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SUMMARY: 

A computer solution to analyze nonprismatic folded plate 
structures is shown. Arbitrary cross-sections (simple and 
multiple), continuity over intermediate supports and general 
loading and longitudinal boundary conditions are dealt with. 
The folded plates are assumed to be straight and long (beam 
like structures) and some simplifications are introduced in 
order to reduce the computational effort. The formulation he­
re presented may be very suitable to be used in the bridge 
deck analysis. 
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1. INTRODUCTION 

The theories of folded plate structures have been developed 
for a very long time. A review of some of them can be seen in 

[ 11 • Important contributions to long simple supported folded 
plates, using harmonic expansion and matrix techniques are [21 
and [ 31 • Using the same techniques and Theory of Elasticity, 
the extension of the above results, to study short and long 
simple supported structures, has been introduced in Spain in 
the reference [4] 

The continuous folded plate structures have presented new dif 
ficulties in their analysis. Some of them have been solved by 

means of different techniques. Fourier expansion using Rayleigh 
(or Inglis) functions has been applied in [51 to study single 
span structures with other transversal conditions than the sim 
ply support and also extended there to structures with several 
spans. Flexibility methods have been succesful developed in pu 
blications (6] and 171 -

The contributions to the analysis of nonprismatic folded plate 
structures are more scarce. Often general computer methods of 
analysis as the Finite Element Method have been used (61. How 
•ever in this method, the peculiarity of this type of structu­
res are not fully exploited. Finite strip and finite segment 
methods are possible alternatives. 

Born ( 181 and [9] has considered the analysis of pyramidal 
and prismoidal folded plates. Johnson and Ti-ta Lee have deve­
loped in [10] a theoretical and experimental analysis of long 
nonprismatic folded plate structures. Later a computer program 
and a model test based in the above analysis have been develo­
ped in the Laboratorio Central. Between the results obtained 
there, a comparative study has been carried out [1ll . However 
the method presented in the reference 1101 has some important 
limitations, namely, a) Only simple supported structures are 
considered. b) Multiple transversal cross-sections can not deal 
with in the analysis, i. e. folded plate structures with more 
than two plates meeting at a joint. c) General loading and lo~ 
gitudinal boundary conditions are excluded in the formulations. 

In the present paper, a natural extension of the theory develo 
ped in [101 is shown and the above limitations no longer exist. 
Then, structures as box girder bridges multiple cellular plates 
with one or several spans, can be studied by means of this ex­
tended method of structural analysis. Based in this theory, a 
computer program is now under development, and comparative st~ 
dies with alternative structural analysis will be presented in 
a future publication. 
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2. MAIN ASSUMPTIONS 

The following structural method lies in the framework of a 
geometrically and material linear and elastic theory. Besides, 
the following additional assumptions are introduced: 

1) The material is homogeneous 

2) The structure is monolithic 

3) Every plate element has the following properties: Its grea­
test depth is small in comparison to ils plate length. As a con 
sequence, the longitudinal behaviour can be studied as a conti 
nuous one way slab action, i.e., no longitudinal bending and 
torsional moments exist. 

4) For simplicity, the shear and axial (transversal direction) 
strains are neglected. 

5) The folded plate is a right structure, i.e., there exist a 
straight line normal to all the support plans containing the 
centroids of every transversal section (parallel to the support 
plans) of the folded plate. 

6) All the supports are planes restraining only the in-plane mo 
vements (gable conditions). 

3. AN OUTLINE OF THE METHOD 

This method follows similar steps as the usual folded plate ana 
lysis (1()] , but now the basic unknowns will be different. The­
main computational steps are: 

1) Divide longitudinally the folded plate structure by a number 
A + 1 of equally spaced transversal sections (Fig. 1) 

Fig, 1 
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2) Each segment of folded plate between two consecutive trans 
versal sections is assumed to have its joints fixed in the 
transversal direction, i.e., no horizontally and vertically 
displacements occur (Fig. 2). That can be obtained by introdu 
cing a set of ficticious temporary supports (or reactions).(*) 

Fig. 2 

3) A transversal bending analysis is carried out for each se~ 
ment. Only the loading applied directly on the segment is con 
sidered in this analysis (Fig. 3). Matrix stiffness methods­
are used to obtain the joint rotations, stress - resultants 
at plate edges - bending moments, shear stresses and axial for 
ces - and unknowns reactions at the actual and ficticious sup­
ports, called respectively: 

e < 1) 
na ' 

(1) 
llj ia v~:) and 

J l.a 

Fig. 3 

where j 1 ' 2 

(~)-A-set-of supports needed to restrain the movement on the 
transversal section (without extensional deformation) can be 
automatically obtained, as it will be seen later. 
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4) In [10] the opposite reactions at the ficticious supports 
are equilibrated by the in-plane forces of the plates meeting 
at the supported joint, namely p 1 ia or Pzia (Fig. 4). 

These forces can be computed directly only if the folded pla­
te structure presents a non-multiple cross-section as has been 
assumed in the reference [10] . However, in the general case, a 
different approach has to be followed. The in-plane forces at 
every plate and segment (pia = r 1 ia + Pzia) are considered as 

basic unknowns through all the analysis (Fig. 4). 

Fig, 4 

5) A longitudinal analysis is carried out for each plate i. 
The assumed applied loading are the basic unknowns (pia) and 

the actual longitudinal loading (prestress actions, temperatu 
re, longitudinal forces, etc.) acting along the plate. If th; 
folded plate is a continuous structure, i.e., with interme­
diate transversal supports, or is supported in different way 
to simply support (gable conditions), then two more unknowns 
must be introduced at the ends of every span of the plate i, 
namely G1 i and G2 i (Fig. 5). 

The results of this analysis are the following stress-resultants, 
at each transversal section and plate: longitudinal axial forces, 
longitudinal bending moments and longitudinal shear forces, ca­
lled respectively: 

NLia , MLia and QLia 

They are computed in terms of the known applied loads and the 
above basic unknowns. 

6) The longitudinal compatibility along the joints is set up. 
That means, in-plane shear stresses (q . and q

2
. ) distri 

buted along each plate edge must be introda~ed in the 18 analy--
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1', 
I 

.... 
--

Fig. 5 

sis. These stresses can be computed in terms of the basic 
unknowns (pia , Gli and G2 i) by using compatibility and equi 

librium conditions at each section and joint (Fig. 6). 

Fig, 6 

7) In this step, the longitudinal analysis already done in the 
step 5) is again carried out taking into account the in-plane 
shear stresses (q

1
. and q

2
. ). These stresses modify there-

l.a l.a 
sults of the previous longitudinal analysis. The total stress­
resultants of this analysis will be called: 

Mi:. l.a and QL .• l.R 
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8) From the final results of the longitudinal analysis the va­
lues of the in-plane deflections (uia) at each cross-section 

and the end rotations (0 1 i and e 2 i), for each plate i, can be 

obtained from elementary beam theory. 

9) At each joint and cross-section the transversal compatibili 
ty must be imposed. That means, plates meeting at a joint must 
rotate in order to an unique joint displacement occurs. Because 
of the structural monolithi&m , these plate rotations introdu­
ced transversal stress-resultants that can be computed in a si 
milar way as in the step 3 (Fig. 7). The results of this analy 
sis will be denoted by the superscript (2), i.e., 

0 (2) (2) (2) (2) (2) (2) (2) R(2) 
na ' ~lia ' ~2ia ' Y1ia ' Y2ia ' v1ia ' v2ia and na 

Fig, 7 

10) In this step the basic unknowns (p. ) and (G 1 . and G2 .) are 
1a 1 1 

computed by means of the following conditions: a) At each cross­
section and ficticious supported joint, the condition 

R( 1 ) + R( 2 ) = 0 holds, i.e., no actual support reaction exists. na na 
b) At each transversal intermediate support and each end sup­
port with different conditions to the gable ones, the continui 
ty must be enforced (compatibility conditions). This can be acorn 
plish~d by e~ualling the end rotations (01. or e2.) between two-
consecutive plates. 1 1 

11) Once the values pia , G1 i and G
2

i are known, all the main re 

sults of interest in the analysis can be computed by back subs­
titution. 
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4. DEFINITIONS 

A trirectangular cartesian counterclockwise coordinate system 
(X, Y, Z) is introduced. The horizontal axis Z is normal to the 
support planes. The horizontal axis X is normal to Z and the 
axis Y is vertical upward. They are called global or general 
system (Fig. 8-a). 

For every plate, two longitudinal edges can be considered and 
called 1 and 2 respectively, Then, the local cartesian coordi 
nate system (x' , y' , z') can be introduced for each plate,­
where axis z' coincides with the general axis 7, and axis x' 
is directed from extreme 1 towards 2. The axis y' is orthogo­
nal to x' and z' (Fig. 8-b). 

The position of each plate is defined at each croos-section by 
the relative coordinates (h. and v. ) of the extreme (edge) 2 
respect to 1 (Fig. 8-c). ~a ~a 

r 

c) 

Fig, 8 

Along each joint four degrees of freedom (dof) are considered. 
They are defined in terms of the global axis {Fig. 9), except 
the longitudinal displacement wna that coincides with the joint 
direction. 

General imposed boundary conditions at each joint are conside-
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red in the computation. The stress-resultants of each plate 
are refered to local axis and their positive values are repre 
sented in Fig. 8-b. -

The external loads acting along joints are defined in global 
axis (fig. 8-a) and the loading on each plate are represented 
in the local axis of the plate. 

Fig. 9 

5. MAIN COMPUTATIONAL STEPS OF THE ANALYSIS 

In the following the main formulae used in the different steps 
of the analysis, described in general terms in chapter 3 are 
now summarized. 

5.1 First transversal analysis 

Each segment "a" can be analyzed as a plane frame structure 
with its geometric properties corresponding to its central 
cross-section. The only active dof are the joint rotations 

0(
1
), because sway has been assumed to be restrained by ficti na 

cious supports. The values of these rotations can be obtained 
from the following matrix equation: 

K • e< 1
) = M + M( 1

) ••••••••••••••••••••••••••••••••••••• (1) . -a -a -a -a 
where 
K is the stiffness matrix of the plane frame structure obtai 
-a ned by standard matricial analysis. 

0( 1 ) = {0( 1)}· M {M }; M = {M(l)} and n = (1, N) 
-a na • -a na -a na 

Mna is the external moment acting directly at joint "n" and 
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M( 1
) is obtained by standard techniques from the equivalent 

na 
end moments of the external applied loads at each plate (fi­
xed-end moments). 

Solving the equation (1), the values 0( 1) are obtained. Then, 
na 

the distribution on the cross-section of the transversal 
stress-resultants is known. Particularly their values at the 
extremes 1 and 2 of a plate "i" are computed from the follo­
wing formulae: 

-Bending moments: 
(1) (1) (1) -(1) 

~1ia -(r1ia" 0 1ia + g2ia"r2ia" 02ia) + ~1ia 
=(1) -(1) 
~ 1 ia + ~ 1 ia 

(1) (1) (1) -(1) =(1) -(1) 
~2ia (r2ia" 9 ?.ia + glia"rlia" 0 lia) + ~2ia ~2ia + ~2ia 
where r 1 ia and r 2 ia are the stiffness coefficients and glia 

and g 2 ia are the carry-over factors. 

e<~) and e<~) are the values of the rotations at each trans-
1 ~a 2 ~a 

versa! extreme of the plate, equal to the corresponding joint 

rotation e<l). 
na 

~(~) and ~(~) are the bending moments corresponding to the 
. 1 ~a . 1 2 ~a . ( . h · · ) 
~n~t~a soiut~on no rotat~ons at t e JO~nts • 

-Shear forces: 

( 1) 
Y j ia 

=(1) =(1) 
~2 ia - ~ 1 ia 

1 . 
~a 

-Axial forces: 

\)(1) + 
lia = \Ilia \Ilia 

-
+ yjia and j = 1, 2 

They are obtained by setting up two equilibrium equations at 
each joint "n" and one equilibrium equation for each plate "i": 

-Horizontal forces at "n": 

(1) hia 
E v ----
~ e:N 1 1 ia 1 ia 

E (1) h. 
N \1 ~+ 

~ e: 2 2 ia 1. 
~a 

c5 R (1) 
nn' na "' -H + na 

+ E (1) via ( 1) via 
~e:Nl Ylia~- te:N 2 y

2
i

8
-

1
-.- •••••••••••••••••••••••• (2-a) 
~a 
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-Vertical forces at "n": 

E ( 1) via 
1 e:N1 v1ia_1 ____ -

1a 

o R ( 1 ) 
nn' na -v na 

(1) hia 
- ~e:N

1 
Y1ia __ 1 __ __ ••.•..••.••••••••• (2-b) 

1a 

-Horizontal forces at "i": 

v1ia + v1ia + v2ia + v2ia z 0 ...................... ( 2-c) 

where 
v

1
ia and v 2 ia are the unknown axial forces at transversal ex-

tremes 1 and 2 of the plate "i". 

H and V are the external forces applied to the jo.int "n". na na 

{ ::l are the eet of platu "i" wich extremes I 211 coincides 

with the joint "n". 

onn' is the Kronecker delta, i.e. onn' 
m 1 if n = n I 0 

0 if n + n' and 

Summarizing all the equations (2), for each joint "n", the 
following matrix equation can be obtained 

! . !(1) "'p(1) ••••••••••••••••••••••••••••••••••.•• {3) 

where B is a non singular square matrix provides the proper 
ficticious supports have been introduced, All elements of this 
matrix are known, depending only on the geometric properties 
and support conditions of the cross-section. 

~1a {v1 ia } ; v = -2a {v2ia} where i (1, I) 

R (1) r {R(1)r} and n = (1, N ) -a na r 

R ( 1) f 
= {l{(l)f} and n .. (1, Nf) -a na 

R( 1 )r is the n-th actual existing support reaction at joint na 

R(l)f is the n-th ficticious imposed &pport reaction at joint 
na 

(l) 
P is the known vector collecting all the external forces 
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Besides the equation (3), there exist the following conditions, 
expresing the fact of non-existence of the ficticious supports, 
i.e., 

R(
1
)f = 0 •••••••••••••••....•••••••••••••••.••.••...•••• (4) 

Partitioning the equation (3) in the following way(*) 

{:;::)·······················(5) 
and taking into account equation (4), the following conditions 
should be fulfilled: 

and 

or equivalently 

-1 (1) (1) 
!2 1 • ! 11 • R-1 = R.f • • • · • • • • • · • • · • • • • • • • · • • • · · · · · · · • · · < 6 ) 

Generally, the condition (6) is not satisfied and therefore the 
distorsion on the cross-section of the folded plate must be con 
sidered in the analysis. 

5.2 Longitudinal bending analysis 

Each plate is considered here as a simply 
with a set of unknown in-plane forces p. 
two end bending moments G1 i and G2 i. 

1a 

supported beam loaded 
(a= 1, 2, ... , A) and 

The longitudinal stress-resultants are computed from the elemen 
tary beam theory (Fig. 5): 

ML. HLOi + ~9 ~i + G1i (~ - ~) + G2i ~ ......•...... ( 7 -a) -1 
1 

G2i) ...•.......••.. (7-b) ~i .. .<l.!!o i + ~10 p. + --y_;-(G1i - ~ -1 

NLi NLOi •••.•.•••..•...•............••••.............•. (7-c) 

where ML. = {UL. } ; ~- • {QL. } ; NL. = {NL. } -1 1a 1 1a -1 1a 

MLOi {MLO. } ; NLO. = {NL 0 . } ; ~O. 1a - 1 1a 1 { p. } 
J.a 

(*)-These-ficticious supports are used only for convenience. 
Hathecatically !11 ca~ be obtained as a principal non ~ngular 

submatrix of !• which order is the rank of ~· 
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and ~ = {(2a-1)t./2L} where a= (1, A) 

{ 1} ; lg 

The subscript (0) refers to the prestress. 
The signification of the other matrices will be shown later. 

The formulae (7) have been obtained without considering the 
longitudinal displacement compatibility along the joint whe­
re adjacent plates meet. That implies the existence of the 
matching shear stresses q 1 ia and qZia' 

Then the longitudinal stress-resultants are computed now ac­
cording to the following expresions: 

MI. * UL. + ML. + Q1i -l. -l. -l. 

Ni:. * NL. + NL. + Q3i -l. -l. -l. 

* Qhi Qhi + m:i - QSi 

where 

.!.1 i + 

.!.1 i 

. .Ili -

Q2i .Izi 

Q4i .Izi 

Q6i . .Izi 

and T .. 
J l.a 

.•..........•. ( 8 -a) 

. .......•....• (8-b) 

..•..•......•• ( 8 -c) 

dqj ia 
dx 

(j=1,2) 

The values of the unknowns 1.1 i and !zi are computed by imp~ 

sing the equilibrium and compatibility at each joint and the 
boundary conditions at the longitudinal ends of each plate 
(Fig. 10), i.e. 

Equilibrium: E -"' <! - E q 21.a = L ••.•••••••... (9-a) 
1. ... , 1 , 1 ia 1. e:N 

2 
na 

Compatibility (free longitudinally joint): 

where:iEN 
p 

1 
E 

f . pl.a 

. EN 
J q 

E 
f . • ••••••••..•.••••...•• (9-b) 

qJ a 

and p, q = 1 or 2 

Compatibility (non-free longitudinally joint): 

E 
f . = 0 ••.•••••.•••••••••••.••••.•.• (9-c) pl.a 
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Hhere: iE:N d 1 2 P an p = or . 

Boundary conditions at longitudinal ends: 

The values of TjiO are known(*) and defined by r;iO (j=l,2) 

The longitudinal bending stresses fmia can be computed from 

the bending theory, i.e., 

f . 
m~a 

1 
z . 
m~a 

cos a 2 . (T
2

. +T
2

. 1 )Y----~
1-----

~a ~a ~a- 2 

1 1 
+ --A-.---(NLia+--2-cos alia · 

~a cos a 2 ia 

(Tl. +Tl. 1)-
~a ~a- 2 

cos a 2 ia • 

+ 
( _ 1) m+l 

lit . 
m~a 

• 2 tana . 
m~a 

(Tmia- Tmia-1) ••••••••••••••(lO) 

where m = 1, 2 

Aia is the cross-sectional area of plate "i" at segment "a" 

z mia 
is the sect ion modulus at transversal edge "m" 

t mia is the thickness of the plate at edge "m" 

h mia and a mia are shown in Fig. 6 

Plate i 

Fig, 10 

(*)At t le first gable support 

* and for a current span T .. 
0 

is 
the previons span. J~ 

* for the first span TjiO = 0, 

iqual to the value of T .. A of 
J ~ 
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Collecting all the equations (9), the following matrix equa­
tion can be deduced 

AA . T BB (11) 

where: 

.:!.i = { .:!.1 i l 
.:!.2J 

T { T.} 
-1 

and 

This equation already obtained in reference [10] for simple 
transversal sections is the wellknown Five Shear Equation. 
Its solution can be expressed as follows: 

T = AA- 1 BB 

i.e. 

.:!.i = foi + fli · Ql + f2i · £2 + f3i · P 

where: 

(12) 

(12-a) 

Introducing equation (12) into the ex presion ( 8) • the follo-
wing results are reached: 

Mi:. m:o. + MLl i .Ql + ML2i"Q2 + ML 3 i . .P. .............. (13-a) -1 -1 

N'L. NL
0

. + NLli'Ql + NL2 .. G2 + NL3 i ·.E .............. (13-b~ -1 -1 -1-

~- ~Oi + ~li .Ql + ~2i ·Q2 + Q.1.3i"£ .............. (13-c) 1 

From the above values, the in-plane deflections ~i along the 

plate "i" and its end rotations eli and e2i can be obtained 

by elementary beam theory, i.e., 

~c 5 'E.ei 

p . 
-c1 

~i = ~c9 p . 
-c1 

where: 

p . 
-c1 

u. = {u. } p . ML. /L.I. -1 1a c 1a 1a 1a 

I. moment of inertia of the plate "i" at segment "a" 
1a 
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E = modulus of elasticity of the material 

T 1 T 
lc5 * -(x (lcl+lcz)+-t- ~ (~c3+~c4)) 

T 
-(~ (~cl+~c2)+ ~c5) 

The other matrices will be specified later. 

The equation (15) can be written, taking into account (13-a) 
in the following way 

~i = ~Oi + ~1i'~1 + ~2i'~2 + ~3i'~ •••••••••·······< 15-a) 

5.3 Transversal compatibility. Second transversal analysis 

Due to the structural monolithism, at each joint "n" an unique 
displacement occurs. That implies plates meeting at joint "n" 
should have the same total displacement. Therefore the plates 
must rotate in order to fullfill this condition, taking into 
account the values of the in-plane deflections ~i given by equ~ 

tion (15-a). The rotation of the plate "i" is given by the fo­
llowing expresion: 

w. 
~a 

w2ia - w1ia 
1 . 
~a 

(16) 

where wkia can be computed from the joint compatibility equa­

tions given below, according to the particular joint conditions: 

a) Free joint{*): 

w = -kia 

cos<fl .. 
~]a 

u. + 
~a 

(17-a) 

where "i" and "j" are plates meeting at the same joint "n" 
<fl .. =<fl. - <P. and <P. is the transversal angle at segment 
~J a J a ~a ~a 

"a" between the plate "i" and the horizontal, positive coun­
terclockwise. 

b) Restrained horizontally joint displacement: 

(*)-If-there-are only two paralell plates meeting at the joint 
the value of wkia remains unknown, but an extra condition can 

be imposed, namely uia uja 
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/v. 

and v. ~ 0 
l.a 

J.a 

c) Restrained vertically joint displacement: 

wkia = - uia.via 

and h. ~ 0 l.a 

/h. 
l.a 

d) Total resttilined joint displacement: 

(17-b) 

(1 7 -c) 

uia = 0 •••• •• •• ••. •. • •• • • ••. •. • • • • • • • • • •• • • • • • • •. • • (17-c) 

Introducing into the equation (16) the values given by (17) and 
the expresion (15-a), the final formula can be stated: 

Considering the transversal section of the folded plate as a 
plane frame structure, the above rotations produce the follo­
wing stress-resultants: 

(2) 
11 kia 

(2) (2) 
lllia - ~2ia 

1 . 
l.a 

where k, j = 1, 2 and j ~ k 

vk(~) are computed together with the reactions R( 2 ) by the equ~ 
. 1a ( 2 ) ( 2 ) na 

t1on B.S = P wich is obtained in similar way as the ex-
presi~n-(3). 

( 2) 
Gkia are the values of the rotations at each transversal extre 

treme of the plate, equal to the corresponding joint rotation. 

8
(2) . h . Wl.C l.S 
na 

obtained from stiffness matrix equation 

K .0( 2 ) = M:( 2 ) 
-a a -a 

-(2) 
]lkia are the fixed end-moments at the extreme "k" of plate "i" 

- ( 2) k+ 1 
11 kia = (-1) (rk. +g ... r .. ). w. 

1a J 1a J 1a 1a 

M( 2 ) is deduced from the fixed end-moments at each plate in a 
-a 
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similar way as has been done before for ft~ 1 ). 

5.4 Final simultaneous equations 

The final values of the transversal stress-resultants are sim 
ply obtained from summation of the two previous transversal 
analysis, i.e., 

(l) (2) 
)lkia + llkia 

(l) (2) 
ykia + ykia and 

\lkia = (l) + v( 2 ) 
\lkia kia 

Similarly, the final reactions are R = R( 1 ) + R( 2 ) 
na na na 

The values of the unknowns pia and G1 i and G2 i should be ob-

tained such that the values of the ficticious reactions are 
null. That implies, the fact that the condition (6) is satis­
fied for the final values of ! 1 and !f , i.e., 

!f • • • . • . • . • • . . • . • • • • • • • • • . • . • • . . . • . • . • • • ( 19) 

where 
p = p(l) + p(2) 
-1 -1 -1 

(2) (2) . 
where t

1 
and tf are computed 1n 

(1) (1) . 
been done for ! 1 and !f , 1.e., 

similar way as it has 

using expresions (2-a) 

and (2-b) setting Hna 

by (2). 

Vna = 0 and changing superscript (1) 

Besides the above equilibrium equations, the compatibility 
conditions between two consecutive plates at the ends of each 

of them (equal rotations ei and ei at each transversal sup­

port) must be introduced by using the expresions (14-a) and 
(14-b). 

The number of equations coincides with the number of unknowns 
and the solution of the problem is possible. For example, for 
a continuous two span folded plate structure simply supported 
at ends, the following results holds: 

Number of unknowns: 

Number of equations: 

Pia 

G1 i and G2 i ---------------
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(*) 
I 



Transversal compatibility (17) ------------- 2(21-N+Nr)A 

Equilibrium (19) --------------------------- 2(N-I-Nr)A 

Longitudinal compatibility (0ki = 0k'j) ---- r<*) 

Once obtained the values of the basic unknowns, the remain 
results of the analysis can be computed by back-substitution 
on the main formulae. 

6. CONCLUSIONS 

A general method of elastic linear analysis on folded plate 
structures is shown. The procedure used represents a natural 
extension to the previous one given in reference (10). The 
main features of the method are concerned to the general tre 
atment of continuous folded plate structures, multiple (ce-­
llular, etc.) cross-sections and general applied loading. 

In order to obtain this generality in the analysis a set of 
basic unknowns (in-plane forces along each plate and longit~ 
dinal bending moments at each support and plate) has been 
used. 

The method here presented seems to be adecuate to analyze 
efficiently this type of structures without use more general 
and powerful procedures such as finite element, finite segment 
or finite strip methods, but they usually are more expensive 
in computer and man time. 

7. NOTATIONS AND ABBREVIATIONS 

L 
A 
I 
N 
X,Y,Z 
x;y;z .... 
h. v. 

1.a 1.a 

1 . 
l.a 

K -a 

Span length 
Number of segments 
Number of plates on the cross-section 
Number of joints on the cross-section 

= General co-ordinate system 
Local co-ordinate system 
Relative co-ordinate system 

Width of plate "i" at segment "a" 

Stiffness matrix of the plane frame structure co 
rresponding to the central cross-section on the-

(*)-This-representl to use only an absolute value for the ben 
ding moment at the central support, acting with opposite sign" 
to each span (biaction). 
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e0 ) e< 2 ) 
kia' kia 

(1) (2) 
]Jkia ']Jkia 

(l) (2) 
Vkia'Vkia 

r kia 

gkia 
N. 

] 

0nn' 
Nr,Nf 

A 
Pia 

G1i'G2i 

ML. 
l.a 

QL. 
l.a 

NL. 
l.a 

L 
na 

f . n1.a 

segment "a" 
External actions at joint "n" on segment "a" 

Rotations at transversal extreme "k" of plate 
"i" and segment "a" corresponding respectively 
to the first and second transversal analysis. 
Item. rotation at joint "n" on segment "a" 

Bending moment at transversal extreme "k" of 
plate "i" and segment "a", corresponding to 
the first and second transversal analysis. 
Item. shear forces. 

Item. axial forces. 

Item. fixed-end moments. 

Fixed-end axial and shear forces corresponding 
to the first transversal analysis. 

Support reaction at joint "n" on segment a co­
rresponding to the first and second transversal 
analysis. 
Stiffness coefficient. 

Carry-over factor. 

Set of plates "i" wich extreme "j" coincides 
with· the joint "n", 
Kronecker delta. 

Number of actual and ficticious imposed supports 
respectively. 
Segment length. 

In-plane force at segment "a" of plate "i". 

Bending moments at longitudinal extremes 1 and 
2 of the plate "i". 
Longitudinal bending moment at central cross­
section on the segment "a" of the plate "i" 
without considering longitudinal compatibility. 
Item. shear force. 

Item. axial force. 

Unit edge shearing stress at segment "a" of the 
plate "i". 
Resultant edge shear force at segment "a" of 
the plate "i". 
Force per unit length of segment "a" along joint 
un". 
Longitudinal bending stress. 

4.:304 



MLia'QLia'NLia 
E 
A. 1a 

z . m1a 

t . m1a 

a . m1a 

h . m1a 

I. 1a 

u. 1a 

4l ia 

w. 1a 

.. -1 

-1 8 

0 -1 8 

0 0 

0 0 

0 

1 1 _., 

8 -1 

= Total longitudinal stress-resultants 

• Modulus of elasticity of the material. 
• Cross-sectional area of plate "i" at segment 

"a" . 
.. Section modulus of the plate "i" at segment 

"a" corresponding to the edge "m" 
.. Thickness of the plate "i" at segment "a" co 

rresponding to the edge "m". -
• Taper angle at edge "m" of the plate "i" on 

segment "a". 
= Distance between neutral axis and edge "m" of 

the plate "i" at segment "a". 
• Moment of inertia of the plate "i" at segment 

na". 
End rotations at longitudinal extremes 1 and 
2 of the plate "i". 

= In-plane deflection of the plate "i" at seg­
ment "a". 

• Transveraal angle at segment "a" between the 
plate "i" and the horizontal. 

0 

0 

0 

0 

0 

Transversal rotation of the plate "i" at se_a 
ment "a" corresponding to the second trans­
versal analysis. 

0 

s • 
-8 

0 0 

1 ---1 11 
~--~--~==:~--~--~ 
0 0 0---0 0 1 

0 0 0---0 0 0 

0 0 

... -1 8 0 

0 -1 8 

-4 1 1 

0 - -- 0 0 A 2./:l---(A-l)A 

l:l---(A-2)/:l 0 0 0 

8-1---0 0 o o---(A-3)/:l 

0 0 0 0 - - - 1 8 -1 0 
s • 
-7 0 0 0 

0 0 0 8 -1 0 

0 0 -1 5 0 
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-9 5 -6 6 1 7 

-7 .. 6 9 

-7 .. 6 9 - -- 0 

0 --- -7 .. 6 9 

0- - - 0 -7 4 6 9 

0 - -- 0 3 3 -1 3 0 3 3 7 

3 3 7 1 3 A -3 3 0 --- 0 

-9 -4 6 7 --- 0 

-9 -4 6 7 --- 0 0 

0 --- -9 -4 6 7 

-9 -4 6 7 

0 --- 0 -1 7 6 6 9 9 

-1 0 1 -5 .. 1 1 

-5 42 1 1 

-5 42 1 1 

~3 
t:,.2 

X 
- - - - - -

"'3'84 ----5 42 1 1 

-5 42 1 1 

.. 3 -1 50 3 4 7 

-3 41 l 50 -43 - - - 0 

-1 1 -42 0 - - - 0 

t:,.2 -1 1 -42 5 - - - 0 

§.c4 .. 384 X ------------- - - - -
0----11 -4 2 5 

-1 1 -4 2 5 

-1 1 54 1 0 1 

8 -1 --- 0 

-1 1 1 2 -- - 0 

ll -1 1 1 2 --- 0 

icl -24 K - - - - - - - -
0 ----1 1 1 2 

0 - -- -1 1 1 2 

0 --- 2 -7 1 7 
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1 7 -7 2 0 --- 0 

2 1 1 -1 0 -- -0 0 

~ 
2 1 1 -1 -- - 0 0 

!c2·w ------- ---------

.,. 
NL.• 
--]. 

.,. 
~-

0 0 

0 0 

0 0 0 

1 
hji 1 .cosajil 

D •• •...-x2 -J1 

(j •1 t 2) hj i 2 • cOS a j i 2 

0 

- --2 1 1 

--- 0 2 

--- 0 -1 

0 

0 

0 

0 

0 0 

0 

0 
----
-1 

1 1 -l 

5 8 

0 0 0 

0 0 

o - -- h.jiA. cosajiA 
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1 
~i=zx 

0 

cosakiZ cosakiZ 
(k = 3 ' 4 ) - - - - - - - - - - - - - - - -

0 

sina ri 1 0 

1 
D .=-x 
-r~ 2 

sina 
(r=5 ,6) ri2 sina ri2 

- - - -
0 0 
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