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Abstract. Extreme rainfall events are a serious concern for
regional hydrology and agriculture in the Ebro River Basin.
Repeated anomalous rainfall in recent decades has had a dev-
astating impact on this region, both socially and economi-
cally. Some studies developed in Italy and USA have shown
that there is a change in seasonal patterns and an increasing
frequency of extreme rainfall events, whereas other studies
have pointed out that no global behaviour could be observed
in monthly trends due to high climatic variability. The aim of
this work is to test which of these scenarios is the case for the
Ebro River Basin.

For this purpose, 14 meteorological stations were selected
based on the length of the rainfall series and the climatic clas-
sification to obtain a representative untreated dataset from
the river basin. Daily rainfall series from 1957 to 2002 were
obtained from each meteorological station. First, classical
climatic indexes were analysed with an autoregressive test
to study possible trends in rainfall. The results can be ex-
plained following the evolution of the NAO and WeMO in-
dexes, which indicate that the initial period should be subdi-
vided in two periods (1957–1979 and 1980–2002) to assume
stationarity and to analyse the rainfall distribution functions.

The general results obtained in this study for both sub-
periods, through the generalised Pareto distribution (GPD)
parameters and the maximum expected return values, do
not support the results previously obtained by other authors
that affirm a positive trend in extreme rainfall indexes and
point to a slight reduction indicated by others. Three ex-
treme precipitation indexes show negative statistical signif-
icant trends. GPD-scale parameters decrease except for only
one rain gauge, although this decrease is only statistically
significant for two rain gauges. Another two locations show
statistical significance decreased for maximum expected re-
turn values.

1 Introduction

Lately, several researchers have pointed out that climate
change is expected to increase temperatures and lower rain-
fall in Mediterranean regions, simultaneously increasing the
intensity of extreme rainfall events (Räis̈anen et al., 2004).
These changes could have consequences regarding rainfall
regime (Groisman et al., 2001), erosion (González-Hidalgo
et al., 2007), sediment transport and water quality (O’Neal
et al., 2005), soil management (Killham, 2010), and new
designs in diversion ditches (Bryan et al., 2011). Climate
change is expected to result in increasingly extreme and vari-
able rainfall, in amount and timing, changing seasonal pat-
terns and increasing the frequency of extreme weather events
(Tarquis et al., 2010). Consequently, conducting a frequency
analysis on the amount of rainfall in a region is one of the
most common tools employed in rainfall studies. In general
terms, these studies focus on the relationship between rainfall
and the probability of not exceeding a fixed high quantity or
determining a return period for this value (Kim et al., 2011).
In general, all estimates of this probability are made by as-
suming stationarity in rainfall series. This assumption is not
entirely realistic, especially today, when a large number of
scientists claim that climate is changing dramatically (Keel-
ing, 1973; Palmer and R̈ais̈anen, 2002; Milly et al., 2002;
Cox, 2005). If the rainfall distribution has changed, it is nec-
essary to determine whether there are specific sub-periods of
time with a similar distribution. This type of treatment was
not carried out in certain works that studied the evolution
and probability of rainfall exceeding dangerous thresholds
(Gallego et al., 2006; Rodrigo, 2010; Müller et al., 2009).
These authors found a lack of stationarity in rainfall during
the 1951–2002 period, especially in terms of extreme values.
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However, these authors did not try to find different distribu-
tion functions for those years.

Generally, most research focuses on the calculation of
trends or the determination of the probability distribution that
follows the rainfall in a station. One of the few exceptions
of this methodology can be found in the work of Gallego et
al. (2006). These researchers examined the data of 35 rainfall
stations in Spain between 1958 and 1997 using the Kendall
test and concluded that there was an increasing trend in the
number of days with light rainfall in every season. However,
they also observed that the number of days with moderate,
intense and very intense rainfall was diminishing, especially
in spring and winter. This same result was found by Ro-
drigo (2010), who adjusted daily precipitation at a gamma
distribution from 1951 to 2002 and showed the evolution of
the scale and shape parameters.

Some teleconnection patterns, such as the Western
Mediterranean Oscillation (WeMO) and the North Atlantic
Oscillation (NAO), are often associated with variations in
rainfall in this part of the world (Wang, 2002; Martin Vide
et al., 2008; Gonzalez-Hidalgo et al., 2009) and could ex-
plain the rainfall pattern at the Ebro basin. We will use these
indexes later to study the relationship between WeMO and
NAO with the rainfall variation trend over time.

Realising the complex and important consequences of an
increasing frequency of extreme rainfall events at the Ebro
River Basin (Valencia, 2007), our aim is to study the evolu-
tion of rainfall events at this site statistically, with emphasis
on the occurrence and intensity of extreme events. To achieve
this, a recent methodology based on the work of other authors
(Coles, 2001; Toreti et al., 2010; Bodini and Cossu, 2010)
will be applied to estimate the probability distributions fol-
lowing periods of torrential rains in this area. The novelty is
combining stationarity analysis with a GPD.

2 Methodology

2.1 Rainfall climatic indexes

Some generalised indexes reported by the World Climate
Research Programme (Peterson et al., 2001) are calculated.
These indexes have been applied by other authors, such as
Brunetti et al. (2004) and Bodini and Cossu (2010). The no-
tation used in this work is as follows:

RF: Relative Frequency of rainy days (≥1 mm)

TP: Total annual Precipitation

MEAN: MEAN precipitation in a rain day

MAX: daily MAXimum precipitation

MAX5: MAXimum 5-day precipitation total

P95: Percentile of order 0.95 based on wet days

RF10: Relative Frequency of days with precipitation
≥10 mm

MAXDRY: MAXimum number of consecutive DRY
days

Extreme events are defined as daily totals above the 95th
percentile calculated from wet days at each rainfall gauge
from 1957 to 2002. Their values are described at the annual
and seasonal scales. These extremes indexes are as follows:

TEX: annual accumulaTion of EXtreme rainfall events;

PREX: PRoportion of annual accumulation due to EX-
treme events

M EX: Mean of EXtreme events

2.2 Trend analysis

In the Mediterranean area, the existence of a trend in pre-
cipitation, particularly in heavy rainfall, is not yet clear. Lin-
ear trends were checked by the linear regression model with
autocorrelated disturbances, such as with the Yule-Walker
method described in Harvey (1990):
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are the autoregressive parameters. One index has a trend if
theβi

(s) parameters are statistically significant for stations.
According to Harvey (1990), due to the high interannual

variability, a sensitivity analysis of the influence of extreme
high values has been carried out. The trends were considered
significant if they persisted after removing the extreme val-
ues.

2.3 Distribution functions

The gamma distribution family is usually used to fit the rain-
fall at one place. However, this distribution does not fit the
queues properly, often producing higher values than expected
for rainfall distributions. The problem is that this error can be
crucial for obtaining the return times for a given amount. To
resolve this problem, Coles (2001) proposed using the gener-
alised Pareto distribution (GPD) for fit values above a given
threshold. The function of this distribution is
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whereu is the threshold parameter,σGPD is a scale parameter
andξ is a shape parameter. The characterisation and proper-
ties of GPD were introduced by Pickands (1975).

The principal features of this distribution are that it re-
flects higher tails better than others, such as the exponential
and gamma distributions, whereξ > 0 (although it is visually
similar to these), andx has no upper limit.

However, if the daily rainfall is distributed like a GPD,
then the daily maximum precipitation at a period of time
must be fit to a generalised extreme values (GEV) distribu-
tion, with the same shape parameter of GPD. Its distribution
function is

F(x) =

1− e
−

(
1+

ξ(x−µ)
σGEV

)−
1
ξ

ξ 6= 0

1− ee
−
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If ξ 6= 0, it must verify the condition 1+ ξ(x−µ)
σGEV

> 0
whereξ is the same shape parameter as for the GPD distri-

bution, andσGEV >0 andµ are the scale and location param-
eters, respectively. This scale parameter (σGEV) is different
from the GPD scale parameter (σGPD), although there is a
relation between them:

σGPD = σGEV + ε(u − µ). (4)

It is also interesting to obtain the distribution parameters to
calculate the expected return time (m) for a given levelxm of
rainfall in a day. Replacing these parameters in the following
formula (Coles, 2001) gives us the following estimation:

m =

[
1+ ξ

(
xm−u
σGEV

)] 1
ξ

pu

(5)

where pu = Pr(X > u). Rearranging the terms, the maxi-
mum expected return level (xm) can be estimated with the
following equation:

xm =

{
u +

σGEV
ε

(
(mpu)

ξ
− 1

)
ξ 6= 0

u + σGEV log(mpu) ξ = 0
(6)

wherem is the number of considered days (time period set).
In general,m usually gives return levels on an annual scale.
To evaluate the confidence intervals of these parameters, the
classical delta method (Oehlert, 1992) has been used.

It is desirable to check over the model after the results have
been obtained. The principal options are the following:

1. P-P plot: Ify(1) ≤ y(2) ≤ ...y(k) (with yi = xi−u) are the
excesses observed above a thresholdu, the graph repre-
sents the empirical distribution function against the ex-

pected, i.e.

{(
i

k+1

)
,1−

(
1+

ξ̂y(i)

σ̂

)−1/ξ
}

. If the data

are correctly adjusted, the plot is a straight line (see
Cleveland, 1985, for more details).

Fig. 1. Distribution of 14 rainfall gauges in the Ebro River Basin
(Spain).

2. q-q plot: This graph represents the theoreti-
cal quantile against the observed quantile, i.e.{(

u +
σ̂

ξ̂

((
1−

i
k+1

)−ξ̂

− 1

))
,y(i)

}
. Again, if

the model fits the data well, the plot must be a straight
line (see Cleveland, 1985, for more details).

3. We can generate a random sample of the GPD (ξ̂ , σ̂ )

and test whether it comes from the same probability
distribution of our observed data using Kuiper’s and
the Kolmogorov-Smirnov tests (Hollander and Wolfe,
1999).

3 Data and site study

The Ebro basin is one of the major Spanish depressions. This
basin has a general pail-shaped layout, where the mountain
ranges define the following peripheral areas: the Pyrenees
and Basque-Cantabrian mountains in the north, the Iberian
System in the south and the Catalan Mountains coastal chain
in the east. These three mountains regions leave between
them a more depressed flat area named the Ebro Depres-
sion. This area is drained by the Ebro River, which runs in
a northwest to southeast direction between the Pyrenees and
the Iberian System. On the left of the main axis is a river
basin area of approximately 50 000 km2, and on its right is
an area of approximately 30 000 km2. For further details, see
Valencia (2007) and references therein.

The precipitation in the region is scarce and is mainly con-
centrated in the spring and autumn seasons. Summer and
winter generally register the minimum rainfall. The precip-
itation, in addition to its scarcity, shows a strong interan-
nual and inter-monthly irregularity with long periods of no
precipitation. Some authors have recently performed a more
rigorous analysis on the evolution of rainfall in this zone.
Gonzalez-Hidalgo et al. (2009) studied the monthly pre-
cipitation trends in the Mediterranean fringe of the Iberian
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Table 1. Mean of the rainfall climatic indexes at the selected stations for 1957–2002 period. Relative frequency of rainy days (RF), total
annual precipitation (TP), mean precipitation in a rain day (MEAN), daily maximum (MAX), maximum 5-day precipitation total (MAX5),
percentile of order 0.95 based on wet days (P95), relative frequency of days with precipitation≥10 mm (RF10), maximum number of
consecutive dry days (MAXDRY), annual accumulation of rainfall extremes (TEX), proportion of annual accumulation due to extreme
events (PREX), mean of extreme events (MEX).

RAIN GAUGES Code RF TP MEAN MAX MAX5 P95 RF10 MAX DRY TEX PREX M EX

CABAÑAS DE VIRTUS A1 31.1 1078.1 9.4 57.0 127.6 29.9 9.3 20.0 246.8 21.3 41.5
PRESA ULLIVARRI-GAMBOA A2 31.0 927.4 8.1 48.2 99.9 26.4 8.0 20.0 204.7 21.6 36.8
EMBALSE DE YESA A3 34.7 791.5 6.4 33.9 70.9 17.8 5.7 16.9 161.6 19.7 23.9
PUENTE LA REINA A4 29.3 866.5 8.0 50.0 99.7 25.1 7.4 23.9 192.4 21.6 34.0
LINAS DE MARCUELLO A5 26.7 1002 10.2 55.0 107.8 30.0 9.7 29.1 201.8 19.3 40.2
HUESCA A6 19.2 582.4 8.1 49.3 78.5 26.1 5.1 29.2 130.8 21.5 37.4
BERBEGAL A7 14.7 480.5 9.0 48.1 70.6 27.8 4.1 41.7 104.1 20.6 35.9
LOGROÑO B1 18.7 400.5 5.6 33.0 53.8 17.9 2.7 27.1 87.1 20.8 25.0
SOTO EN CAMEROS B2 22.6 604.9 7.2 42.4 71.9 23.1 4.9 27.8 132.6 20.9 30.1
DAROCA B4 18.9 423.0 5.9 35.0 54.1 18.9 2.9 28.1 94.8 21.2 27.0
CELLA B5 14.8 386.3 7.1 40.0 61.5 22.6 3.0 36.5 91.2 21.9 31.7
ZARAGOZA B2 14.2 345.9 6.3 39.1 58.3 21.7 2.4 33.8 85.6 22.3 30.3
PALLARUELO DE MONEGROS A8 13.9 397.1 7.6 43.1 64.5 25.1 3.3 37.3 91.6 21.2 32.4
TORTOSA B6 14.1 554.8 10.4 72.6 121.2 39.5 4.2 32.6 156.3 25.6 57.3

Fig. 2. Number of daily rainfall events exceeding 10, 20, 30 and
40 mm of rainfall at each station for two consecutive periods.

Peninsula from 1951 to 2000. Their results demonstrated that
no global behaviour could be observed in monthly trends,
except in March, which showed a generally negative trend.
They suggested that precipitation studies based on a monthly
scale might obscure the intrinsic variability that is required to
understand the complex rainfall pattern in the region. Lopez-
Bustings et al. (2008) presented a significant decrease in win-
ter precipitation in the western part of the Ebro River Basin
and none in the eastern part. They concluded that the cause of
this pattern is a high frequency of high pressure over Iberia,
which they proved using teleconnection indexes. In contrast,
Valencia et al. (2010), using multifractal analysis, showed
that there are no rainfall variations at the Ebro River Basin.

Our data consist of 14 data series from several meteorolog-
ical stations located at different sites in the Ebro River Basin
using daily rainfall data from 1957–2002. Figure 1 shows the
distribution of the rainfall stations in the catchment. These

Fig. 3. Mean month rainfall in our 14 gauges of Ebro River Basin
and NAO index(a) and WeMO Index(b). Series are smoothed of
the last 36 month.

time series were provided, among other data, by the Confed-
eracíon Hidrogŕafica del Ebro over a period of 46 yr (1957–
2002). One station, located close to the origin of the river
(Cabãnas de Virtus), has an approximated oceanic climate.
Another station, located close to the end of the river (Tor-
tosa), has a clear Mediterranean climate. Some stations, such
as Cella and Daroca, have a continental climate, whereas oth-
ers, such as Zaragoza and Pallaruelo de Monegros, are in an
arid area. In contrast, some stations close to the Pyrenees be-
long to a humid regimen, such as Linas de Marcuello, Puente
la Reina, Presa de Ullivarri Gamboa and Embalse de Yesa.
These selected stations are a fully representative sample of
the different climate types found at the river gauges.

The code column is useful to better understand some of the
graphs and tables shown later. The letter A in this code indi-
cates that the station is on the left bank of the river (north);
the letter B means that the station is on the right (south). The
number of the code grows when the stations are nearer to the
mouth (east).

Nat. Hazards Earth Syst. Sci., 12, 2127–2137, 2012 www.nat-hazards-earth-syst-sci.net/12/2127/2012/
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Table 2.Significant trends (p < 0.05) of several indexes at the annual scale: relative frequency of rainy days (RF), total annual precipitation
(TP), mean precipitation in a rain day (MEAN), daily maximum (MAX), maximum 5-day precipitation total (MAX5), percentile of order
0.95 based on wet days (P95), relative frequency of days with precipitation≥10 mm (RF10), maximum number of consecutive dry days
(MAXDRY), annual accumulation of rainfall extremes (TEX), proportion of annual accumulation due to extreme events (PREX), mean of
extreme events (MEX).

RAIN RF TP MEAN MAX MAX5 P95 RF10 MAXDRY TEX PEX M EX
GAUGES

A1 – – –0.090 – – – – – – – –
A2 –0.216 – – – – – – – – – –
A3 – – –0.102 – –0.872 –0.301 –0.071 – –6.26 – –
A4 – – – – – – – – – – –
A5 – – – – – – – – – – –
A6 – –4.21 – – – – – – –2.62 – –
A7 – – –0.078 – – – –0.039 – – – –
A8 – –3.45 –0.062 – – –0.230 –0.047 – – – –
B1 – – – – – – – – – – –
B2 –0.132 – – – – – – – – –
B3 – –0.031 – – – – – – – –
B4 – – – –0.354 – – – – – – –0.196
B5 – – –0.042 – – – – – – – –
B6 – – – – – – – – – –

4 Results and discussion

4.1 Trends of rainfall climatic indexes

The averages of the classical rainfall climatic indexes for
each station are shown in Table 1. The highest total precip-
itation amounts are found for the Pyrenees at the north of
the Ebro River Basin. The Embalse de Yesa station shows
the highest RF (127 days= 34.7 %), whereas Tortosa, in the
east, shows only 51 days (14.1 %), indicating the maximum
precipitation intensity at this station. In general, there is a di-
rect relationship between the RF, the MEAN and the amount
of rainfall caused by value extremes (MEX). The only ex-
ception is Tortosa, at the mouth of the river near the Mediter-
ranean Sea, which has a greater proportion of rainfall due to
extreme values. Looking at Tortosa’s (“B6”) values, we ob-
serve that MEX (57.3) is much higher (45 %) than P951
(39.5 %). Meanwhile, Berbegal (A7) and Pallaruelo de Mon-
egros (A8) show an MEX value 29 % higher than that of
P95. Embalse de Yesa (A3) presents a unique situation, hav-
ing the lowest P95 and the highest proportion of wet days
(the lowest MAXDRY value).

To test the effects of climate change in this area, we study
the trends for all measurements at each rainfall gauge. All
precipitation indexes show negative trends at the yearly scale,
but only a few indexes are statistically significant at a 5 %
level, as can be observed in Table 2. It is remarkable that
no station presented a clear trend in the maximum number of
consecutive dry days and in proportion to the annual accumu-
lation due to extreme events. Moreover, except for Daroca,
there are no statistically significant trends with respect to the
average rainfall caused by extreme values. For a decrease in

the annual accumulation of rainfall extremes, only two rain
gauges have a significant value. The importance of the ex-
tremes has not undergone any significant change, contrary to
what the climate change models predict. However, we did
detect a decreasing trend in average rainfall at six stations,
especially at those close to the Pyrenees and the Pallaruelo
de Monegros.

This result agrees with Toreti et al. (2010) for the Mediter-
ranean area, where they found eight stations from a total of
twenty presenting a negative trend. Bodini and Cossu (2010)
also observed a decreasing trend, especially in winter, at
eighteen stations in Sardinia (Italy). Barrera et al. (2006)
studied the trend of rainfall in Barcelona using a Monte Carlo
technique, and they concluded that the number of catas-
trophic flash floods has diminished in Barcelona from 1850–
2000.

It can be appreciated (Table 2) that RF, TP and MEAN
show a slight reduction that could be constant through time
or at an abrupt step. If we subdivide this period in two
parts (1957–1979 and 1980–2002), we observe that there is
a higher frequency on days with more than 10, 20, 30, and
30 mm in the first period than in the second at all stations
(see Fig. 2). From Fig. 3, discontinuity for the mean rainfall
in Ebro River is perceived around the middle of this period.
That is consistent with other authors for the Mediterranean
area (Rodriguez et al., 1999; Ramos, 2001). Although not
presented in this work, we have checked the discontinuity
through the methodology of Zurbenko et al. (1996). On the
other hand, Lopez Bustin et al. (2008) suggest that the tele-
connection indexes have an intense relationship with the rain-
fall in Spain, because their trends are consistent with changes

www.nat-hazards-earth-syst-sci.net/12/2127/2012/ Nat. Hazards Earth Syst. Sci., 12, 2127–2137, 2012
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Table 3.Correlation between the 3-yr moving average series of rainfall in Ebro River Basin with NAO and WeMO indexes for two different
periods.

Correlation with rainfall Period: 1957–1979 Period: 1980–2002

NAO index 0.356 (p-value< 0.0001) −0.464 (p-value< 0.0001)
WMO index −0.645 (p-value< 0.0001) 0.355 (p-value< 0.0001)

Fig. 4. Plot of estimated GPD parameter (ξ ) like function of thresholdu, at annual scale for the 1957–1979 (top) and 1980–2002 (bottom)
periods. Red lines represent the 95 % of confidence interval. According to the theory, linearity would be expected from aû value.

in the frequency of circulation patterns. For this reason, we
evaluate if there existed any significant change in the pattern
of these indexes at the second half of the last century, and
we compared it with our data series. We used the anoma-
lies in the differences of the atmospheric pressure at two dis-
tant points, particularly the NAO teleconnection index and
the WeMo index, to study their relations within these two
periods. For example, the NAO index had a negative cor-
relation, causing a decrease in rainfall in the second period
(see Fig. 3), whereas during the first period, it had a posi-
tive correlation with rainfall in the Ebro River Basin until the
late 1970s, when this correlation changed the sign. We cal-
culated the Kendall correlations between the total rainfall at
our 14 stations and the two indexes following the work of
Lopez Bustins et al. (2008). The results, summarised in Ta-
ble 3, confirm that the changing relationship occurred around
the last years of the 1970s.

4.2 Rainfall distributions

Given the previous results, we decided to adjust the pre-
cipitation to a GPD separately for each sub-period (1957–
1979 and 1980–2002) under the hypothesis of stationarity
for each time interval. We examined the scale (σ ) and shape
(ξ) parameters and checked their differences between the

two periods considering 95 % confidence intervals. An ini-
tial problem was to decide the threshold value, as the stabil-
isation requires that, from a valueu, the shape and the scale
parameter should vary linearly. Figure 4 shows the patterns
found for both periods at three representative gauges. The
plots of GPD-estimated parameterξ against the thresholdu
suggest that the GPD model is adequate foru ≥ 10.

Table 4 shows the parameters for all the stations for both
periods. If the confidence interval contains a value of 0, we
can assume that the shape parameter is 0 and that the GPD
became an exponential function distribution (see Eq. 2 and
Coles, 2001).

In general, the estimated scale parameter decreases at all
gauges except Cella, although this reduction is statistically
significant at 95 % only in the north of the basin, near the
Pyrenees in Cabañas de Virtus (A1) and Embalse de Yesa
(A3). Tortosa (B6), near the Mediterranean Sea, has the high-
est scale parameter value (15.2) and the highest absolute re-
duction in the second period (from 15.2 to 12.2); however,
it has an excessively wide confidence interval, so it did not
yield a statistically significant difference. Surprisingly, the
same regularity in the trends of the shape parameters is not
apparent; some of them increase, whereas others decrease,
and none show statistically significant differences.

Nat. Hazards Earth Syst. Sci., 12, 2127–2137, 2012 www.nat-hazards-earth-syst-sci.net/12/2127/2012/
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Table 4. GPD estimated parametersσ̂ andξ̂ (optimum scale and shape parameters respectively) for each period with threshold=10. Confi-
dence intervals are based on the delta method.

GAUGE
Period: 1957–1979 Period: 1980–2002

σ̂ 95 % CI(σ̂ ) ξ̂ 95 % CI (̂ξ ) σ̂ 95 % CI(σ̂ ) ξ̂ 95 % CI (̂ξ )

A1 11.3 (10.2, 12.4) 0.088 (0.012, 0.164) 9.3 (8.6, 10.0) 0.071 (−0.016, 0.158)
A2 9.4 (8.7, 10.1) 0.023 (−0.060, 0.106) 9.2 (8.5, 9.9) 0.050 (−0.036, 0.136)
A3 6.8 (6.0, 7.6) 0.113 (0.024,0.202) 5.2 (4.6, 5.8) 0.086 (−0.023, 0.195)
A4 8.8 (7.8, 9.8) 0.086 (0.001, 0.171) 7.9 (6.9, 8.9) 0.124 (0.029, 0.219)
A5 9.5 (8.8, 10.2) 0.068 (−0.005, 0.141) 9.2 (8.3, 10.1) 0.074 (0.002, 0.146)
A6 8.7 (7.5, 9.9) 0.120 (0.022, 0.218) 7.8 (6.6, 9.0) 0.156 (0.043, 0.269)
A7 10.7 (9.6, 11.8) 0.048 (−0.044, 0.140) 9.8 (8.6, 11.0) 0.051 (−0.073, 0.175)
A8 9.6 (8.5. 10.7) 0.081 (−0.037,0.199) 8.3 (7.1, 9.5) 0.114 (−0.025, 0.253)
B1 7.6 (6.6, 8.6) 0.026( (−0.121, 0.173) 5.8 (4.6, 7.0) 0.177 (0.014, 0.340)
B2 8.5 (7.6,9.4) 0.075 (−0.026, 0.176) 7.9 (7.1, 8.7) 0.075 (−0.031, 0.181)
B3 9.9 (8.5, 11.3) 0.052 (−0.095, 0.199) 7.5 (5.8, 9.2) 0.183 (0.005, 0.362)
B4 9.0 (7.9, 10.1) 0.022 (−0.097, 0.141) 7.3 (6.3, 8.3) −0.010 (−0.166, 0.146)
B5 9.1 (8.0, 10.2) 0.031 (−0.093, 0.155) 9.4 (8.1, 10.7) 0.051 (−0.106, 0.208)
B6 15.2 (12.7, 17.7) 0.173 (0.043, 0.303) 12.2 (10.2, 14.2) 0.162 (0.031, 0.293)

Fig. 5.The q-q plots showing model departures at Cella, Presa de Ullibarri-Gamboa and Tortosa. At the top, the first period (1957–1979) and
at the bottom, the second one (1980–2002).

Combining the results obtained for both parameters, we
can conclude that there is a slightly significant reduction of
extreme values in our basin in the regions with more precipi-
tation, most likely near the Mediterranean Sea, but the results
are not conclusive.

Diagnostic q-q plots generally suggest a good fit, as Fig. 5
shows for 3 representative gauges. The goodness-of-fit p-
value of the GPD parameters (ε̂, σ̂ ) is presented in Table 5.
All stations fit well according to the Kolmogorov-Smirnov
test criteria. Tortosa (B6) was more difficult to fit graphi-
cally, and Presa de Ullibarri-Gamboa (A2) and Cella (B5)
show low values for Kuiper’s test. The P-P plots (not shown)
are well adjusted at all gauges.

Fig. 6.Expected maximum value of rainfall daily return level (mm)
versus number of years return in two consecutive periods (1957–
1979, 1980–2002). Each station is represented by its code.
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Table 5.P-values from Kolmogorov-Smirnov (KS) and Kuiper’s tests of goodness of fit to the GPD distribution for each period.

Station
Period: 1957–1979 Period: 1980–2002

P-value KS P-value Kuiper P-value KS P-value Kuiper

A1 0.4857 0.29979 0.2854 0.14691
A2 0.2302 0.21299 0.2816 0.05204
A3 0.6598 0.31915 0.3316 0.19457
A4 0.5053 0.36434 0.5453 0.46754
A5 0.6472 0.28375 0.4195 0.17280
A6 0.6397 0.59054 0.5177 0.23334
A7 0.2248 0.06483 0.3354 0.07837
A8 0.5088 0.16260 0.8691 0.63839
B1 0.3905 0.29381 0.6550 0.80643
B2 0.6441 0.29897 0.5271 0.15720
B3 0.2892 0.18560 0.4170 0.43832
B4 0.3445 0.10602 0.4918 0.69362
B5 0.2946 0.01719 0.1802 0.09522
B6 0.7040 0.71156 0.3460 0.12419

Table 6.Estimated return rainfall levels (mm day−1) and their 95 % confidence intervals for selected return times in years, by delta method.

Gauge
TIME (Period: 1957–1979) TIME (Period: 1980–2002)

10 yr 20 yr 30 yr 40 yr 50 yr 10 yr 20 yr 30 yr 40 yr 50 yr

A1
98.1 111.8 120.1 126.2 131.1 63.0 69.5 73.2 75.9 78.0

(76.9, 119.4) (83.7, 139.8) (87.5, 152.7) (90.1, 162.3) (92, 170.1) (56, 70.1) (61.7, 77.3) (65, 81.5) (67.3, 84.5) (69.2, 86.8)

A2
63.7 70.2 74.0 76.7 78.8 61.9 68.3 72.0 74.7 76.7

(56.8, 70.6) (62.6, 77.8) (66, 82.1) (68.4, 85.1) (70.2, 87.4) (54.9, 68.9) (60.5, 76.1) (63.8, 80.2) (66.1, 83.2) (67.9, 85.5)

A3
61.6 70.7 76.42 80.5 83.9 36.8 40.4 42.5 44.0 45.2

(49.6, 73.5) (55.2, 86.2) (58.3, 94.4) (60.5, 100.6) (62.2, 105.6) (30.4, 43.3) (33.3, 47.6) (34.9, 50.2) (36.1, 52) (37, 53.4)

A4
74.4 84.6 90.9 95.5 99.1 72.5 83.9 91.0 96.2 100.4

(59.8, 89) (65.5, 103.7) (68.7, 113.1) (70.9, 120.1) (72.5, 125.8) (54.6, 90.5) (59.5, 108.3) (62, 119.9) (63.7, 128.8) (64.8, 136)

A5
66.2 72.8 76.6 79.3 81.5 76.9 87.0 93.1 97.6 101.1

(59.2, 73.1) (65, 80.5) (68.4, 84.8) (70.9, 87.8) (72.7, 90.2) (57.3, 96.6) (61, 113) (62.8, 123.4) (63.9, 131.2) (64.7, 137.5)

A6
74.9 86.8 94.2 99.7 104.1 71.3 84.0 92.1 98.1 103.0

(59.9, 89.8) (67.1, 106.5) (71.1, 117.3) (73.9, 125.6) (76, 132.2) (53.6, 89) (59.8, 108.2) (63.1, 121) (65.3, 130.9) (67, 139.1)

A7
64.6 72.0 76.4 79.4 81.8 57.8 64.6 68.6 71.4 73.6

(57, 72.2) (63.8, 80.2) (67.8, 85) (70.6, 88.3) (72.8, 90.9) (49.7, 65.9) (55.9, 73.2) (59.6, 77.6) (62.1, 80.6) (64.1, 83)

A8
57.3 64.0 67.9 70.6 72.8 48.3 54.0 57.4 59.8 61.6

(49.6, 65) (55.7, 72.2) (59.2, 76.5) (61.7, 79.5) (63.7, 81.9) (40, 56.6) (45.2, 62.8) (48.2, 66.5) (50.3, 69.2) (52, 71.2)

B1
44.9 50.2 53.3 55.5 57.2 51.1 60.8 67.0 71.7 75.5

(37.1, 52.8) (41.8, 58.6) (44.6, 62) (46.5, 64.4) (48, 66.3) (37.1, 65.1) (43, 78.6) (46.4, 87.7) (48.7, 94.7) (50.4, 100.6)

B2
54.5 60.3 63.8 66.2 68.1 50.42 55.9 59.10 61.4 63.1

(47.6, 61.3) (52.8, 67.9) (55.8, 71.7) (58, 74.5) (59.7,7 6.6) (43.5, 57.4) (48.2, 63.6) (51, 67.2) (53, 69.8) (54.5, 71.8)

B3
55.4 62.3 66.3 69.1 71.3 60.4 72.8 80.9 86.9 91.8

(46.1, 64.7) (52.5, 72) (56.3, 76.3) (58.9, 79.4) (60.9, 81.7) (40.9, 80) (48.3, 97.4) (52.5, 109.2) (55.4, 118.4) (57.6, 126.1)

B4
53.0 59.2 62.8 65.4 67.4 43.3 48.4 51.3 53.4 55.1

(45, 60.9) (50.7, 67.7) (54, 71.7) (56.4, 74.5) (58.2, 76.7) (35.4, 51.2) (39.9, 56.8) (42.5, 60.1) (44.4, 62.5) (45.8, 64.3)

B5
53.7 60.0 63.7 66.3 68.4 53.2 59.8 63.6 66.2 68.4

(45.9, 61.6) (51.6, 68.5) (55, 72.5) (57.3, 75.4) (59.2, 77.6) (44.2, 62.2) (50.3, 69.3) (53.8, 73.4) (56.2, 76.3) (58.1, 78.6)

B6
133.5 160.4 177.8 190.8 201.4 103.8 123.9 136.7 146.3 154.1

(101.3, 165.8) (116.7, 204.2) (125.7, 229.8) (132.1, 249.5) (137, 265.8) (74.5, 133.1) (83.5, 164.2) (88.4, 185) (91.6, 201.1) (93.9, 214.4)

4.3 Maximum expected return value

The rainfall return levels and their 95 % confidence intervals
are compared in Table 6, and some relevant return levels and
times are plotted in Fig. 6. The return level for nearly all
stations was limited, except for Tortosa (B6) and Cabañas
de Virtus (A1) in the first period, each at an opposite end
of the basin. This behaviour can be considered normal for
Tortosa because of its proximity to the Mediterranean Sea,
and its return levels are slightly lower than those found by

Bodini and Cossu (2010) in Sardinia. For the second period,
high values are maintained for Tortosa (B6), but two new rain
gauges in the north central area of the basin appear with high,
but not extreme, values.

Low values are presented by Logroño (B1) in the first
period and Daroca (B4) and Embalse de Yesa (A3) in the
second. The latter two are relevant because of the decrease
of their return levels from the first to second periods, with
Daroca (B4) showing a previous significant decay in daily
maximum precipitation (MAX, Table 2).
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Table 7.Estimate return time (year) and their 95 % confidence intervals for different rainfall levels (mm day−1).

Gauge
Level of rainfall (mm) Period: 1957–1979 Level of rainfall (mm) Period: 1980–2002

40 50 60 70 100 150 40 50 60 70 100 150

A1
0.3 0.6 1.1 2.1 11.0 114.7 0.8 2.5 7.2 21.2 532.9 >900

(0.2, 0) (0.4, 1) (0.6, 2) (0.8, 3) (0.8, 24) (0.8, 364) (0.4, 1) (1, 4) (2, 12) (3.2, 39) (3.4,>900) (3.4,>900)

A2
0.8 2.3 6.8 19.6 475.9 >900 0.9 2.7 8.1 24.1 628.5 >900

(0.4,1 ) (1, 4) (2.1, 11) (3.8, 35) (4.4,>900) (4.4,>900) (0.5, 1) (1.1, 4) (2.1, 14) (3.2, 45) (3.2,>900) (3.2,>900)

A3
1.5 3.8 8.8 19.0 136.7 >900 18.4 125.8 860.6 >900 >900 >900

(0.6, 2) (1, 7) (1, 17) (1, 40) (1, 385) (1,>900) (0.1, 43) (0.1, 349) (0.1, 2750) (0.1,>900) (0.1,>900) (0.1,>900)

A4
0.7 1.6 3.5 7.3 52.7 774.3 0.9 2.1 4.3 8.5 48.9 473.9

(0.4, 1) (0.7, 3) (1, 6) (1, 14) (1, 139) (1,>900) (0.4, 1) (0.7, 3) (0.7, 8) (0.7, 18) (0.7, 139) (0.7, 1963)

A5
0.6 1.8 5.2 15.0 351.9 >900 0.6 1.3 2.9 6.1 46.7 793.4

(0.4, 1) (0.8, 3) (1.8, 9) (3.3, 27) (4.3, 755) (4.3,>900) (0.3, 1) (0.5, 2) (0.5, 5) (0.5, 13) (0.5, 151) (0.5,>900)

A6
0.9 1.9 3.9 7.4 40.6 379.3 1.2 2.6 5.1 9.3 43.6 308.9

(0.4, 1) (0.8, 3) (1.2, 7) (1.3, 14) (1.3, 95) (1.3,>900) (0.5, 2) (0.8, 4) (0.9, 9) (0.9, 19) (0.9, 112) (0.9,>900)

A7
1.0 2.6 6.5 16.5 273.1 >900 1.6 4.5 12.5 34.8 742.1 >900

(0.5, 2) (1, 4) (2.1, 11) (4.1, 29) (9.1, 547) (9.1,>900) (0.5, 3) (1.1, 8) (2, 23) (2.5, 67) (2.5,>900) (2.5,>900)

A8
1.7 4.7 13.2 37.5 853.2 >900 3.7 12.3 41.2 137.4 >900 >900

(0.6, 3) (1.2, 8) (2.3, 24) (3, 72) (3,>900) (3,>900) (0.3, 7) (0.3, 25) (0.3, 88) (0.3, 312) (0.3,>900) (0.3,>900)

B1
5.2 19.5 72.7 270.8 >900 >900 4.0 9.2 19.0 36.1 175.8 >900

(0.2, 10) (0.2, 41) (0.2, 163) (0.2, 651) (0.2,>900) (0.2,>900) (0.2, 8) (0.2, 19) (0.2, 42) (0.2, 85) (0.2, 506) (0.2,>900)

B2
1.8 5.9 19.2 62.3 2122.9 >900 2.7 9.5 33.6 119.2 >900 >900

(0.7, 3) (1.5, 10) (2.3, 36) (2.3, 126) (2.3, 5234) (2.3,>900) (0.7, 5) (1.2, 18) (1.2, 69) (1.2, 263) (1.2,>900) (1.2,>900)

B3
2.1 5.8 15.9 43.7 903.7 >900 2.5 5.2 9.8 17.2 70.9 412.2

(0.3, 4) (0.6, 11) (0.6, 31) (0.6, 89) (0.6,>900) (0.6,>900) (0, 5) (0, 11) (0, 21) (0, 39) (0, 186) (0,>900)

B4
2.4 7.2 21.9 66.5 >900 >900 6.3 25.0 98.2 386.5 >900 >900

(0.5, 4) (1.1, 13) (1.3, 43) (1.3, 137) (1.3,>900) (1.3,>900) (0.1, 13) (0.1, 55) (0.1, 231) (0.1, 979) (0.1,>900) (0.1,>900)

B5
2.2 6.6 19.9 59.8 >900 >900 2.4 7.1 20.5 59.5 >900 >900

(0.6, 4) (1.1, 12) (1.5, 38) (1.5, 121) (1.5,>900) (1.5,>900) (0.3, 5) (0.5, 14) (0.5, 41) (0.5, 125) (0.5,>900) (0.5,>900)

B6
0.3 0.6 0.9 1.3 3.7 15.4 0.5 0.9 1.6 2.5 8.7 44.5

(0.2, 1) (0.3, 1) (0.4, 1) (0.6, 2) (1.2, 6) (1.4, 31) (0.2, 1) (0.4, 1) (0.6, 3) (0.7, 4) (0.8, 18) (0.8, 117)

Fig. 7. Return time (year) as function of maximum rainfall return level (mm day−1). Top plots are for the first period (1957–1979), and the
bottom for the second period (1980–2002).

The differences between both periods show a significant
decrease only for Cabañas de Virtus (A1) and Embalse
de Yesa (A3) in the west and central Pyrenees (see Ta-
ble 7); although Tortosa undergoes a greater absolute de-
crease (Fig. 6), it has no statistical significance. This means
that greater uniformity is achieved in extreme rainfall in the
north of the basin in the second period.

The return time patterns of the different rain gauges are
similar, as expected. For most locations, daily rainfall events
over 40 mm are produced more than once every three years.
Table 7 shows the return times for the different return levels.
We grouped those stations having a comparable return time
for each period in Fig. 7. Tortosa (B6) shows the lowest val-
ues for any period, highlighting that its distribution function
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is significantly different from the rest of the stations. As ex-
pected, in the second period, there is an increase of the return
times for almost all hydrographic stations, as exemplified by
Cabãnas de Virtus (A1).

5 Conclusions

Daily rainfall data from 1975 to 2002 from 14 stations lo-
cated at different places in the Ebro River Basin and un-
der different climatic conditions were used to study extreme
rainfall trends in the area. Several statistical analyses were
applied that mainly focused on the existence of trends in cli-
matic rainfall indexes and the characterisation of the distri-
bution of heavy rainfall.

For all cases, a direct relation among several rainfall cli-
matic indexes (RF, Mean and the amount of rainfall caused
by extremes values) for each station was found, with the
sole exception of Tortosa. This station is in an area with a
Mediterranean climate and is close to the sea, and it has a
greater proportion of rainfall due to extreme values.

All extreme precipitation indexes show negative trends us-
ing the Yule-Walker method at an annual scale. However,
only three of the indexes are statistically significant at the
5 % level for some parameters, contrary to climate change
model predictions, though confirming the results by Toreti
et al. (2010) and Barrera et al. (2006) who also studied
a Mediterranean area. The changing relationship occurred
around the middle of the study period, and it can be com-
pared to the NAO index.

The GPD successfully characterised the rainfall, estimat-
ing a threshold of 10 mm. The GPD-scale parameter de-
creases in almost all gauges but is only statistically signifi-
cant at the 95 % level at two stations near the Pyrenees. How-
ever, whereas GPD shape parameter shows different tenden-
cies, none of these tendencies show statistically significant
differences. Therefore, there is a weakly significant reduction
of the extreme values in the Ebro River Basin found at the
areas with higher precipitation and likely near the Mediter-
ranean Sea, but the results are not conclusive, as with other
authors (Bodini and Cursso, 2010).

The return level for almost all stations was relatively low
except for Tortosa. The differences between the first and sec-
ond periods show a statistically significant decrease only for
two rain gauges: Cabañas de Virtus (A1) and Embalse de
Yesa (A3). Concerning the return time, it is noteworthy that
for most locations, daily rainfall events over 40 mm are pro-
duced more than once every three years.
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