. SmoothingFuser es un tipo de fusión que permite separar el suavizado de traslación y rotación. Normalmente se busca un suavizado mayor de la rotación que de la traslación. El método de fusión tiene los siguientes parámetros.

```
<alphaRotation> Valor del suavizado para la rotación.
```

- <alphaTranslation> Valor del suavizado para la traslación.
- <GammaRotation> Factor de velocidad de suavizado en la rotación.
- <GammaTranslation> Factor de velocidad de suavizado en la traslación.
- <KeepPoseForNumberOfFrames> Número de fotogramas durante los cuales el Tracker seguirá prediciendo la pose cuando el tracking ha fallado.

Dentro de **SensorSource** destacar el apartado **HandEyeCalibration**. Este apartado permite especificar la pose relativa entre dos sensores. Para la App Mundus4D no es necesario configurarlo dado que se usa una única cámara como sensor. Sus principales parámetros son:

```
<TranslationOffset> Vector de la distancia entre los sensores.
<RotationOffset> Rotación relativa entre los sensores, o entre el sensor y el origen arbitra-
rio.
```

Por último dentro del apartado <COS> se integra el apartado <COSOffset> que define la traslación y rotación del sistema de coordenadas en <TranslationOffset> y <RotationOffset>.

Los ficheros .zip resultantes serán leídos por la aplicación a través del método *CargaTra-ckingMap()* de la clase RealAumentada.

6.8 Carga de modelos 3D en MetaioSDK

Actualmente MetaioSDK soporta 3 formatos de fichero para modelos 3D. El formato OBJ para modelos estáticos y MD2 y FBX para modelos animados.

Para el proyecto se exportó los modelos en formato OBJ ya que fue el único formato del que se encontró un plugin exportador gratuito para Sketchup que mostrase unos resultados óptimos.

El formato OBJ soporta múltiples objetos con diferentes texturas y materiales. Los objetos también pueden tener diferentes materiales asignados a sus polígonos. Adicionalmente se redujo la densidad de pixeles en las texturas para obtener un mejor rendimiento pasando de tener 96 pixeles/pulgada a 30 pixeles/pulgada.

Por último se ejecutó la herramienta FBXMeshConverter que procesa el fichero OBJ y devuelve un fichero .zip que contiene las texturas originales y un nuevo modelo generado con extensión .mfbx.

Reseñar que el uso de este nuevo formato provoca en muchos casos que las texturas se rendericen con un aspecto mucho más oscuro al original. Esto puede resultar bastante molesto si se ha hecho un laborioso trabajo anteriormente con su diseño. Dado que no es mi caso, se decidió implementar este formato por lo liviano del fichero .mfbx llegando a obtener un peso cercano a la mitad del original.

El SDK permite cargar tanto ficheros OBJ como ficheros ZIP, por lo que no es necesario su extracción en la aplicación para ser leídos. Estos son creados con el método *metaioSDK.createGeometry()*. A continuación se muestra el método *CargaContenido()* escrito específicamente para cambiar el Modelo3D a voluntad del usuario.

6.9 Publicación de Mundus4D Complutum en Google Play

Publicar en Google Play conlleva algunos actos preparatorios previos. Por un lado, es necesario registrarse como desarrollador en la consola de desarrolladores. Google cobra una tasa de 25\$ por esta acción. Por otra parte se debe preparar la enmaquetación de la App, valorando las distintas resoluciones y tamaños de pantalla.

Es importante intentar probar la aplicación en la mayor cantidad de dispositivos posibles, dado que en el afán de Google por acaparar cuota de mercado se incluye una ingente cantidad de dispositivos que el desarrollador debe tener en cuenta a la hora de diseñar la App. Paradójicamente éste es el punto fuerte y débil de Android. Positivamente permite al desarrollador tener una gran difusión de su aplicación en millones de terminales, pero negativamente requiere mucho más esfuerzo en su desarrollo. Ante semejante problema Google recomienda desarrollar varias versiones de la App para las distintas gamas de dispositivos.

Paradojas aparte, al autor de este proyecto se le hizo imposible probar la App en todos los dispositivos deseables. De tal forma que su funcionamiento en la mayoría de dispositivos del mercado se convierte en una verdadera incógnita.

No obstante, se han encontrado dos errores a subsanar en próximas versiones de Mundus4D Complutum:

- 1. La disposición de los menús en tablets no es la adecuada. Ocurriendo errores de proporciones.
- 2. En algunos dispositivos se ha comprobado que al pulsar en la pantalla para mostrar el menú no se produce respuesta alguna.

No solventar estos errores puede llevar a una mala valoración de la App por parte de los usuarios y con ello perder clientes potenciales. Por tanto es muy importante para el desarrollador no publicar la aplicación en etapas de madurez demasiado tempranas.

También es muy importante la presentación de la App en Google Play. Por ello se recomienda subir varías capturas de pantalla, crear un llamativo icono, escribir una buena descripción e incluir un video promocional previamente subido a Youtube.

Ficha de la App en Google Play.

Otro punto interesante son las traducciones. Google da la oportunidad de escribir la descripción de la App en varios idiomas, e incluso si no sabemos idiomas contratar una traducción hecha por profesionales.

6.9.1 Creación del archivo de expansión e implementación del gestor de descargas

Google impone un limite de tamaño máximo de 50mb para el archivo APK que contiene a la aplicación. El motivo principal es minimizar el riesgo de que el usuario incurra en una descarga corrupta o incompleta.

Para las aplicaciones que superen este limite se ofrece el uso de los llamados archivos de expansión. Son archivos con extensión .obb de los que Google permite añadir dos ficheros de hasta 2GB cada uno y se dividirán en dos clases:

- 1. El archivo de expansión principal (main) que incluirá los archivos necesarios para ejecutar la aplicación.
- 2. El archivo de expansión secundario (patch) que contendrá los archivos no imprescindibles para ejecutar la aplicación. Es válido por ejemplo como uso para incluir imágenes optimizadas para distintos tipos de pantallas. Su uso es opcional y se recomienda utilizar-lo como pequeñas actualizaciones para la App.

Google proporciona una herramienta en su SDK para crear específicamente archivos de expansión. Se trata de la herramienta JOBB. Es una herramienta basada en lineas de comandos que permite crear ficheros .obb encriptados a través del uso de constraseñas para posteriormente ser montados de forma virtual en la App con el fin de preservar los derechos de propiedad intelectual

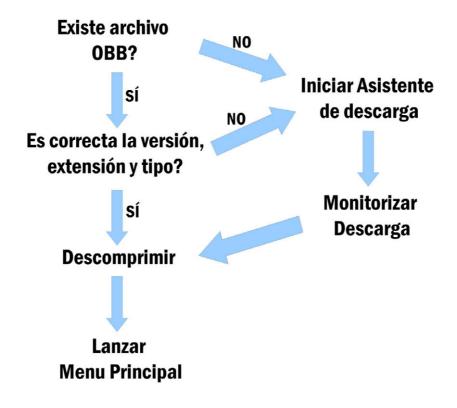
Mundus4D Complutum tiene un tamaño total de 59mb, superando el limite máximo impuesto por Google, se hace necesario entonces el uso de un archivo de expansión. Se intentó la implementación de ficheros .obb creados por JOBB con decepcionante resultado por dos motivos principales:

- 1. Existe un bug introducido en las últimas versiones de Android por el cual el archivo obb no puede ser montado virtualmente. Este error ha sido subsanado en las últimas revisiones.
- 2. MetaioSDK exige que los archivos se encuentren de forma física descomprimidos en el dispositivo.

Se hace inviable por tanto esta opción para la versión final de la aplicación. En su lugar se optó por crear un archivo .zip con todos los recursos necesarios que sería renombrado con extensión .obb. Para simplificarlo se tomó la carpeta assets y se creó un .zip sin compresión ni uso de contraseñas.

Además es necesario escribir un método que se encargue de descomprimir el archivo .zip y guarde los resultados en la carpeta elegida. En Mundus4D Complutum se encarga de ello el método *descomprimir Zip()*.

El método crea el directorio de la carpeta destino, posteriormente se crea un objeto del tipo ZipInputStream del fichero .obb existente en la ruta marcada y se recorre el objeto tomando cada entrada. De estas entradas que hacen referencia a cada archivo contenido en el .obb debe comprobarse su existencia en el dispositivo para no volver a sobrescribir el fichero, con la perdida de rendimiento que ello supone. Si no existen se descomprimen de igual forma que se crea el directorio si no existiese.


El formato del nombre de este fichero debe ser:

main|patch.version_de_la_App.package_de_la_App.obb

Para la aplicación Mundus4D el nombre del archivo quedó conformado de la siguiente forma:

main.1.pfc.mundus4d.complutum.obb

De acuerdo con la documentación de Google se deben implementar dos librerías encargadas de administrar la descarga y el sistema de licencias con el fin de verificar la aplicación y su archivo de expansión. También se entrega un proyecto de ejemplo donde se implementan estos aspectos. Por mi parte se intentó seguir este ejemplo modificando los mínimos aspectos posibles dada la poca mi poca experiencia empleando este sistema de descarga y el hecho de que Google no permite testear la descarga hasta que la App haya sido publicada. El proceso se resume en el siguiente esquema:

Primeramente se comprueba que existe el archivo de expansión en el dispositivo, si existe se comprueba si coincide en versión, extensión y tipo con el requerido por la aplicación. En caso afirmativo se pasa a descomprimir el archivo y lanzar el menú principal. Tanto en el caso de que no exista este archivo como que sus parámetros no coincidan con los requeridos se inicia el asistente de descarga.

Se implementó en la activity launcher el interface IDownloaderClient encargado de simplificar y administrar el sistema de descarga. Cuando se crea la activity comprobamos si existe el archivo .obb e iniciamos el gestor de descarga si fuese necesario:

El método *expansionFilesDelivered()* se encarga de comprobar los datos del fichero obb como método de comprobación para determinar si es necesaria la descarga.

Reseñar tres métodos autogenerados al implementar IDownloaderClient:

onServiceConnected() - Se recibe una llamada a este método tras instanciar Istub en la activity.

onDownloadStateChanged() – Permite manipular las acciones a realizar en cada estado de la descarga.

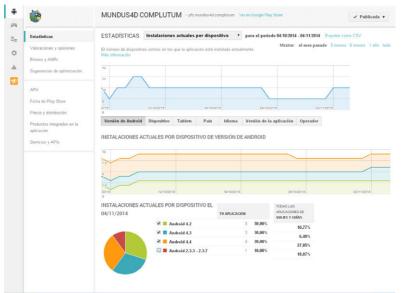
onDownloadProgress() - En este método se manipula el progreso de la descarga, de tal forma que se puede crear una barra de progreso, un texto con el porcentaje de descarga completado, etc...

Adicionalmente se creó la clase auxiliar Asist_Descarga que extiende la clase Downloader-Service encargada de descargar el archivo .obb desde Google Play y la clase Monitorizar_Descarga que extiende *BroadcastReceiver()* y trata de monitorizar el estado de la descarga, así como reiniciarla si fuese necesario.

Es necesario decir que la experiencia obtenida tras la publicación hace entender que el procedimiento empleado por Google para la descarga de la App difiere en ciertos aspectos del procedimiento descrito en la documentación proporcionada.

Google explica el proceso estipulando que en un primer momento solo se descarga el archivo APK que contiene a la aplicación y una vez instalada sería en la primera ejecución cuando se empezase la descarga del archivo de expansión. En cambio, la experiencia ha demostrado

posteriormente que al descargar Mundus4D Complutum desde Google Play, se descarga tanto el archivo APK como el de expansión OBB de manera simultanea.


6.9.2 Firma de Mundus4D Complutum

Las aplicaciones de Android deben ser firmadas con un certificado digital para poder ser instaladas en los dispositivos. En la fase de desarrollo las aplicaciones son firmadas con un certificado en modo debug emitido por el IDE.

En Android no existe una autoridad de certificación que avale los datos del desarrollador o empresa que publica la App. El certificado unicamente garantiza que el fichero APK no va a poder modificado por terceros y que solo el poseedor del certificado podrá volver a firmar con la misma firma. De esta forma Google obliga que cada nueva versión de la App esté firmada utilizando el mismo certificado.

El certificado puede ser creado en el momento de exportar el APK de la aplicación y ha de tener una validez mínima de 25 años. Se exige una contraseña para acceder al archivo de certificados y otra más para utilizar la firma de la App además de los correspondientes datos del desarrollador, aunque como se ha dicho anteriormente no tienen mucha relevancia en el resultado final.

Una vez subido el archivo APK y el fichero OBB de expansión se podrá excluir ciertos dispositivos que no cumplan los requisitos mínimos, sin embargo manejar la tremenda base de datos con todos los dispositivos existentes se antoja una misión casi imposible.

Página de estadísticas de la App.

Como apunte final hacer notar que Google ofrece un sistema completo de estadísticas, valoraciones, reportes de problemas y servicios asociados desde los que gestionar todos los aspectos de nuestra aplicación pasando desde las instalaciones diarias por dispositivo y versión de android a la gestión de ingresos en aplicaciones de pago.

7. Presupuesto

El presupuesto se desglosa en 4 apartados claves:

- Trabajo de campo: En él se consideran las diferentes actividades del levantamiento como son el establecimiento de la red de estaciones, levantamiento RTK y levantamiento con estación total.
- Trabajo de gabinete: Se incluyen el postprocesado de datos y confección de la cartografía.
- Trabajo de infografía: Trabajo a realizar por el infografísta 3D, especializado en infografía arquitectonica. Entre las labores incluidas se encuentra el modelado 3D apartir del análisis de la documentación existente y la interpretación del escenario, identificando los distintos elementos con sus respectivos en el terreno.
- Estudio y desarrollo de la aplicación: Este apartado engloba todo el trabajo realizado concerniente al análisis de las diferentes soluciones en realidad aumentada y visión por el ordenador, así como el diseño y desarrollo de la aplicación. Este trabajo es desempeñado por el programador.

Precios operadores		Precios materiales		
IT Topografía	25 €/h	GPS+GPS	160 €/día	
Auxiliar Top.	20 €/h	GPS+RTK	160 €/día	
Infografista 3D	20 €/h	Estación Total	60 €/día	
Programador	25 €/h	Vehículo	0,3 €/km	

Los precios del instrumental están basados en los costes de alquiler establecidos por las principales compañias de alquiler de instrumental. El precio incluye los accesorios necesarios para el trabajo, trípodes, bastón, prisma, flexómetro, etc.

CONCEPTO:

1. Trabajo: Ob	servación de la Red			
		Precio	Número de	Precio
		Unitario	unidades	total
Mano de obra:	IT Topografía	25	10	250,00€
Materiales:	GPS + GPS	160	2	320,00€
	Vehículo	0,3	120	36,00€
			Total	606,00€
2. Trabajo: Lev	vantamiento RTK			
		Precio	Número de	Precio
		Unitario	unidades	total
Mano de obra:	IT Topografia	25	36	900,00€
Materiales:	GPS + RTK	160	4	640,00€
	Vehículo	0,3	240	72,00€
			Total	1612,00€
3. Trabajo: Le	vantamiento Taquimétrico			
		Precio	Número de	Precio
		Unitario	unidades	total
Mano de obra:	IT Topografía	25	2	50,00€
	Auxiliar Top.	20	2	40,00€
Materiales:	Estación Total	60	1	60,00€
	Vehículo	0,3	60	18,00€
			Total	168,00€
4. Trabajo: Cá	lculos y cartografía			
		Precio	Número de	Precio
		Unitario	unidades	total
Mano de obra:	IT Topografía	25	40	1000,00€
			Total	1000,00€

5. T	rabaio:	Trabaio	de	infografía
------	---------	---------	----	------------

Mano de obra:	Infografista 3D	Precio Unitario 20	Número de unidades 1560	Precio total 31200,00€
C. Tunkain Fat			Total	31200,00€
6. Trabajo: Est	udio y desarrollo de la Aplicación			
		Precio	Número de	Precio
		Unitario	unidades	total
Mano de obra:	Programador	25	936	23400,00€
			Total	23400,00€

IMPORTE:

PRESUPUESTO TOTA	L 70163,06€
IVA (21%)	12177,06€
Base imponible	57986,00€
	Total

8. Conclusiones y Futuros Trabajos

La visión por ordenador aunque es un campo muy estudiado, necesita todavía de una labor de desarrollo con especial enfásis en su aplicación en los dispositivos móviles. La baja capacidad de procesado de éstos conlleva utilizar algoritmos de baja carga computacional pero que adolecen en su robustez. En este sentido se ha demostrado que solo el descriptor FAST es funcional a día de hoy en aplicaciones en tiempo real.

En funciones de Tracking 2D se muestra un desempeño robusto en la mayoria de condiciones. Es una tecnología bastante madura y muy fiable sobretodo con el uso de marcadores. Por el contrario, la tecnología de Tracking 3D resulta mucho más compleja y no tan bien resuelta. Como se ha expuesto en puntos anteriores, tiene problemas a la hora de obtener la profundidad de la escena, se producen bastantes vibraciones o jitter en el renderizado del modelo y es bastante sensible a los cambios de iluminación.

La evolución tecnológica de los dispositivos móviles hace prever un cambio de tendencia donde algoritmos más robustos que a día de hoy no pueden ser implementados por falta de rendimiento tomen relevancia sustituyendo a los actuales.

La realidad aumentada es un campo de negocio en auge, con expectativas esperanzadoras para los próximos años, teniendo el mayor potencial orientado hacia el mercado de dispositivos móviles (smartphones, tablets y las novedosas gafas inteligentes). De acuerdo a un estudio de Juniper Research, la realidad aumentada será utilizada por 200 millones de usuarios en 2018, muy por encima de los 60 millones actuales.

En contra, el desarrollo de aplicaciones aunque todavía con margen de negocio presenta gran

saturación. Un estudio desarrollado por la compañía Adeven sobre la App Store de Apple, concluía que resulta muy difícil conseguir atención si estás fuera de las listas top de aplicaciones gratuitas o de descargas y que no había forma de encontrar las aplicaciones que desde un principio no consiguiesen captar tanta atención. Adicionalmente señalaban el colapso de Apps con el mismo fin y daban un ejemplo apuntando que en la App Store existían 1899 Apps cuya única utilidad es hacer que el Iphone funcione a modo de linterna.

Otro análisis llevado a cabo por la compañía Gartner estima que solo 1 de cada 1.000 aplicaciones que se desarrollan actualmente será rentable y exitosa en el 2018. También se cita que el 90% de las aplicaciones de pago han sido descargadas menos de 500 veces.

Con estas directrices se desprenden dos conclusiones:

- a) La necesidad de un gran impulso publicitario con el fin de no caer perdido en el universo de GooglePlay o App Store.
- b) Se ha instaurado la política de la gratuidad de las aplicaciones, hecho que obliga a explorar otros modos de financiación, normalmente basados en la publicidad agregada dentro de la App. En este ámbito existen algunas empresas especializadas en gestionar la publicidad dentro de las aplicaciones ofreciendo una cierta remuneración al creador en base a las instalaciones contabilizadas. Unos días después de la publicación de la App relatada aquí, se recibieron un par de propuestas en este sentido, ofreciendo un pago de entre 1€ a 3€ por instalación.

A razón de una retribución de 1€ por descarga, el desarrollador debe tener en cuenta el hecho de que en impuestos perderá casi la mitad de las ganancias, por lo que para un proyecto con un presupuesto semejante al presentado aquí deberá conseguir un total de más de 140.000 descargas, cifra nada desdeñable. Huelga decir que con la experiencia y conocimientos adquiridos además de que el autor ha realizado funciones de diseño que un profesional podría ejecutar de una forma más efectiva y vistosa, realizar un proyecto análogo sería mucho más rápido y por tanto menos costoso.

Finalmente se establece para el tipo de aplicaciones análogas a la descrita, una estrategia basada en contactos con las administraciones públicas encargadas de la gestión del punto de interés, en dos posibles escenarios. En un primer escenario, la administración sufraga todo el coste de desarrollo, aportando el desarrollador un servicio previo pago de la cantidad acorda-

da. Un segundo escenario en el que se establece un acuerdo entre la administración y el desarrollador por el cuál la administración permite acceder al punto de interés, realizar el levantamiento, modelado y desarrollo de la aplicación de forma gratuita, a cambio de que el desarrollador sea el propietario de la aplicación, permitiendole gestionar la publicidad o precio de venta.

Por último, resulta interesante estudiar la capacidad de los descriptores de imagen en la automatización de los procesos fotogrametricos y gestión de puntos en trabajos de laser escaner con toma de imágenes, ya sea identificando entidades o eliminando artefactos no deseables. Estudiado el número de errores cometidos en la correspondencia de puntos parece evidente la necesidad de mejora de los algoritmos, no obstante, en un entorno tan controlado como la fotogrametría donde entre dos fotogramas contiguos suele haber pequeñas traslaciones y rotaciones, su efectividad debe verse notablemente mejorada.

9. Bibliografía y referencias consultadas

- 1. Introduction to SIFT (Scale-Invariant Feature Transform) Documentación de OpenCV.
- 2. Distinctive Image Features from Scale-Invariant Keypoints *David G. Lowe*, Computer Science Department University of British Columbia.
- 3. Surf: Speed up robust features Herbert Bay, Tinne Tuytelaars y Luc Van Gool.
- 4. Fast Corner Detection Edward Rosten.
- 5. A comparative Study of Three Image Matching Algorithms: Sift, Surf and Fast. *Maridalia Guerrero*. Universidad del Estado de Utah.
- 6. Estimación de la distancia recorrida por un robot móvil mediante la utilización de descriptores SURF. *Manuel Peraza Dominguez*.
- 7. Análisis de eficiencia en algoritmos de reconocimiento de imágenes digitales aplicables a dispositivos móviles bajo la plataforma Android *Miguel Ñauñay Ilbay*1, *Luis Tipantuña Córdova*2, *Geovanny Raura*3, *Tatiana Gualotuña*. Facultad de Ingeniería en Sistemas e Informática, Escuela Politécnica del Ejército, Sangolquí, Ecuador.
- 8. Visión por Computador en iPhone4 *Pablo Roldán Ruz*.
- 9. Monocular Model-Based 3D Tracking of Rigid Objects: A Survey. *Vincent Lepetit y Pascal Fua*.
- 10. Real-time 3D Model-based Tracking Using Edge and Keypoint Features for Robotic Manipulation *Changhyun Choi and Henrik I. Christensen*.
- 11. Elements of Geometric Computer Vision *Andrea Fusiello*.
- 12. Robust Camera Pose Estimation Using 2D Fiducials Tracking for Real-Time Augmented

Reality Systems - Fakhr-eddine Ababsa y Malik Mallem.

- 13. Técnica robusta de marca de agua basada en normalización de imágenes *Manuel Cedillo Hernández*
- 14. Diseño, implementación y prueba de un algoritmo de estimación de los 8 parámetros de la transformación proyectiva (homografía) entre dos imágenes a partir del rastreo esquina. *Juan Francisco Chacón Chavarría*.
- 15. Machine learning for high-speed corner detection Edward Rosten and Tom Drummond.
- 16. Combinación de la difusión isotrópica y anisotrópica en el procesamiento de imágenes *Carlos Platero, Gabriel Asensio, Jorge Moreno*.
- 17. RANSAC Visión artificial industrial, Universidad de Valladolid.
- 18. Silmutaneous Recognition, Localization and Mapping for Wearable Visual Robots *Robert Oliver Castle*.
- 19. Modelización tridimensional y sistemas láser escáner 3D aplicados al patrimonio histórico *Mercedes Farjas y Francisco J. García Lázaro*.
- 20. 3D Reconstruction Using the Direct Linear Transform with a Gabor Wavelet Based Correspondence Measure *Daniel Bardsley / Bai Li*.
- 21. Unsupervised 3D Object Recognition and Reconstruction in Unordered Datasets *M. Brown y D.G. Lowe*.
- 22. Accelerating SURF Detector on Mobile Devices *Xin Yang and Kwang-Tin Chen*.
- 23. Stable Real-Time 3D Tracking using Online and Offline Information *L.Vachetti*, *V. Lepetit and P. Fua*.
- 24. Fully Automated and Stable Registration for Augmented Reality Applications *Vincent, Luca Vacchetti, Daniel Thalmann, Pascal Fua*.
- 25. Análisis y desarrollo de sistemas de realidad aumentada *Héctor López Pombo*.
- 26. Visión por computador *Gonzalo Pajares Martinsanz y Jesús M. de la Cruz García*. Ed. Ra-Ma. 2º Edición.
- 27. Ejercicios resueltos de Visión por computador *Gonzalo Pajares Martinsanz y Jesús M. de la Cruz García*. Ed. Ra-Ma.

- 28. Fotogrametría Digital Vol. 1 *Toni Schenk*. Ed. Marcombo.
- 29. Transformaciones de coordenadas Juan Antonio Perez Álvarez. Ed. Bellisco.
- 30. A Quick 3D-to-2D Points Matching based on the Perspective Projection *Songxiang Gu, Cliff Lindsay, Michael A. Gennert, Michael A. King.*
- 31. Android 2 Application Development *Reto Meier*. Editorial Wrox.
- 32. Curso de Android: Desarrollo de aplicaciones móviles Maestros del web.
- 33. OpenGL Transformation- Song Ho Ahn.
- 34. A Combined Corner and Edge Detector Chris Harris & Mike Stephens.
- 35. An Efficient Solution to the Five-Point Relative Pose Problem David Nister.

Páginas especializadas:

- 36. Sitio oficial de desarrollo android https://developer.android.com/.
- 37. Androideity <u>www.androideity.com</u>.
- 38. Stackoverflow <u>www.stackoverflow.com</u>.
- 39. Diploma de Especialización en desarrollo de aplicaciones para Android Universitad Politécnica de Valencia. *www.androidcurso.com*.
- 40. LearnOpenGL ES www.learnopengles.com.
- 41. Code Project www.codeproject.com.

10. Anexos

10.1 Reseña de estaciones

Nombre de la Estación B1 Tipo de señal Clavo de acero en suelo

Sistema de Coordenadas: ETRS 89

Coordenadas geográficas:

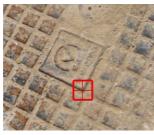
Latitud: 40° 28' 24.57464" N ± 0,003m **Longitud:** 3° 23' 06.05586" O ± 0,002m **Altitud elipsoidal:** 633.420m ± 0,006m

Coordenadas en proyección UTM:

Huso: 30 Norte.

X: 467363.274m ± 0.003m

Y: 4480383.639m ± 0.002m


Altura ortométrica: 582.011m

Reseña de situación y Croquis

Situado en la confluencia del cardo V con el decumano IV. El punto B1 queda definido sobre la tapa de la arqueta junto al

camino.

Nombre de la Estación E2002 Tipo de señal Clavo de acero en suelo

Sistema de Coordenadas: ETRS 89

Coordenadas geográficas:

Latitud: 40° 28' 24.21358" N ± 0.003m **Longitud:**3° 23' 09.42947" O ± 0.003m **Altitud elipsoidal:** 633.027m ± 0.007m

Coordenadas en proyección UTM:

Huso: 30 Norte.

X: 467283.789m ± 0.004m

Y: 4480372.853m ± 0.004 m

Altura ortométrica: 581.620m

Reseña de situación y Croquis

Estación situada en el camino del acceso principal al yacimiento, el cuál corresponde a su vez con el cardo VII. Se localiza aproximadamente a mitad de la manzana excavada junto al camino.

Nombre de la Estación E1001 Tipo de señal Clavo de acero en suelo

Sistema de Coordenadas: ETRS 89

Coordenadas geográficas:

Latitud: 40° 28' 26.53660" N \pm 0.004m **Longitud:** 3° 23' 04.20493" O \pm 0.004m **Altitud elipsoidal:** 633.983m \pm 0.009m

Coordenadas en proyección UTM:

Huso: 30 Norte.

X: 467407.121m ± 0.004m

Y: 4480443.942m ± 0.004m

Altura ortométrica: 582.572m

Reseña de situación y Croquis

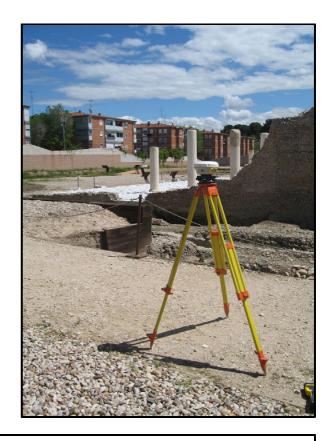
El punto de estación se encuentra en la bifurcación de los caminos del itinerario seguido por los visitantes junto a la fachada monumental, sobre lo que en su momento fue el decumano III.

Nombre de la Estación E1002 Tipo de señal Clavo de acero en suelo

Sistema de Coordenadas: ETRS 89

Coordenadas geográficas:

Latitud: 40° 28' 27.24522"N ± 0.004m **Longitud:** 3° 23' 03.46761" O ± 0.004m **Altitud elipsoidal:**634.016m ± 0.009m


Coordenadas en proyección UTM:

Huso: 30 Norte.

X: 467424.577m ± 0.004m

Y: 4480465.716m ± 0.004m

Altura ortométrica: 582.605m

Reseña de situación y Croquis

Se localiza en el camino que discurre junto al decumano III, junto a la amplia puerta metálica de entrada existente. El punto se encuentra junto al margen exterior del camino.

Nombre de la Estación E1003 Tipo de señal Clavo de acero en suelo

Sistema de Coordenadas: ETRS 89

Coordenadas geográficas:

Latitud: 40° 28' 27.43826" N ± 0.008m **Longitud:** 3° 23' 02.78530" O ± 0.006m **Altitud elipsoidal:** 634.253m ± 0.014m

Coordenadas en proyección UTM:

Huso: 30 Norte.

X: 467440.669m ± 0.008m

Y: 4480471.598m ± 0.006m

Altura ortométrica: 582.842m

Reseña de situación y Croquis

Se sitúa en el camino que discurre junto al decumano III, junto a tres piezas de piedra y con vistas a la basílica civil. Queda la estación materializada junto al margen exterior del camino.

Nombre de la Estación E1004 Tipo de señal Clavo de acero en suelo

Sistema de Coordenadas: ETRS 89

Coordenadas geográficas:

Latitud: 40° 28' 26.77749" N \pm 0.004m **Longitud:** 3° 23' 02.10820" O \pm 0.004m **Altitud elipsoidal:** 632.894m \pm 0.009m

Coordenadas en proyección UTM:

Huso: 30 Norte.

X: 467456.523m ± 0.004m

Y: 4480451.155m ± 0.004m

Altura ortométrica: 582.842m

Reseña de situación y Croquis

Se emplaza en el camino que discurre paralelo al lado este de la basílica civil, en un punto cercano a los paneles informativos y la entrada intermedia a la basílica. El punto se encuentra junto al borde del camino.

Nombre de la Estación E1005 Tipo de señal Clavo de acero en suelo

Sistema de Coordenadas: ETRS 89

Coordenadas geográficas:

Latitud: 40° 28' 26.29313" N \pm 0.005m **Longitud:** 3° 23' 01.57755" O \pm 0.004m **Altitud elipsoidal:** 633.230m \pm 0.010m

Coordenadas en proyección UTM:

Huso: 30 Norte.

X: 467468.953m ± 0.005m

Y: 4480436.166m ± 0.004m

Altura ortométrica: 581.818m

Reseña de situación y Croquis

Se localiza dentro del camino que discurre paralelo al lado norte del portico sur. El punto queda materializado cerca del borde exterior.

Nombre de la Estación E1006 Tipo de señal Clavo de acero en suelo

Sistema de Coordenadas: ETRS 89

Coordenadas geográficas:

Latitud: 40° 28' 26.10192" N \pm 0.005m **Longitud:** 3° 23' 01.00104" O \pm 0.004m **Altitud elipsoidal:** 633.643m \pm 0.010m

Coordenadas en proyección UTM:

Huso: 30 Norte.

X: 467482.502m ± 0.005m

Y: 4480430.211m ± 0.004m

Altura ortométrica: 582.230m

Reseña de situación y Croquis

Junto al pórtico sur, en el lado más oriental del yacimiento, se sitúa el punto materializado próximo al borde exterior del camino que siguen los visitantes junto al lado este del pórtico sur.

Nombre de la Estación | E1007 | Tipo o

Tipo de señal

Clavo de acero en suelo

Sistema de Coordenadas: ETRS 89

Coordenadas geográficas:

Latitud: 40° 28' 25.13620" N \pm 0.004m **Longitud:** 3° 23' 01.75266" O \pm 0.004m **Altitud elipsoidal:** 633.867m \pm 0.009m

Coordenadas en proyección UTM:

Huso: 30 Norte.

X: 467464.675m ± 0.004m

Y: 4480400.512m ± 0.004m

Altura ortométrica: 582.456m

Reseña de situación y Croquis

Se sitúa en el extremo sureste de las termas sur, dentro del camino creado para visitar el yacimiento. Se encuentra junto al borde exterior del mismo.

Nombre de la Estación E1008 Tipo de señal Clavo de acero en suelo

Sistema de Coordenadas: ETRS 89

Coordenadas geográficas:

Latitud: 40° 28' 24.99217" N ± 0.004m **Longitud:** 3° 23' 02.25495" O ± 0.004m **Altitud elipsoidal:**633.814m ± 0.009m

Coordenadas en proyección UTM:

Huso: 30 Norte.

X: 467452.828m ± 0.004m

Y: 4480396.123m ± 0.004m

Altura ortométrica: 582.403m

Reseña de situación y Croquis

Se sitúa en el extremo suroeste de las termas sur y cerca de las escaleras metálicas, dentro del camino creado para visitar el yacimiento. Se encuentra junto al borde exterior del mismo.

Nombre de la Estación E1009 Tipo de señal Clavo de acero en suelo

Sistema de Coordenadas: ETRS 89

Coordenadas geográficas:

Latitud: 40° 28' 25.60535" N \pm 0.005m **Longitud:** 3° 23' 02.97054" O \pm 0.004m **Altitud elipsoidal:** 632.801m \pm 0.010m

Coordenadas en proyección UTM:

Huso: 30 Norte.

X: 467436.061m ± 0.005m

Y: 4480415.102m ± 0.004m

Altura ortométrica: 581.390m

Reseña de situación y Croquis

El punto queda materializado en el espacio situado entre la curia, el mercado y la rampa metálica de acceso al criptopórtico.

Nombre de la Estación

E1010

Tipo de señal

Clavo de acero en suelo

Sistema de Coordenadas: ETRS 89

Coordenadas geográficas:

Latitud: 40° 28' 25.70148" N \pm 0.004m **Longitud:** 3° 23' 03.80753" O \pm 0.004m **Altitud elipsoidal:** 633.369m \pm 0.009m

Coordenadas en proyección UTM:

Huso: 30 Norte.

X: 467416.366m ± 0.004m

Y: 4480418.152m ± 0.004m

Altura ortométrica: 581.958m

Reseña de situación y Croquis

Punto localizado en la confluencia del camino que discurre paralelo a la fachada monumental y el camino perpendicular al anterior que lleva a las escaleras de acceso al criptpórtico. El punto se sitúa junto al vértice de la confluencia de ambos caminos, en la zona exterior a él.

Nombre de la Estación E2001 Tipo de señal Clavo de acero en suelo

Sistema de Coordenadas: ETRS 89

Coordenadas geográficas:

Latitud: 40° 28' 25.57629" N \pm 0.004m **Longitud:** 3° 23' 08.27810" O \pm 0.004m **Altitud elipsoidal:** 633.532m \pm 0.009m

Coordenadas en proyección UTM:

Huso: 30 Norte.

X: 467311.083m ± 0.004m

Y: 4480414.751m ± 0.004m

Altura ortométrica: 582.125m

Reseña de situación y Croquis

Se sitúa en el camino correspondiente al decumano III, en el extremo noreste de la manzana excavada.

10.2 Ajuste de la red

10.2.1 Red constreñida B1 y E2002

Resultados basados en el factor de varianza a posteriori

Información general			
Ajuste			
	Forzado		
Tipo: Dimensión:	3D		
Sistema de coordenadas:	WGS 1984		
Tipo de altura:	Elipsoidal		
Número de iteraciones:	0		
Corrección máxima de coordenadas en la última	0.0000 m		(toloropoio alconzado)
iteración:	0.0000 m	*	(tolerancia alcanzada)
Estaciones			
Número de estaciones (parcialmente) conocidas	: 4		
Número de estaciones desconocidas:	2		
Total:	6		
Observaciones			
Diferencias de coordenadas GPS:	27 (9 líneas base)		
Coordenadas conocidas:	12		
Total:	39		
Incógnitas			
Coordenadas:	18		
Total:	18		
Total.	10		
Grados de libertad:	21		
Pruebas			
Alfa (multi dimensional):	0.4290		
Alfa 0 (una dimensión):	5.0 %		
Beta:	80.0 %		
Sigma a-priori (GPS):	40.0		
Valor crítico de prueba W:	1.96		
Valor crítico de la prueba T (2 dimensiones):	2.42		
Valor crítico de la prueba T (3 dimensiones):	1.89		
Valor crítico de prueba F:	1.02		
Prueba F:	0.22	1	(aceptado)
Tuoba T.	U.EE	*	(accptado)

Resultados del ajuste

Coordenadas

Estación		Coordenada	Corr	Desv. Est.	
ARAN	Latitud	40°01'31.03681" N	0.0000 m	-	fijo
	Longitud	3°36' 45.08080" W	0.0000 m	-	fijo
	Altura	580.9090 m	0.0000 m		fijo
HENA	Latitud	40°29' 18.76925" N	0.0000 m	=	fijo
	Longitud	3°23'02.49129"W	0.0000 m	26	fijo
	Altura	663.5230 m	0.0000 m	-	fijo
IGNE	Latitud	40°26' 45.00901" N	0.0000 m	-	fijo
	Longitud	3°42'34.28323" W	0.0000 m		fijo
	Altura	766.9201 m	0.0000 m	-	fijo
YEBE	Latitud	40°31' 29.63168" N	0.0000 m	21	fijo
	Longitud	3°05' 19.06498" W	0.0000 m	=1	fijo
	Altura	972.7775 m	0.0000 m	2	fijo
b1	Latitud	40° 28' 24.57464" N	0.0000 m	0.0030 m	
	Longitud	3°23' 06.05586" W	0.0000 m	0.0024 m	
	Altura	633.4204 m	0.0000 m	0.0063 m	
e2002	Latitud	40°28'24.21358" N	0.0000 m	0.0032 m	
	Longitud	3°23'09.42947"W	0.0000 m	0.0026 m	

Observaciones y residuales

	Estación	Pto visado	Obs. ajus.	Resid	Resid (ENA)	Desv. Est.
DX	YEBE	e2002	2027.4696 m	-0.0209 m	-0.0039 m	0.0057 m
DY			-25361.8685 m	-0.0028 m	0.0008 m	0.0026 m
DZ			-4570.2684 m	-0.0166 m	-0.0266 m	0.0048 m
DX	YEBE	b1	2025.2446 m	-0.0060 m	-0.0057 m	0.0054 m
DY			-25282.1216 m	-0.0054 m	-0.0007 m	0.0024 m
DZ			-4561.5401 m	-0.0058 m	-0.0081 m	0.0044 m
DX	e2002	b1	-2.2250 m	-0.0007 m	0.0003 m	0.0046 m
DY			79.7469 m	0.0003 m	-0.0004 m	0.0022 m
DZ			8.7283 m	-0.0011 m	-0.0012 m	0.0040 m
DX	ARAN	e2002	-30875.5291 m	0.0303 m	0.0168 m	0.0057 m
DY			21202.8119 m	0.0149 m	-0.0100 m	0.0026 m
DZ			38013.9446 m	0.0116 m	0.0299 m	0.0048 m
DX	ARAN	b1	-30877.7541 m	0.0085 m	0.0045 m	0.0054 m
DY			21282.5588 m	0.0040 m	0.0008 m	0.0024 m
DZ			38022.6729 m	0.0079 m	0.0114 m	0.0044 m
DX	HENA	e2002	1057.8647 m	0.0099 m	0.0029 m	0.0057 m
DY			-226.2897 m	0.0023 m	0.0012 m	0.0026 m
DZ			-1299.9011 m	0.0099 m	0.0139 m	0.0048 m
DX	HENA	b1	1055.6397 m	0.0070 m	0.0034 m	0.0054 m
DY			-146.5428 m	0.0030 m	0.0013 m	0.0024 m
DZ			-1291.1728 m	0.0075 m	0.0100 m	0.0044 m
DX	IGNE	e2002	-385.2862 m	-0.0302 m	-0.0213 m	0.0057 m
DY			27524.3479 m	-0.0193 m	-0.0029 m	0.0026 m
DZ			2241.6179 m	-0.0285 m	-0.0405 m	0.0048 m
DX	IGNE	b1	-387.5112 m	-0.0271 m	-0.0126 m	0.0054 m
DY			27604.0948 m	-0.0109 m	-0.0017 m	0.0024 m
DZ			2250.3462 m	-0.0247 m	-0.0361 m	0.0044 m

Residuales del vector de línea base GPS

	Estación	Pto visado	Vector ajus. [m]	Resid [m]	Resid [ppm]
DV	YEBE	e2002	25849.9973	0.0269	1.0
DV	YEBE	b1	25770.0395	0.0100	0.4
DV	e2002	b1	80.2540	0.0013	16.4
DV	ARAN	e2002	53365.8834	0.0357	0.7
DV	ARAN	b1	53405.1183	0.0123	0.2
DV	HENA	e2002	1691.1616	0.0142	8.4
DV	HENA	b1	1674.2094	0.0107	6.4
DV	IGNE	e2002	27618.1648	0.0458	1.7
DV	IGNE	b1	27698.3803	0.0383	1.4

Elipses de error absoluto (2D - 39.4% 1D - 68.3%)

Estación	A [m]	B [m]	A/B	Phi	Desv. Est. Alt [m]
ARAN	0.0000	0.0000	1.0	90°	0.0000
HENA	0.0000	0.0000	1.0	0°	0.0000
IGNE	0.0000	0.0000	1.0	90°	0.0000
YEBE	0.0000	0.0000	1.0	0°	0.0000
b1	0.0030	0.0024	1.3	-3°	0.0063
e2002	0.0032	0.0026	1.2	-6°	0.0067

Ajuste contenido en el archivo adjunto Red_Constreñida b1 y e2002.pdf.

(tolerancia alcanzada)

10.4.2 Red Constreñida de Estaciones

Información general

Ajuste

Tipo: Forzado Dimensión: 3D Sistema de coordenadas: WGS 1984 Tipo de altura: Elipsoidal

Número de iteraciones:

Corrección máxima de coordenadas en la última 0.0000 m

iteración:

Estaciones

Número de estaciones (parcialmente) conocidas: 2 Número de estaciones desconocidas: 11 Total: 13

Observaciones

60 (20 líneas base) (incluye 4 Líneas base como Diferencias de coordenadas GPS:

observaciones libres)

Coordenadas conocidas:

Total: 66 (incluye 12 Observaciones libres)

Incógnitas

Coordenadas: 39 Total: 39

Grados de libertad: 27

Pruebas

Alfa (multi dimensional): 0.4680 Alfa 0 (una dimensión): 5.0 % 80.0% Beta: Sigma a-priori (GPS): 40.0

Valor crítico de prueba W: 1.96

Valor crítico de la prueba T (2 dimensiones): 2.42 Valor crítico de la prueba T (3 dimensiones): 1.89 Valor crítico de prueba F: 1.00

Prueba F: 0.02 (aceptado)

Resultados basados en el factor de varianza a posteriori

Resultados del ajuste

Coordenadas

Estación		Coordenada	Corr	Desv. Est.	
b1	Latitud	40° 28' 24.57464" N	0.0000 m		fijo
DI	Longitud	3° 23' 06.05586" W	0.0000 m		fijo
	Altura	633.4204 m	0.0000 m	-	fijo
01001				0.0007 m	IIJO
e1001	Latitud	40° 28' 26.53659" N	0.0000 m	0.0007 m	
	Longitud	3°23' 04.20493" W	0.0000 m	0.0006 m	
-1000	Altura	633.9826 m	0.0000 m	0.0017 m	
e1002	Latitud	40° 28' 27.24522" N	0.0000 m	0.0010 m	
	Longitud	3°23'03.46761" W	0.0000 m	0.0008 m	
	Altura	634.0160 m	0.0000 m	0.0021 m	
e1003	Latitud	40° 28' 27.43826" N	0.0000 m	0.0062 m	
	Longitud	3°23'02.78530"W	0.0000 m	0.0050 m	
	Altura	634.2534 m	0.0000 m	0.0112 m	
e1004	Latitud	40°28' 26.77748" N	0.0000 m	0.0009 m	
	Longitud	3°23'02.10820"W	0.0000 m	0.0007 m	
	Altura	632.8943 m	0.0000 m	0.0021 m	
e1005	Latitud	40° 28' 26.29313" N	-0.0046 m	0.0016 m	
	Longitud	3°23' 01.57755" W	-0.0010 m	0.0011 m	
	Altura	633.2305 m	0.0079 m	0.0044 m	
e1006	Latitud	40° 28' 26.10191" N	0.0000 m	0.0014 m	
	Longitud	3°23' 01.00104" W	0.0000 m	0.0012 m	
	Altura	633.6427 m	0.0000 m	0.0043 m	
e1007	Latitud	40°28' 25.13620" N	0.0000 m	0.0008 m	
	Longitud	3°23' 01.75266" W	0.0000 m	0.0006 m	
	Altura	633.8675 m	0.0000 m	0.0017 m	
e1008	Latitud	40° 28' 24.99217" N	0.0000 m	0.0007 m	
	Longitud	3°23'02.25495"W	0.0000 m	0.0007 m	
	Altura	633.8145 m	0.0000 m	0.0017 m	
e1009	Latitud	40° 28' 25.60535" N	0.0000 m	0.0013 m	
	Longitud	3°23'02.97054"W	0.0000 m	0.0012 m	
	Altura	632.8009 m	0.0000 m	0.0030 m	
e1010	Latitud	40°28' 25.70148" N	0.0000 m	0.0005 m	
	Longitud	3°23'03.80753"W	0.0000 m	0.0004 m	
	Altura	633.3691 m	0.0000 m	0.0013 m	
e2001	Latitud	40°28' 25.57629" N	0.0000 m	0.0007 m	
	Longitud	3°23'08.27810"W	0.0000 m	0.0007 m	
	Altura	633.5324 m	0.0000 m	0.0018 m	
e2002	Latitud	40°28' 24.21358" N			fijo
					00000

Observaciones y residuales

	Estación	Pto visado	Obs. ajus.	Resid	Resid (ENA)	Desv. Est.
DX	e2002	b1	-2.2253 m	-0.0004 m	0.0005 m	0.0007 m
DY			79.7467 m	0.0005 m	0.0002 m	0.0003 m
DZ			8.7274 m	-0.0001 m	-0.0004 m	0.0006 m
DX	e2002	e2001	-25.2532 m	0.0015 m	0.0001 m	0.0015 m
DY			28.6655 m	0.0000 m	-0.0010 m	0.0007 m
DZ			32.3059 m	0.0000 m	0.0011 m	0.0013 m

DX	e2002	e1010	-21.6612 m	0.0020 m	-0.0010 m	0.0012 m
DY			133.9554 m	-0.0011 m	0.0015 m	0.0005 m
DZ			35.1374 m	0.0037 m	0.0040 m	0.0010 m
DX	e2002	e1009	-19.0069 m	0.0000 m	0.0000 m	0.0023 m
DY			153.5508 m	0.0000 m	0.0000 m	0.0011 m
DZ			32.5135 m	0.0000 m	0.0000 m	0.0024 m
DX	e2002	e1008	-4.9856 m	-0.0026 m	-0.0005 m	0.0015 m
DY			169.6091 m	-0.0003 m	-0.0003 m	0.0007 m
DZ			18.7814 m	-0.0026 m	-0.0036 m	0.0013 m
DX	e2002	e1007	-7.1259 m	0.0000 m	0.0009 m	0.0015 m
DY			181.5892 m	0.0009 m	0.0003 m	0.0007 m
DZ			22.1959 m	0.0004 m	0.0003 m	0.0012 m
DX	e2002	e1006	-25.5548 m	0.0000 m	0.0000 m	0.0037 m
DY			200.4165 m	0.0000 m	0.0000 m	0.0011 m
DZ			44.7125 m	0.0000 m	0.0000 m	0.0025 m
DX	e2002	e1005	-30.4916 m	0.0000 m	0.0000 m	0.0040 m
DY			187.1032 m	0.0000 m	0.0000 m	0.0012 m
DZ			48.9322 m	0.0000 m	0.0000 m	0.0024 m
DX	e2002	e1004	-41.1667 m	0.0004 m	-0.0012 m	0.0019 m
DY			175.2115 m	-0.0012 m	-0.0002 m	0.0007 m
DZ			60.0796 m	0.0001 m	0.0004 m	0.0014 m
DX	e2002	e1002	-51.5548 m	0.0020 m	-0.0001 m	0.0018 m
DY			143.7450 m	-0.0002 m	-0.0016 m	0.0008 m
DZ			71.7839 m	-0.0004 m	0.0013 m	0.0014 m
DX	e2002	e1001	-38.4409 m	-0.0014 m	0.0003 m	0.0014 m
DY			125.5694 m	0.0004 m	-0.0006 m	0.0007 m
DZ			55.1333 m	-0.0020 m	-0.0024 m	0.0012 m
DX	b1	e2001	-23.0279 m	-0.0021 m	0.0000 m	0.0016 m
DY			-51.0812 m	0.0001 m	0.0009 m	0.0007 m
DZ			23.5785 m	-0.0006 m	-0.0020 m	0.0013 m
DX	b1	e1010	-19.4360 m	-0.0008 m	0.0001 m	0.0011 m
DY			54.2087 m	0.0001 m	-0.0001 m	0.0004 m
DZ			26.4100 m	-0.0008 m	-0.0011 m	0.0009 m
DX	b1	e1008	-2.7603 m	0.0014 m	0.0000 m	0.0014 m
DY			89.8623 m	-0.0001 m	0.0000 m	0.0007 m
DZ			10.0541 m	0.0012 m	0.0018 m	0.0012 m
DX	b1	e1007	-4.9006 m	0.0004 m	-0.0006 m	0.0014 m
DY			101.8425 m	-0.0006 m	-0.0002 m	0.0007 m
DZ			13.4685 m	0.0001 m	0.0004 m	0.0012 m
DX	b1	e1004	-38.9415 m	0.0017 m	0.0013 m	0.0018 m
DY			95.4648 m	0.0012 m	-0.0003 m	0.0007 m
DZ			51.3523 m	0.0010 m	0.0019 m	0.0014 m
DX	b1	e1003	-52.0595 m	0.0000 m	0.0000 m	0.0104 m
DY			80.2615 m	0.0000 m	0.0000 m	0.0050 m
DZ			67.7401 m	0.0000 m	0.0000 m	0.0074 m
DX	b1	e1001	-36.2156 m	0.0057 m	-0.0004 m	0.0015 m
DY			45.8227 m	-0.0008 m	0.0002 m	0.0007 m
DZ			46.4060 m	0.0052 m	0.0078 m	0.0012 m
DX	b1	e1002	-49.3295 m	-0.0081 m	-0.0003 m	0.0018 m
DY			63.9983 m	0.0002 m	0.0049 m	0.0008 m
DZ			63.0565 m	-0.0004 m	-0.0064 m	0.0015 m
DX	b1	e1002	-49.3295 m	-0.0022 m	-0.0006 m	0.0018 m
DY			63.9983 m	-0.0004 m	0.0022 m	0.0008 m
DZ			63.0565 m	0.0010 m	-0.0010 m	0.0015 m

Residuales del vector de línea base GPS

B1/	Estación	Pto visado	Vector ajus. [m]	Resid [m]	Resid [ppm]
DV	e2002	b1	80.2537	0.0007	8.1
DV	e2002	e2001	50.0310	0.0015	29.2
DV	e2002	e1010	140.1709	0.0044	31.2
DV	e2002	e1009	158.1019	0.0000	0.0
DV	e2002	e1008	170.7186	0.0037	21.5
DV	e2002	e1007	183.0794	0.0010	5.5
DV	e2002	e1006	206.9276	0.0000	0.0
DV	e2002	e1005	195.7849	0.0000	0.0
DV	e2002	e1004	189.7455	0.0013	6.6
DV	e2002	e1002	168.7407	0.0020	12.1
DV	e2002	e1001	142.4256	0.0025	17.5
DV	b1	e2001	60.7908	0.0022	35.6
DV	b1	e1010	63.3548	0.0011	17.7
DV	b1	e1008	90.4652	0.0018	19.9
DV	b1	e1007	102.8461	0.0008	7.6
DV	b1	e1004	115.1826	0.0023	19.9
DV	b1	e1003	117.2212	0.0000	0.0
DV	h1	e1001	74 5976	0.0078	104 5
DV Elipse DV	es de error absoluto	(2D - 39.4% 1D - 68	3.3%)		
	ción A [m]	B [m]	A/B	Phi	Desv. Est. Alt [m]
b1	0.0000	0.0000	1.0	25°	0.0000
e1001		0.0006	1.2	-18°	0.0017
e1002		0.0008	1.3	7°	0.0021
e1003		0.0050	1.2	0°	0.0112
e1004		0.0006	1.5	13°	0.0021
e1005		0.0011	1.5	14°	0.0044
e1006		0.0012	1.2	-3°	0.0043
e1007		0.0006	1.2	-18°	0.0017
e1008		0.0006	1.2	-8°	0.0017
e1009		0.0011	1.3	-27°	0.0030
e1010		0.0004	1.2	1°	0.0013
e2001		0.0006	1.2	-21°	0.0018
e2002		0.0000	1.0	-89°	0.0000

Ajuste contenido en el archivo adjunto Red_Constreñida estaciones.pdf.

10.3 Levantamiento RTK

- Coordenadas expresadas en ETRS89 UTM 30N:

Id Punto	Clase punto	Xocal	Ylocal	Alt.Elipsoidal	Alt. Ortom.	Pos. + Q Alt.
1	Medido	467363.9997	4480382.1296	633.4441	582.0351	0.0158
2	Medido	467388.3483	4480391.5052	633.3585	581.9488	0.0128
3	Medido	467387.9540	4480391.1903	633.5407	582.1309	0.0155
4	Medido	467395.4918	4480371.7295	633.3923	581.9824	0.0156
5	Medido	467400.6862	4480373.9265	633.4180	582.0080	0.0227
6	Medido	467403.9428	4480365.2211	633.4488	582.0388	0.0174
7	Medido	467375.9802	4480354.6016	633.1936	581.7844	0.0155
8	Medido	467365.3176	4480382.6521	633.4104	582.0013	0.0151
9	Medido	467361.1404	4480389.6904	633.5714	582.1624	0.0146
10	Medido	467388.8677	4480401.2354	633.5174	582.1075	0.0184
11	Medido	467394.0729	4480403.0917	633.5865	582.1765	0.0154
12	Medido	467395.1978	4480399.8260	633.4680	582.0579	0.0157
13	Medido	467386.4067	4480396.2003	633.4677	582.0580	0.0154
14	Medido	467386.3874	4480403.4089	633.5439	582.1341	0.0178
15	Medido	467382.9003	4480402.8745	633.6998	582.2900	0.0157
16	Medido	467376.6543	4480399.4165	633.5683	582.1588	0.0155
17	Medido	467376.6522	4480399.4287	633.5675	582.1580	0.0233
18	Medido	467361.0242	4480393.9848	633.5536	582.1445	0.0159
19	Medido	467359.9537	4480392.6729	633.5432	582.1342	0.0165
20	Medido	467350.4482	4480421.9781	633.7443	582.3354	0.0160
21	Medido	467347.5118	4480425.6924	633.6226	582.2138	0.0163
22	Medido	467365.1504	4480432.3451	633.8151	582.4057	0.0178
23	Medido	467365.8775	4480431.0732	633.6612	582.2518	0.0148
24	Medido	467371.4269	4480433.0598	633.6701	582.2605	0.0161
25	Medido	467372.5782	4480430.3011	633.7358	582.3262	0.0164
26	Medido	467364.0960	4480435.0706	633.7487	582.3393	0.0154
27	Medido	467347.7705	4480429.0092	633.7372	582.3283	0.0168
28	Medido	467346.1300	4480433.1857	633.7381	582.3292	0.0151
29	Medido	467362.5099	4480439.4127	633.8260	582.4166	0.0205
30	Medido	467361.6588	4480441.7631	633.8584	582.4490	0.0167
31	Medido	467373.4789	4480446.2412	633.9395	582.5297	0.0176
32	Medido	467363.7021	4480471.7590	634.0660	582.6564	0.0188
33	Medido	467335.7002	4480461.2218	633.9823	582.5735	0.0193
34	Medido	467329.9930	4480459.0760	633.9357	582.5271	0.0178
35	Medido	467340.5159	4480431.0910	633.7843	582.3755	0.0218
36	Medido	467342.0601	4480426.8595	633.7532	582.3445	0.0175
37	Medido	467312.6109	4480420.4938	633.7661	582.3582	0.0145
38	Medido	467302.0416	4480448.5125	633.9647	582.5569	0.0177
39	Medido	467296.3298	4480446.3688	633.9163	582.5087	0.0166
40	Medido	467307.0055	4480418.4032	633.6750	582.2672	0.0162
41	Medido	467279.0801	4480407.7630	633.3777	581.9708	0.0165
42	Medido	467268.3573	4480435.8833	633.6347	582.2279	0.0179
43	Medido	467264.7667	4480434.4872	633.6513	582.2447	0.0180
44	Medido	467267.4791	4480427.2416	633.5941	582.1874	0.0171
45	Medido	467268.8277	4480423.7109	633.5791	582.1724	0.0149
46	Medido	467260.5130	4480433.3530	633.5829	582.1763	0.0140
47	Medido	467272.7218	4480400.7256	633.3374	581.9307	0.0155
48	Medido	467270.5978	4480399.9201	633.3371	581.9305	0.0251
49	Medido	467271.7773	4480397.1210	633.3340	581.9274	0.0181
50	Medido	467273.7951	4480397.8751	633.3433	581.9366	0.0231

51	Medido	467281.9922	4480376.0346	633.1362	581.7294	0.0145
52	Medido	467277.6795	4480395.2832	633.3278	581.9210	0.0149
53	Medido	467279.2655	4480395.9014	633.3107	581.9038	0.0208
54	Medido	467277.9302	4480399.4344	633.3439	581.9371	0.0152
55	Medido	467279.0138	4480399.8437	633.3412	581.9344	0.0201
56	Medido	467279.1769	4480399.8558	633.3090	581.9021	0.0143
57	Medido	467280.6721	4480396.0021	633.2831	581.8763	0.0169
58	Medido	467277.8807	4480394.8271	633.2988	581.8921	0.0169
59	Medido	467277.9590	4480402.6944	633.3895	581.9827	0.0130
60	Medido	467276.8665	4480402.2839	633.3983	581.9915	0.0140
61	Medido	467275.9339	4480407.9527	633.4746	582.0678	0.0142
62	Medido	467278.4910	4480409.0991	633.3165	581.9096	0.0142
63	Medido	467279.0492	4480407.8099	633.4532	582.0463	0.0158
64	Medido	467280.5788	4480403.6584	633.4024	581.9955	0.0131
65	Medido	467281.6532	4480400.8498	633.3677	581.9608	0.0126
66	Medido	467282.1363	4480399.8063	633.2877	581.8807	0.0126
67	Medido	467313.3327	4480411.5023	633.5417	582.1339	0.0135
68	Medido	467314.5365	4480408.3998	633.4990	582.0911	0.0143
69	Medido	467316.9236	4480409.2309	633.6096	582.2017	0.0124
70	Medido	467327.4942	4480381.2936	633.3174	581.9094	0.0119
71	Medido	467329.8612	4480374.7415	633.2264	581.8184	0.0115
72	Medido	467331.6730	4480369.8883	633.2796	581.8715	0.0128
73	Medido	467342.1974	4480341.8475	633.0542	581.6460	0.0128
74	Medido	467370.2686	4480352.4878	633.3379	581.9288	0.0132
75	Medido	467359.6005	4480380.4805	633.4939	582.0850	0.0134
76	Medido	467361.1140	4480381.0864	633.5509	582.1419	0.0121
77	Medido	467344.6128	4480424.5366	633.6993	582.2905	0.0150
78	Medido	467344.7621	4480419.7788	633.7618	582.3530	0.0129
79	Medido	467355.3882	4480391.8259	633.5380	582.1292	0.0117
80	Medido	467294.9725	4480360.4901	633.0304	581.6234	0.0125
81	Medido	467287.5472	4480380.0518	633.1092	581.7022	0.0141
82	Medido	467285.5558	4480379.0877	633.1851	581.7782	0.0144
83	Medido	467283.9496	4480378.5234	633.1240	581.7172	0.0128
84	Medido	467297.9688	4480357.1869	633.0973	581.6902	0.0160
85	Medido	467326.0028	4480367.7688	633.2586	581.8507	0.0133
86	Medido	467336.5660	4480339.7363	633.0485	581.6404	0.0137
87	Medido	467308.5052	4480329.2216	632.8384	581.4312	0.0127
88	Medido	467312.8255	4480317.8447	632.6699	581.2627	0.0118
89	Medido	467340.8356	4480328.4616	632.9695	581.5614	0.0166
90	Medido	467351.3582	4480300.4532	632.4989	581.0907	0.0143
91	Medido	467323.2679	4480289.9581	632.2550	580.8477	0.0131
92	Medido	467346.4820	4480330.6224	632.9944	581.5862	0.0132
93	Medido	467374.5037	4480341.1811	633.1594	581.7503	0.0114
94	Medido	467385.0461	4480313.0511	633.0173	581.6081	0.0144
95	Medido	467357.0117	4480302.5479	632.6474	581.2390	0.0135
96	Medido	467380.2295	4480343.3734	633.1437	581.7345	0.0138
97	Medido	467390.8439	4480315.3060	633.0526	581.6433	0.0144
98	Medido	467418.9148	4480325.9386	633.1125	581.7023	0.0205
99	Medido	467408.2673	4480353.9758	633.3046	581.8945	0.0158
100	Medido	467419.7823	4480358.2190	633.3847	581.9743	0.0129

101	Medido	467430.1166	4480330.0355	633.1967	581.7862	0.0160
102	Medido	467458.1362	4480340.6174	633.5445	582.1331	0.0141
103	Medido	467447.6171	4480368.6984	633.6792	582.2679	0.0165
104	Medido	467459.7295	4480431.1081	632.8551	581.4431	0.0141
105	Medido	467459.0743	4480430.9011	632.8892	581.4773	0.0129
106	Medido	467458.6797	4480432.0526	632.9138	581.5018	0.0129
107	Medido	467457.1741	4480431.4237	632.8935	581.4816	0.0165
108	Medido	467457.0372	4480431.2393	632.8745	581.4625	0.0146
109	Medido	467452.4644	4480429.5127	632.7795	581.3677	0.0170
110	Medido	467451.5954	4480429.2231	632.7095	581.2978	0.0141
111	Medido	467450.8628	4480428.9050	632.7004	581.2886	0.0137
112	Medido	467444.8325	4480426.6400	632.7672	581.3556	0.0145
113	Medido	467444.3622	4480426.4798	632.8900	581.4785	0.0147
114	Medido	467444.6794	4480425.6435	632.8714	581.4599	0.0139
115	Medido	467458.4878	4480432.6933	633.1754	581.7634	0.0127
116	Medido	467456.6339	4480431.9084	633.1020	581.6901	0.0140
117	Medido	467456.4079	4480431.7444	633.0823	581.6704	0.0133
118	Medido	467452.2102	4480430.1312	633.2328	581.8210	0.0124
119	Medido	467451.3638	4480429.8905	633.2257	581.8140	0.0121
120	Medido	467450.5903	4480429.5790	633.2297	581.8180	0.0129
121	Medido	467444.1854	4480427.1573	633.2566	581.8450	0.0128
122	Medido	467436.5084	4480447.7530	633.3242	581.9127	0.0167
123	Medido	467435.8824	4480447.6106	633.4447	582.0333	0.0146
124	Medido	467435.1874	4480449.4466	633.4223	582.0109	0.0137
125	Medido	467435.7349	4480449.6694	633.4045	581.9930	0.0150
126	Medido	467440.4736	4480456.0376	633.2645	581.8529	0.0137
127	Medido	467442.4485	4480456.7557	633.3348	581.9231	0.0143
128	Medido	467440.3595	4480456.6494	633.3230	581.9114	0.0132
129	Medido	467441.8895	4480457.2522	633.3252	581.9135	0.0155
130	Medido	467448.5502	4480459.1314	633.2553	581.8434	0.0148
131	Medido	467448.3716	4480459.7038	633.3719	581.9601	0.0162
132	Medido	467447.7688	4480461.4060	633.2489	581.8371	0.0147
133	Medido	467448.2866	4480461.6053	633.1639	581.7520	0.0193
134	Medido	467450.3047	4480456.2796	633.5191	582.1072	0.0149
135	Medido	467450.3864	4480456.0806	633.5144	582.1025	0.0154
136	Medido	467450.0417	4480455.9284	633.5062	582.0943	0.0145
137	Medido	467449.8093	4480455.8832	633.5375	582.1256	0.0157
138	Medido	467450.0186	4480455.9729	633.5196	582.1077	0.0150
139	Medido	467449.7406	4480456.0490	633.5379	582.1260	0.0151
140	Medido	467451.1125	4480454.1468	633.5155	582.1036	0.0166
141	Medido	467451.2121	4480453.8914	633.5255	582.1136	0.0145
142	Medido	467450.7581	4480453.7842	633.4716	582.0597	0.0134
143	Medido	467450.8193	4480453.5548	633.5106	582.0987	0.0136
144	Medido	467450.6969	4480453.5312	633.5008	582.0889	0.0300
145	Medido	467450.7115	4480453.5135	633.5000	582.0881	0.0157
146	Medido	467450.5723	4480453.8927	633.4968	582.0849	0.0133
147	Medido	467450.7814	4480453.9677	633.5137	582.1018	0.0142
148	Medido	467450.7661	4480454.0203	633.5077	582.0958	0.0128
149	Medido	467453.4008	4480446.3685	633.5293	582.1173	0.0135
150	Medido	467453.9766	4480446.5870	633.5423	582.1304	0.0131

151	Medido	467454.7446	4480444.4987	633.5393	582.1273	0.0144
152	Medido	467454.3936	4480444.3551	633.5397	582.1278	0.0150
153	Medido	467454.3972	4480444.3181	633.5452	582.1332	0.0151
154	Medido	467454.1898	4480444.2329	633.5342	582.1223	0.0137
155	Medido	467454.2857	4480443.8714	633.2345	581.8226	0.0139
156	Medido	467453.9327	4480443.7521	633.2314	581.8195	0.0143
157	Medido	467454.4010	4480442.6302	633.2223	581.8104	0.0193
158	Medido	467454.7191	4480442.7589	633.2117	581.7997	0.0178
159	Medido	467457.0584	4480438.3709	633.4994	582.0874	0.0153
160	Medido	467456.4787	4480438.1461	633.5128	582.1009	0.0134
161	Medido	467457.3611	4480435.8182	633.5116	582.0996	0.0148
162	Medido	467457.9210	4480436.0326	633.5024	582.0905	0.0149
163	Medido	467454.3120	4480434.5794	633.2756	581.8638	0.0184
164	Medido	467453.6084	4480434.2887	633.3090	581.8971	0.0468
165	Medido	467453.3639	4480435.0285	633.2746	581.8627	0.0347
166	Medido	467451.8129	4480433.5917	633.2640	581.8522	0.0176
167	Medido	467451.0997	4480433.3006	633.3444	581.9327	0.0344
168	Medido	467449.3013	4480432.6271	633.2979	581.8862	0.0152
169	Medido	467448.5745	4480432.3593	633.2972	581.8855	0.0132
170	Medido	467446.7836	4480431.6483	633.2879	581.8763	0.0206
171	Medido	467446.0554	4480431.3808	633.3225	581.9108	0.0197
172	Medido	467445.7779	4480432.1163	633.3107	581.8991	0.0174
173	Medido	467444.5944	4480435.3074	633.3112	581.8996	0.0176
174	Medido	467444.3295	4480436.0376	633.2921	581.8805	0.0159
175	Medido	467440.1763	4480447.1003	633.3002	581.8887	0.0351
176	Medido	467439.9256	4480447.8391	633.2686	581.8571	0.0155
177	Medido	467438.7245	4480451.0307	633.2767	581.8652	0.0221
178	Medido	467438.4564	4480451.7606	633.2760	581.8644	0.0168
179	Medido	467440.9755	4480452.7162	633.2780	581.8664	0.0180
180	Medido	467441.6424	4480453.0284	633.3341	581.9225	0.0258
181	Medido	467443.4736	4480453.7045	633.2781	581.8664	0.0231
182	Medido	467444.1866	4480453.9920	633.3136	581.9019	0.0324
183	Medido	467426.1217	4480449.7040	633.2581	581.8469	0.0169
184	Medido	467428.7722	4480443.2207	633.3684	581.9572	0.0174
185	Medido	467428.6657	4480443.0137	633.2714	581.8602	0.0163
186	Medido	467436.3433	4480446.0889	633.3604	581.9490	0.0163
187	Medido	467426.1092	4480449.7029	633.2770	581.8658	0.0173
188	Medido	467425.6575	4480449.6925	633.2716	581.8604	0.0167
189	Medido	467428.2653	4480442.8613	633.2715	581.8602	0.0171
190	Medido	467425.2925	4480441.6973	632.4951	581.0840	0.0196
191	Medido	467422.6058	4480448.6057	632.4950	581.0839	0.0149
192	Medido	467425.5279	4480441.0666	632.1003	580.6891	0.0159
193	Medido	467436.5900	4480445.3661	632.0894	580.6779	0.0362
194	Medido	467424.8207	4480440.9286	631.8798	580.4687	0.0188
195	Medido	467422.5105	4480440.5728	631.8787	580.4676	0.0155
196	Medido	467420.1126	4480440.8340	631.8582	580.4472	0.0170
197	Medido	467420.1759	4480440.4848	631.8621	580.4511	0.0169
198	Medido	467424.4242	4480439.9162	631.9219	580.5108	0.0178
199	Medido	467423.9771	4480439.4769	631.9327	580.5217	0.0158
200	Medido	467420.3787	4480439.9829	632.1326	580.7216	0.0148

201	Medido	467421.0202	4480438.4004	632.0556	580.6446	0.0152
202	Medido	467422.6129	4480441.0801	632.1106	580.6995	0.0155
203	Medido	467418.3529	4480445.3671	632.4193	581.0083	0.0185
204	Medido	467418.1666	4480445.8077	632.8200	581.4090	0.0182
205	Medido	467419.6389	4480447.0223	632.4211	581.0101	0.0285
206	Medido	467418.9914	4480447.0001	632.0139	580.6029	0.0205
207	Medido	467419.5169	4480447.8127	631.9491	580.5381	0.0183
208	Medido	467422.1686	4480447.7348	631.9063	580.4952	0.0206
209	Medido	467422.4815	4480448.3552	631.8714	580.4603	0.0193
210	Medido	467422.0066	4480448.2288	631.8225	580.4114	0.0184
211	Medido	467419.8862	4480448.3251	631.9640	580.5530	0.0209
212	Medido	467420.9882	4480449.2942	631.9854	580.5743	0.0201
213	Medido	467426.1321	4480451.3984	631.8435	580.4323	0.0243
214	Medido	467428.1409	4480451.3026	631.9574	580.5461	0.0278
215	Medido	467428.7626	4480451.7148	632.0085	580.5972	0.0359
216	Medido	467425.9761	4480451.8378	632.2730	580.8617	0.0297
217	Medido	467420.7856	4480449.7466	632.2068	580.7958	0.0264
218	Medido	467419.4955	4480448.6330	632.1945	580.7834	0.0251
219	Medido	467429.9242	4480451.3653	632.5433	581.1320	0.0412
220	Medido	467445.7906	4480413.8229	632.4577	581.0462	0.0334
221	Medido	467445.9269	4480413.4977	632.4559	581.0444	0.0292
222	Medido	467446.5639	4480413.6824	632.4939	581.0823	0.0392
223	Medido	467447.6271	4480410.9456	632.4796	581.0681	0.0412
224	Medido	467447.0056	4480410.6702	632.4585	581.0470	0.0481
225	Medido	467447.2045	4480410.2009	632.4724	581.0608	0.0354
226	Medido	467447.8206	4480410.3396	632.4767	581.0651	0.0325
227	Medido	467448.4770	4480408.8135	632.4651	581.0535	0.0236
228	Medido	467447.7872	4480408.4682	632.4582	581.0467	0.0318
229	Medido	467447.9437	4480408.0860	632.4692	581.0577	0.0305
230	Medido	467448.6425	4480408.3450	632.4187	581.0071	0.0242
231	Medido	467449.2270	4480406.8480	632.4232	581.0117	0.0274
232	Medido	467448.5548	4480406.5921	632.4261	581.0146	0.0279
233	Medido	467448.7446	4480406.0819	632.4710	581.0595	0.0255
234	Medido	467449.4219	4480406.3343	632.4345	581.0230	0.0236
235	Medido	467450.0136	4480404.7937	632.4685	581.0569	0.0309
236	Medido	467449.2925	4480404.5014	632.4846	581.0731	0.0324
237	Medido	467449.4857	4480404.0118	632.5235	581.1120	0.0255
238	Medido	467450.2053	4480404.2601	632.5044	581.0929	0.0363
239	Medido	467450.8855	4480402.5554	632.4966	581.0850	0.0284
240	Medido	467451.3323	4480402.7733	632.4090	580.9974	0.0213
241	Medido	467446.8694	4480414.3836	632.3591	580.9476	0.0187
242	Medido	467451.2968	4480404.0972	632.1965	580.7849	0.0195
243	Medido	467451.6847	4480404.9888	631.8349	580.4233	0.0199
244	Medido	467458.3925	4480407.5106	631.6546	580.2428	0.0176
245	Medido	467458.0053	4480408.4811	631.6160	580.2042	0.0174
246	Medido	467457.6317	4480409.4163	631.5671	580.1553	0.0163
247	Medido	467457.1151	4480410.6654	631.4492	580.0374	0.0198
248	Medido	467457.0008	4480410.6220	631.4166	580.0048	0.0167
249	Medido	467455.6453	4480413.9765	631.4120	580.0003	0.0154

250	Medido	467454.9537	4480415.8669	631.4243	580.0125	0.0184
251	Medido	467454.9941	4480416.2211	631.7893	580.3776	0.0178
252	Medido	467454.6498	4480415.7547	631.4010	579.9892	0.0184
253	Medido	467454.3608	4480416.0200	631.4478	580.0360	0.0149
254	Medido	467454.4124	4480415.8813	631.4349	580.0231	0.0176
255	Medido	467454.2331	4480415.8165	631.4314	580.0197	0.0176
256	Medido	467454.1575	4480415.9247	631.4435	580.0318	0.0274
257	Medido	467454.0345	4480415.8580	631.4307	580.0189	0.0166
258	Medido	467454.0997	4480415.6147	631.4327	580.0209	0.0165
259	Medido	467453.6340	4480415.4472	631.4071	579.9954	0.0147
260	Medido	467453.5083	4480415.7125	631.3908	579.9791	0.0154
261	Medido	467453.0569	4480415.5636	631.6389	580.2271	0.0171
262	Medido	467453.1548	4480415.3099	631.6414	580.2297	0.0191
263	Medido	467452.8779	4480415.2041	631.4624	580.0506	0.0161
264	Medido	467452.7831	4480415.4695	631.4604	580.0487	0.0155
265	Medido	467452.4280	4480415.3418	631.4522	580.0405	0.0131
266	Medido	467452.5539	4480415.0634	631.4157	580.0040	0.0169
267	Medido	467452.2391	4480415.2497	631.4833	580.0716	0.0221
268	Medido	467451.9570	4480415.1695	631.4257	580.0140	0.0142
269	Medido	467451.1163	4480414.3011	631.4745	580.0628	0.0164
270	Medido	467450.3037	4480413.9794	631.4439	580.0323	0.0127
271	Medido	467450.0687	4480414.5215	631.4764	580.0648	0.0118
272	Medido	467449.8279	4480414.4438	631.4457	580.0340	0.0134
273	Medido	467449.3581	4480414.3078	631.4479	580.0362	0.0120
274	Medido	467448.2572	4480413.8809	631.5060	580.0944	0.0160
275	Medido	467451.7019	4480415.0731	631.4212	580.0095	0.0186
276	Medido	467451.1608	4480414.8775	631.4509	580.0393	0.0144
277	Medido	467450.1973	4480408.8988	631.4484	580.0368	0.0166
278	Medido	467450.7010	4480409.0911	631.4365	580.0249	0.0153
279	Medido	467450.9052	4480408.5132	631.4230	580.0114	0.0133
280	Medido	467451.0371	4480408.5509	631.4567	580.0451	0.0147
281	Medido	467451.3314	4480409.2198	631.3885	579.9769	0.0173
282	Medido	467452.3587	4480408.9869	631.3997	579.9880	0.0173
283	Medido	467453.4414	4480409.3922	631.3443	579.9326	0.0165
284	Medido	467453.9020	4480409.5241	631.3481	579.9364	0.0149
285	Medido	467455.8196	4480410.2478	631.3840	579.9722	0.0157
286	Medido	467450.0044	4480412.0420	631.4668	580.0552	0.0141
287	Medido	467450.2993	4480412.1202	631.4682	580.0566	0.0152
288	Medido	467450.3967	4480411.8216	631.4787	580.0671	0.0170
289	Medido	467450.1062	4480411.7312	631.4370	580.0254	0.0138
290	Medido	467450.6265	4480410.0974	631.5021	580.0905	0.0181
291	Medido	467450.3858	4480410.8537	631.4713	580.0597	0.0150
292	Medido	467449.8607	4480412.4181	631.4604	580.0488	0.0144
293	Medido	467449.2546	4480412.2142	631.5005	580.0889	0.0145
294	Medido	467448.9336	4480412.8473	631.4712	580.0596	0.0152
295	Medido	467448.8075	4480413.6775	631.4917	580.0801	0.0152
296	Medido	467449.8980	4480413.8913	631.4436	580.0319	0.0161
297	Medido	467450.9637	4480411.6957	631.4676	580.0560	0.0143
298	Medido	467451.0395	4480411.0514	631.4711	580.0595	0.0161
299	Medido	467451.3127	4480410.3075	631.4556	580.0440	0.0138
300	Medido	467451.0409	4480411.0554	631.4623	580.0507	0.0143

301	Medido	467450.9684	4480411.6948	631.4674	580.0558	0.0140
302	Medido	467449.9264	4480413.8989	631.4910	580.0794	0.0157
303	Medido	467451.8038	4480410.5065	631.4487	580.0370	0.0168
304	Medido	467451.6628	4480411.9757	631.4359	580.0243	0.0172
305	Medido	467451.4794	4480412.4764	631.3961	579.9845	0.0142
306	Medido	467451.2877	4480412.9875	631.4080	579.9963	0.0186
307	Medido	467451.0943	4480413.4728	631.4198	580.0081	0.0166
308	Medido	467450.9555	4480413.8502	631.4153	580.0036	0.0183
309	Medido	467451.2790	4480414.6267	631.4360	580.0244	0.0151
310	Medido	467451.4271	4480414.1646	631.4431	580.0315	0.0150
311	Medido	467451.6086	4480413.6438	631.3905	579.9788	0.0181
312	Medido	467451.8102	4480413.0773	631.3687	579.9571	0.0153
313	Medido	467452.5621	4480410.7777	631.4573	580.0456	0.0192
314	Medido	467453.1414	4480411.0102	631.4813	580.0696	0.0161
315	Medido	467452.5548	4480412.7312	631.3537	579.9421	0.0153
316	Medido	467452.3697	4480413.3487	631.3719	579.9602	0.0152
317	Medido	467452.1930	4480413.8686	631.4175	580.0059	0.0163
318	Medido	467452.0213	4480414.3698	631.4193	580.0076	0.0159
319	Medido	467452.7094	4480414.0503	631.4120	580.0003	0.0143
320	Medido	467452.9012	4480413.5276	631.3816	579.9699	0.0149
321	Medido	467453.2938	4480412.5767	631.4059	579.9942	0.0175
322	Medido	467453.4785	4480411.9684	631.4245	580.0128	0.0161
323	Medido	467453.7552	4480411.1186	631.4368	580.0251	0.0172
324	Medido	467454.1220	4480412.1244	631.4192	580.0075	0.0161
325	Medido	467453.9365	4480412.6816	631.4254	580.0136	0.0144
326	Medido	467453.7999	4480413.1090	631.4169	580.0052	0.0154
327	Medido	467453.3939	4480413.6818	631.4071	579.9954	0.0160
328	Medido	467453.2115	4480414.2258	631.3946	579.9829	0.0145
329	Medido	467453.7559	4480414.9822	631.4220	580.0103	0.0140
330	Medido	467453.7718	4480414.4489	631.3971	579.9854	0.0156
331	Medido	467453.9831	4480413.8127	631.4061	579.9944	0.0140
332	Medido	467454.9891	4480412.3260	631.3927	579.9809	0.0157
333	Medido	467454.7523	4480412.8921	631.4007	579.9890	0.0162
334	Medido	467454.5626	4480413.4311	631.4020	579.9902	0.0136
335	Medido	467454.3105	4480413.9670	631.4054	579.9936	0.0156
336	Medido	467454.6397	4480414.6701	631.4103	579.9985	0.0139
337	Medido	467454.8628	4480414.0970	631.4117	579.9999	0.0158
338	Medido	467455.0923	4480413.5351	631.4184	580.0066	0.0143
339	Medido	467452.8288	4480396.1199	633.8069	582.3953	0.0179
340	Medido	467464.6761	4480400.5083	633.8684	582.4564	0.0162
341	Medido	467482.5107	4480430.2050	633.6437	582.2311	0.0167
342	Medido	467468.9567	4480436.1679	633.2144	581.8021	0.0158
343	Medido	467456.5272	4480451.1533	632.8954	581.4833	0.0133
344	Medido	467424.5849	4480465.7137	634.0141	582.6028	0.0187
345	Medido	467407.1257	4480443.9378	633.9917	582.5811	0.0166
346	Medido	467416.3652	4480418.1470	633.3727	581.9620	0.0152
347	Medido	467436.0636	4480415.0927	632.8109	581.3996	0.0316
348	Medido	467450.6529	4480417.7937	631.7416	580.3299	0.0194
349	Medido	467449.7667	4480418.5094	631.7015	580.2898	0.0192
350	Medido	467449.5826	4480417.4041	631.5338	580.1222	0.0132

351	Medido	467446.2657	4480419.4577	632.4029	580.9913	0.0191
352	Medido	467445.5300	4480419.2400	632.3868	580.9752	0.0171
353	Medido	467443.5153	4480420.3525	632.3630	580.9515	0.0183
354	Medido	467444.6312	4480422.4592	632.3260	580.9145	0.0194
355	Medido	467446.9163	4480419.6011	632.1033	580.6918	0.0173
356	Medido	467447.1228	4480420.0969	632.2291	580.8176	0.0174
357	Medido	467448.2388	4480423.3713	631.9948	580.5831	0.0167
358	Medido	467458.9116	4480427.3112	632.7212	581.3093	0.0199
359	Medido	467458.7637	4480427.7623	632.7460	581.3341	0.0232
360	Medido	467446.1939	4480423.2459	632.1260	580.7144	0.0188
361	Medido	467444.8120	4480426.6509	632.7342	581.3227	0.0184
362	Medido	467444.3299	4480426.5111	632.8918	581.4802	0.0190
363	Medido	467445.6976	4480423.0623	632.8773	581.4657	0.0205
364	Medido	467454.3975	4480422.0176	632.7762	581.3644	0.0218
365	Medido	467452.0865	4480421.2143	632.6357	581.2240	0.0229
366	Medido	467454.2163	4480422.4315	632.7826	581.3708	0.0200
367	Medido	467454.0176	4480424.7466	632.4002	580.9884	0.0197
368	Medido	467445.6220	4480418.5632	632.2374	580.8258	0.0263
369	Medido	467443.0089	4480420.1457	632.4883	581.0769	0.0221
370	Medido	467444.1104	4480422.9045	632.0510	580.6395	0.0209
371	Medido	467445.5091	4480423.4823	632.0868	580.6753	0.0177
372	Medido	467444.7420	4480423.7887	632.0686	580.6571	0.0229
373	Medido	467460.4042	4480419.5556	632.7423	581.3303	0.0268
374	Medido	467461.8379	4480415.6971	632.5784	581.1664	0.0238
375	Medido	467461.3281	4480415.5786	632.5203	581.1084	0.0234
376	Medido	467461.5786	4480414.8319	632.6594	581.2475	0.0290
377	Medido	467462.1424	4480415.0471	632.6728	581.2609	0.0247
378	Medido	467462.4281	4480414.4216	632.6177	581.2058	0.0286
379	Medido	467462.6093	4480415.5573	632.6371	581.2251	0.0278
380	Medido	467463.2201	4480415.7867	632.6412	581.2292	0.0245
381	Medido	467462.9274	4480416.4767	632.5938	581.1818	0.0252
382	Medido	467462.3075	4480416.2440	632.4545	581.0425	0.0206
383	Medido	467461.1838	4480419.2154	632.5182	581.1062	0.0217
384	Medido	467470.6183	4480422.9412	632.6039	581.1917	0.0251
385	Medido	467470.4033	4480423.4937	632.6365	581.2242	0.0260
386	Medido	467472.1520	4480424.2613	632.5604	581.1481	0.0252
387	Medido	467472.3333	4480423.6693	632.4484	581.0361	0.0228
388	Medido	467476.9859	4480425.5308	632.3856	580.9731	0.0263
389	Medido	467476.8808	4480425.9933	632.4190	581.0066	0.0255
390	Medido	467478.5363	4480427.0949	632.4705	581.0580	0.0259
391	Medido	467479.1652	4480427.3382	632.7007	581.2882	0.0253
392	Medido	467479.4213	4480426.7655	632.5827	581.1702	0.0261
393	Medido	467478.8141	4480426.4382	632.4596	581.0471	0.0254
394	Medido	467482.1867	4480421.1550	632.7379	581.3254	0.0247
395	Medido	467482.4854	4480420.6706	632.8043	581.3917	0.0235
396	Medido	467481.6738	4480420.3087	632.5925	581.1799	0.0247
397	Medido	467481.2889	4480420.8442	632.5846	581.1721	0.0250
398	Medido	467476.4439	4480419.1300	632.4327	581.0203	0.0214
399	Medido	467476.7171	4480418.5800	632.3104	580.8980	0.0244

400	Medido	467475.8980	4480418.0966	632.3528	580.9404	0.0271
401	Medido	467475.6086	4480418.6865	632.4183	581.0059	0.0267
402	Medido	467475.4570	4480417.2267	632.4198	581.0075	0.0237
403	Medido	467475.9225	4480417.4190	632.2479	580.8356	0.0227
404	Medido	467477.0395	4480414.4985	632.3474	580.9350	0.0230
405	Medido	467476.5065	4480414.3780	632.4236	581.0113	0.0227
406	Medido	467471.9628	4480416.4127	632.5951	581.1829	0.0259
407	Medido	467471.6341	4480417.0279	632.6211	581.2088	0.0230
408	Medido	467470.7892	4480416.5988	632.5786	581.1664	0.0231
409	Medido	467471.1375	4480415.9708	632.5739	581.1617	0.0209
500	Medido	467416.4379	4480446.8164	632.8864	581.4755	0.0165
501	Medido	467416.6093	4480446.2242	632.9366	581.5257	0.0194
502	Medido	467417.1698	4480446.3647	633.0092	581.5983	0.0168
503	Medido	467418.0082	4480444.0475	632.9880	581.5771	0.0180
504	Medido	467417.4928	4480443.7639	632.8786	581.4677	0.0187
505	Medido	467417.6842	4480443.2132	632.8444	581.4334	0.0159
506	Medido	467418.2709	4480443.3705	632.9615	581.5506	0.0177
507	Medido	467419.1873	4480440.9988	632.8372	581.4262	0.0256
508	Medido	467418.7128	4480440.7657	632.7094	581.2984	0.0359
509	Medido	467418.9149	4480440.1489	632.8264	581.4154	0.0163
510	Medido	467419.4098	4480440.3430	632.9638	581.5529	0.0152
511	Medido	467420.3105	4480438.0380	632.9589	581.5479	0.0157
512	Medido	467419.8213	4480437.7761	632.8688	581.4578	0.0190
513	Medido	467420.0110	4480437.2141	632.8942	581.4832	0.0194
514	Medido	467420.5616	4480437.3533	632.9642	581.5532	0.0202
515	Medido	467421.2228	4480435.6534	632.5855	581.1746	0.0165
516	Medido	467421.5421	4480434.8554	632.5890	581.1780	0.0159
517	Medido	467421.0149	4480434.5867	632.7064	581.2955	0.0172
518	Medido	467421.2755	4480434.0112	632.9159	581.5050	0.0145
519	Medido	467421.7990	4480434.1952	632.9758	581.5648	0.0157
520	Medido	467422.8564	4480431.3579	632.9649	581.5540	0.0144
521	Medido	467422.2992	4480431.0894	632.8878	581.4768	0.0152
522	Medido	467422.5261	4480430.5120	632.8995	581.4885	0.0249
523	Medido	467423.0945	4480430.7133	632.9044	581.4934	0.0215
524	Medido	467423.5342	4480429.6426	632.8789	581.4679	0.0217
525	Medido	467423.7642	4480428.9682	632.8831	581.4721	0.0222
526	Medido	467424.1570	4480427.9784	633.0126	581.6016	0.0214
527	Medido	467423.6064	4480427.6560	632.9263	581.5153	0.0208
528	Medido	467423.8436	4480427.1010	632.8641	581.4531	0.0229
529	Medido	467424.3996	4480427.3024	633.0003	581.5893	0.0222
530	Medido	467424.8041	4480426.2917	632.9427	581.5317	0.0230
531	Medido	467425.0385	4480425.6358	632.9534	581.5424	0.0261
532	Medido	467425.3891	4480424.6836	633.0181	581.6071	0.0206
533	Medido	467424.8339	4480424.4168	632.7649	581.3539	0.0216
534	Medido	467425.0619	4480423.7431	632.7558	581.3448	0.0223
535	Medido	467427.4848	4480424.6333	631.5548	580.1437	0.0192
536	Medido	467427.2878	4480425.2386	631.5551	580.1440	0.0221
537	Medido	467425.5704	4480425.9213	632.9807	581.5697	0.0254
538	Medido	467425.3603	4480426.4685	633.0189	581.6079	0.0233

539	Medido	467418.4850	4480447.6527	632.1923	580.7813	0.0213
540	Medido	467419.1847	4480446.2643	632.4298	581.0188	0.0232
541	Medido	467418.1621	4480445.8103	632.8273	581.4164	0.0188
542	Medido	467419.8554	4480441.3305	632.2386	580.8276	0.0229
543	Medido	467417.2748	4480445.6676	632.3546	580.9437	0.0212
544	Medido	467417.5582	4480445.2161	632.3185	580.9076	0.0186
545	Medido	467417.5405	4480445.1813	632.3272	580.9163	0.0200
546	Medido	467416.0347	4480443.4296	631.7805	580.3696	0.0203
547	Medido	467416.3690	4480443.0752	631.8574	580.4466	0.0212
548	Medido	467417.1073	4480443.8543	632.2887	580.8777	0.0214
549	Medido	467415.8221	4480443.9659	632.0821	580.6712	0.0163
550	Medido	467415.2705	4480443.9054	632.0434	580.6325	0.0158
551	Medido	467417.9650	4480441.5477	632.2835	580.8725	0.0143
552	Medido	467415.7360	4480441.8113	632.0385	580.6276	0.0150
553	Medido	467415.5220	4480441.4385	631.8697	580.4589	0.0146
554	Medido	467418.2700	4480441.0934	631.8963	580.4854	0.0183
555	Medido	467418.4208	4480440.7196	631.8946	580.4836	0.0174
556	Medido	467414.4768	4480441.1181	631.8117	580.4009	0.0156
557	Medido	467415.3896	4480440.6556	632.5621	581.1513	0.0142
558	Medido	467418.5460	4480440.2674	632.6008	581.1899	0.0144
559	Medido	467424.7788	4480440.1985	631.9423	580.5312	0.0144
560	Medido	467425.0667	4480440.2844	631.8796	580.4685	0.0157
561	Medido	467426.0080	4480437.7289	631.9325	580.5213	0.0131
562	Medido	467426.6485	4480438.0272	632.1081	580.6970	0.0153
563	Medido	467427.4071	4480435.9699	632.1118	580.7007	0.0150
564	Medido	467426.7500	4480435.7613	631.9433	580.5322	0.0197
565	Medido	467428.9686	4480452.5049	631.9962	580.5849	0.0510
566	Medido	467429.2574	4480453.1907	632.1310	580.7197	0.0476
567	Medido	467429.9116	4480452.8259	632.2349	580.8236	0.0741
568	Medido	467414.9653	4480453.2644	632.7941	581.3831	0.0199
569	Medido	467414.7718	4480453.8210	632.7319	581.3210	0.0173
570	Medido	467417.9154	4480454.3981	632.7576	581.3466	0.0138
571	Medido	467417.7844	4480454.9871	632.6941	581.2831	0.0159
572	Medido	467420.8505	4480455.6399	632.8133	581.4022	0.0157
573	Medido	467420.6002	4480456.1864	632.7372	581.3261	0.0168
574	Medido	467430.3686	4480459.3963	632.9522	581.5408	0.0137
575	Medido	467430.1424	4480459.9774	632.9257	581.5144	0.0142
576	Medido	467430.7602	4480460.2082	633.0015	581.5901	0.0169
577	Medido	467442.1256	4480463.6976	632.6797	581.2680	0.0170
578	Medido	467441.3607	4480464.0635	632.5903	581.1786	0.0170
579	Medido	467452.7410	4480467.8771	632.9112	581.4991	0.0336
580	Medido	467452.4564	4480468.4611	633.0078	581.5957	0.0256
581	Medido	467412.5938	4480454.7668	633.3491	581.9383	0.0182
582	Medido	467415.2992	4480455.8551	633.1169	581.7060	0.0161
583	Medido	467415.1620	4480456.2222	633.1284	581.7175	0.0170
584	Medido	467414.7523	4480456.1278	633.0972	581.6863	0.0154
585	Medido	467414.5622	4480456.5871	632.8709	581.4600	0.0174
586	Medido	467414.3835	4480457.1146	632.9166	581.5057	0.0151
587	Medido	467414.8508	4480457.2868	632.9408	581.5299	0.0152
		_	_			

588	Medido	467415.0681	4480456.7715	632.8464	581.4355	0.0148
589	Medido	467412.3379	4480455.3776	633.0877	581.6768	0.0188
590	Medido	467413.5488	4480455.8036	632.9800	581.5691	0.0159
591	Medido	467413.4858	4480456.0528	632.9779	581.5670	0.0148
592	Medido	467412.3244	4480455.6703	633.0201	581.6093	0.0155
593	Medido	467417.7801	4480457.2713	632.9196	581.5086	0.0144
594	Medido	467417.6519	4480457.7258	632.9210	581.5100	0.0154
595	Medido	467417.3289	4480457.6524	632.8597	581.4487	0.0198
596	Medido	467417.1076	4480458.1376	632.8846	581.4736	0.0209
597	Medido	467417.3794	4480458.2527	632.8902	581.4792	0.0180
598	Medido	467416.6773	4480459.3887	633.0047	581.5937	0.0208
599	Medido	467417.0445	4480459.5430	632.9353	581.5243	0.0180
600	Medido	467417.6119	4480458.3346	632.8969	581.4859	0.0148
601	Medido	467418.1543	4480458.5480	632.8874	581.4764	0.0187
602	Medido	467418.3618	4480458.0187	632.8902	581.4791	0.0185
603	Medido	467418.0806	4480457.8759	632.9213	581.5102	0.0169
604	Medido	467418.3292	4480457.4290	632.9539	581.5429	0.0165
605	Medido	467419.6905	4480457.8761	632.9066	581.4955	0.0165
606	Medido	467420.3636	4480456.4750	632.9129	581.5018	0.0156
607	Medido	467420.9263	4480456.6651	632.8636	581.4525	0.0174
608	Medido	467420.2587	4480458.1095	632.7654	581.3543	0.0166
609	Medido	467420.7529	4480458.3938	632.8649	581.4538	0.0198
610	Medido	467420.5038	4480458.9580	632.8915	581.4804	0.0198
611	Medido	467420.1301	4480458.7571	632.7915	581.3804	0.0181
612	Medido	467419.9436	4480459.1951	632.7137	581.3026	0.0181
613	Medido	467421.3235	4480459.7433	632.9653	581.5541	0.0200
614	Medido	467421.5103	4480459.3434	632.8547	581.4436	0.0221
615	Medido	467420.9501	4480459.0470	632.8905	581.4794	0.0212
616	Medido	467421.1993	4480458.5012	632.8993	581.4882	0.0198
617	Medido	467429.8524	4480461.7993	632.7265	581.3151	0.0240
618	Medido	467430.4676	4480460.4728	632.7909	581.3795	0.0198
619	Medido	467430.9006	4480460.6257	632.8225	581.4111	0.0203
620	Medido	467440.6529	4480462.2109	632.8773	581.4657	0.0211
621	Medido	467439.7510	4480461.4483	632.9110	581.4993	0.0176
622	Medido	467433.0225	4480458.4273	632.6066	581.1951	0.0190
623	Medido	467433.4958	4480457.3069	632.5638	581.1524	0.0219
626	Medido	467439.6809	4480460.0239	632.6320	581.2204	0.0213
627	Medido	467439.9718	4480459.3070	632.7180	581.3064	0.0165
628	Medido	467433.4690	4480456.3465	632.6048	581.1933	0.0188
629	Medido	467433.8082	4480455.0327	632.5037	581.0922	0.0206
630	Medido	467431.9505	4480454.3291	632.3344	580.9230	0.0252
631	Medido	467431.3596	4480455.2442	632.7221	581.3107	0.0199
632	Medido	467430.5925	4480455.2563	632.7074	581.2961	0.0218
633	Medido	467430.2812	4480454.5986	632.7224	581.3110	0.0190
634	Medido	467430.7364	4480453.9658	632.3994	580.9880	0.0207
635	Medido	467427.2607	4480453.6119	632.3572	580.9459	0.0197
636	Medido	467426.6296	4480454.3736	632.4351	581.0238	0.0157
637	Medido	467422.6519	4480452.6671	632.3382	580.9270	0.0160
638	Medido	467422.7710	4480451.5980	632.2937	580.8826	0.0164

639	Medido	467422.5450	4480451.5345	632.2652	580.8541	0.0162
640	Medido	467421.9167	4480452.2834	632.4731	581.0620	0.0172
641	Medido	467421.4350	4480452.5120	632.7105	581.2994	0.0193
642	Medido	467420.7872	4480452.2279	632.7792	581.3681	0.0190
643	Medido	467419.7892	4480452.0282	632.8189	581.4079	0.0155
644	Medido	467420.6390	4480450.5176	632.4233	581.0123	0.0161
645	Medido	467418.8418	4480449.1298	632.4160	581.0050	0.0167
646	Medido	467448.7946	4480399.2490	632.7259	581.3144	0.0163
647	Medido	467447.0177	4480403.8443	632.6614	581.2499	0.0183
648	Medido	467444.7953	4480413.0477	632.4649	581.0534	0.0135
649	Medido	467446.3471	4480409.4061	632.4265	581.0150	0.0139
650	Medido	467446.9931	4480410.6663	632.4822	581.0707	0.0147
651	Medido	467452.8376	4480396.1220	633.8076	582.3960	0.0164
652	Medido	467464.6795	4480400.5039	633.8573	582.4454	0.0132
653	Medido	467482.5090	4480430.2068	633.6438	582.2312	0.0162
654	Medido	467468.9540	4480436.1796	633.2259	581.8136	0.0178
655	Medido	467456.5205	4480451.1549	632.8874	581.4754	0.0138
656	Medido	467424.5893	4480465.7118	634.0150	582.6037	0.0170
657	Medido	467407.1232	4480443.9403	633.9877	582.5771	0.0191
658	Medido	467416.3736	4480418.1487	633.3673	581.9566	0.0177
659	Medido	467425.5175	4480441.0500	632.1033	580.6922	0.0306
660	Medido	467426.6518	4480438.0479	632.0974	580.6862	0.0245
661	Medido	467427.4141	4480435.9732	632.1094	580.6982	0.0265
662	Medido	467428.2809	4480433.7064	632.0132	580.6021	0.0298
663	Medido	467434.0507	4480435.9022	631.9730	580.5617	0.0298
664	Medido	467428.7693	4480432.7937	632.1128	580.7016	0.0401
665	Medido	467437.8610	4480436.4002	631.9576	580.5462	0.0303
666	Medido	467437.5790	4480435.3602	631.9975	580.5861	0.0509
667	Medido	467438.3593	4480433.3719	632.0201	580.6086	0.0397
668	Medido	467440.6727	4480434.2447	632.0576	580.6461	0.0428
669	Medido	467439.9049	4480436.2809	632.0089	580.5974	0.0433
670	Medido	467431.3805	4480425.8506	631.7885	580.3773	0.0511
671	Medido	467431.8756	4480425.4143	631.8024	580.3912	0.0633
672	Medido	467431.7892	4480425.6721	631.7960	580.3848	0.0682
673	Medido	467431.8500	4480425.8891	631.8382	580.4270	0.0590
674	Medido	467432.2736	4480426.0812	631.8652	580.4540	0.0547
675	Medido	467432.4308	4480425.6420	631.7982	580.3870	0.0541
676	Medido	467432.4961	4480425.6195	631.8031	580.3919	0.0522
677	Medido	467432.3430	4480426.0489	631.8700	580.4588	0.0628
678	Medido	467432.4637	4480426.2184	631.8840	580.4728	0.0686
679	Medido	467432.7100	4480426.2891	631.9297	580.5185	0.0624
680	Medido	467432.9006	4480425.7139	631.7639	580.3527	0.0643
681	Medido	467432.5216	4480425.5330	631.8385	580.4273	0.0588
682	Medido	467432.6709	4480425.0630	631.8370	580.4257	0.0715
683	Medido	467433.1115	4480425.2343	631.7455	580.3342	0.0605
684	Medido	467432.8526	4480425.6169	631.8758	580.4645	0.0685
685	Medido	467433.1604	4480425.2322	631.8247	580.4135	0.0714
700	Medido	467433.5708	4480425.6143	632.0920	580.6808	0.0204
701	Medido	467433.3150	4480426.3977	632.0291	580.6179	0.0234

702	Medido	467435.3318	4480427.1287	632.0391	580.6278	0.0215
703	Medido	467437.3260	4480426.2260	632.0481	580.6367	0.0217
704	Medido	467438.4314	4480428.2825	632.0334	580.6220	0.0201
705	Medido	467439.9855	4480428.9954	631.9803	580.5688	0.0191
706	Medido	467442.3371	4480430.0087	632.0275	580.6160	0.0214
707	Medido	467442.1795	4480429.9061	631.7852	580.3737	0.0199
708	Medido	467442.2927	4480429.5547	631.7960	580.3844	0.0198
709	Medido	467441.8062	4480429.1851	631.8099	580.3984	0.0230
710	Medido	467441.5947	4480429.7238	631.9871	580.5756	0.0200
711	Medido	467441.5871	4480429.6115	631.9726	580.5611	0.0204
712	Medido	467441.4044	4480429.5777	631.9675	580.5560	0.0209
713	Medido	467441.5082	4480429.1046	631.8408	580.4293	0.0239
714	Medido	467441.5266	4480429.0945	631.8395	580.4280	0.0387
715	Medido	467441.7438	4480429.2615	631.7883	580.3768	0.0396
716	Medido	467441.5898	4480428.7549	631.8165	580.4051	0.0185
717	Medido	467441.2460	4480428.5789	631.8351	580.4236	0.0207
718	Medido	467441.0536	4480428.9720	631.8785	580.4670	0.0243
719	Medido	467441.0337	4480428.9205	631.8732	580.4617	0.0222
720	Medido	467441.2439	4480428.4891	631.8355	580.4240	0.0204
721	Medido	467440.9550	4480428.3693	631.8788	580.4673	0.0266
722	Medido	467440.7186	4480428.7572	631.9514	580.5400	0.0222
723	Medido	467441.0332	4480428.9180	631.8644	580.4529	0.0245
724	Medido	467441.0230	4480429.5632	631.9996	580.5881	0.0210
725	Medido	467441.2829	4480429.1604	631.9377	580.5263	0.0194
726	Medido	467440.9887	4480429.0365	631.8927	580.4812	0.0205
727	Medido	467440.7755	4480429.4403	631.9592	580.5477	0.0192
728	Medido	467440.5032	4480429.1790	631.9590	580.5476	0.0202
729	Medido	467440.7954	4480429.1712	631.9380	580.5265	0.0200
730	Medido	467440.8561	4480428.8873	631.8801	580.4686	0.0207
731	Medido	467440.6745	4480428.8088	631.9311	580.5196	0.0217
732	Medido	467441.9349	4480430.6021	632.0377	580.6262	0.0205
733	Medido	467442.0738	4480430.2915	632.0180	580.6064	0.0193
734	Medido	467441.7704	4480430.1776	632.0127	580.6012	0.0177
735	Medido	467441.4809	4480430.0462	632.0129	580.6014	0.0183
736	Medido	467441.3487	4480430.3642	632.0231	580.6116	0.0178
737	Medido	467441.6268	4480430.4813	632.0277	580.6162	0.0184
738	Medido	467440.8843	4480429.8082	632.0140	580.6025	0.0172
739	Medido	467440.6040	4480429.7132	632.0263	580.6148	0.0184
740	Medido	467440.4244	4480429.6561	632.0270	580.6155	0.0193
741	Medido	467440.2967	4480429.9627	632.0300	580.6185	0.0171
742	Medido	467440.4520	4480430.0498	632.0408	580.6294	0.0171
743	Medido	467440.7166	4480430.1714	632.0294	580.6179	0.0194
744	Medido	467432.8680	4480427.1189	632.0290	580.6177	0.0163
745	Medido	467433.0150	4480426.7975	632.0217	580.6105	0.0194
746	Medido	467432.8675	4480426.7338	631.9983	580.5871	0.0166
747	Medido	467432.5556	4480426.6168	632.0158	580.6046	0.0192
748	Medido	467432.4075	4480426.9493	632.0583	580.6470	0.0222
749	Medido	467431.8007	4480426.7190	632.0439	580.6327	0.0228
750	Medido	467431.9436	4480426.3930	632.0193	580.6081	0.0250
		_	_			_

751	Medido	467431.6657	4480426.2912	632.0267	580.6155	0.0219
752	Medido	467431.3353	4480426.1680	632.0347	580.6235	0.0217
753	Medido	467431.2111	4480426.4896	632.0243	580.6131	0.0224
754	Medido	467431.5361	4480426.6081	632.0243	580.6131	0.0197
755	Medido	467431.4247	4480426.8378	632.0113	580.6001	0.0215
756	Medido	467431.1997	4480427.3914	632.0248	580.6136	0.0211
757	Medido	467431.0053	4480427.9623	632.0214	580.6103	0.0212
758	Medido	467430.7786	4480428.5184	632.0143	580.6031	0.0206
759	Medido	467430.5674	4480429.0932	632.0262	580.6150	0.0198
760	Medido	467430.3473	4480429.6497	632.0215	580.6103	0.0209
761	Medido	467430.1587	4480430.2103	632.0090	580.5978	0.0218
762	Medido	467429.9641	4480430.7841	632.0160	580.6048	0.0184
763	Medido	467429.7471	4480431.3214	632.0014	580.5903	0.0185
764	Medido	467429.5488	4480431.8964	632.0044	580.5933	0.0191
765	Medido	467429.3347	4480432.4926	632.0151	580.6039	0.0212
766	Medido	467430.3958	4480432.9204	631.9978	580.5866	0.0193
767	Medido	467430.6197	4480432.3570	631.9760	580.5648	0.0202
768	Medido	467430.8005	4480431.7513	631.9999	580.5886	0.0222
769	Medido	467431.2258	4480430.6615	632.0037	580.5924	0.0197
770	Medido	467431.4386	4480430.0877	632.0284	580.6172	0.0194
771	Medido	467431.6390	4480429.5159	632.0064	580.5952	0.0197
772	Medido	467431.8651	4480428.9562	632.0230	580.6118	0.0193
773	Medido	467432.0996	4480428.4120	632.0352	580.6239	0.0202
774	Medido	467432.2884	4480427.8180	632.0201	580.6089	0.0231
775	Medido	467432.4920	4480427.2528	632.0159	580.6047	0.0195
776	Medido	467434.0215	4480427.1863	632.0216	580.6103	0.0200
777	Medido	467433.8169	4480427.7541	632.0070	580.5958	0.0206
778	Medido	467433.3985	4480428.8862	632.0174	580.6061	0.0235
779	Medido	467433.1892	4480429.4455	632.0118	580.6005	0.0200
780	Medido	467432.9825	4480430.0001	632.0163	580.6050	0.0207
781	Medido	467432.3429	4480431.7033	632.0044	580.5932	0.0231
782	Medido	467432.1399	4480432.2656	631.9933	580.5821	0.0226
783	Medido	467431.9299	4480432.8215	631.9855	580.5743	0.0213
784	Medido	467431.7233	4480433.3851	631.9879	580.5767	0.0232
785	Medido	467432.2757	4480433.6219	631.9910	580.5797	0.0195
786	Medido	467432.4951	4480433.0401	631.9972	580.5860	0.0198
787	Medido	467432.7064	4480432.4682	631.9999	580.5886	0.0192
788	Medido	467432.9057	4480431.9200	631.9934	580.5821	0.0193
789	Medido	467433.1206	4480431.3483	631.9867	580.5754	0.0187
790	Medido	467433.5401	4480430.2149	631.9956	580.5844	0.0191
791	Medido	467433.7525	4480429.6537	632.0048	580.5935	0.0201
792	Medido	467434.3786	4480427.9854	632.0239	580.6126	0.0252
793	Medido	467434.5949	4480427.4116	632.0196	580.6083	0.0236
794	Medido	467435.1458	4480427.6106	631.9977	580.5864	0.0197
795	Medido	467434.9246	4480428.1949	632.0226	580.6113	0.0221
796	Medido	467434.5086	4480429.3117	631.9941	580.5828	0.0195
797	Medido	467434.2958	4480429.8713	632.0033	580.5920	0.0241
798	Medido	467434.0838	4480430.4521	632.0087	580.5974	0.0205
799	Medido	467433.8987	4480430.9959	631.9943	580.5830	0.0229

800	Medido	467433.6750	4480431.5466	631.9873	580.5760	0.0221
801	Medido	467433.4588	4480432.1332	631.9925	580.5812	0.0236
802	Medido	467433.2558	4480432.6959	631.9890	580.5777	0.0219
803	Medido	467433.0493	4480433.2711	632.0091	580.5978	0.0219
804	Medido	467432.8338	4480433.8236	631.9887	580.5774	0.0229
805	Medido	467433.3943	4480434.0349	631.9831	580.5718	0.0251
806	Medido	467433.6269	4480433.4533	631.9935	580.5822	0.0205
807	Medido	467433.8142	4480432.9009	631.9866	580.5753	0.0216
808	Medido	467434.0193	4480432.3492	631.9814	580.5701	0.0235
809	Medido	467434.2637	4480431.7662	631.9877	580.5764	0.0214
810	Medido	467434.4519	4480431.1958	631.9991	580.5878	0.0198
811	Medido	467434.6460	4480430.6624	632.0090	580.5977	0.0209
812	Medido	467434.8810	4480430.0833	632.0077	580.5964	0.0200
813	Medido	467435.0765	4480429.5333	632.0107	580.5994	0.0233
814	Medido	467435.2820	4480428.9691	632.0178	580.6065	0.0220
815	Medido	467435.5160	4480428.4072	632.0096	580.5983	0.0228
816	Medido	467435.7224	4480427.8435	632.0142	580.6028	0.0203
817	Medido	467435.9406	4480427.2752	632.0251	580.6138	0.0194
818	Medido	467436.1481	4480426.7144	632.0288	580.6175	0.0151
819	Medido	467436.9246	4480426.3744	632.0388	580.6275	0.0143
820	Medido	467436.7022	4480426.9269	632.0382	580.6269	0.0149
821	Medido	467436.4773	4480427.4890	632.0235	580.6122	0.0161
822	Medido	467436.2688	4480428.0607	632.0262	580.6149	0.0149
823	Medido	467436.0699	4480428.6269	632.0138	580.6025	0.0161
824	Medido	467435.8434	4480429.1705	632.0221	580.6108	0.0153
825	Medido	467435.6389	4480429.7516	632.0116	580.6003	0.0146
826	Medido	467435.4377	4480430.3078	631.9982	580.5869	0.0153
827	Medido	467435.2250	4480430.8741	632.0233	580.6120	0.0152
828	Medido	467435.0164	4480431.4300	632.0120	580.6006	0.0147
829	Medido	467434.8038	4480431.9943	632.0117	580.6004	0.0160
830	Medido	467434.5906	4480432.5702	631.9844	580.5731	0.0151
831	Medido	467434.3668	4480433.1270	631.9958	580.5845	0.0157
832	Medido	467434.1678	4480433.6874	631.9976	580.5863	0.0148
833	Medido	467433.9708	4480434.2595	631.9986	580.5873	0.0176
834	Medido	467434.5609	4480434.4957	631.9917	580.5803	0.0164
835	Medido	467434.7681	4480433.9279	631.9902	580.5789	0.0164
836	Medido	467434.9890	4480433.3649	631.9937	580.5824	0.0164
837	Medido	467435.1865	4480432.7914	631.9828	580.5715	0.0150
838	Medido	467435.4138	4480432.2220	632.0133	580.6020	0.0168
839	Medido	467435.6040	4480431.6704	631.9956	580.5843	0.0184
840	Medido	467435.8205	4480431.0899	631.9812	580.5699	0.0190
841	Medido	467436.0300	4480430.5292	632.0237	580.6123	0.0167
842	Medido	467436.2363	4480429.9815	632.0082	580.5968	0.0191
843	Medido	467436.4596	4480429.3904	632.0145	580.6031	0.0177
844	Medido	467436.6472	4480428.8431	631.9904	580.5790	0.0182
845	Medido	467436.8689	4480428.2871	632.0123	580.6009	0.0175
846	Medido	467437.0737	4480427.7181	632.0512	580.6398	0.0183
847	Medido	467437.2919	4480427.1629	632.0255	580.6141	0.0188
848	Medido	467437.4910	4480426.6324	632.0287	580.6174	0.0183

849	Medido	467437.4901	4480426.6372	632.0323	580.6209	0.0173
850	Medido	467438.0809	4480426.7876	632.0221	580.6108	0.0155
851	Medido	467437.8553	4480427.4064	632.0381	580.6268	0.0153
852	Medido	467437.6397	4480427.9538	632.0353	580.6239	0.0142
853	Medido	467437.4130	4480428.5135	632.0331	580.6217	0.0158
854	Medido	467437.2155	4480429.0666	632.0409	580.6296	0.0120
855	Medido	467437.0210	4480429.6493	632.0282	580.6168	0.0147
856	Medido	467436.8099	4480430.2078	632.0107	580.5993	0.0155
857	Medido	467436.5869	4480430.7440	632.0209	580.6096	0.0131
858	Medido	467436.3933	4480431.3210	632.0078	580.5964	0.0144
859	Medido	467436.1778	4480431.8958	632.0124	580.6010	0.0157
860	Medido	467435.9620	4480432.4581	631.9960	580.5846	0.0141
861	Medido	467435.7596	4480433.0185	632.0006	580.5892	0.0133
862	Medido	467435.5500	4480433.5728	631.9990	580.5876	0.0146
863	Medido	467435.3384	4480434.1462	632.0042	580.5929	0.0167
864	Medido	467435.1290	4480434.7122	632.0335	580.6221	0.0161
865	Medido	467435.6904	4480434.9173	632.0122	580.6008	0.0161
866	Medido	467435.8978	4480434.3569	632.0023	580.5909	0.0132
867	Medido	467436.1162	4480433.7874	632.0132	580.6019	0.0146
868	Medido	467436.3165	4480433.2212	631.9929	580.5815	0.0161
869	Medido	467436.5256	4480432.6572	632.0050	580.5936	0.0154
870	Medido	467436.7386	4480432.0982	632.0126	580.6013	0.0154
871	Medido	467436.9510	4480431.5297	632.0129	580.6015	0.0150
872	Medido	467437.1549	4480430.9603	631.9979	580.5866	0.0163
873	Medido	467437.3631	4480430.4232	632.0341	580.6227	0.0145
874	Medido	467437.5749	4480429.8489	632.0312	580.6198	0.0183
875	Medido	467437.7889	4480429.2818	632.0229	580.6115	0.0161
876	Medido	467438.0062	4480428.7201	632.0204	580.6090	0.0178
877	Medido	467438.5528	4480428.9504	632.0275	580.6161	0.0191
878	Medido	467438.3583	4480429.5165	632.0184	580.6070	0.0143
879	Medido	467438.1521	4480430.0673	632.0288	580.6174	0.0186
880	Medido	467437.9367	4480430.6528	632.0072	580.5958	0.0137
881	Medido	467437.7142	4480431.2004	631.9877	580.5763	0.0181
882	Medido	467437.5310	4480431.7555	632.0441	580.6327	0.0172
883	Medido	467437.2905	4480432.3336	631.9979	580.5865	0.0164
884	Medido	467437.0879	4480432.9020	632.0045	580.5931	0.0163
885	Medido	467436.8903	4480433.4524	632.0146	580.6032	0.0170
886	Medido	467436.6710	4480434.0190	631.9935	580.5821	0.0165
887	Medido	467436.4638	4480434.5909	632.0159	580.6045	0.0149
888	Medido	467436.2434	4480435.1625	632.0056	580.5942	0.0164
889	Medido	467436.8111	4480435.3576	632.0031	580.5917	0.0171
890	Medido	467437.0173	4480434.7799	632.0050	580.5936	0.0150
891	Medido	467437.2297	4480434.2141	632.0036	580.5922	0.0165
892	Medido	467437.4382	4480433.6540	632.0026	580.5912	0.0130
893	Medido	467437.6446	4480433.1006	632.0211	580.6097	0.0139
894	Medido	467437.8604	4480432.5306	632.0336	580.6222	0.0199
895	Medido	467438.0769	4480431.9380	632.0299	580.6185	0.0181
896	Medido	467438.2925	4480431.3838	632.0118	580.6003	0.0163
897	Medido	467438.4931	4480430.8539	632.0119	580.6005	0.0140

898	Medido	467438.6996	4480430.2650	632.0037	580.5923	0.0191
899	Medido	467438.9042	4480429.7172	632.0091	580.5976	0.0174
900	Medido	467439.1128	4480429.1686	632.0274	580.6159	0.0146
901	Medido	467439.0050	4480431.6945	632.0195	580.6081	0.0141
902	Medido	467438.7840	4480432.2419	632.0041	580.5927	0.0137
903	Medido	467437.5078	4480435.6253	631.9999	580.5885	0.0208
904	Medido	467438.2047	4480435.9067	632.0104	580.5990	0.0137
905	Medido	467439.1218	4480436.2363	632.0187	580.6072	0.0160
906	Medido	467439.2818	4480433.0941	632.0114	580.6000	0.0152
907	Medido	467439.4717	4480432.5189	632.0062	580.5948	0.0162
908	Medido	467439.7051	4480431.9634	632.0140	580.6026	0.0150
909	Medido	467439.9102	4480431.4099	632.0205	580.6090	0.0151
910	Medido	467440.1294	4480430.8279	632.0379	580.6265	0.0147
911	Medido	467440.3496	4480430.2575	632.0495	580.6380	0.0149
912	Medido	467441.2589	4480430.6223	632.0200	580.6085	0.0170
913	Medido	467441.0475	4480431.1995	632.0092	580.5977	0.0164
914	Medido	467440.8198	4480431.7637	632.0305	580.6191	0.0136
915	Medido	467440.6046	4480432.3125	632.0122	580.6008	0.0127
916	Medido	467440.3892	4480432.8486	632.0301	580.6186	0.0151
917	Medido	467440.1973	4480433.4371	632.0212	580.6097	0.0147
918	Medido	467431.0284	4480426.6952	632.0862	580.6750	0.0158
919	Medido	467430.8156	4480427.2624	632.0858	580.6747	0.0175
920	Medido	467430.6012	4480427.8253	632.0697	580.6585	0.0174
921	Medido	467430.3919	4480428.3864	632.0785	580.6673	0.0175
922	Medido	467430.1910	4480428.9540	632.0807	580.6695	0.0161
923	Medido	467429.9726	4480429.5198	632.0908	580.6796	0.0164
924	Medido	467429.7600	4480430.0791	632.0820	580.6708	0.0171
925	Medido	467429.3569	4480431.1853	632.0752	580.6640	0.0176
926	Medido	467429.1417	4480431.7481	632.0851	580.6740	0.0171
927	Medido	467428.9275	4480432.3534	632.0751	580.6639	0.0174
928	Medido	467431.1750	4480431.2886	632.0705	580.6593	0.0151
929	Medido	467433.5141	4480426.6980	632.0486	580.6373	0.0143
930	Medido	467434.1238	4480426.9263	632.0504	580.6391	0.0134
931	Medido	467434.6959	4480427.1488	632.0309	580.6196	0.0142
932	Medido	467435.2341	4480427.3698	632.0480	580.6367	0.0157
933	Medido	467436.5252	4480426.2169	632.0690	580.6577	0.0172
934	Medido	467436.2456	4480426.4401	632.0448	580.6335	0.0144
935	Medido	467438.1048	4480428.4775	632.0269	580.6155	0.0162
936	Medido	467438.6732	4480428.6818	632.0295	580.6181	0.0167
937	Medido	467439.2205	4480428.8705	632.0278	580.6164	0.0149
938	Medido	467439.7850	4480429.1142	632.0391	580.6277	0.0156
939	Medido	467433.5957	4480428.3179	632.0250	580.6138	0.0131
940	Medido	467432.5512	4480431.1322	631.9886	580.5773	0.0153
941	Medido	467433.3465	4480430.7857	631.9971	580.5858	0.0183
942	Medido	467433.9641	4480429.0907	632.0076	580.5963	0.0148
943	Medido	467434.8786	4480428.7980	631.9974	580.5861	0.0134
944	Medido	467439.6544	4480436.4154	632.0197	580.6082	0.0158
945	Medido	467440.7158	4480433.6280	632.0480	580.6365	0.0149
946	Medido	467440.9492	4480433.0769	632.0260	580.6145	0.0164

947	Medido	467441.1573	4480432.5142	632.0514	580.6399	0.0144
948	Medido	467441.3731	4480431.9513	632.0349	580.6234	0.0175
949	Medido	467441.5922	4480431.3936	632.0312	580.6196	0.0122
950	Medido	467441.8152	4480430.8358	632.0202	580.6086	0.0173
951	Medido	467432.2383	4480439.3058	632.0319	580.6206	0.0176
952	Medido	467432.9614	4480439.6124	632.0512	580.6399	0.0154
953	Medido	467432.6881	4480440.2451	632.0462	580.6349	0.0156
954	Medido	467431.9837	4480439.7682	632.0488	580.6375	0.0172
955	Medido	467430.9106	4480438.2967	632.0740	580.6627	0.0156
956	Medido	467430.1921	4480438.0390	632.0813	580.6701	0.0158
957	Medido	467428.5892	4480435.2800	632.1048	580.6937	0.0155
958	Medido	467430.9048	4480436.2307	632.0705	580.6593	0.0171
959	Medido	467431.6591	4480436.4673	632.0568	580.6455	0.0157
960	Medido	467432.2604	4480436.6569	632.1159	580.7046	0.0139
961	Medido	467432.5275	4480436.1477	632.0704	580.6591	0.0144
962	Medido	467432.7767	4480436.7932	632.1424	580.7311	0.0162
963	Medido	467433.6712	4480436.6280	632.0659	580.6546	0.0143
964	Medido	467434.7266	4480437.5226	632.0812	580.6698	0.0168
965	Medido	467434.9434	4480437.1743	632.1020	580.6906	0.0168
966	Medido	467433.1808	4480424.9823	631.7809	580.3697	0.0165
967	Medido	467433.2971	4480425.1390	631.7602	580.3490	0.0120
968	Medido	467433.2573	4480424.8773	631.7879	580.3767	0.0137
969	Medido	467433.9702	4480424.7263	631.7767	580.3654	0.0143
970	Medido	467434.0116	4480425.1047	631.7999	580.3887	0.0136
971	Medido	467431.9008	4480443.5196	632.0788	580.6675	0.0164
972	Medido	467437.8827	4480436.3647	632.0087	580.5972	0.0134
973	Medido	467444.7438	4480423.7817	632.0764	580.6649	0.0162
974	Medido	467433.7761	4480419.2636	632.0626	580.6514	0.0164
975	Medido	467432.9576	4480418.9929	632.0573	580.6462	0.0165
976	Medido	467434.9200	4480421.0109	631.8413	580.4301	0.0131
977	Medido	467434.5374	4480420.5787	631.8764	580.4652	0.0175
978	Medido	467434.1032	4480420.5849	631.8560	580.4448	0.0194
979	Medido	467433.6906	4480421.2209	631.8349	580.4236	0.0138
980	Medido	467434.3812	4480421.7690	631.8023	580.3910	0.0169
981	Medido	467433.7015	4480423.1849	631.7890	580.3777	0.0135
982	Medido	467433.8438	4480422.7486	631.8221	580.4109	0.0157
983	Medido	467434.0315	4480422.7741	631.7929	580.3817	0.0204
984	Medido	467434.0083	4480423.2611	631.7872	580.3760	0.0131
985	Medido	467433.3597	4480422.4967	631.7576	580.3464	0.0146
986	Medido	467433.2743	4480422.7559	631.7508	580.3396	0.0160
987	Medido	467433.0832	4480422.7082	631.7343	580.3231	0.0170
988	Medido	467433.0923	4480422.5503	631.7561	580.3449	0.0167
989	Medido	467433.2288	4480422.4241	631.7609	580.3497	0.0176
990	Medido	467433.1615	4480422.9746	631.7867	580.3755	0.0198
991	Medido	467442.4955	4480426.5408	631.7680	580.3565	0.0181
992	Medido	467442.0216	4480426.2991	631.8188	580.4073	0.0166
993	Medido	467442.3457	4480425.9812	631.8875	580.4760	0.0169
994	Medido	467442.0202	4480425.7746	631.8806	580.4692	0.0171
995	Medido	467440.5199	4480419.9051	631.8201	580.4087	0.0141

996	Medido	467440.7548	4480419.2997	632.2028	580.7914	0.0166
997	Medido	467439.6516	4480419.4023	631.5355	580.1242	0.0177
998	Medido	467439.5157	4480420.0824	631.7794	580.3680	0.0166
999	Medido	467440.6028	4480421.4260	631.9795	580.5681	0.0169
1000	Medido	467436.0686	4480419.5564	632.0060	580.5947	0.0186
1001	Medido	467435.8695	4480417.1568	632.6813	581.2700	0.0171
1002	Medido	467435.1539	4480417.9028	632.4928	581.0816	0.0159
1003	Medido	467439.0458	4480418.9365	632.6599	581.2485	0.0163
1004	Medido	467438.7424	4480418.7495	632.6292	581.2178	0.0180
1005	Medido	467438.2599	4480418.6701	632.6445	581.2332	0.0149
1006	Medido	467438.2038	4480418.7926	632.6275	581.2161	0.0204
1007	Medido	467438.4708	4480419.1322	632.4997	581.0884	0.0310
1008	Medido	467439.0422	4480419.1225	632.6159	581.2046	0.0260
1009	Medido	467430.6483	4480420.5047	631.9771	580.5659	0.0237
1010	Medido	467430.1792	4480421.1509	631.9640	580.5529	0.0316
1011	Medido	467429.3041	4480420.8807	632.0043	580.5932	0.0206
1012	Medido	467429.5745	4480419.8056	631.9818	580.5707	0.0300
1013	Medido	467430.3472	4480419.8626	631.9901	580.5790	0.0333
1014	Medido	467430.2600	4480420.1117	631.9927	580.5816	0.0206
1015	Medido	467430.3813	4480420.5757	631.9763	580.5652	0.0377
1016	Medido	467430.0002	4480420.9345	631.9833	580.5721	0.0214
1017	Medido	467429.5726	4480420.8190	631.9833	580.5722	0.0220
1018	Medido	467429.5041	4480420.1953	631.9857	580.5746	0.0204
1019	Medido	467419.2163	4480414.8207	632.6355	581.2247	0.0365
1020	Medido	467418.4116	4480417.0004	632.7399	581.3291	0.0169
1021	Medido	467418.0024	4480416.8646	632.7353	581.3245	0.0257
1022	Medido	467413.6690	4480415.1693	632.7413	581.3306	0.0199
1023	Medido	467413.2373	4480415.0229	632.7529	581.3423	0.0204
1024	Medido	467412.3252	4480414.6313	632.6287	581.2181	0.0375
1025	Medido	467411.7967	4480414.5362	632.8483	581.4377	0.0367
1026	Medido	467412.1059	4480415.1320	632.6736	581.2630	0.0412
1027	Medido	467411.2730	4480415.1331	632.9181	581.5076	0.0339
1028	Medido	467408.9298	4480414.0415	633.0410	581.6305	0.0348
1029	Medido	467407.7042	4480417.3899	632.9994	581.5889	0.0195
1030	Medido	467409.7657	4480418.4191	632.9953	581.5848	0.0195
1031	Medido	467409.5836	4480418.9297	633.0176	581.6070	0.0215
1032	Medido	467408.4636	4480421.3005	632.8385	581.4280	0.0168
1033	Medido	467406.9892	4480420.6402	632.8050	581.3945	0.0173
1034	Medido	467406.7250	4480421.3528	632.8167	581.4062	0.0165
1035	Medido	467407.0873	4480421.5196	632.8463	581.4358	0.0173
1036	Medido	467406.6979	4480422.4750	632.8373	581.4268	0.0145
1037	Medido	467407.7452	4480422.9243	632.8078	581.3973	0.0165
1038	Medido	467407.5273	4480423.3772	632.8220	581.4115	0.0180
1039	Medido	467407.1053	4480423.3376	632.8300	581.4195	0.0191
1040	Medido	467406.2319	4480424.9276	632.8157	581.4052	0.0182
1041	Medido	467405.3438	4480424.7168	632.8282	581.4177	0.0161
1042	Medido	467404.5797	4480424.4191	632.7882	581.3778	0.0185
1043	Medido	467402.8500	4480423.6439	632.9889	581.5785	0.0173
1044	Medido	467402.5730	4480424.1272	632.8665	581.4562	0.0160

1045	Medido	467406.3824	4480425.7079	632.9082	581.4977	0.0199
1046	Medido	467405.2244	4480428.3360	633.0069	581.5964	0.0222
1047	Medido	467405.7602	4480428.5900	633.0653	581.6548	0.0233
1048	Medido	467411.3519	4480422.4410	632.9048	581.4942	0.0204
1049	Medido	467411.8453	4480421.7121	632.7765	581.3658	0.0229
1050	Medido	467412.4894	4480421.7729	632.8231	581.4125	0.0161
1051	Medido	467412.7168	4480422.5858	632.8286	581.4179	0.0176
1052	Medido	467412.0799	4480423.0854	632.8384	581.4278	0.0174
1053	Medido	467410.7977	4480430.0064	632.8859	581.4752	0.0221
1054	Medido	467409.3939	4480429.4853	632.9439	581.5333	0.0216
1055	Medido	467409.1362	4480429.9327	632.9463	581.5357	0.0202
1056	Medido	467410.6028	4480430.5744	632.8749	581.4642	0.0196
1057	Medido	467407.9861	4480421.1944	632.8031	581.3926	0.0205
1058	Medido	467408.0156	4480420.9084	632.8152	581.4047	0.0277
1059	Medido	467407.1036	4480417.0683	632.8513	581.4408	0.0261
1060	Medido	467404.6547	4480416.2503	632.4611	581.0507	0.0310
1061	Medido	467404.3737	4480416.8913	632.4745	581.0642	0.0283
1062	Medido	467408.5009	4480413.3403	632.9356	581.5251	0.0347
1063	Medido	467406.6102	4480412.4728	632.3689	580.9585	0.0322
1064	Medido	467406.1877	4480413.1640	632.5041	581.0937	0.0285
1065	Medido	467407.3625	4480407.3899	632.5331	581.1227	0.0296
1066	Medido	467408.0012	4480407.3694	632.5444	581.1340	0.0399
1067	Medido	467399.4976	4480417.9519	632.9111	581.5008	0.0203
1068	Medido	467400.7919	4480418.1926	632.8376	581.4273	0.0229
1069	Medido	467400.9213	4480417.7716	632.8934	581.4831	0.0243
1070	Medido	467399.7548	4480417.3375	632.9215	581.5113	0.0187
1071	Medido	467401.4804	4480416.9489	632.8401	581.4298	0.0223
1072	Medido	467402.5741	4480413.6167	632.8525	581.4421	0.0228
1073	Medido	467321.1290	4480378.3111	632.3993	580.9915	0.0243
1074	Medido	467320.8998	4480378.9479	632.3966	580.9888	0.0248
1075	Medido	467320.2566	4480378.7148	632.3943	580.9864	0.0287
1076	Medido	467320.4971	4480378.0766	632.4162	581.0084	0.0255
1077	Medido	467320.5987	4480378.1598	632.4125	581.0047	0.0240
1078	Medido	467320.3691	4480378.6034	632.4033	580.9954	0.0237
1079	Medido	467317.1750	4480377.3395	632.4622	581.0544	0.0280
1080	Medido	467317.1702	4480377.3359	632.4556	581.0478	0.0257
1081	Medido	467316.3790	4480377.0667	632.4584	581.0507	0.0207
1082	Medido	467316.5530	4480376.6814	632.3924	580.9847	0.0237
1083	Medido	467317.3956	4480376.9791	632.3856	580.9779	0.0261
1084	Medido	467320.8060	4480378.9252	632.4018	580.9939	0.0239
1085	Medido	467320.3370	4480378.7589	632.4036	580.9957	0.0277
1086	Medido	467318.9450	4480382.5224	632.5791	581.1713	0.0278
1087	Medido	467318.7654	4480382.9866	632.5709	581.1631	0.0272
1088	Medido	467319.2443	4480383.1462	632.5795	581.1717	0.0277
1089	Medido	467319.4046	4480382.6774	632.5336	581.1258	0.0348
1090	Medido	467318.9269	4480382.4926	632.3737	580.9659	0.0243
1091	Medido	467317.4724	4480381.9619	632.5059	581.0981	0.0242
1092	Medido	467316.4463	4480381.6164	632.5014	581.0937	0.0308
1093	Medido	467314.9838	4480381.0496	632.3058	580.8981	0.0274

1094	Medido	467316.5330	4480376.6918	632.3757	580.9680	0.0255
1095	Medido	467316.1251	4480376.5085	632.3712	580.9635	0.0255
1096	Medido	467315.7800	4480376.3751	632.3859	580.9782	0.0260
1097	Medido	467315.6833	4480376.8605	632.3095	580.9018	0.0305
1098	Medido	467315.9020	4480376.9740	632.2939	580.8862	0.0308
1099	Medido	467314.4463	4480380.8436	632.3189	580.9112	0.0261
1100	Medido	467311.3070	4480379.7472	632.3219	580.9143	0.0309
1101	Medido	467311.8966	4480378.0769	632.3058	580.8982	0.0290
1102	Medido	467312.3172	4480377.0269	632.3226	580.9150	0.0314
1103	Medido	467312.7408	4480375.8015	632.3772	580.9696	0.0244
1104	Medido	467312.9809	4480375.8787	632.3395	580.9319	0.0268
1105	Medido	467313.1801	4480375.4233	632.3647	580.9570	0.0249
1106	Medido	467315.6760	4480376.5904	632.4337	581.0261	0.0299
1107	Medido	467313.1446	4480375.6800	632.3520	580.9444	0.0244
1108	Medido	467313.7902	4480380.3015	632.2759	580.8682	0.0261
1109	Medido	467314.4159	4480380.5385	632.2372	580.8295	0.0277
1110	Medido	467314.9054	4480379.3966	632.2607	580.8530	0.0231
1111	Medido	467314.3199	4480379.1455	632.2757	580.8680	0.0250
1112	Medido	467314.1884	4480378.4394	632.2993	580.8917	0.0227
1113	Medido	467313.9232	4480378.2882	632.2863	580.8786	0.0218
1114	Medido	467314.1022	4480377.9054	632.3301	580.9225	0.0274
1115	Medido	467314.3776	4480378.0359	632.2760	580.8683	0.0225
1116	Medido	467314.0188	4480376.2103	632.3099	580.9023	0.0189
1117	Medido	467314.1799	4480375.7155	632.3110	580.9033	0.0205
1118	Medido	467314.5113	4480375.8390	632.3249	580.9172	0.0210
1119	Medido	467314.3241	4480376.3340	632.3345	580.9268	0.0171
1120	Medido	467314.3898	4480376.2301	632.3477	580.9400	0.0187
1121	Medido	467314.6105	4480376.3262	632.3114	580.9037	0.0178
1122	Medido	467314.7473	4480376.0026	632.3474	580.9397	0.0151
1123	Medido	467314.4938	4480375.9116	632.3679	580.9603	0.0170
1124	Medido	467312.2296	4480375.6270	632.2574	580.8498	0.0167
1125	Medido	467310.7414	4480379.5149	632.2533	580.8457	0.0168
1126	Medido	467307.4373	4480378.2928	632.3898	580.9824	0.0160
1127	Medido	467308.8095	4480374.3311	632.3217	580.9142	0.0179
1128	Medido	467308.9954	4480373.8047	632.3433	580.9358	0.0163
1129	Medido	467308.5116	4480373.6289	632.3471	580.9397	0.0148
1130	Medido	467308.2641	4480374.2200	632.3665	580.9590	0.0160
1131	Medido	467310.7849	4480379.5485	632.3497	580.9421	0.0158
1132	Medido	467308.9178	4480378.8183	632.3194	580.9119	0.0175
1133	Medido	467310.4754	4480379.3965	632.2702	580.8627	0.0165
1134	Medido	467309.2155	4480378.9320	632.3047	580.8972	0.0147
1135	Medido	467310.6364	4480379.9826	632.3709	580.9633	0.0146
1136	Medido	467310.3342	4480379.8595	632.3627	580.9551	0.0141
1137	Medido	467309.0223	4480379.4163	632.4220	581.0144	0.0164
1138	Medido	467308.7794	4480379.3893	632.4531	581.0456	0.0159
1139	Medido	467307.2472	4480378.8285	632.5506	581.1431	0.0174
1140	Medido	467306.2901	4480381.4615	632.4912	581.0837	0.0165
1141	Medido	467309.6477	4480382.6863	632.4719	581.0643	0.0165
1142	Medido	467309.3421	4480382.0949	632.4533	581.0458	0.0176

1143	Medido	467309.7616	4480381.0734	632.3875	580.9799	0.0173
1144	Medido	467309.1150	4480380.4624	632.4106	581.0030	0.0146
1145	Medido	467308.3429	4480380.7133	632.4355	581.0280	0.0177
1146	Medido	467307.9448	4480381.4967	632.4158	581.0082	0.0159
1147	Medido	467307.9010	4480380.2707	632.4310	581.0235	0.0181
1148	Medido	467306.9044	4480381.0326	632.4694	581.0619	0.0153
1149	Medido	467307.4118	4480379.6089	632.4650	581.0575	0.0169
1150	Medido	467318.7376	4480383.0008	632.2863	580.8785	0.0169
1151	Medido	467317.2733	4480382.4677	632.3633	580.9556	0.0154
1152	Medido	467316.2087	4480382.0825	632.3806	580.9728	0.0154
1153	Medido	467314.7668	4480381.5848	632.4229	581.0152	0.0161
1154	Medido	467314.0590	4480383.5429	632.4180	581.0103	0.0174
1155	Medido	467313.3971	4480385.2418	632.4132	581.0055	0.0137
1156	Medido	467313.1162	4480386.0267	632.3891	580.9814	0.0184
1157	Medido	467317.1115	4480387.4891	632.3253	580.9175	0.0192
1158	Medido	467313.8538	4480383.9345	632.4164	581.0087	0.0207
1159	Medido	467313.4998	4480384.9737	632.4197	581.0120	0.0194
1160	Medido	467314.2306	4480381.3824	632.3336	580.9259	0.0192
1161	Medido	467311.1279	4480380.2442	632.3698	580.9622	0.0169
1162	Medido	467309.9633	4480383.4468	632.3542	580.9467	0.0167
1163	Medido	467309.5722	4480384.5239	632.4089	581.0014	0.0211
1164	Medido	467309.5228	4480384.6664	632.4092	581.0016	0.0198
1165	Medido	467312.6184	4480385.7647	632.4904	581.0828	0.0194
1166	Medido	467316.9197	4480387.9803	632.4462	581.0384	0.0184
1167	Medido	467312.9044	4480386.5255	632.3997	580.9920	0.0186
1168	Medido	467311.4210	4480390.5019	632.4003	580.9927	0.0183
1169	Medido	467315.2157	4480391.9037	632.4071	580.9994	0.0191
1170	Medido	467315.4187	4480391.8917	632.3666	580.9588	0.0156
1171	Medido	467315.9090	4480392.1148	632.3368	580.9290	0.0160
1172	Medido	467314.2988	4480391.5670	632.4311	581.0234	0.0191
1173	Medido	467314.4988	4480391.0210	632.4068	580.9990	0.0179
1174	Medido	467313.0043	4480390.4683	632.4042	580.9965	0.0177
1175	Medido	467312.8010	4480391.0195	632.4106	581.0029	0.0178
1176	Medido	467315.5688	4480390.5795	632.3547	580.9469	0.0189
1177	Medido	467315.0363	4480390.3878	632.4310	581.0233	0.0176
1178	Medido	467313.1600	4480389.8249	632.4171	581.0094	0.0142
1179	Medido	467313.1725	4480389.8218	632.3735	580.9658	0.0194
1180	Medido	467314.0053	4480389.4907	632.4579	581.0502	0.0156
1181	Medido	467313.5627	4480389.3093	632.4336	581.0258	0.0144
1182	Medido	467313.8582	4480388.6938	632.4042	580.9965	0.0148
1183	Medido	467314.2860	4480388.8715	632.4726	581.0649	0.0188
1184	Medido	467314.8519	4480388.6465	632.4059	580.9982	0.0206
1185	Medido	467315.5230	4480388.8795	632.3669	580.9591	0.0171
1186	Medido	467315.7236	4480388.2742	632.3850	580.9772	0.0163
1187	Medido	467315.0629	4480388.0607	632.3789	580.9711	0.0167
1188	Medido	467314.1049	4480387.8577	632.3995	580.9918	0.0154
1189	Medido	467312.7111	4480388.1092	632.3282	580.9206	0.0202
1190	Medido	467312.4683	4480388.8139	632.3120	580.9043	0.0154
1191	Medido	467312.4060	4480386.3539	632.4322	581.0246	0.0180

1192	Medido	467309.3214	4480385.2203	632.4167	581.0091	0.0151
1193	Medido	467311.9537	4480387.6252	632.4439	581.0363	0.0168
1194	Medido	467311.4788	4480387.4702	632.4535	581.0458	0.0145
1195	Medido	467311.1962	4480388.1885	632.4628	581.0551	0.0176
1196	Medido	467311.6505	4480388.3991	632.4671	581.0594	0.0209
1197	Medido	467310.8811	4480390.3069	632.4417	581.0341	0.0182
1198	Medido	467307.8443	4480389.1902	632.3720	580.9644	0.0191
1199	Medido	467308.9128	4480387.4991	632.4039	580.9964	0.0170
1200	Medido	467312.0951	4480386.5562	632.3629	580.9552	0.0156
1201	Medido	467308.2781	4480388.0721	632.3995	580.9919	0.0189
1202	Medido	467308.6362	4480387.0497	632.4163	581.0087	0.0169
1203	Medido	467309.4385	4480383.2846	632.4944	581.0868	0.0156
1204	Medido	467306.7245	4480382.2510	632.5379	581.1304	0.0160
1205	Medido	467309.4426	4480383.2821	632.4891	581.0815	0.0146
1206	Medido	467309.0688	4480384.2808	632.4888	581.0813	0.0193
1207	Medido	467308.7658	4480385.1115	632.5291	581.1216	0.0168
1208	Medido	467306.0447	4480384.0805	632.4926	581.0851	0.0177
1209	Medido	467306.3362	4480383.3545	632.5149	581.1075	0.0195
1210	Medido	467306.7004	4480382.2938	632.5022	581.0947	0.0153
1211	Medido	467307.9377	4480384.8283	632.4909	581.0834	0.0170
1212	Medido	467306.9113	4480384.4342	632.4815	581.0740	0.0158
1213	Medido	467308.5497	4480385.6508	632.3101	580.9025	0.0140
1214	Medido	467307.7271	4480385.3104	632.3484	580.9409	0.0140
1215	Medido	467306.7002	4480384.9332	632.3586	580.9511	0.0166
1216	Medido	467305.9264	4480384.5929	632.3845	580.9770	0.0180
1217	Medido	467308.1092	4480386.8162	632.3045	580.8970	0.0155
1218	Medido	467307.7512	4480387.8477	632.3277	580.9201	0.0144
1219	Medido	467307.3611	4480388.9868	632.4200	581.0125	0.0158
1220	Medido	467304.6873	4480387.9852	632.3784	580.9709	0.0144
1221	Medido	467315.2274	4480392.5083	632.3530	580.9453	0.0151
1222	Medido	467315.7051	4480392.6049	632.3539	580.9461	0.0162
1223	Medido	467314.9792	4480392.3589	632.3919	580.9841	0.0151
1224	Medido	467306.2220	4480389.1361	632.4930	581.0855	0.0157
1225	Medido	467304.6826	4480393.2023	632.4633	581.0558	0.0164
1226	Medido	467306.6496	4480393.7561	632.4131	581.0055	0.0159
1227	Medido	467306.8434	4480394.0533	632.4413	581.0337	0.0171
1228	Medido	467307.8380	4480394.4390	632.4519	581.0443	0.0175
1229	Medido	467307.9527	4480394.4779	632.4454	581.0378	0.0177
1230	Medido	467308.4440	4480394.6465	632.4309	581.0233	0.0165
1231	Medido	467309.9825	4480395.2430	632.4720	581.0643	0.0147
1232	Medido	467311.1124	4480395.6633	632.4927	581.0850	0.0135
1233	Medido	467310.6765	4480395.0800	632.4290	581.0213	0.0142
1234	Medido	467309.4934	4480390.3842	632.4256	581.0180	0.0142
1235	Medido	467309.9496	4480390.5387	632.4537	581.0461	0.0133
1236	Medido	467305.8772	4480388.9992	632.5561	581.1486	0.0140
1237	Medido	467301.6016	4480387.3852	632.5937	581.1864	0.0163
1238	Medido	467304.3329	4480393.1033	632.5795	581.1720	0.0138
1239	Medido	467300.1553	4480391.5124	632.6203	581.2129	0.0162
1240	Medido	467301.7118	4480392.0756	632.5972	581.1898	0.0163

1241	Medido	467302.8771	4480392.5270	632.6050	581.1976	0.0158
1242	Medido	467313.4336	4480397.1438	632.1233	580.7155	0.0181
1243	Medido	467310.9121	4480396.1737	632.3791	580.9714	0.0181
1244	Medido	467309.7959	4480395.7378	632.3840	580.9763	0.0181
1245	Medido	467308.2759	4480395.1884	632.4196	581.0120	0.0211
1246	Medido	467307.3533	4480397.6478	632.5376	581.1300	0.0166
1247	Medido	467307.0004	4480398.5179	632.5621	581.1545	0.0171
1248	Medido	467309.7005	4480399.5258	632.5347	581.1270	0.0169
1249	Medido	467310.7797	4480399.9198	632.5395	581.1317	0.0172
1250	Medido	467312.2303	4480400.4768	632.4982	581.0904	0.0181
1251	Medido	467312.6589	4480399.3178	632.5259	581.1182	0.0203
1252	Medido	467313.0044	4480398.3950	632.4573	581.0496	0.0207
1253	Medido	467308.1848	4480395.4840	632.4274	581.0198	0.0176
1254	Medido	467307.9297	4480396.2754	632.5376	581.1300	0.0182
1255	Medido	467313.1148	4480398.0511	632.4135	581.0058	0.0221
1256	Medido	467313.3775	4480397.3681	632.1298	580.7220	0.0170
1257	Medido	467307.7460	4480394.9563	632.3418	580.9342	0.0190
1258	Medido	467307.6592	4480394.9230	632.3409	580.9333	0.0219
1259	Medido	467306.6494	4480394.5516	632.3299	580.9223	0.0193
1260	Medido	467305.1907	4480394.0231	632.3834	580.9758	0.0234
1261	Medido	467305.0651	4480394.2657	632.4143	581.0068	0.0194
1262	Medido	467304.9284	4480394.6499	632.3390	580.9315	0.0217
1263	Medido	467304.2679	4480396.4554	632.4388	581.0313	0.0220
1264	Medido	467303.9404	4480397.2998	632.3978	580.9903	0.0200
1265	Medido	467303.9086	4480397.3577	632.3868	580.9793	0.0218
1266	Medido	467305.2112	4480397.8236	632.4255	581.0180	0.0267
1267	Medido	467306.5063	4480398.3282	632.3864	580.9788	0.0236
1268	Medido	467307.4481	4480395.8453	632.4371	581.0295	0.0221
1269	Medido	467307.6189	4480395.3620	632.2672	580.8596	0.0228
1270	Medido	467306.1359	4480396.7238	632.4858	581.0782	0.0315
1271	Medido	467304.6848	4480396.2105	632.4368	581.0293	0.0230
1272	Medido	467304.5233	4480396.5467	632.4676	581.0601	0.0218
1273	Medido	467305.9804	4480397.0641	632.4732	581.0657	0.0224
1274	Medido	467304.1910	4480397.4351	632.4067	580.9992	0.0241
1275	Medido	467304.6450	4480372.7191	632.2980	580.8907	0.0255
1276	Medido	467301.5030	4480371.5345	632.2874	580.8802	0.0264
1277	Medido	467300.0394	4480375.4783	632.2740	580.8668	0.0311
1278	Medido	467302.3332	4480376.3018	632.3615	580.9541	0.0268
1279	Medido	467303.1643	4480376.6445	632.3709	580.9636	0.0242
1280	Medido	467303.6836	4480374.8329	632.4045	580.9971	0.0351
1281	Medido	467302.8246	4480374.4489	632.2939	580.8866	0.0328
1282	Medido	467302.5830	4480375.2047	632.3546	580.9473	0.0280
1283	Medido	467303.4081	4480375.6949	632.4139	581.0066	0.0288
1284	Medido	467300.7965	4480370.6965	632.3857	580.9784	0.0313
1285	Medido	467300.5720	4480371.1709	632.2662	580.8589	0.0331
1286	Medido	467300.9834	4480371.3575	632.2307	580.8234	0.0361
1300	Medido	467300.7812	4480370.7063	632.3284	580.9212	0.0214
1301	Medido	467300.5646	4480371.1742	632.2399	580.8327	0.0226
1302	Medido	467300.9838	4480371.3669	632.2077	580.8005	0.0242

1303	Medido	467299.5460	4480375.2729	632.3803	580.9730	0.0211
1304	Medido	467296.1485	4480373.9233	632.3531	580.9460	0.0210
1305	Medido	467297.5336	4480370.0487	632.1557	580.7486	0.0201
1306	Medido	467297.9857	4480370.2392	632.1305	580.7233	0.0221
1307	Medido	467298.1391	4480369.6952	632.2903	580.8832	0.0245
1308	Medido	467299.5057	4480371.9145	632.2000	580.7928	0.0213
1309	Medido	467299.8446	4480373.0430	632.1182	580.7110	0.0223
1310	Medido	467298.0535	4480372.5136	632.1139	580.7068	0.0206
1311	Medido	467293.3783	4480367.9028	632.3090	580.9019	0.0199
1312	Medido	467296.9806	4480369.8585	632.1470	580.7398	0.0194
1313	Medido	467295.4609	4480374.1876	632.0807	580.6736	0.0175
1314	Medido	467291.5001	4480372.6772	632.4378	581.0308	0.0215
1315	Medido	467293.0482	4480368.3174	632.3252	580.9182	0.0228
1316	Medido	467292.7127	4480368.1871	632.2486	580.8416	0.0225
1317	Medido	467293.2665	4480368.2841	632.3068	580.8998	0.0229
1318	Medido	467294.3698	4480368.8512	632.2824	580.8753	0.0229
1319	Medido	467294.6130	4480368.9480	632.2028	580.7958	0.0184
1320	Medido	467292.8879	4480373.2198	632.2996	580.8926	0.0199
1321	Medido	467292.6020	4480373.1237	632.3851	580.9780	0.0225
1322	Medido	467295.5108	4480370.5611	632.0831	580.6760	0.0196
1323	Medido	467295.1312	4480370.3525	632.0555	580.6485	0.0198
1324	Medido	467294.6664	4480371.3259	632.1894	580.7823	0.0193
1325	Medido	467293.8639	4480371.0515	632.2512	580.8441	0.0182
1326	Medido	467293.3698	4480372.1059	632.3456	580.9385	0.0180
1327	Medido	467293.8670	4480372.3521	632.2687	580.8617	0.0220
1328	Medido	467293.7746	4480372.5600	632.2728	580.8658	0.0214
1329	Medido	467293.2539	4480372.3486	632.3425	580.9355	0.0176
1330	Medido	467293.9669	4480373.6216	632.0125	580.6054	0.0224
1331	Medido	467294.3587	4480368.7044	632.3392	580.9322	0.0181
1332	Medido	467294.5545	4480373.8346	632.0925	580.6854	0.0184
1333	Medido	467294.7096	4480373.3578	632.0057	580.5986	0.0196
1334	Medido	467294.4300	4480373.2730	631.9934	580.5863	0.0201
1335	Medido	467294.2648	4480373.7229	632.0106	580.6035	0.0214
1336	Medido	467302.9424	4480377.1060	632.3638	580.9565	0.0247
1337	Medido	467302.9456	4480377.1122	632.3732	580.9658	0.0251
1338	Medido	467301.9719	4480379.8644	632.3583	580.9510	0.0236
1339	Medido	467298.8752	4480378.6580	632.3479	580.9406	0.0232
1340	Medido	467299.9065	4480376.1508	632.3678	580.9605	0.0269
1341	Medido	467302.1341	4480376.8299	632.3345	580.9272	0.0286
1342	Medido	467301.3321	4480378.6036	632.3229	580.9156	0.0253
1343	Medido	467301.2306	4480379.0121	632.3444	580.9371	0.0255
1344	Medido	467301.6496	4480379.1545	632.3541	580.9468	0.0239
1345	Medido	467301.7488	4480378.7341	632.3531	580.9457	0.0242
1346	Medido	467300.9707	4480379.4830	632.3469	580.9396	0.0270
1347	Medido	467299.9348	4480379.0724	632.3544	580.9471	0.0227
1348	Medido	467299.3681	4480375.7867	632.4237	581.0165	0.0295
1349	Medido	467295.9770	4480374.4841	632.4609	581.0538	0.0240
1350	Medido	467298.3612	4480378.4814	632.4827	581.0755	0.0235
1351	Medido	467297.4244	4480378.1238	632.5217	581.1145	0.0214

1352	Medido	467297.4292	4480378.1352	632.5069	581.0997	0.0227
1353	Medido	467294.9900	4480377.1459	632.5115	581.1044	0.0307
1354	Medido	467295.0215	4480377.0980	632.5090	581.1019	0.0257
1355	Medido	467295.3541	4480376.0672	632.4819	581.0748	0.0261
1356	Medido	467291.2852	4480373.1823	632.3850	580.9780	0.0312
1357	Medido	467291.1280	4480373.6087	632.3894	580.9824	0.0250
1358	Medido	467290.7086	4480374.7442	632.3798	580.9728	0.0220
1359	Medido	467290.6132	4480375.0708	632.4005	580.9935	0.0240
1360	Medido	467291.0914	4480375.3287	632.3756	580.9686	0.0344
1361	Medido	467290.6845	4480376.5890	632.3798	580.9728	0.0239
1362	Medido	467290.0311	4480376.5810	632.3877	580.9808	0.0198
1363	Medido	467293.0051	4480377.7496	632.3928	580.9857	0.0197
1364	Medido	467294.0671	4480378.0996	632.3568	580.9497	0.0236
1365	Medido	467302.2868	4480380.5874	632.6494	581.2421	0.0210
1366	Medido	467300.7705	4480380.0113	632.4191	581.0118	0.0175
1367	Medido	467299.7351	4480379.6074	632.5571	581.1498	0.0194
1368	Medido	467298.5473	4480379.4690	632.5109	581.1037	0.0154
1369	Medido	467298.1744	4480380.5012	632.5021	581.0948	0.0153
1370	Medido	467297.3575	4480382.8947	632.3733	580.9661	0.0169
1371	Medido	467300.2393	4480383.9979	632.4885	581.0812	0.0200
1372	Medido	467300.9611	4480382.1288	632.4801	581.0727	0.0203
1373	Medido	467299.5824	4480381.9013	632.4287	581.0214	0.0178
1374	Medido	467298.2426	4480381.4022	632.4036	580.9964	0.0192
1375	Medido	467298.6515	4480379.2085	632.5417	581.1344	0.0163
1376	Medido	467298.1755	4480379.0339	632.4828	581.0756	0.0171
1377	Medido	467297.2269	4480378.6204	632.5201	581.1129	0.0167
1378	Medido	467294.7926	4480377.7276	632.5073	581.1001	0.0201
1379	Medido	467294.2202	4480379.4081	632.4705	581.0634	0.0158
1380	Medido	467295.5365	4480379.8553	632.4936	581.0864	0.0172
1381	Medido	467296.2511	4480380.1131	632.5049	581.0977	0.0147
1382	Medido	467297.7029	4480380.3275	632.4800	581.0728	0.0164
1383	Medido	467298.0739	4480379.3010	632.4756	581.0683	0.0148
1384	Medido	467297.5932	4480380.5846	632.4681	581.0609	0.0174
1385	Medido	467300.0854	4480384.4599	632.3001	580.8928	0.0134
1386	Medido	467297.1678	4480383.4878	632.1594	580.7522	0.0195
1387	Medido	467296.5977	4480384.8995	632.1554	580.7481	0.0149
1388	Medido	467299.4801	4480385.9987	632.2711	580.8638	0.0172
1389	Medido	467297.4489	4480380.9863	632.2910	580.8837	0.0152
1390	Medido	467296.0999	4480380.5323	632.3704	580.9633	0.0151
1391	Medido	467295.4104	4480380.3059	632.3509	580.9437	0.0167
1392	Medido	467294.0875	4480379.8039	632.4383	581.0312	0.0147
1393	Medido	467292.7411	4480383.4558	632.3541	580.9470	0.0146
1394	Medido	467296.0517	4480384.6988	632.3334	580.9262	0.0161
1395	Medido	467295.8283	4480380.8498	632.2357	580.8285	0.0146
1396	Medido	467293.8814	4480378.6408	632.3089	580.9018	0.0182
1397	Medido	467292.7973	4480378.2349	632.3037	580.8967	0.0141
1398	Medido	467289.9156	4480377.1309	632.3377	580.9307	0.0155
1399	Medido	467288.1998	4480381.7291	632.1891	580.7822	0.0175
1400	Medido	467292.2164	4480383.2345	632.2890	580.8819	0.0142

1401	Medido	467301.1109	4480387.2125	632.4277	581.0203	0.0168
1402	Medido	467297.6922	4480385.8937	632.3435	580.9362	0.0183
1403	Medido	467296.3114	4480389.6699	632.3505	580.9432	0.0188
1404	Medido	467296.0091	4480390.4762	632.3707	580.9634	0.0166
1405	Medido	467295.9846	4480390.5622	632.3465	580.9392	0.0168
1406	Medido	467299.4100	4480391.8821	632.3008	580.8935	0.0188
1407	Medido	467297.2147	4480385.7135	632.4304	581.0231	0.0179
1408	Medido	467292.9531	4480384.1164	632.4353	581.0282	0.0201
1409	Medido	467291.6438	4480387.3629	632.3797	580.9726	0.0168
1410	Medido	467292.9847	4480387.8550	632.3814	580.9743	0.0207
1411	Medido	467294.6101	4480388.4550	632.4073	581.0001	0.0151
1412	Medido	467295.9738	4480388.9182	632.3972	580.9899	0.0163
1413	Medido	467292.6973	4480384.3815	632.4316	581.0245	0.0182
1414	Medido	467292.3317	4480383.8667	632.3905	580.9834	0.0157
1415	Medido	467287.9997	4480382.2645	632.2111	580.8041	0.0150
1416	Medido	467286.5102	4480386.3087	632.1951	580.7881	0.0186
1417	Medido	467288.1440	4480386.9242	632.1826	580.7756	0.0156
1418	Medido	467289.1426	4480387.3058	632.2127	580.8057	0.0158
1419	Medido	467290.8767	4480387.9449	632.2500	580.8429	0.0150
1420	Medido	467304.6510	4480393.7993	632.4440	581.0365	0.0156
1421	Medido	467304.3721	4480393.7075	632.4761	581.0686	0.0187
1422	Medido	467302.6769	4480393.0432	632.6943	581.2868	0.0169
1423	Medido	467301.4799	4480392.5912	632.7183	581.3109	0.0180
1424	Medido	467299.9663	4480392.0028	632.7437	581.3364	0.0151
1425	Medido	467298.7639	4480395.4017	632.6704	581.2630	0.0137
1426	Medido	467299.9106	4480395.8418	632.6912	581.2838	0.0150
1427	Medido	467300.8607	4480396.1955	632.6439	581.2365	0.0162
1428	Medido	467303.4341	4480397.1484	632.6708	581.2633	0.0154
1429	Medido	467303.4551	4480397.0989	632.6673	581.2598	0.0147
1430	Medido	467303.7475	4480396.2552	632.6467	581.2392	0.0142
1431	Medido	467303.9067	4480395.8276	632.6189	581.2114	0.0166
1432	Medido	467303.1103	4480395.4418	632.6023	581.1949	0.0174
1433	Medido	467303.4891	4480394.5023	632.5602	581.1528	0.0168
1434	Medido	467304.2846	4480394.7870	632.5387	581.1312	0.0133
1435	Medido	467304.4041	4480394.4435	632.3807	580.9732	0.0150
1436	Medido	467304.0794	4480394.3275	632.5042	581.0967	0.0133
1437	Medido	467304.5477	4480394.0425	632.3826	580.9751	0.0476
1438	Medido	467304.5521	4480394.0180	632.3830	580.9755	0.0374
1439	Medido	467304.3978	4480394.4783	632.3888	580.9813	0.0172
1440	Medido	467302.0362	4480393.9379	632.5776	581.1702	0.0177
1441	Medido	467301.4889	4480393.7210	632.5881	581.1807	0.0183
1442	Medido	467301.1065	4480394.7778	632.5907	581.1833	0.0158
1443	Medido	467301.6405	4480395.0007	632.5833	581.1759	0.0172
1444	Medido	467304.0353	4480395.0647	632.6937	581.2862	0.0190
1445	Medido	467303.6025	4480394.8302	632.7137	581.3062	0.0155
1446	Medido	467303.3749	4480395.3048	632.7479	581.3404	0.0163
1447	Medido	467303.8128	4480395.4893	632.6940	581.2865	0.0162
1448	Medido	467299.2062	4480392.4284	632.4293	581.0220	0.0143
1449	Medido	467295.7697	4480391.0831	632.4529	581.0456	0.0129
-						

1450	Medido	467294.8194	4480393.6532	632.4535	581.0463	0.0144
1451	Medido	467294.4501	4480394.6351	632.4052	580.9980	0.0152
1452	Medido	467293.7596	4480396.5037	632.3772	580.9700	0.0152
1453	Medido	467294.9259	4480396.9947	632.3987	580.9915	0.0146
1454	Medido	467295.8170	4480397.3909	632.3907	580.9834	0.0147
1455	Medido	467297.2225	4480398.0021	632.2928	580.8855	0.0129
1456	Medido	467297.9643	4480393.1760	632.5025	581.0952	0.0140
1457	Medido	467296.7536	4480392.7601	632.4503	581.0430	0.0137
1458	Medido	467296.6671	4480393.3388	632.5194	581.1121	0.0153
1459	Medido	467297.7232	4480393.7562	632.4972	581.0899	0.0152
1460	Medido	467296.1119	4480392.5872	632.4603	581.0531	0.0193
1461	Medido	467295.6871	4480392.4090	632.4468	581.0396	0.0158
1462	Medido	467295.7576	4480392.8676	632.4957	581.0884	0.0157
1463	Medido	467297.1481	4480394.5106	632.4751	581.0678	0.0160
1464	Medido	467296.2095	4480394.1634	632.4616	581.0543	0.0139
1465	Medido	467295.8656	4480394.9454	632.4666	581.0594	0.0148
1466	Medido	467296.4930	4480395.2809	632.4528	581.0456	0.0150
1467	Medido	467296.4317	4480395.7896	632.4325	581.0252	0.0151
1468	Medido	467296.7850	4480395.9360	632.4342	581.0269	0.0149
1469	Medido	467295.8264	4480389.4291	632.5015	581.0942	0.0157
1470	Medido	467294.4419	4480388.9417	632.5303	581.1231	0.0172
1471	Medido	467292.7775	4480388.3438	632.4715	581.0644	0.0147
1472	Medido	467291.4721	4480387.8394	632.5126	581.1055	0.0150
1473	Medido	467290.0987	4480391.7489	632.4458	581.0387	0.0153
1474	Medido	467289.7380	4480392.8021	632.4368	581.0297	0.0136
1475	Medido	467289.6999	4480392.9386	632.4544	581.0473	0.0157
1476	Medido	467289.8939	4480393.0470	632.4659	581.0589	0.0144
1477	Medido	467290.1297	4480392.4844	632.4162	581.0091	0.0152
1478	Medido	467292.4020	4480393.2147	632.3367	580.9296	0.0164
1479	Medido	467292.9117	4480393.4841	632.2888	580.8816	0.0161
1480	Medido	467293.3738	4480393.9252	632.2840	580.8769	0.0138
1481	Medido	467293.4667	4480393.9772	632.3206	580.9134	0.0159
1482	Medido	467293.4312	4480394.1322	632.3080	580.9008	0.0118
1483	Medido	467293.9943	4480394.3380	632.4127	581.0054	0.0196
1484	Medido	467292.9760	4480392.2060	632.1979	580.7908	0.0159
1485	Medido	467293.1265	4480391.3779	632.2978	580.8906	0.0173
1486	Medido	467292.4827	4480391.0754	632.2781	580.8710	0.0165
1487	Medido	467291.6908	4480391.3241	632.2742	580.8671	0.0154
1488	Medido	467291.5046	4480391.9974	632.2806	580.8735	0.0174
1489	Medido	467292.3707	4480392.7506	632.2005	580.7933	0.0141
1490	Medido	467292.7244	4480392.7458	632.1977	580.7905	0.0162
1491	Medido	467292.9269	4480392.6903	632.2538	580.8466	0.0178
1492	Medido	467293.2821	4480393.2752	632.2290	580.8218	0.0171
1493	Medido	467293.4536	4480393.8941	632.2606	580.8534	0.0201
1494	Medido	467293.6326	4480394.1923	632.3440	580.9368	0.0184
1495	Medido	467293.5763	4480393.7254	632.3080	580.9008	0.0191
1496	Medido	467293.7319	4480393.1406	632.3439	580.9367	0.0167
1497	Medido	467292.9939	4480392.3827	632.2195	580.8124	0.0136
1498	Medido	467291.0916	4480393.4705	632.3900	580.9828	0.0169

1499	Medido	467292.4820	4480393.9692	632.3912	580.9840	0.0190
1500	Medido	467293.9710	4480394.4263	632.4758	581.0686	0.0172
1501	Medido	467290.7133	4480388.4385	632.3703	580.9632	0.0176
1502	Medido	467288.9734	4480387.8000	632.3199	580.9129	0.0181
1503	Medido	467287.9547	4480387.4202	632.2909	580.8839	0.0173
1504	Medido	467286.2952	4480386.7863	632.3828	580.9759	0.0151
1505	Medido	467285.0171	4480390.2205	632.2800	580.8731	0.0175
1506	Medido	467284.8857	4480390.6399	632.2060	580.7991	0.0153
1507	Medido	467284.7077	4480390.9314	632.3757	580.9688	0.0163
1508	Medido	467285.0175	4480391.0753	632.2781	580.8711	0.0156
1509	Medido	467285.2345	4480391.0204	632.2944	580.8874	0.0151
1510	Medido	467285.3468	4480390.9043	632.2337	580.8268	0.0130
1511	Medido	467285.5855	4480390.4252	632.3215	580.9146	0.0160
1512	Medido	467286.0077	4480389.4207	632.3662	580.9592	0.0155
1513	Medido	467288.1180	4480390.1781	632.3869	580.9799	0.0192
1514	Medido	467288.0229	4480390.3745	632.3945	580.9875	0.0188
1515	Medido	467287.7507	4480390.4416	632.4029	580.9959	0.0169
1516	Medido	467287.5576	4480391.2980	632.3389	580.9319	0.0148
1517	Medido	467287.2334	4480391.9949	632.2690	580.8620	0.0168
1518	Medido	467287.8468	4480392.2571	632.2610	580.8540	0.0189
1519	Medido	467287.5802	4480392.7104	632.4231	581.0161	0.0195
1520	Medido	467288.0707	4480392.8962	632.4280	581.0209	0.0176
1521	Medido	467288.2873	4480392.5732	632.0797	580.6727	0.0174
1522	Medido	467288.9800	4480392.7542	632.4471	581.0400	0.0207
1523	Medido	467289.2373	4480392.6233	632.4420	581.0349	0.0176
1524	Medido	467289.5661	4480391.5856	632.3263	580.9192	0.0180
1525	Medido	467301.8435	4480397.1688	632.5594	581.1519	0.0205
1526	Medido	467300.6804	4480396.7123	632.5947	581.1873	0.0262
1527	Medido	467299.7225	4480396.3449	632.6290	581.2216	0.0256
1528	Medido	467298.5808	4480395.9083	632.5965	581.1892	0.0215
1529	Medido	467296.8672	4480400.7629	632.4739	581.0666	0.0228
1530	Medido	467300.0713	4480401.9687	632.5591	581.1517	0.0263
1531	Medido	467297.0628	4480398.5153	632.2805	580.8732	0.0243
1532	Medido	467295.6430	4480397.9098	632.3111	580.9038	0.0252
1533	Medido	467294.7136	4480397.4852	632.3345	580.9272	0.0248
1534	Medido	467293.5655	4480396.9913	632.2862	580.8790	0.0203
1535	Medido	467292.7468	4480399.1925	632.2591	580.8519	0.0228
1536	Medido	467296.3333	4480400.5360	632.2554	580.8481	0.0233
1537	Medido	467294.6298	4480398.6994	632.1614	580.7541	0.0253
1538	Medido	467296.0077	4480400.1027	632.1060	580.6987	0.0238
1539	Medido	467293.9280	4480394.4353	632.5506	581.1434	0.0216
1540	Medido	467293.8413	4480394.7185	632.4791	581.0718	0.0258
1541	Medido	467293.4221	4480394.5711	632.4860	581.0788	0.0237
1542	Medido	467293.2152	4480394.4866	632.4839	581.0767	0.0224
1543	Medido	467293.0442	4480394.4062	632.5009	581.0937	0.0191
1544	Medido	467292.9017	4480394.6286	632.4549	581.0477	0.0203
1545	Medido	467292.2530	4480394.4512	632.4596	581.0524	0.0213
1546	Medido	467290.8772	4480393.9747	632.5161	581.1089	0.0218
1547	Medido	467289.5223	4480393.4426	632.4400	581.0329	0.0244

1548	Medido	467288.0571	4480397.4823	632.4983	581.0912	0.0211
1549	Medido	467289.4427	4480397.9510	632.4781	581.0710	0.0214
1550	Medido	467290.7063	4480398.4439	632.3958	580.9887	0.0242
1551	Medido	467291.6295	4480398.8108	632.3157	580.9085	0.0200
1552	Medido	467291.8378	4480398.9016	632.2858	580.8786	0.0663
1553	Medido	467291.0699	4480397.1428	632.4187	581.0116	0.0215
1554	Medido	467288.5874	4480396.1689	632.4522	581.0451	0.0228
1555	Medido	467288.5248	4480396.8124	632.4794	581.0724	0.0224
1556	Medido	467290.8477	4480397.7466	632.4487	581.0415	0.0291
1557	Medido	467289.2186	4480392.6664	632.6374	581.2303	0.0273
1558	Medido	467287.5707	4480392.7132	632.4458	581.0387	0.0219
1559	Medido	467284.5101	4480391.5698	632.6243	581.2174	0.0284
1560	Medido	467283.1230	4480395.4720	632.5037	581.0967	0.0232
1561	Medido	467283.1382	4480395.6343	632.4705	581.0635	0.0227
1562	Medido	467287.5291	4480397.2885	632.5743	581.1672	0.0272
1563	Medido	467287.6920	4480396.6732	632.5251	581.1181	0.0262
1564	Medido	467286.9994	4480396.2993	632.5425	581.1354	0.0204
1565	Medido	467286.6321	4480396.9862	632.5086	581.1016	0.0195
1566	Medido	467287.0829	4480397.0988	632.5752	581.1681	0.0209
1567	Medido	467289.0015	4480392.7287	632.4147	581.0076	0.0206
1568	Medido	467288.2890	4480392.5755	632.0640	580.6570	0.0185
1569	Medido	467287.5098	4480393.9690	632.4819	581.0748	0.0182
1570	Medido	467284.0977	4480392.7224	632.5818	581.1749	0.0198
1571	Medido	467283.9596	4480393.1784	632.5510	581.1441	0.0177
1572	Medido	467284.3981	4480393.3938	632.5626	581.1557	0.0191
1573	Medido	467283.7551	4480394.9673	632.5100	581.1031	0.0180
1574	Medido	467284.0458	4480395.0954	632.5103	581.1033	0.0207
1575	Medido	467284.9063	4480393.5726	632.5703	581.1634	0.0175
1576	Medido	467287.3749	4480394.5254	632.5850	581.1780	0.0190
1577	Medido	467287.2266	4480395.4183	632.5509	581.1439	0.0197
1578	Medido	467287.8118	4480395.5317	632.5210	581.1139	0.0179
1579	Medido	467282.2790	4480395.9006	632.4283	581.0214	0.0210
1580	Medido	467282.9292	4480396.1584	632.4027	580.9958	0.0201
1581	Medido	467282.5375	4480395.2719	632.2624	580.8555	0.0300
1582	Medido	467282.5823	4480395.2860	632.2297	580.8227	0.0458
1583	Medido	467281.1512	4480397.9168	632.4886	581.0817	0.0192
1584	Medido	467280.2955	4480397.6002	632.5203	581.1135	0.0192
1585	Medido	467280.1565	4480398.0920	632.5377	581.1308	0.0217
1586	Medido	467280.9515	4480398.3984	632.5103	581.1035	0.0577
1587	Medido	467282.8578	4480398.5525	632.4590	581.0520	0.0217
1588	Medido	467282.4201	4480398.2758	632.4940	581.0870	0.0187
1589	Medido	467282.8318	4480397.1372	632.4099	581.0030	0.0185
1590	Medido	467283.1817	4480397.6219	632.3262	580.9192	0.0202
1591	Medido	467282.8416	4480398.6269	632.4856	581.0787	0.0227
1592	Medido	467283.1786	4480398.7562	632.4440	581.0370	0.0176
1593	Medido	467283.1431	4480398.8483	632.5119	581.1049	0.0215
1594	Medido	467283.5412	4480399.0311	632.4797	581.0727	0.0206
1595	Medido	467283.6666	4480398.8292	632.4365	581.0295	0.0221
1596	Medido	467285.6899	4480399.6685	632.4516	581.0446	0.0183

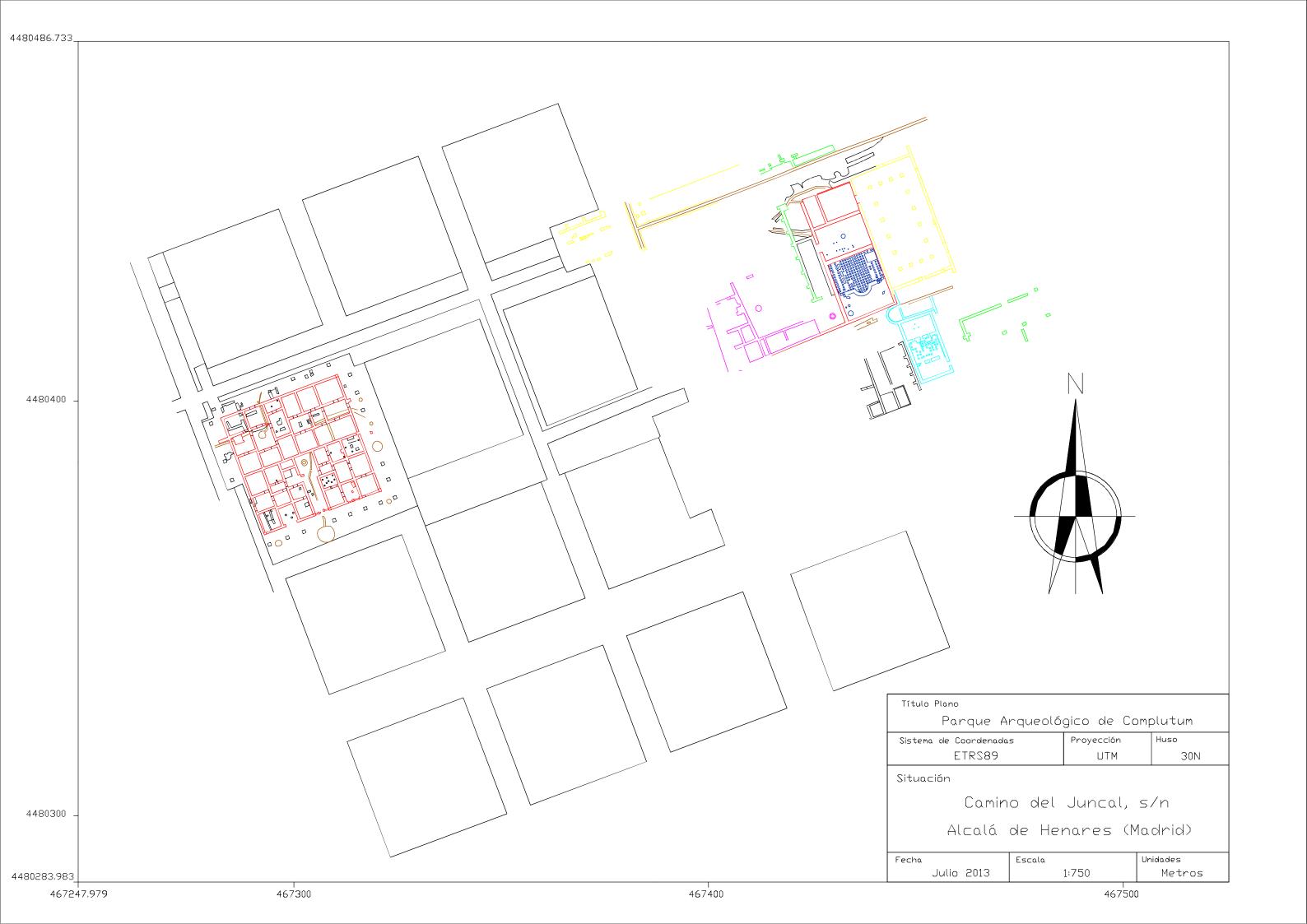
15	97 Med	do 467285.57	19 4480400	.1233 632.4	1397 581.03	27 0.0241
15	98 Med	do 467283.76	85 4480399	.4680 632.5	5549 581.14	80 0.0219
15	99 Med	do 467282.97	756 4480399	.2098 632.6	5200 581.21	31 0.0229
16	00 Med	do 467282.94	33 4480399	.2774 632.5	5871 581.18	0.0205
16	01 Med	do 467282.60	4480399	.0957 632.5	5804 581.17	34 0.0187
16	02 Med	do 467286.42	15 4480397	7.7606 632.4	1884 581.08	14 0.0207
16	03 Med	do 467285.91	78 4480399	.3605 632.4	1828 581.07	58 0.0219
16	04 Med	do 467286.42	264 4480399	.5571 632.4	1342 581.02	72 0.0201
16	05 Med	do 467287.21	88 4480397	'.9614 632.4	1234 581.01	63 0.0194
16	06 Med	do 467287.71	96 4480398	3.7551 632.4	l351 581.02	81 0.0219
16	07 Med	do 467287.19	60 4480398	3.5483 632.4	1465 581.03	94 0.0217
16	08 Med	do 467287.08	807 4480398	3.8529 632.4	174 581.01	0.0217
16	09 Med	do 467287.43	350 4480399	0.0854 632.4	1307 581.02	37 0.0244
16	10 Med	do 467287.22	228 4480399	.5242 632.4	1417 581.03	46 0.0228
16	11 Med	do 467287.36	666 4480399	.6242 632.4	l320 581.02	49 0.0246
16	12 Med	do 467287.51	47 4480399	.3978 632.4	1807 581.07	37 0.0224
16	13 Med	do 467287.59	982 4480399	.1520 632.4	581.04	47 0.0250
16	14 Med	do 467291.75	37 4480399	.4240 632.0	959 580.68	87 0.0230
16	15 Med	do 467291.74	4480400	.0319 632.0	906 580.68	34 0.0246
16	16 Med	do 467292.15	72 4480402	2.1852 632.0	0676 580.66	0.0244
16	17 Med	do 467291.90	83 4480401	.9236 632.0	1428 580.63	56 0.0241
16	18 Med	do 467291.58	359 4480399	.7572 632.0	931 580.68	59 0.0270
16	19 Med	do 467291.59	4480399	.4948 632.0	906 580.68	34 0.0305
16	20 Med	do 467291.13	355 4480399	.8147 632.1	390 580.73	19 0.0239
16	21 Med	do 467291.16	52 4480399	.8999 632.1	698 580.76	27 0.0235
16	22 Med	do 467291.09	008 4480401	.6927 632.4	713 581.06	41 0.0218
16	23 Med	do 467293.79	37 4480402	2.0079 632.5	5881 581.18	0.0240
16	24 Med	do 467294.50	92 4480400	.4868 632.6	352 581.22	80 0.0238
16	25 Med	do 467295.14	4480400	.6725 632.7	7679 581.36	0.0226
16	26 Med	do 467294.47	'04 4480402	2.2355 632.8	8088 581.40	15 0.0231
16	27 Med	do 467295.41	43 4480403	3.2588 632.4	1672 581.05	98 0.0223
16	28 Med	do 467296.00	16 4480401	.7378 632.7	931 581.38	58 0.0215
16	29 Med	do 467296.37	'32 4480401	.7963 632.7	7171 581.30	98 0.0250
16	30 Med	do 467295.80	38 4480403	3.3013 632.5	5099 581.10	26 0.0260
16	31 Med	do 467299.53	36 4480404	.8551 632.5	5541 581.14	67 0.0208
16	32 Med	do 467299.28	348 4480405	5.5415 632.5	5954 581.18	80 0.0257
16	33 Med	do 467300.01	05 4480405	5.7986 632.5	5921 581.18	46 0.0303
16	34 Med	do 467300.28	36 4480405	5.1771 632.5	5765 581.16	91 0.0245
16	35 Med	do 467302.89	91 4480405	6.4657 632.7	7190 581.31	15 0.0236
16	36 Med	do 467302.59	968 4480406	6.1381 632.7	7067 581.29	92 0.0252
16	37 Med	do 467303.20	29 4480406	6.3541 632.6	5927 581.28	51 0.0270
16	38 Med	do 467303.49	4480405	6.6201 632.6	581.23	0.0236
16	39 Med	do 467303.97	'67 4480406	6.7077 632.6	5745 581.26	69 0.0251
16	40 Med	do 467303.73	352 4480407	7.3206 632.6	5169 581.20	94 0.0277
16	41 Med	do 467304.33	363 4480407	7.5510 632.5	5956 581.18	81 0.0287
16	42 Med	do 467304.53	324 4480406	6.9151 632.6	6610 581.25	34 0.0294
16	43 Med	do 467304.58	882 4480406	6.7298 632.6	6620 581.25	44 0.0288
16	44 Med	do 467304.76	629 4480406	6.3539 632.6	5417 581.23	41 0.0279
16	45 Med	do 467304.16	667 4480405	5.9378 632.6	581.22	48 0.0247

1646	Medido	467303.9295	4480406.4116	632.6760	581.2684	0.0214
1647	Medido	467308.1331	4480408.2415	632.6259	581.2182	0.0246
1648	Medido	467289.2518	4480398.4831	632.4360	581.0289	0.0291
1649	Medido	467290.5122	4480398.9591	632.4450	581.0378	0.0226
1650	Medido	467293.9217	4480402.1087	632.5118	581.1045	0.0226
1651	Medido	467293.8421	4480402.5251	632.5282	581.1209	0.0247
1652	Medido	467294.2581	4480402.6470	632.5374	581.1301	0.0191
1653	Medido	467294.3502	4480402.4891	632.5660	581.1587	0.0199
1654	Medido	467295.5195	4480402.9295	632.5732	581.1659	0.0240
1655	Medido	467309.7158	4480406.1499	632.4759	581.0682	0.0250
1656	Medido	467310.5039	4480406.4904	632.4871	581.0793	0.0247
1657	Medido	467310.7395	4480405.9439	632.4877	581.0800	0.0239
1658	Medido	467310.2025	4480405.6946	632.4586	581.0509	0.0224
1659	Medido	467312.8472	4480400.3385	632.5363	581.1285	0.0219
1660	Medido	467313.5323	4480400.6451	632.6166	581.2088	0.0228
1661	Medido	467313.7688	4480400.0025	632.5946	581.1868	0.0204
1662	Medido	467313.1106	4480399.6230	632.5119	581.1041	0.0177
1663	Medido	467313.1529	4480399.5147	632.5221	581.1144	0.0186
1664	Medido	467313.5162	4480398.5940	632.3876	580.9798	0.0224
1665	Medido	467313.6662	4480398.1921	632.4517	581.0439	0.0226
1666	Medido	467313.9677	4480397.3439	632.4242	581.0164	0.0213
1667	Medido	467315.6982	4480392.6677	632.3622	580.9544	0.0234
1668	Medido	467315.8998	4480392.1215	632.3272	580.9194	0.0191
1669	Medido	467317.4221	4480388.1658	632.3252	580.9174	0.0252
1670	Medido	467317.5969	4480387.6785	632.3112	580.9034	0.0243
1671	Medido	467319.2594	4480383.1787	632.2961	580.8883	0.0245
1672	Medido	467319.4359	4480382.7003	632.2868	580.8790	0.0251
1673	Medido	467320.8242	4480378.9431	632.2932	580.8853	0.0202
1674	Medido	467320.9113	4480378.9623	632.2844	580.8766	0.0205
1675	Medido	467321.1497	4480378.2934	632.3077	580.8998	0.0265
1676	Medido	467320.5792	4480378.1379	632.4034	580.9956	0.0238
1677	Medido	467317.3737	4480376.9615	632.3808	580.9731	0.0229
1678	Medido	467316.5383	4480376.6883	632.3740	580.9662	0.0240
1679	Medido	467316.1230	4480376.4976	632.3662	580.9585	0.0231
1680	Medido	467315.7693	4480376.3568	632.3823	580.9746	0.0260
1681	Medido	467313.1694	4480375.3794	632.3102	580.9026	0.0239
1682	Medido	467309.0041	4480373.8126	632.3640	580.9565	0.0233
1683	Medido	467308.5055	4480373.6173	632.3564	580.9489	0.0262
1684	Medido	467308.4257	4480373.8035	632.3024	580.8949	0.0234
1685	Medido	467308.4263	4480373.7997	632.2952	580.8877	0.0214
1686	Medido	467307.4591	4480373.5292	632.3428	580.9354	0.0218
1687	Medido	467307.4422	4480373.4400	632.3747	580.9672	0.0244
1688	Medido	467307.1521	4480373.3536	632.3560	580.9486	0.0232
1689	Medido	467306.9626	4480373.8467	632.3548	580.9474	0.0268
1690	Medido	467307.2528	4480373.9728	632.3387	580.9312	0.0316
1691	Medido	467307.3458	4480373.7580	632.3394	580.9320	0.0266
1692	Medido	467308.3423	4480374.0394	632.3476	580.9401	0.0246
1693	Medido	467306.4029	4480373.2182	632.3273	580.9199	0.0199
1694	Medido	467306.4587	4480373.0113	632.3247	580.9172	0.0263

1695	Medido	467306.2282	4480372.8961	632.3801	580.9727	0.0238
1696	Medido	467306.2489	4480372.7912	632.3772	580.9698	0.0278
1697	Medido	467305.9734	4480372.6959	632.3273	580.9199	0.0234
1698	Medido	467305.9039	4480372.7838	632.3239	580.9165	0.0219
1699	Medido	467305.2709	4480372.5940	632.3156	580.9082	0.0273
1700	Medido	467305.1920	4480372.8098	632.3664	580.9590	0.0236
1701	Medido	467305.8259	4480373.0287	632.3303	580.9229	0.0207
1702	Medido	467305.8160	4480373.1730	632.3787	580.9713	0.0265
1703	Medido	467306.0514	4480373.2304	632.3436	580.9362	0.0216
1704	Medido	467306.1440	4480373.1242	632.3412	580.9338	0.0228
1705	Medido	467305.3273	4480372.4139	632.3318	580.9244	0.0223
1706	Medido	467304.8554	4480372.2234	632.3141	580.9067	0.0226
1707	Medido	467301.6756	4480371.0253	632.3809	580.9736	0.0234
1708	Medido	467301.2021	4480370.8505	632.3880	580.9807	0.0230
1709	Medido	467300.7935	4480370.6924	632.3520	580.9448	0.0237
1710	Medido	467298.1293	4480369.6815	632.3143	580.9072	0.0262
1711	Medido	467294.5115	4480368.3599	632.3255	580.9184	0.0222
1712	Medido	467293.3744	4480367.9056	632.3196	580.9125	0.0222
1713	Medido	467292.8761	4480367.7127	632.3227	580.9157	0.0221
1714	Medido	467292.7132	4480368.1867	632.2771	580.8701	0.0252
1715	Medido	467291.3590	4480371.7946	632.3807	580.9737	0.0260
1716	Medido	467291.0412	4480372.5628	632.4412	581.0342	0.0283
1717	Medido	467290.8800	4480372.9800	632.3931	580.9861	0.0236
1718	Medido	467290.7169	4480373.4606	632.4044	580.9974	0.0210
1719	Medido	467290.3139	4480374.5543	632.4346	581.0276	0.0238
1720	Medido	467284.5266	4480389.9955	632.2492	580.8423	0.0263
1721	Medido	467284.3747	4480390.4033	632.1566	580.7497	0.0239
1722	Medido	467312.0293	4480403.8087	632.5504	581.1426	0.0251
1723	Medido	467312.4729	4480403.9229	632.5899	581.1821	0.0234
1724	Medido	467312.6518	4480403.4095	632.5799	581.1721	0.0246
1725	Medido	467312.1953	4480403.2630	632.5725	581.1648	0.0260
1726	Medido	467313.9071	4480398.2449	632.4179	581.0101	0.0262
1727	Medido	467315.3026	4480397.9016	632.4341	581.0263	0.0262
1728	Medido	467317.1417	4480396.0590	632.3757	580.9678	0.0235
1729	Medido	467314.5919	4480397.3315	632.4063	580.9985	0.0272
1730	Medido	467313.3110	4480405.8738	632.5523	581.1445	0.0280
1731	Medido	467313.0409	4480406.6212	632.5306	581.1228	0.0305
1732	Medido	467315.0086	4480401.5606	632.5590	581.1511	0.0283
1733	Medido	467315.8032	4480400.6125	632.5049	581.0970	0.0312
1734	Medido	467315.7045	4480400.2058	632.4673	581.0594	0.0287
1735	Medido	467316.1087	4480399.8967	632.4942	581.0863	0.0291
1736	Medido	467316.3518	4480400.0196	632.5728	581.1649	0.0256
1737	Medido	467316.3867	4480400.5644	632.6669	581.2590	0.0306
1738	Medido	467316.4232	4480397.2969	632.4149	581.0071	0.0277
1739	Medido	467318.2933	4480394.7092	632.4075	580.9996	0.0306
1740	Medido	467318.3727	4480394.3124	632.3846	580.9767	0.0317
1741	Medido	467318.6970	4480394.2061	632.4422	581.0343	0.0233
1742	Medido	467318.9618	4480394.3512	632.4348	581.0269	0.0265
1743	Medido	467318.3738	4480392.6854	632.3618	580.9540	0.0301

1744	Medido	467318.8875	4480392.6457	632.3921	580.9842	0.0285
1745	Medido	467319.0029	4480392.2937	632.3865	580.9786	0.0266
1746	Medido	467318.6199	4480392.1189	632.3741	580.9663	0.0270
1747	Medido	467319.5097	4480390.1919	632.3648	580.9569	0.0333
1748	Medido	467320.6612	4480390.1573	632.3660	580.9581	0.0315
1749	Medido	467321.3410	4480389.1602	632.3492	580.9413	0.0287
1750	Medido	467320.9448	4480388.1507	632.3822	580.9743	0.0290
1751	Medido	467319.7600	4480387.9095	632.3694	580.9615	0.0253
1752	Medido	467319.0685	4480388.5777	632.3525	580.9446	0.0256
1753	Medido	467321.1969	4480384.3792	632.3539	580.9460	0.0261
1754	Medido	467322.5850	4480380.5898	632.2967	580.8888	0.0279
1755	Medido	467324.1722	4480376.2506	632.6301	581.2222	0.0293
1756	Medido	467323.4710	4480375.6256	632.7701	581.3622	0.0364
1757	Medido	467323.4249	4480376.0907	632.7412	581.3333	0.0330
1758	Medido	467322.8248	4480376.2866	632.7231	581.3152	0.0340
1759	Medido	467322.3792	4480375.9108	632.7367	581.3288	0.0361
1760	Medido	467322.5603	4480375.4868	632.7525	581.3446	0.0336
1761	Medido	467320.7122	4480374.9951	632.3650	580.9572	0.0291
1762	Medido	467317.0170	4480373.6043	632.3834	580.9757	0.0317
1763	Medido	467313.3402	4480372.2366	632.3859	580.9783	0.0287
1764	Medido	467309.5013	4480370.7443	632.3947	580.9873	0.0326
1765	Medido	467305.8438	4480369.3629	632.4144	581.0070	0.0314
1766	Medido	467302.2000	4480367.9890	632.4739	581.0666	0.0246
1767	Medido	467298.2404	4480366.5808	632.4331	581.0260	0.0248
1768	Medido	467293.9016	4480364.9293	632.4696	581.0626	0.0306
1769	Medido	467305.8861	4480367.1418	632.5229	581.1156	0.0192
1770	Medido	467305.8045	4480368.8171	632.3995	580.9921	0.0171
1771	Medido	467307.1657	4480369.6500	632.4129	581.0054	0.0187
1772	Medido	467308.8481	4480369.7942	632.4427	581.0352	0.0178
1773	Medido	467309.7908	4480368.0377	632.5817	581.1742	0.0172
1774	Medido	467309.5826	4480366.8517	632.5912	581.1838	0.0183
1775	Medido	467307.6299	4480370.6725	632.0858	580.6783	0.0175
1776	Medido	467307.2427	4480371.0871	632.0739	580.6664	0.0181
1777	Medido	467307.5629	4480371.5781	632.1950	580.7875	0.0183
1778	Medido	467306.8728	4480372.1687	632.1043	580.6969	0.0166
1779	Medido	467307.1396	4480372.2275	632.1307	580.7232	0.0204
1780	Medido	467296.2980	4480366.4441	632.3754	580.9683	0.0168
1781	Medido	467295.5591	4480365.9264	632.3896	580.9825	0.0160
1782	Medido	467295.7370	4480365.0524	632.3564	580.9493	0.0164
1783	Medido	467296.6685	4480365.1062	632.3927	580.9856	0.0157
1784	Medido	467297.1424	4480365.5634	632.3690	580.9619	0.0188
1785	Medido	467289.9017	4480375.4509	632.4130	581.0061	0.0178
1786	Medido	467289.5945	4480375.3153	632.4109	581.0039	0.0156
1787	Medido	467289.2878	4480376.2704	632.4447	581.0377	0.0187
1788	Medido	467289.5463	4480376.4020	632.4110	581.0041	0.0180
1789	Medido	467284.8558	4480380.4558	632.3213	580.9145	0.0158
1790	Medido	467283.1451	4480384.9732	632.3210	580.9141	0.0177
1791	Medido	467285.4359	4480387.5527	632.3072	580.9003	0.0187
1792	Medido	467284.9103	4480387.4712	632.3143	580.9074	0.0186

1793	Medido	467284.6653	4480387.7022	632.3154	580.9084	0.0180
1794	Medido	467283.9560	4480387.3893	632.3258	580.9189	0.0178
1795	Medido	467283.9924	4480387.2371	632.3857	580.9788	0.0207
1796	Medido	467283.6927	4480387.1301	632.3524	580.9456	0.0179
1797	Medido	467283.5792	4480387.2580	632.3033	580.8964	0.0205
1798	Medido	467283.1720	4480387.1014	632.2784	580.8715	0.0170
1799	Medido	467283.3229	4480386.6275	632.2997	580.8929	0.0172
1800	Medido	467283.8186	4480385.7770	632.3374	580.9306	0.0162
1801	Medido	467284.6535	4480386.1219	632.3612	580.9543	0.0161
1802	Medido	467284.8380	4480386.5315	632.2960	580.8891	0.0173
1803	Medido	467284.7644	4480386.9812	632.3141	580.9072	0.0161
1804	Medido	467285.5227	4480387.3480	632.3078	580.9009	0.0199
1805	Medido	467283.4689	4480386.6257	632.3196	580.9128	0.0157
1806	Medido	467280.9862	4480388.7424	632.3265	580.9197	0.0184
1807	Medido	467280.9508	4480389.1755	632.3341	580.9272	0.0161
1808	Medido	467281.4522	4480389.4929	632.2943	580.8875	0.0182
1809	Medido	467282.0177	4480389.7527	632.4499	581.0431	0.0169
1810	Medido	467284.3097	4480390.5763	632.3357	580.9288	0.0241
1811	Medido	467284.0132	4480391.2988	632.4298	581.0229	0.0156
1812	Medido	467281.8307	4480390.4007	632.3726	580.9658	0.0201
1813	Medido	467279.8015	4480394.0809	632.4065	580.9997	0.0161
1814	Medido	467283.1437	4480384.9635	632.3154	580.9085	0.0173
1815	Medido	467284.8653	4480380.4478	632.3440	580.9371	0.0167
1816	Medido	467305.8000	4480376.0929	632.1096	580.7022	0.0192
1817	Medido	467303.8918	4480381.3851	632.3723	580.9649	0.0196
1818	Medido	467304.1729	4480383.1226	632.5672	581.1598	0.0169
1900	Medido	467303.8816	4480383.0588	632.5148	581.1074	0.0265
1901	Medido	467303.5218	4480381.8030	632.4397	581.0323	0.0244
1902	Medido	467303.8081	4480380.6953	632.3141	580.9067	0.0283
1903	Medido	467304.2260	4480379.7719	632.2256	580.8182	0.0252
1904	Medido	467305.1422	4480377.3460	632.0898	580.6823	0.0239
1905	Medido	467305.5587	4480375.9715	632.1628	580.7554	0.0230
1906	Medido	467304.2340	4480383.4839	632.5350	581.1276	0.0212
1907	Medido	467304.2409	4480384.4588	632.5808	581.1734	0.0266
1908	Medido	467304.0283	4480384.4294	632.5995	581.1920	0.0263
1909	Medido	467303.9309	4480383.4116	632.6241	581.2167	0.0249
1910	Medido	467304.2449	4480384.7511	632.5899	581.1824	0.0188
1911	Medido	467304.0566	4480387.5033	632.7514	581.3440	0.0235
1912	Medido	467303.8324	4480387.4986	632.7298	581.3224	0.0260
1913	Medido	467304.0340	4480384.7149	632.5572	581.1498	0.0205
1914	Medido	467302.8967	4480385.7201	632.6236	581.2162	0.0271
1915	Medido	467302.1500	4480385.8165	632.6996	581.2922	0.0275
1916	Medido	467301.8786	4480384.8760	632.6917	581.2843	0.0232
1917	Medido	467302.3885	4480384.3714	632.6531	581.2457	0.0236
1918	Medido	467302.9853	4480384.5978	632.6832	581.2758	0.0279
1919	Medido	467303.2451	4480385.0969	632.6856	581.2782	0.0268
1920	Medido	467303.0180	4480385.6057	632.6731	581.2657	0.0229
1921	Medido	467302.7493	4480385.4128	632.8181	581.4107	0.0311
1922	Medido	467302.3833	4480385.5370	632.8019	581.3946	0.0208


1923	Medido	467302.1413	4480385.3003	632.7739	581.3665	0.0262
1924	Medido	467302.2397	4480384.8631	632.7512	581.3438	0.0270
1925	Medido	467302.6593	4480384.8606	632.7825	581.3751	0.0225
1926	Medido	467302.3531	4480382.3827	632.7291	581.3218	0.0260
1927	Medido	467302.4569	4480381.9708	632.7281	581.3207	0.0247
1928	Medido	467301.7364	4480381.6926	632.6978	581.2905	0.0284
1929	Medido	467301.5978	4480382.1401	632.7933	581.3860	0.0246
1930	Medido	467308.3434	4480374.0265	632.3249	580.9175	0.0193
1931	Medido	467305.5208	4480381.7187	632.5568	581.1494	0.0199
1932	Medido	467306.1859	4480382.0343	632.6988	581.2914	0.0200
1933	Medido	467305.8031	4480383.1407	632.6925	581.2850	0.0191
1934	Medido	467304.1843	4480387.8085	632.7121	581.3046	0.0177
1935	Medido	467299.9780	4480386.2329	632.6790	581.2717	0.0202
1936	Medido	467301.4403	4480382.3288	632.8027	581.3953	0.0212
1937	Medido	467302.3093	4480380.5737	632.6472	581.2399	0.0184
1938	Medido	467305.1851	4480372.8078	632.3384	580.9310	0.0169
1939	Medido	467303.3184	4480377.8784	632.5249	581.1175	0.0182
1940	Medido	467304.0668	4480378.1517	632.5379	581.1305	0.0195
1941	Medido	467303.9046	4480378.4714	632.5806	581.1732	0.0257
1942	Medido	467303.2164	4480378.1891	632.5551	581.1478	0.0168
1943	Medido	467304.4231	4480377.2047	632.4773	581.0699	0.0242
1944	Medido	467304.7284	4480377.3332	632.4226	581.0152	0.0199
1945	Medido	467304.5606	4480377.7931	632.5555	581.1481	0.0202
1946	Medido	467304.2360	4480377.6609	632.4865	581.0791	0.0211
1947	Medido	467400.8998	4480448.4521	632.7598	581.3493	0.0157
1948	Medido	467400.5746	4480448.3938	632.7008	581.2903	0.0155
1949	Medido	467402.6385	4480448.5289	632.6831	581.2725	0.0153
1950	Medido	467400.6431	4480447.7400	632.6339	581.2235	0.0197
1951	Medido	467392.2021	4480445.1969	632.6229	581.2127	0.0317
1952	Medido	467392.1068	4480444.5614	632.6528	581.2426	0.0189
1953	Medido	467385.8227	4480442.9923	632.6134	581.2033	0.0208
1954	Medido	467384.3389	4480441.8472	632.6683	581.2583	0.0188
1955	Medido	467382.7781	4480441.8179	632.3119	580.9019	0.0186
1956	Medido	467382.9361	4480441.3501	632.1093	580.6994	0.0158
1957	Medido	467384.0270	4480436.4275	632.4866	581.0766	0.0158
1958	Medido	467384.5476	4480436.6817	632.4630	581.0530	0.0249
1959	Medido	467383.8288	4480436.8555	632.4817	581.0718	0.0243
1960	Medido	467384.4259	4480437.1023	632.4637	581.0537	0.0241
1961	Medido	467384.6668	4480436.2892	632.5142	581.1042	0.0218
1962	Medido	467384.1440	4480436.0762	632.5109	581.1009	0.0185
1963	Medido	467385.0259	4480436.4129	632.5523	581.1423	0.0214
1964	Medido	467363.8473	4480440.8007	632.7128	581.3034	0.0242
1965	Medido	467365.8132	4480441.5455	632.6936	581.2841	0.0216
1966	Medido	467365.4320	4480442.6243	632.9655	581.5560	0.0253
1967	Medido	467365.8620	4480442.7391	632.5739	581.1644	0.0225
1968	Medido	467366.1958	4480441.6907	632.5506	581.1411	0.0218
1969	Medido	467369.8583	4480443.1320	632.6094	581.1998	0.0248
1970	Medido	467369.5050	4480444.1463	632.6214	581.2118	0.0233
1971	Medido	467370.0750	4480444.3163	632.7808	581.3712	0.0237

1972	Medido	467370.4571	4480443.3605	632.9060	581.4964	0.0204
1973	Medido	467374.0984	4480444.6883	632.5420	581.1322	0.0226
1974	Medido	467373.7256	4480445.7662	632.6131	581.2033	0.0203
1975	Medido	467374.1810	4480445.9550	632.8388	581.4290	0.0204
1976	Medido	467374.5359	4480445.6451	632.8412	581.4314	0.0220
1977	Medido	467374.8880	4480445.6085	632.8587	581.4490	0.0216
1978	Medido	467375.2641	4480444.4750	633.0033	581.5935	0.0216
1979	Medido	467374.4718	4480444.2763	632.6347	581.2250	0.0188
1980	Medido	467369.5074	4480442.4188	633.0137	581.6041	0.0287
1981	Medido	467364.1752	4480440.2784	632.8398	581.4304	0.0208
1982	Medido	467365.7740	4480438.1957	633.0952	581.6857	0.0220
1983	Medido	467367.2235	4480438.7868	633.1380	581.7285	0.0196
1984	Medido	467367.6039	4480438.3481	633.2184	581.8089	0.0244
1985	Medido	467366.1510	4480437.7634	633.1961	581.7867	0.0203
1986	Medido	467367.0482	4480439.4348	633.1197	581.7102	0.0274
1987	Medido	467367.4522	4480439.7192	633.1326	581.7231	0.0236
1988	Medido	467367.5091	4480440.2780	633.0897	581.6802	0.0234
1989	Medido	467368.0474	4480440.5014	633.0893	581.6797	0.0277
1990	Medido	467368.3101	4480439.8833	633.0848	581.6752	0.0209
1991	Medido	467367.9651	4480439.6950	633.0729	581.6633	0.0256
1992	Medido	467367.9851	4480439.4651	633.0039	581.5944	0.0280
1993	Medido	467367.1818	4480439.1497	633.0709	581.6614	0.0224
1994	Medido	467370.2554	4480439.6957	633.1771	581.7675	0.0279
1995	Medido	467369.0429	4480439.1840	633.0936	581.6841	0.0215
1996	Medido	467368.8944	4480439.3752	633.0656	581.6561	0.0210
1997	Medido	467370.1988	4480439.9090	633.1075	581.6979	0.0186
1998	Medido	467370.7832	4480440.0250	633.1478	581.7382	0.0227
1999	Medido	467371.0373	4480439.5408	633.3022	581.8925	0.0225
2000	Medido	467370.4316	4480439.3778	633.3433	581.9337	0.0262
2001	Medido	467370.3101	4480439.1564	633.3714	581.9618	0.0210
2002	Medido	467369.2115	4480438.6999	633.3336	581.9240	0.0220
2003	Medido	467369.1189	4480438.8673	633.2567	581.8472	0.0280
2004	Medido	467370.2631	4480439.3577	633.3055	581.8959	0.0247
2005	Medido	467372.2263	4480440.5843	633.1211	581.7115	0.0212
2006	Medido	467372.2734	4480440.3695	633.1571	581.7474	0.0225
2007	Medido	467371.2164	4480439.9010	633.1665	581.7568	0.0225
2008	Medido	467373.8464	4480441.5777	633.1150	581.7053	0.0206
2009	Medido	467376.2007	4480442.2936	633.1355	581.7257	0.0208
2010	Medido	467376.3380	4480441.9120	633.1506	581.7408	0.0233
2011	Medido	467374.0820	4480441.0193	633.2430	581.8333	0.0256
2012	Medido	467383.2927	4480444.4769	633.1160	581.7061	0.0135
2013	Medido	467382.7923	4480444.2227	633.1349	581.7249	0.0148
2014	Medido	467382.4819	4480444.7967	633.1123	581.7023	0.0139
2015	Medido	467382.9936	4480445.0603	633.1330	581.7230	0.0150
2016	Medido	467384.0543	4480444.7319	633.0568	581.6468	0.0187
2017	Medido	467383.6962	4480445.5231	632.9837	581.5737	0.0148
2018	Medido	467384.5199	4480445.8317	633.0402	581.6302	0.0181
2019	Medido	467384.8494	4480445.0349	633.0476	581.6376	0.0144
2020	Medido	467383.6665	4480447.3301	632.9646	581.5545	0.0158

2021	Medido	467383.2246	4480447.1883	632.9911	581.5811	0.0201
2022	Medido	467383.0668	4480447.7006	633.0009	581.5909	0.0165
2023	Medido	467383.4966	4480447.8157	632.9761	581.5661	0.0194
2024	Medido	467385.7587	4480448.7348	632.8806	581.4705	0.0170
2025	Medido	467407.4668	4480457.0447	632.7129	581.3021	0.0161
2026	Medido	467387.6220	4480446.0257	633.0694	581.6593	0.0184
2027	Medido	467391.2720	4480447.4213	633.0841	581.6739	0.0305
2028	Medido	467370.4365	4480433.6696	632.9028	581.4933	0.0155
2029	Medido	467371.2028	4480433.9394	632.8849	581.4753	0.0140
2030	Medido	467371.2996	4480433.6509	632.8893	581.4797	0.0158
2031	Medido	467370.4394	4480433.2514	632.9077	581.4981	0.0150
2032	Medido	467372.0645	4480434.1256	632.8487	581.4391	0.0280
2033	Medido	467372.4024	4480434.1655	632.7483	581.3387	0.0135
2034	Medido	467372.5429	4480433.7149	632.7893	581.3797	0.0195
2035	Medido	467372.2111	4480433.6129	632.9485	581.5389	0.0162
2036	Medido	467371.9465	4480433.6970	632.9457	581.5361	0.0181
2037	Medido	467371.8690	4480433.9138	632.9231	581.5134	0.0178
2038	Medido	467373.2562	4480433.8450	632.7874	581.3777	0.0171
2039	Medido	467373.1634	4480434.2919	632.8865	581.4769	0.0184
2040	Medido	467373.7920	4480434.6446	632.9252	581.5155	0.0143
2041	Medido	467373.9907	4480434.2326	632.8302	581.4206	0.0185
2042	Medido	467376.6743	4480435.5734	632.9685	581.5588	0.0146
2043	Medido	467376.3564	4480435.3029	632.9487	581.5390	0.0136
2044	Medido	467375.1967	4480434.8441	632.8709	581.4612	0.0162
2045	Medido	467374.9643	4480435.3415	632.9531	581.5434	0.0141
2046	Medido	467376.6968	4480436.1090	633.0340	581.6242	0.0157
2047	Medido	467432.1087	4480430.0124	632.0112	580.5999	0.0158
2048	Medido	467431.6757	4480431.1808	631.9968	580.5856	0.0142
2049	Medido	467432.1130	4480431.3450	632.0067	580.5954	0.0142
2050	Medido	467432.5487	4480430.1861	632.0015	580.5903	0.0164
2051	Medido	467432.1052	4480430.0097	632.0083	580.5970	0.0151
2052	Medido	467431.4978	4480431.6825	631.9922	580.5809	0.0147
2053	Medido	467431.0317	4480432.8856	631.9916	580.5803	0.0137
2054	Medido	467431.4844	4480433.0681	631.9752	580.5639	0.0147
2055	Medido	467431.9361	4480431.8553	631.9944	580.5832	0.0154
2056	Medido	467432.3048	4480429.5861	632.0222	580.6110	0.0162
2057	Medido	467432.6858	4480429.7323	632.0029	580.5916	0.0146
2058	Medido	467433.1806	4480428.5106	632.0375	580.6262	0.0158
2059	Medido	467432.7547	4480428.3239	632.0162	580.6050	0.0159
2060	Medido	467458.7947	4480427.7461	632.7511	581.3392	0.0183
2061	Medido	467458.8998	4480427.3649	632.6875	581.2755	0.0150
2062	Medido	467452.1123	4480425.3173	632.2060	580.7942	0.0137
2063	Medido	467449.4022	4480423.7792	632.2486	580.8369	0.0172
2064	Medido	467454.2051	4480422.4293	632.7787	581.3669	0.0172
2065	Medido	467454.4722	4480422.0257	632.7826	581.3708	0.0156
2066	Medido	467453.7359	4480421.5812	632.2300	580.8182	0.0157
2067	Medido	467455.3008	4480417.3267	632.1979	580.7861	0.0142
2068	Medido	467407.1263	4480443.9480	633.9693	582.5587	0.0142
2069	Medido	467424.5842	4480465.7148	633.9958	582.5845	0.0159

2	070	Medido	467456.5203	4480451.1531	632.8774	581.4654	0.0145
2	:071	Medido	467468.9592	4480436.1690	633.2012	581.7889	0.0153
2	072	Medido	467482.4998	4480430.2141	633.6360	582.2234	0.0147
2	073	Medido	467464.6792	4480400.5085	633.8677	582.4557	0.0147
2	074	Medido	467452.8275	4480396.1188	633.8042	582.3926	0.0161
2	075	Medido	467311.0853	4480414.7549	633.5190	582.1112	0.0182
2	076	Medido	467283.7893	4480372.8424	633.0259	581.6191	0.0164

11. Plano topográfico de Complutum

