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The dynamics of inviscid, axisymmetric liquid bridges permits a simplified treatment if the bridge is long enough. Under such 
condition the evolution of the liquid zone is satisfactorily explained through a non-linear one-dimensional model. In the case of 
breaking, the one-dimensional model fails when the neck radius of the liquid column is close to zero; however, the model allows the 
calculation of the time variation of the liquid-bridge interface as well as of the fluid velocity field and. because the last part of the 
evolution is not needed, the overall results such as the breaking time and the volume of each of the two drops resulting after breakage 
can be calculated. In this paper numerical results concerning the behavior of cylindrical liquid bridges subjected to a small axial 
gravitational field are presented. 

1. Introduction 

The near-zero gravity environment of an orbit­
ing space station offers unique opportunities for 
improving the knowledge on the processes in­
volved in crystal growth by the floating zone tech­
nique. In such an environment the constraints 
imposed by gravity on the dimensions of a liquid 
bridge are partially removed. However, the maxi­
mum length of a liquid bridge, even in zero gravity 
condition, is limited by stability phenomena: it is 
well known from the studies of Plateau and 
Rayleigh that the maximum stable length of a 
cylindrical, circular cross section, liquid bridge at 
rest is reached when the ratio of the zone length to 
the undisturbed diameter exceeds the value 77. This 
maximum stable length is reduced when a gravita­
tional field acts along the liquid-bridge axis and 
increasing attention is being paid in the scientific 
literature to analysing the stability limits of liquid 
bridges under such circumstance [1-6]. 

The study of real molten liquid bridges involves 
a large variety of phenomena which increase the 
difficulty of the problem: melting and freezing 
fronts, melt properties strongly temperature-de­
pendent, imposed disturbances (either accidentally 

or intentionally), etc. Thence, several plausible 
simplifications must be introduced to get treatable 
models. When the aim is the study of mechanical 
aspects of the liquid-bridge problem, leaving apart 
thermal problems, the simplest approach consists 
in disregarding phase changes, considering a liquid 
bridge, with uniform and constant properties, fill­
ing the gap between two solid discs. 

The problem to be solved, as fig. 1 shows, 
concerns the evolution of an inviscid, slender liquid 
bridge having cylindrical volume, held by surface 
tension forces between two parallel, coaxial, equal 
diameter solid discs, with anchored edges, when 
disturbed by the action of a small gravitational 
field parallel to the axis of the bridge. To perform 
this study the following assumptions are intro­
duced: 
(1) Internal movement in the liquid bridge is only 
due to the capillary pressure gradients generated 
by the deformation of the interface and the hydro­
static pressure gradient. 
(2) The gas atmosphere surrounding the liquid 
does not affect the dynamics of the liquid bridge. 
(3) Inertia forces, due to a non-uniform displace­
ment of the liquid bridge as a whole, are absent. 
(4) Since gravity acts parallel to the bridge axis, 
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only axisymmetric configurations are considered. 
Thence, the problem is independent of the 
azimuthal coordinate. 

Fig. 1. Geometry and coordinate system for the liquid bridge. 

(5) The liquid density, p. as well as the liquid-gas 
surface tension, a, are uniform and constant. 

2. The one-dimensional slice model 

The slice model is based on a one-dimensional 
theory similar to the one used by Lee [7] in the 
study of the dynamics of capillary jets. 

The main simplification introduced by the slice 
model is that the axial velocity depends only upon 
the axial coordinate and the time. Under that 
assumption the set of nondimensional differential 
equations and boundary conditions for the 
axisymmetric, non-rotating inviscid flow in cylin­
drical coordinates are drastically reduced [8]. Since 
the axial velocity does not depend on the radial 
coordinate, the radial momentum equation be­
comes decoupled from the other equations and the 
study of the evolution of the liquid bridge may be 
accomplished by solving only the continuity equa­
tion and the axial momentum equation: 

r or dz 
= 0, 

dlV dW 
-^—+ W-T— = 

dt dz 

«P 
— 

dz 

(1) 

(2) 

where P, which takes into account the capillary 
and hydrostatic pressures, and does not depend on 
r, is related to the shape of the interface, whose 
equation is r = F(z, / ) , through: 

[l + ( 9 F / 3 z ) 2 ] V 2 

\+(dF/azf d2F 
Bo (3) 

To write down these expressions all lengths 
have been made dimensionless with the radius of 
the discs, R, and the radial and axial velocities, U 
and Irrespectively, with \jo/(pR) . Time has been 

made dimensionless with \lpR3/a and the reduced 
gauge pressure with a/(pR). Finally, Bo is the 
static Bond number. Bo = pgR2/a, where g is the 
acceleration due to axial microgravity. 

The boundary conditions to be met within the 
one-dimensional inviscid slice model are for the 
axial velocity to be zero at the discs: 

W{±A, t] 0. (4) 

A = L/(2R) being the slenderness of the liquid 
bridge, and for the interface to remain anchored to 
the disc edges: 

F(±A,t) = (5) 

One more boundary condition must be added, 
expressing that the interface is a material surface, 
since the mass flow rate trough it is zero: 

dt U+ w-
.d£ 
dz " 

0. (6) 

Finally, the formulation will be completed by 
fixing suitable initial conditions: 

F ( r , 0 ) = / - ) ( z ) , W(z,0)=W0(: (V) 

where F0(z) must satisfy the condition of cylindri­
cal volume: 

/ : 
F:dz = 2A. (8) 

To eliminate the velocity U from the previous 
formulation, we may substitute for (1) and (6) a 
new equation expressing the overall mass con-



servation in each cross-section. By application of 
the continuity principle to a control volume 
bounded by two contiguous cross-sections and the 
corresponding interface, the following result is ob­
tained: 

3F2 3 , , , 
o. (9) 

The problem is more conveniently adapted for 
calculations by choosing as computing variables 
S = F1 and Q = F2W, which are, respectively, 
proportional to the cross sectional area and to the 
axial momentum of a slice. By using these new 
variables the continuity equation (9) and axial 
momentum equation (2) become: 

dt dz 

dQ 3 
6t dz 

21 
s -S 

.df_ 
dz ' 

(10) 

( I D 

^here P is now related to S through: 

[4S + (3S/3z)2]'/2 

2S92S/az2-(8S/fc)2 

1 
4S + (dS/dz) 

Boz. 

Boundary conditions are: 

S(±A,t)=\, Q(±A,t) = 0, 

and initial conditions: 

S(z,0) = So(z), Q(z.0)=Qo(z) 

(13) 

(14) 

The numerical integration of this set of hyper­
bolic differential equations may be accomplished 
by using finite difference methods. In this case the 
problem has been solved by means of the 
Lax-Wendroff method [9,10] which consists in 
developing in Taylor series with respect to time the 
variables S and Q, retaining up to (At)2 terms: 

S(z. t + At) S(z,t)+At-S(z,,) 

+ \(At)2^S(z,t) + 
dt~ 

15a) 

Q(z,t + At) = Q{z,t)+AtytQ(z,t) 

+ \(Atf^rQ(z,t) + 

3r 
(15b) 

the time derivatives appearing in (15) being calcu­
lated through (10) to (12) in terms of the spatial 
derivatives. Additional details on computations, 
mainly those in connection with the boundary 
conditions (13), can be found in ref. [8] where the 
evolution of liquid bridges in the case Bo = 0 is 
treated. 

3. Initial conditions 

Computations have been carried out for differ­
ent values of the slenderness of the liquid bridge, 
A, and different values of the Bond number. Bo, 
as table 1 shows. For all the cases included in this 
table the initial conditions were: 

S ( z , 0 ) = l , 0(z .O) = O, 16) 

that is, at zero time the liquid shape is cylindrical 
and no velocity field is imposed. 

Concerning these initial conditions, obviously 
when Bo * 0 the cylinder is not an equilibrium 
shape, the magnitude of the interface perturbation 
represented by (16) can be obtained by comparing 
the cylindrical shapes with the equilibrium ones, 
which are calculated through an hydrostatic analy­
sis, that is, by solving eq. (3) under the assumption 
that P is a constant. If the Bond number is small 
enough the variables involved in the problem may 
be rewritten as: 

F=\+ef, P • ep. Bo = tb. (17) 

with e <K 1 and/ , p and b of order unity. Substitut­
ing expressions (17) in eqs. (3), (5) and (8), leaving 
apart the e1 terms, yields: 

32 / 

dz 
^+f-p-bz = 0. 

with boundary conditions: 

f(±A) = 0, ( + Afdz 
J - A 

0. 

(18) 

(19) 



Table 1 
Breaking time, j b , and breaking volume. V of initially cylindrical liquid bridges having different slendernesses, A. for several values 
of the Bond number. Bo 

Bo = 0.001 

A 

3.2 
3.14 
3.1 
3.06 

Bo = 0.01 

A 

3.2 
3.1 
3.0 
2.9 
2.85 

' b 

33.6 
38.4 
45.7 
Oscillation 

' b 

15.3 
16.1 
17.7 
22.5 
Oscillation 

VP 

0.8415 
0.8477 
0.8516 

Vv 

0.8325 
0.8431 
0.8542 
0.8654 

Bo = 

A 

3.2 
3.1 
3.05 
3.0 

Bo = 

A 

3.2 
3.1 
3.0 
2.9 
2.8 
2.75 
2.7 

0.002 

0.02 

' b 

27.1 
32.7 
42.5 
Oscillation 

' b 

11.6 
12.0 
12.5 
13.4 
15.7 
20.0 
Oscillation 

\ 

0.8404 
0.8508 
0.8560 

VP 

0.8216 
0.8331 
0.8460 
0.8571 
0.8697 
0.8752 

Bo = 

A 

3.14 
3.1 
3.05 
3.0 
2.95 

Bo = 

A 

3.2 
3.0 
2.8 
2.6 
2.55 
2.5 
2.45 

0.005 

0.05 

' b 

20.8 
21.8 
23.7 
27.3 
Oscillation 

' b 

7.9 
8.1 
8.5 
9.8 

10.9 
17.2 
Oscillation 

VP 

0.8437 
0.8481 
0.8533 
0.8586 

VP 

0.7945 
0.8163 
0.8460 
0.8758 
0.8827 
0.8890 

The solution of (18) with boundary conditions 
(19) is: 

/ = * ( ; 
A 

sin A sin z (20) 

with p = 0. Thence, the interface shape is given by: 

A . 
F-- Bo z 

sin A sin z (21 

This first order analysis gives the deformation 
of the interface but not the static stability limit 
which requires higher order analysis. Vega and 
Perales [6] have calculated this static stability limit 
when Bo <s: 1, obtaining: 

A = . [ l -KfBo 2 ] (22) 

A c r being the maximum stable slenderness of a 
liquid bridge having cylindrical volume for a given 
Bond number. 

The magnitude of the interface deformation at 
the stability limit can be measured by the parame­
ter dn= \ — Fm, where Fm stands for the minimum 
value of F which is reached at: 

cos 
sin A 

A 
(23) 

thus, the interface deformation at the static stabil­
ity limit is: 

d„ 
sin A, 

(24) 

Fig. 2 shows the variation of dn with the critical 
slenderness and the Bond number. The meaningvof 
initial conditions (16) is that for each of the liquid 
bridges considered a perturbation like (20) has 
been added to the equilibrium shape, being the 
amplitude of the perturbation given by fig. 2. 
Thence, if the Bond number is smaller than that 
corresponding to the select point (A, dn) the liquid 
bridge will be stable; on the contrary, if Bo is 
larger, breakage will take place. 

With respect to the range of values of the Bond 
number used in the computations, the chosen val­
ues of Bo are in accordance with those expected in 
an earth-orbiting station (like the Spacelab/Shut-
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Fig. 2. Deformation of the liquid bridge. d„ (defined as sketched 
in the insert), versus critical slenderness, Ac r . Numbers on the 
curve indicate values of the Bond number. Bo. 

tie system) or in Plateau simulation in a ground 
laboratory. In effect, if we consider liquid bridges 
held between discs with radii of the order of 10~2 

m, and common liquids used in experimentation, 
such as water or dimethyl silicone, having densities 
close to lO3 kg m~"\ the value of the surface 
tension may range, let say, from 10 2 to 10 _ l N 
m _ 1 ; concerning axial acceleration, its maximum 
value onboard a space platform can be 10~3 m $~2 

(under normal circumstances which do not include 
crew handling shocks [11]), and thence the Bond 
number ranges, in this case, from 10 -1 to 10 2. 

On the other hand, in Plateau simulation the 
Bond number is defined by the difference between 
the densities of both working-liquid and bath; the 
maximum value of this difference depends on the 
desired slenderness of the liquid column, thus, to 
get liquid bridges having slendernesses close to 3 a 
limiting value Ap/p ~ 10 3 has been quoted [1,12] 
but this limiting value seems to be inappropriate 
and the lowest value Ap/p ~ 10 ~5 has been estab­
lished in a more recent paper [13]. Also in this case 
typical Bond numbers are close to 10 "i. 

4. Numerical results 

The purpose of computations was to obtain the 
evolution of the interface shape and the liquid 

Fig. 3. Static stability limits (Bond number. Bo, versus slender­
ness, , \ ) of initially cylindrical liquid bridges as given by 
several investigators: (a) Carruthers and Grasso [1], (b) Coriell, 
Hardy and Cordes [2], (c) Vega and Perales [6]. The circles 
correspond to the cases numerically solved through the one-di­
mensional slice model, with indication of the behavior of the 
liquid bridge: oscillation (closed circles) or breaking (open 
circles). 

velocity field, as well as the breaking time and the 
volume of the two drops resulting after the brea­
kage (we denote as breaking volume the ratio of 
the volume of the main drop to the whole liquid 
bridge volume). Each case numerically solved has 
been represented by a point in the plane (A, Bo); 
fig. 3 shows this plane, with an indication of the 
results obtained: breakage (open circles) or oscilla­
tion (closed circles). As can be seen there is a 
defined border between both open and closed 
circles which splits the plane in two different re­
gions. Points on the right of this border represent 
unstable configurations, the stable configurations 
corresponding to the left-hand side. Thus, the 
border corresponds to the limit of stability. 

Obviously, this stability limit cannot be reached 
numerically, since the evolution time becomes in­
finite. To compare this result with those obtained 
from hydrostatic studies the static stability limits 
as given by several investigators are also shown in 



Table 2 

Values of the static stability limit selected from Coriell. Hardy 

and Cordes [2] 

A 

77 

3.12 
3.10 
3.05 
2.96 

2.92 
2.85 

2.815 

2.60 
2.405 

2.155 

Bo 

0 

0.000258 

0.000702 

0.00239 

0.00722 

0.0100 
0.0162 

0.0200 

0.0518 

0.100 

0.200 

fig. 3. Curve a was suggested by Carruthers and 
Grasso [1] and it was found through an analogy 
with the stability limit of liquid bridges under 
solid rotation; these authors assume that the sta­
bility limit may be expressed as: 

A c r = 7r(l + B o ) " , / 2 , (25) 

where A,.r, as stated above, is the maximum stable 

4 0 | 

0 
2.4 2 . 6 

. J 
3.2 

0.88 

Fig. 4. Breaking time. / b . versus slenderness, A, of initially 
cylindrical liquid bridges. Numbers on the curves indicate 
values of the Bond number. Bo. 

Fig. 5. Breaking volume. V versus slenderness. A. of initially 

cylindrical liquid bridges. Numbers on the curves indicate 

values of the Bond number. Bo. 

slenderness of a cylindrical volume liquid bridge 
for the corresponding Bond number. 

The stability limits represented by curves b and 
c have been derived by studying the bifurcation 
appearing when A — TT in the Laplace-Young 
capillary equation for the shape of axisymmetric 
liquid bridges. Curve b was numerically obtained 
by Coriell. Hardy and Cordes [2] which gave the 
values shown in table 2. whereas curve c has been 
analytically calculated by Vega and Perales [6] by 
using asymptotic expansion methods, obtaining 
the result already presented in eq. (22). 

The results here obtained through the slice 
model seem to indicate that the criterium settled 
by Carruthers and Grasso is clearly erroneous. The 
dynamic analysis gives results which are in accor­
dance with curves b and c, although agreement 
with curve c is better within the range of consid­
ered Bond numbers. 

With the data compiled in table 1, figs. 4 and 5 
have been prepared. In fig. 4 the breaking time. /b . 
versus the slenderness of the liquid bridge is plotted 
for several values of the Bond number. In each 
curve Bo = constant the breaking time increases as 
the slenderness decreases, and becomes infinite 
close to a critical value of the slenderness. A,.,: for 
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0.8 
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Fig. 6. Variation with time, /. of neck radius of the liquid 
bridge. £m. in the case Bo = 0.005. Numbers on the curves 
indicate values of the slenderness of the liquid bridge. A. 

smaller values than Acr no breakage occurs: the 
liquid bridge is stable for the imposed initial con­
ditions. The variation of the breaking volume (as 
defined above) with the slenderness is shown in 
fig. 5; the breaking volume, V decreases as both 
the slenderness of the liquid bridge and the Bond 
number increase, and seems to vary linearly with 
A. 

The behavior of the liquid bridge during the 
evolution can be illustrated by plotting the varia­
tion with time of the neck radius of the liquid 
bridge, as fig. 6 shows in the case Bo = 0.005 (the 
behavior for other values of the Bond number is 
similar). At the beginning the neck radius varies 
slowly independently of the character of the evolu­
tion (oscillation or breakage). After this period, if 
the slenderness is smaller than the critical one, the 
neck radius grows and oscillates around some value 
(that corresponding to the equilibrium shape). On 
the contrary, if A is greater than Acr the neck 
radius continuously decreases, the evolution being 
more and more fast as the time increases; for 
instance, if A = 3, the liquid bridge spends 94% of 
the breaking time to reduce the neck radius from 1 
to 0.5. whereas in the remaining 6% the neck 
radius decreases from 0.5 to 0. 

The breaking process can be more easily under­
stood through the balance of the different energies 
involved. These energies, which have been made 

dimensionless with aR2, are the kinetic energy 

Ec = ^ j+J2[w2 + iFHdW/dzf] dz. (26) 

the potential energy 

£ = 77 Bo (z + A)F2 

-A 

2 dz, 

and the free surface energy 

• + .\ 
£ = 2TTJ + ' F]/\ + (dF/dzf dz. 

(27) 

(28) 

whose values at the starting time, when the shape 
is a circular cylinder, are: £c0 = 0, £p 0 = 277B0A2 

and £s() = 4TTA. 

Let us go through the reasoning with a repre­
sentative case: fig. 7 shows the energy evolution of 
a liquid bridge whose slenderness is 3.1 in the case 
Bo = 0.002. At the beginning of the process the 
hydrostatic pressure gradient due to microgravity 
causes the displacement of the liquid towards the 

Fig. 7. Variation with time, expressed as a fraction of the 
breaking time. i/ib, of kinetic. £c - £ c 0 , potential. £ - £ 0. 
and free surface energies. £s - £ s0 , in the case of an initially 
cylindrical liquid bridge with A = 3.1 and Bo = 0.002. 



bottom disc: the liquid bridge fattens in its bottom 
half part and becomes thinner in the upper one. 
The potential energy decreases and, consequently, 
the kinetic energy increases as well as the free 
surface energy *; capillary pressure gradients arise, 
tending to brake the interface deformation. 

Since the slenderness is greater than the corre­
sponding critical value, the deformation of the 
interface continues, increasing its surface, until the 
maximum is reached. After this point, the action 
of the capillary forces tends to strangle the neck of 
the liquid bridge. Capillary action becomes more 
effective than the gravitational one and the evolu­
tion accelerates: the kinetic energy increases very 
fast while both potential and free surface energy 
decrease. 

Although the calculations must be stopped be­
fore the neck radius vanishes (see fig. 8), it is 
possible to follow the subsequent evolution. In 
effect, the volume enclosed between one of the 
discs and the neck of the liquid bridge varies with 
time in such a way that close to the breaking time 
its slope is zero; thence, leaving apart satellite 
droplets, the volume of the two drops resulting 
after breakage is known. If the Bond number is 
small enough these two drops are nearly spherical 
caps (according to Chesters [14], who studied the 
profiles of sessile and pendant drops, the perturba­
tion in the radius is, with respect to the sphere, less 
than 0.01% when Bo = 10~4 and 1% when Bo = 
10~2) and the final values of both potential and 
free surface energy, E f and Es( respectively, can 
be easily calculated through eqs. (27) and (28). In 
our case the volume of the main drop is 0.8508 
times that of the initial cylinder (the main drop is 
a 1.600 radius spherical cap having its center 1.249 

* It is well known from hydrostatic studies that the cylindrical 
shape encompasses a minimum surface area. Thence, any 
shape close to the cylindrical one, and enclosing the same 
volume of liquid, presents a larger surface. Amongst these 
shapes there is one of maximum surface area which is near to 
that of unstable equilibrium (formally the unstable equi­
librium shape is reached when the amount E + £\ is maxi­
mum). Then, leaving apart kinetic energy effects, it is clear 
that breakage will occur when the available potential energy 
be enough to force the deformation of the interface to go 
beyond the maximum surface shape; in the opposite case, 
oscillation will take place. 

Fig. 8. Variation with time of the shape of the interface. F, and 
the axial velocity field, W, of an initially cylindrical liquid 
bridge with A = 3.1 and Bo = 0.002. Numbers on the curves 
indicate elapsed time from the initial time. 

over the bottom disc) whereas the volume of the 
upper drop is 0.1492 times the cylinder volume (a 
1.021 radius spherical cap whose center is 0.208 
under the top disc). Thence, the following results 
are obtained: 

£ p f - £ p 0 = 0.0446, £ s f - £ s ( ) = 2.4350, 

therefore, after the last interface shape plotted in 
fig. 8, the liquid bridge breaks and the potential 
energy suddenly falls to its final value (this evolu­
tion has been plotted (dashed line) in fig. 7) and 
oscillates around this final value, the behavior of 
the kinetic and the free surface energy being simi­
lar. 

5. Additional comments on initial conditions 

The main problem in the settlement of numeri­
cal initial conditions is the suitability of these 
conditions from the experimental point of view. 
The difficulty is placed in the nature of the experi­
mentation with liquid bridges: in the beginning the 
processes are so slow that it is not an easy task to 
elucidate the exact initial conditions; certainly, 



some rough initial conditions can be controlled by 
the experimentalist (the slenderness, the volume of 
liquid, etc.) but some other characteristics are much 
more difficult to control (the shape of the inter­
face, the velocity field, etc.). 

To study the influence of the initial shape of the 
interface on the liquid bridge behavior an addi­
tional set of calculations have been performed, 
and the evolution of non-cylindrical axisymmetric 
liquid bridges with A = 3.1, Bo = 0.002 has been 
calculated. The chosen initial shapes were some of 
the ones reached by the liquid bridge in its evolu­
tion from the cylindrical case, being the initial 
shapes individualized by the parameter dn= I — 
Fm, which gives the difference between the radius 
of the discs and the radius of the neck of the liquid 
bridge. Thence, the numerical process is as fol­
lows: the liquid bridge starts from a cylindrical 
shape and when the deformation of the interface, 
that is, dn, reaches some prefixed value the veloc­
ity field is cancelled, taking this point as the initial 
point for a following run. 

The results obtained are collected in table 3, 
whereas fig. 9 shows the variation with time of the 
neck radius for the numerically solved cases. In 
fig. 10 the variation with the parameter of defor­
mation, dn, of both the breaking time and the 
breaking volume are plotted. Fig. 10 shows that 
the breaking time decreases with dn, the rate of 
decreasing being small when dn is small, in agree­
ment with the argumentation presented in the 
preceding section. As the initial deformation grows 
the breaking time decreases quickly (the liquid 

Table 3 

Influence of the initial deformation. dn, on the breaking time. 

ib, and the breaking volume, V of liquid bridges, having 

cylindrical volume, with ,\ = 3.1, Bo = 0.002 

0 32.7 0.8508 

0.02 32.2 0.8508 

0.04 31.4 0.8508 

0.10 25.6 0.8509 
0.20 14.0 0.8525 
0.30 8.0 0.8542 
0.40 4.9 0.8587 

0.50 2.9 0.8529 

Fig. 9. Variation with time. (, of neck radius of the liquid 

bridge. fm, in the case of a liquid bridge with A = 3.1 and 

Bo = 0.002. Numbers on the curves indicate values of the initial 

deformation, dn. 

bridge would break even in the case Bo = 0) and 
for large values of dn the rate of decreasing be­
comes small again because inertia effects are more 
and more important as dn increases. Concerning 
the breaking volume the results obtained are the 

Fig. 10. Breaking volume and breaking time, expressed as 
fractions of the corresponding values for the initially cylindrical 
liquid bridge. K / I/)(l and lh/lhu. respectively, versus initial 
deformation, dn. Results correspond to a liquid bridge with 
A - 3.1 and Bo = 0.002. 



more surprising: the initial deformation does not 
change the value of V' being the difference be­
tween the two calculated extreme values of V less 
than 1% of the breaking volume obtained when 
dn = 0 (cylindrical shape). This result agrees with 
previous results published elsewhere for the case 
Bo = 0 [8] in the sense that the breaking volume of 
liquid bridges having cylindrical volume depends 
on the slenderness of the liquid bridge, but not on 
the magnitude of the initial deformation of the 
interface. 

Finally, it must be pointed out that the results 
presented in this section correspond to liquid 
bridges having slendernesses greater than the criti­
cal value, and, consequently, the evolution will be 
always of breakage, independently of the initial 
conditions. If A < Acr the results are rather differ­
ent, and even the character of the evolution (oscil­
lation or breakage) could change depending on the 
value of the initial deformation of the interface. 
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