
A sharing-based approach to supporting adaptation
in service compositions

Dragan Ivanovi´c · Manuel Carro · Manuel V. Hermenegildo

Abstract Data-related properties of the activities involved in a service composition
can be used to facilitate several design-time and run-time adaptation tasks, such as
service evolution, distributed enactment, and instance-level adaptation. A number of
these properties can be expressed using a notion of sharing. We present an approach
for automated inference of data properties based on sharing analysis, which is able
to handle service compositions with complex control structures, involving loops and
sub-workflows. The properties inferred can include data dependencies, information
content, domain-defined attributes, privacy or confidentiality levels, among others. The
analysis produces characterizations of the data and the activities in the composition in
terms of minimal and maximal sharing, which can then be used to verify compliance
of potential adaptation actions, or as supporting information in their generation. This
sharing analysis approach can be used both at design time and at run time. In the latter
case, the results of analysis can be refined using the composition traces (execution
logs) at the point of execution, in order to support run-time adaptation.

D. Ivanovic´ (B) · M. Carro · M. V. Hermenegildo
Facultad de Informatica, Universidad Politécnica de Madrid,
Campus de Montegancedo s/n,
Boadilla del Monte 28660, Spain
e-mail: idragan@clip.dia.fi.upm.es
M. Carro
e-mail: mcarro@fi.upm.es

M. V. Hermenegildo
e-mail: herme@fi.upm.es

M. Carro · M. V. Hermenegildo
IMDEA Software Institute, Madrid, Spain
e-mail: manuel.carro@imdea.org

M. V. Hermenegildo
e-mail: manuel.hermenegildo@imdea.org

mailto:idragan@clip.dia.fi.upm.es
mailto:mcarro@fi.upm.es
mailto:herme@fi.upm.es
mailto:manuel.carro@imdea.org
mailto:manuel.hermenegildo@imdea.org

1 Introduction

Service-Oriented Computing (SOC) has become a well-established paradigm for
developing, evolving and integrating complex, enterprise-level software systems. The
core concept in SOC is that of a service: a software component which is indepen
dent of any platform and programming language, with a well defined, standards-based
interface exposed on the Internet (or a corporate intranet). In that way, SOC stimulates
low coupling between software components. Individual services are usually highly
specialized for a particular task, and their interfaces typically include of one or more
functionally cohesive sets of operations (called ports). However, the true power of SOC
shows in complex, cross-domain and cross-organizational settings, where service com
positions put together several service components (often provided and maintained by
third parties) [11] to perform higher-level or more complex tasks. In turn, exposing
service compositions themselves as services and enabling their use by other composi
tions makes it possible to develop highly complex, large scale, distributed, and flexible
software systems.

In this paper we address the problem of adaptation at the level of service com
positions [11,34] from the data perspective. At design time, adaptation1 is usually
performed in order to meet new functional requirements, adjust non-functional char
acteristics of the composition (e.g., by removing inefficiencies and bottlenecks), or
to enhance interoperability with other systems. At run time, adaptation is typically
performed in response to the detection (or prediction) of component failures, extraor
dinary situations (e.g., exceptions, communication line breakups), or new information
about the particular user’s context.

In both design-time and run-time adaptation settings, the notion of correctness, in
the sense that the adapted service composition has to comply with its specification,
is crucial. This involves ensuring, among other things, that compatibility with the
specified protocols is preserved during conversations with partner (or component)
services [35], that the appropriate partner operations are invoked, and that the messages
that are exchanged have the correct format and meaning [4]. An adaptation can alter the
state of the service composition, replace its components, rearrange activities, reroute
messages, fragment the composition into several parts that are executed in a distributed
manner or merge several fragments into one, etc., but any adaptation action, simple
or complex, must respect the conversation protocols, service interfaces, and message

1 By convention, and in order to differentiate actions at design time and at run time, any adaptation which
impacts the initial assumptions of a SOC, such as those stemming from changes in the requirements and
which require a (deep) change in the design of the system, is termed evolution. We will in general not use
this term unless it is unclear from the context whether we are referring to design time or run time adaptation.

formats and meaning. These, of course, are necessary, but by themselves not sufficient,
conditions for correctness of the adaptation.

We argue that the degree of correctness of some adaptations can be improved
by taking into account the data dependencies present in the specification, i.e., by
analyzing how the content of messages and the composition state depend on the
received messages or behavior of other activities and other factors. In particular, we
are interested in functional dependencies, which describe what pieces of information
and activities determine the content of messages and the internal state, as well as in
data attributes that describe the contents of data in terms of some domain-specific (i.e.,
user-defined) properties. Both imply additional correctness criteria that can be used for
validating a set of potential adaptation actions, or as a constraint for their generation.

For instance, an adaptation action that breaks a functional dependency by (partially)
blocking the flow of information between services in the composition or by replacing
one service with another that uses only a subset of inputs risks incurring in information
loss and should be (in the absence of more precise information) ruled out as unsafe. On
the other hand, if the inputs to two activities do not mutually depend on their state or
results, they can in principle be executed independently or in parallel, i.e., isolated into
two separate control-flow fragments. Additionally, if the data attributes of a message
carry confidential information, then we have to ensure that this information will not be
revealed to distrusted participants. Also, the analysis of data attributes allows reasoning
about the conceptual information content of the message, which can constrain the
search for service candidates by discarding those who expect (or produce) messages
whose contents are conceptually incompatible.

Our focus is on supporting an automated analysis of data dependencies that can be
used both at run time and as a designer’s aid for design-time adaptation. While analysis
of protocols relies mostly on automata theory and process algebras [10,35], and analy
sis of interfaces and message formats is performed mostly by reasoning about service
ontologies [13], we base our approach to the analysis of data dependencies on the con
cept of data sharing and a number of related static analysis techniques based on abstract
interpretation [20,29,30]. The application of program analysis techniques is neces
sary in this case because of two main reasons. Firstly, realistic service compositions
involve complex control structures, featuring non-determinism and cyclic execution
paths, which may be difficult to analyze without resorting to well-established program
abstraction frameworks. Secondly, in a run-time adaptation scenario, the specification
is usually the original (pre-adaptation) version of a service composition (typically
describing the canonical or the most general case), which is usually expressed using
programming language constructs, and a correct adaptation needs to preserve some
key properties of the original.

The rest of the paper is organized as follows. Section 2 presents an example that
motivates our approach. In Sect. 3 we discuss functional dependencies and data
attributes in the context of service compositions, and show how these two aspects
of data dependency can be modeled using the same logical framework and the notion
of sharing. In Sect. 4 we present the details of sharing analysis, which is the underly
ing technique used for inferring (safe approximations of) functional dependencies and
data attributes in service compositions. We discuss the inputs to the process, and the

01
0.2

Log in

0.3

AnonymousY

05
04

Start
ordering

oe
Search
catalog

as
Add io cart}

ag

Sfcip option}

oil
014

Ol5

Generate
invoice

012

Session profile

013

Create profile

Move to
checkout

010

details
CC autho

rization

018

< ^
Bank transfer

details -4
o i g

Loan
request

0 0 -

«22

«{ Collect A J-

1 2 3

•(Collect B)

1 2 4

•f Collect C) -

*xV

o

Loan
approval

025

026

Payment
processing

Q27 j
Shipment

I
Fig. 1 A sample purchasing end-to-end service composition in BPMN notation

interpretation of its results. Next, we present some applications in Sect. 5. Section 6
offers a review of the related work, and Sect. 7 some conclusions.

2 Motivation

Figure 1 shows an example service composition written in BPMN [33] that realizes
a process of purchasing goods form a seller’s online site and paying for the goods
by credit card, bank transfer, or a loan from a bank. Service invocations and complex
activities (XOR-splits and loops) are labeled with the letter a and a subscript, for
easier future reference. At the start, the buyer accesses the seller’s online site either
by logging in to his or her existing account (activity a2), or by browsing anonymously
(a3). Activity a4 creates a new shopping cart, and activity a5 is a loop in which the
buyer browses the catalog (a6) for the base product and its configuration options (e.g.,
disk, display, memory options for a computer, or the additional equipment for a car)
and either adds the item found to the shopping cart (a8) or skips it (a9). At the end,
the buyer freezes the order (a10) and moves to the check-out stage. At this point, if
the buyer had not already logged in, he or she will need to create a profile (a13), by
giving the name, address, telephone, and other basic information, which can be saved

for future sessions. Once the buyer is registered, the invoice for the ordered goods is
generated (a14).

In the second stage of the process, the buyer chooses among several forms of
payment (the exclusive choice a15). One of these choices is to pay using a bank card
(a16), which needs to be authorized by the bank (a17). Alternatively, the buyer can pay
by debiting his or her bank account (a18). Finally, the buyer may request a loan from
a bank that the buyer uses for financing his sales (a19). Depending on whether or not
the buyer is a client of the bank and other circumstances, the bank may request one
or more documents to be presented (a20) before approving the loan (a25). After fixing
the payment option in the exclusive choice activity a15, the payment is made by the
bank on behalf of the buyer to the seller (a26). Finally, once the payment is verified,
the seller ships the ordered products (a27).

In this fairly standard service composition let us assume that each atomic activity
is an invocation of a service (or rather of some operation of some port of a service)
which accepts some input and may produce an output message, which is remembered
in the state of the composition. The components of the state are shown in Table 1.
Where input from the buyer is required, we assume that the corresponding service
either takes care of presenting the buyer with a form to fill, or has an interface that the
buyer’s application can use to supply the required information (and obtain results).

The purchasing composition in Fig. 1 is rather generic and can be adapted in several
ways. In particular, there are several classes of run-time adaptations, such as paral-
lelization, fragmentation, and compliance checks that can be triggered and applied
automatically, ideally without any human intervention. The information on which of
these adaptation actions can be used comes from the analysis of both the control and
the data dependencies in a service composition. In this paper we argue that both the
functional data dependencies and the data attributes (which describe the information
content) can be analyzed by means of an (abstract) data sharing analysis. On that basis,
we are motivated by the following questions relevant for adaptation:

– Which activities in the composition do not functionally depend on each other’s
output, and can therefore be started in parallel? For instance, in Fig. 1, a loan
request activity (a19) can be started without waiting for a14 to finish (although a25

needs to wait for a20).
– How can we automatically fragment the composition for distributed enactment,

while enforcing information flow constraints? E.g., the fragments of the composi
tion from Fig. 1 are executed either centrally or on the side of the buyer, the bank,
and the seller. The assignment of activities to fragments can be based on data
attributes that conceptually describe the information content of the data handled
or produced by each activity.

– How can we automatically choose or replace service components based on infor
mation requirements? Functional dependencies and data attributes can be used
as one of the criteria to constrain matching or generation of the replacement, by
ensuring that all replacements use all of the relevant data, and by ensuring that the
information content of that data (described by data attributes) is adequate.

Note that in all these cases we assume that the usual adaptation constraints related
to conversation protocols, message formats, and meaning are correctly preserved, and

Table 1 Data dependencies in the example service composition

Data item in composition

User request

Product query

Buyer info

Invoice

Credit card info

Identification document

Additional document A

Additional document B

Additional document C

Transfer order

Shipment notice

Component service state

Seller’s portal session

Shopping cart

Loan application

Seller’s account

Symbol

u

1
e

i

c

d

X

y

z
p

n

w1

W2

1/J3

1/J4

Read by

a2,a3,a4

a5,a6

a14,a16

a17,a18,a25

a17

a20,a25

a26

a4,a11,a12

a6,a8,a10,a14

a22,a23,a24, a25

a26,a27

Set/updated by

a0

a4,a6

a12,a13

a14

a16

a19

22
23

24

a17,a18,a25

27

a2,a3,a13

a4,a8,a10

a19,a20

a26

we focus on analyzing the data content, which is not normally taken into account by
protocol- and ontology-based approaches.

3 Functional dependencies and data attributes through sharing

In this section we show how the notion of data sharing, in a very general, first-order
logical framework, can be used to express two classes of data dependencies: func
tional dependencies and sharing of the data attributes between input messages sent to
the composition, intermediate data items and activities, and outgoing messages from
the composition. We start by looking at functional dependencies and data attributes
in service compositions, and proceed by presenting the general framework for their
common logical representation and generation by means of Horn-clause programs and
their operational semantics.

3.1 Functional dependencies in service compositions

Functional dependencies have been widely studied in the field of database systems [2],
where they represent (together with multi-valued dependencies) the cornerstone of the
most widely applied relational database design and normalization techniques (such as
Codd’s normal forms) [38]. They have also been extensively studied in logic [17,39],
and used for mining of association rules in databases [1].

In the context of service compositions, we are interested in the functional depen
dencies between some named items, which we call variables, that represent incoming

and outgoing messages in a service composition, the internal data produced and read
by the composition activities, and the activities themselves. Unlike the conventional
“program variables,” these variables do not designate mutable storage locations, but
rather act as logical placeholders for values. We shall use the italic letters x, y, z, etc.,
to denote these variables, and capitals X, Y, Z, etc., to denote sets of variables. In keep
ing with the usual short-hand notation for functional dependencies, we shall write XY
to denote XUY (unless stated otherwise), and wherever a set of variables is expected,
we shall allow a variable x to stand for the singleton set {x}. e.g. XyZ = X U [y] U Z,
and xyz = [x] U [y] U {z} = [x, y, z}.

Definition 1 (Functional dependency) A set X of variables is said to determine a set
Y of variables (i.e., Y functionally depends on X), which we write X —> Y, if for each
y e Y there exists a rule that uniquely determines the value of y from values of the
variables in X.

Obviously, when X = 0 then each y e Y is a constant, i.e., they have a unique
value that does not depend on any other variable. For X/0we normally speak of
a function or mapping F which, when applied to the values of some or all variables
from X, produces a single value for each y e Y, and we write Y = F(X).

Functional dependencies are normally required to obey a standard set of axioms,
known as the Armstrong dependency axioms:

Definition 2 (Armstrong dependency axioms) A binary functional dependency rela
tion “^>” between subsets of variables needs to satisfy the following set of axioms:2

(AD1) X —> X
(AD2) (X —> Y) A (U —> V) -> (XU —> YV)
(AD3) (X —> Y) A (U —> V) A U c Y -> (X —> V)

for arbitrary sets of variables X, Y, U and V.

From the point of view of adaptation, reasoning about functional dependencies
in service compositions is important in several adaptation settings. If, for instance,
the inputs of activity a" do not depend on the outputs of a', then a" can proceed
independently of a' (i.e., we can parallelize the two), and even the failure or a dynamic
replacement of a' with a compatible activity does not affect a". Conversely, if some
activity depends on some set of variables X, then, in general, it cannot be executed
before all “ingredients” of X become available (as received messages or as outputs
of other activities), and it is generally not safe to replace that activity with another
(atomic or complex) one that takes as input some proper subset Y c X, since that
could lead to a loss of data.

Note that in the adaptation examples above we preserve the conversation pro
tocols and the message formats, but, nevertheless, the actual outcomes may differ
significantly.

Example 1 In the composition from Fig. 1, and according to Table 1, activity a 19
(Request loan) does not depend on outputs froma4, 0.5,0.10, or a11. Therefore, if at the

2 The set of axioms presented here follows [40] and has been chosen for its minimality. These axioms are
equivalent to those originally proposed by Armstrong [2].

start the buyer is determined to take a loan, and knows the approximate price range, he
or she can start the loan request process in advance of, or in parallel with, the online
ordering. However, a25 (Loan approval) needs the invoice that is produced by a14

(Generate invoice).

Example 2 If payment processing (a26) is executed by the bank, and shipment by
the seller (a27), without any direct message exchange between the two, then there
is an implicit data dependency on the state of the seller’s account (which may be in
another bank). This is a “hidden” variable that has to be included in the functional
dependencies.

Example 3 If in a25 we replace the commodity loan approval with a cash loan approval,
which does not look at the invoice, the payment would be made to the buyer’s account,
rather than to the seller’s, and the shipment would not commence. That would require
an additional bank transfer step by the user to be inserted after a25.

Example 4 If the user logs in to the seller’s portal (a2), we can replace the general
catalog search service a6 with a version that takes into account the buyer’s identity,
which functionally determines the buyer’s purchase history and interests.

Figure 2a shows a conceptual model of functional dependencies arising from a
single execution of some activity a. If a reads some data X and produces some outputs
Y, we can generally assume that there exists some functional dependency YU' =
Fa(XU), where either X or Y (or both) can be empty. U is a representation of the
internal state used by a before its execution, and U' is its updated state. If a' is the next
activity after a that uses the same internal state, its functional dependencies have the
form Y'U" = Fai(X'U'), where X' and Y' are the sets of data items read and written,
respectively, by a'.

Our ability to draw conclusions from such a generic functional dependency XU^
YU' may be limited for several reasons. Firstly, we may not (and indeed in general
do not) know Fa, which expresses the (denotational) semantics of the computation
performed by A. Secondly, we may not know the structure of U and U', unlike the
structure of X and Y which correspond to the data items in the composition. However,
a more precise reasoning can be obtained under specific circumstances or when we
are given some additional information:

- If the internal state of A is initialized to a default value at the start of a composition,
then in the first use of the state U is a constant, and the dependency reduces to
X —> YU'. This, for instance, happens with the order o after a4 (Fig. 1; Table 1).

- If we know that A is stateless, the functional dependency reduces to X —> Y. That
is the case with a9 (skip item) and a18 (Get bank transfer details) that produce
their results directly from the inputs (if any).

- If A does not update its state, then we can decompose XU —> YU' into XU ^ Y
and U' = U. That is the case with a14 (Generate invoice), which reads the state
variable o (the order), but does not change it.

- Ifwe know that for some Z c X,ZU —> YU', we can eliminate from consideration
all irrelevant variables from X\Z. e.g., loan approval a25 may require proof of
residence address r, but may not use its content to generate payment authorization
z needed by a26.

— •

U —r*\ ~J*U' U ~f*

X — H •• Y 0 —*-H I—1*" Y*
X

U'

(a) Model of a single activity execution. (b) Collecting all results from a loop.

Fig. 2 A conceptual model of functional dependencies in composition activities

Direct functional dependencies, such as those from Fig. 2a, can be given in the
form of assertions or meta-data attached to service activities, while indirect (transitive)
dependencies are obtained by applying the Armstrong axioms from Definition 2. The
general idea is that this kind of reasoning about functional dependencies becomes
more precise if in the activity assertions we can narrow the left side of “—>” (replacing
X with Z c X, or eliminating U), and/or if we know more about the right hand side
(e.g., U' = U).

If no cycles are involved, the set of all functional dependencies (over a finite set of
variables) can be obtained by applying the Armstrong axioms directly a finite number
of times. However, if an activity that reads X and writes Y is in fact a loop a* whose
body a can be executed zero or more times, then we are generally interested in some
common properties of the set Y* of all possible values of Y, rather than a Y from
a single iteration. This corresponds to the notion of collecting semantics in static
program analysis [32]. Figure 2b shows the conceptual model for this case. Starting
from an empty set 0 , each iteration in a* updates both the internal state and the set of
outputs Y*. In some cases, Y* may stabilize after a finite set of iterations, but that is
generally not guaranteed. Since we are interested in treating this general case, which
may involve loops with a generally undecidable number of iterations, we resort to
techniques based on abstract interpretation that will be discussed in Sect. 4.

3.2 Data attributes in service compositions

The messages that are sent and received by participants in a service composition are
typically dynamic XML documents that may have a complex structure, with nested,
optional, and alternative elements. While different technologies (such as DTD and
XML Schemas) can be used to constrain the shape and the content of XML messages,
these checks can be expensive in terms of computation time, and there is generally
no assurance that a particular service infrastructure enforces all the tests for each
message that is sent or received. In general, it is the responsibility of the developer
to ensure that the messages conform to their XSD specifications, besides being well-
formed XML documents. The same applies to the results of XPath or XQuery queries
or XSLT transformations used in compositions for computing values of composition
state variables.

We are interested in conceptual descriptions of data, where we use the notion of a
data attribute to describe some property that holds for a data item represented with a
variable (in the sense of variables from Definition 3.1 in the previous section). Some
properties (i.e., attributes) can be verified by performing a test on the variable (i.e., by

Country

^nationality Identity

=±d n <lnumber
> Passport

ResidentID <

^resident

IDCard

3d

^firstName

• ~ |

<faii r Name <-

DL
<lfullName . <street

> string <

<addr< ^ \ <Jappt

< S S N ^city

Address <-

<number < Z I P

<addr< i n t ZIP

. ^national . . „
PIN < CitizenID

Fig. 3 Structural data description example

inspecting its content), while other properties can be inferred based on domain-specific
inference rules from the tests.

Example 5 For instance, variable d (Identification document) from Table 1 can be
tested for properties such as “contains element address of type string” (property
p1), “contains attribute @allowsResidenceCheck with value true” (property p2), or
“contains element PIN” (property p3), while an abstract property can be “has a known
residence address” (p 4) . The inference rules could be p1 -> p4 and p2 A p3 -> p4.

We start by defining the notion of structural data description, following an approach
similar to that of Data Semantic Structures [4], that originate from semantic data
descriptions and ontology matching [13,36].

Definition 3 (Structural data description) A conceptual data description is a structure
S D D (D , c d , < , ^) where:

- D is a set of concepts (conceptual data types), where each deD denotes a set
[[d J of objects (data items) conforming to d;

- Ed is a partial order on D, called the simulation relation, where d c d d' means
that an object from [[d J can be used whenever an object from [[d! J is expected;

- <\ c D x F x D (where F is a set of field names) is a component relation, such
that (d, n, d') e <\, written as d <\n d', meaning that each object from ^d J has a
field (element or attribute) called n that holds an object from [[d' J;

- ~-> is a partial transformation functional that maps a pair (d, d') e D2 (if a trans
formation from d to d! is defined) into a function (d ~-> d') : HdJ -> I d ' J that
transforms object x e HdJ into its image x' e Id ' J.

Structural data descriptions can be thought of as a sort of typing system for data that is
exchanged by services in the composition. The simulation relation d1 c d d2 requires
that whenever d2 <n d, then also d1 <nd, i.e., objects in [[d2 3 must have all components
that the objects in ^d1 I have, and possibly some more. Also, in that case (d1 ~-> d2)
exists and is an identity function.

Test £

£1

*2

t3

U
*5

Meaning of t(x)
x : Passport
x : IDCard
x: DL
a/country = "xy "
x/national exists

Attribute
7711

n»2
1T13

TO4

7TI5

Meaning
resident
national
known address
known PIN
known SSN

Rules
£1 A £4 —> m i

£l A £4 —> 7J12

£2 —> m i

£2 A £5 —>• TO2

£ l - > m 3

£2 —> " 1 3

£2 —• rrn
£3 —> ras

Case
Passport

XY Passports
DL

IDCard
Citizen Card

ResidentCard

£1

/
/

£2

/
/
/
/

£3 £4 £5

/

7711

/
/
/

JT12

/

I " 3

/
/

/
/
/

T f l 4

/
/
/

TJ15

/

Fig. 4 Tests, rules and attributes for data structures from Fig. 3

Example 6 Figure 3 shows a simple example of a structural data description for
identification documents that may be used for identifying a buyer in some coun
try, i.e., as the data item d from Table 1 which is obtained from activity a 19 (Loan
request) in Fig. 1. These include passports (Passport), driving license (DL), and
identity cards (IDCards), which are further subdivided into those for citizens of the
country (CitizenID) and other residents (ResidentID). While passports and driving
licenses represent the person’s name and address simply as strings, identity cards use a
more structured representation via conceptual data types Name and Address. While
Address ~+ string and Name ~+ string are straightforward, string ~+ Address may
be difficult, and string ~+ Name may be ambiguous. CitizenID and ResidentID are
discriminated by fields national and resident, respectively. Some field names have
different meanings, e.g., number in Passport and in Address.

Definition 4 (Data attributes) For an SSD(D, rzd, <\, ~+), a data attribute system is a
structure DA(A, T, R, \=d), where:

- A is a set of data attributes, which are propositional symbols that may evaluate to
true or false for each dsD.

- T is a set of deterministic and terminating Boolean tests that describe the contents
of a data object. A set of objects X satisfies t e T iff t (x) = T for each x e X. A
d e D satisfies t iff I d J satisfies t.

- R is a finite set of implication rules of the form AB —>- a (B finite), where a e A
and B c A W T. Circular implications (direct or indirect) are not permitted.

- \=d is the attribute inference relation that associates a set of data objects S with
attributes from A, in such a way that for all a e A, S \=d a holds if and only if a
can be inferred from the tests that are satisfied by S and the set of rules R.

Example 7 Figure 4 shows a data attribute system for the sample structural data
description form Fig. 3. Tests t1,..., t5 are checked at the level of a data instance
(x), and here they have the simple format x : d (meaning that x complies with the
structural schema for d, in tests t 1– t3), or an XPath query (t4 and t5). The attributes
m 1,..., m5 represent domain-specific properties related to the content, rather than
to the structure of a data object. They are obtained from the tests using the given set

ra3

Passport

m i

m,4

IDCard, ResidentCard

Citizen ID "V

Fig. 5 A sample concept lattice for the context from Fig. 4

of rules (Horn clauses). The bottom part of Fig. 4 shows a matrix of the tests and
attributes for several cases of data objects. The cases mainly correspond to the con
ceptual data types from Fig. 3, but the case called XY Passports is a set of objects
which is structurally indistinguishable from Passport, yet its content (i.e., the fact
that the passport is issued to the citizen of the hypothetical country XY in question)
makes it different from the point of view of the domain-specific attributes.

When considering data at the level of data attributes, we are mostly concerned with
the conceptual grouping of the possible cases on the basis of the information they carry
with respect to the attributes. For that, we use concepts from Formal Concept Analysis
(FCA, a branch of lattice theory [9,15]). In FCA, a context is a triplet (G, M, I) where
G is a set of objects (or cases), M is a set of attributes, and / c G x M is a relation
that associates the objects with the attributes. For arbitrary sets of objects X c G and
attributes Y c M , w e define the operators:

X' ={y e M | (Vx e X)({x, y) e /)} (1)

Y' ={x e G | (Vy e Y)({x, y) e /)} (2)

which can be described as follows: X' is the set of all attributes associated (via /) to all
objects of X, and Y' is the set of all objects associated to all attributes from Y. The pair
{X, Y} is called a concept ifX' = Y and Y = X', i.e., if X and Y completely determine
each other by means of the operator (•)'. X is called the extent of the concept, and
Y its intent. The fundamental theorem of FCA asserts that concepts form a complete
lattice, with the ordering (X1, Y1) < {X2, Y2) iff X1 c X2, or, equivalently I2 f= Y1.
Concept lattices are usually represented with a variation of Hasse diagrams with the
greatest concept at the top, and the smallest concept at the bottom. Each node is a
concept, and is decorated with attributes that do not appear in greater concepts, and
the objects that do not appear in smaller ones.

Example 8 Figure 5 shows a concept lattice based on the attribute matrix from Fig. 4.
The concept ordering shows how informative the different cases are from the point of
view of attributes m1,..., m5. Passport is more general than other identity documents
(except DL), while CitizenID is more informative than other variations of ID Cards

and passports. Generic IDCard and ResidentCard are conceptually the same. The
data item d from Table 1 can be chosen from the set of objects assigned to nodes.

A complex message may consists of several parts that carry their own data attributes.
In such a setting, we are interested in all the attributes present in the message. If the
components of a message are represented with sets of attributes, then the attributes of
the entire message can be combined on the basis of the component relation “<”. The
input X to an activity a can be represented as a set of variables carrying data attributes
of the component data objects, which come from the inputs or from previous activities.
The output Y from a can be represented as Y = ZU, where Z c X, whose attributes
Y inherits, and U represents some new components added to Y by a.

3.3 Representing dependencies with substitutions

In our approach we use notions from first-order logic as the underlying mechanism
for both functional dependencies and data attributes. A first-order language represents
objects in the universe of discourse by means of terms, which are built from variable
symbols (x, y,z, . . .), constants (e.g., 0, a), and function symbols (/, g,...). A com
plex term of the form f(t1,t2,...,tn) (where t1,..., tn are terms) is normally seen as
the result of applying some function / of n arguments to terms t1,..., tn. Therefore,
an equation z = f(x, y) is a common mathematical way of expressing a functional
dependency of z on x and y by means of / . To actually apply / to its arguments, we
need to be equipped with an interpretation that assigns some actual computation pro
cedure to the function symbol / , but even when / is left uninterpreted, z = f(x, y)
is a statement of the existence of a functional dependency I J H - Z . On the other hand,
from a purely syntactic point of view, f(x, y) can be seen as a grouping of x and y
under / , in much the same way as fields are packed together in a record. If x and y
carry their sets of data attributes, then z = f(x, y) is also a convenient way to state
that z inherits the attributes of both.

We can represent the above equation with a substitution σ = [z i-> f(x, y)}. When
applied to a term or a statement, a substitution simultaneously replaces all occurrences
of the variables on the left-hand side of “ W with the corresponding terms on the right-
hand side. With dom(σ) we denote the set [x \ (x i-> t) e σ], and with range(σ) the
set U(Xh^)Sσvars(£), where vars(f) is the set of variable symbols occurring in term t.
To rule out circular references, we require dom(σ) n range(σ) = 0 . Also, to enforce
determinism, if a substitution contains mappings x i->- t and x i->- t', then we require
t = t', where “=” stands for the syntactical identity of terms as strings of symbols. In
our example, zσ = f(x, y) and g(x, z)σ = g(x, f(x, y)).

In Definition 2 (the Armstrong dependency axioms) we have already stated the
properties expected of a relation that models functional dependencies. With the fol
lowing definition we provide the substitution-based functional dependency relation.

Definition 5 Let X and Y be two subsets of variables, and σ a substitution. We say
that Y functionally depends on X under σ, and write X -^σ Y, if vars(Zσ) c Y,
where Z = X\Y.

We establish the expressiveness of “—>σ” with the next two lemmas and Theorem 1.

Lemma 1 For an arbitrary substitution a, relation^a satisfies the Armstrong depen
dency axioms.

Proof (1) From Definition 5, vars((X \ X)a) = vars(0) = 0 c X, thus X -^a X.
(2) From Definition 5, X -^a Y and U —>a V, we have vars((Y \ X)a) c X and

vars((V \ U)a) c U, and, by union, vars((Y \ X)er) U vars((V \ U)a) c XU.
Now, vars((YV \ XU)a) = vars((Y \ XU)a) U vars((V \ XU)a), and because
Y \ XU c Y \ X and V \ XU c V \ U, we have vars((Y \ XU)a) c vars((Y \
X)er) and vars((V \ XU)a) c vars((V \ U)a). Again, by union, we obtain
vars((Y V \XU)a) = vars((Y\XU)a) Uvars((V \XU)a) c vars((Y \X)a)U
vars((V \ U)a) c XU, which means XU —>a YV.

(3) Here again from Definition 5, X -^a Y and U —>a V, wehavevars((Y \X)a) c
X and vars((V \ U)a) c U. Because U c X, we also have V \X c. V \U, and
therefore vars((V \ X)a) c vars((V \ U)a) c U c X, i.e., X ^CT V.

•
Indeed, as the Armstrong axioms suggest, some functional dependencies may be evi
dent directly in the substitution, while others can be deduced from them. In our exam
ple, a = { zH- f(x, y)}, the dependency xy —>a z is directly represented, while, e.g.,
xyz -^a z and xy —>a y are implicit. We formalize the notion of directly represented
relationships in the following definition.

Definition 6 For a given substitution a the functional dependency basis is defined as
[a] = {(X, y) | (y \-+ t) e a A X = vars(t)}.

Lemma 2 For an arbitrary substitution a, no relation that is smaller than —>a and
includes [a] satisfies the Armstrong dependency axioms.

Proof Suppose > is a relation between subsets of variables from language C that
satisfies the Armstrong dependency axioms, such that > c^>CT and [a] c >.

(1) For arbitrary X we have vars((X \ X)a) = 0 c X, i.e., X -^a X and also in
X > X from (AD1) in Definition 2.

(2) For arbitrary X and Y such that Y c X, from Definition 2 we have vars((Y \
X)a) = 0 c X, i.e., X -^a Y. Also, from Definition 2 (AD1) we have X > X
and Y > Y, and with YcX from (AD3) we obtain X > Y.

(3) For arbitrary X and Y such that Y £ Y and X -^a Y, from Definition 2 we
have vars((Y \ X)a) c X. Therefore, for each y e Y \ X, (and there has to
be at least one such y), a must contain a mapping of the form y \-+ t, where
vars(t) = vars(yer) c X, or, in other words, X -^a y. Now, from (2) above,
we have X -^a vars(ya) and also X > vars(yer). Since [a] c >, we have
vars(ya) > y, and, by (AD3), X > y. By applying axiom (AD2) over all such y,
we conclude X > Y.

From (1)-(3) we conclude that all elements from -^a are also present in >, and there
fore, no proper subset of —>a which contains [a] satisfies the Armstrong dependency
axioms. •

Theorem 1 For an arbitrary substitution a, —>a is the smallest relation that expresses
exactly those functional dependencies that are either present in the base [a], or can
be deduced from it using the Armstrong dependency axioms.

Proof Follows directly from Lemmas 1 and 2.

To prove the adequacy of using substitutions for expressing inheritance of data
attributes it suffices to demonstrate that if x 1 , . . . , xn are variables from dom(er) that
represent data objects, so that vars(xiCr) is the set of data attributes for xi under a,
then by extending a with a mapping z i-> t, where vars(t) = {x1,..., xn], from
the definition of vars(-) it follows that the set of attributes of z under a, vars (zer) =
Un

i=1vars(xia).

3.4 Variable sharing

It can be easily seen that expressing functional dependencies and data attribute inher
itance by means of substitutions does not depend on the choice of function symbols
and the shape of the terms on the right-hand side of “ W . As long as the invariant
vars(t) = vars(t') holds, we can replace any mapping x i-> t with x i-> t' in a
without loosing any result from the previous subsection. This indicates that a substitu
tion can be presented in a more abstract manner [20,29,30]. The following definitions
formalize that notion.

Definition 7 (Sharing) A non-empty set S of terms is said to share if f\sSvars(t) =
X ^ 0 . X is the set of the variables shared in S.

Definition 8 (Abstract substitution) Let Y be a set of variables of interest, and a a
substitution. We define the abstract substitution aY (a) in the following way:

aY(cr) = {{y e Y | x e vars(yer)} | x e Z],

where Z = (Y\dom(er)) U range(er).

Example 9 Let Y = xyzu and a = [x i-> f(u,v,w), y \-+ g(u,v), z H^ h(w)}.
Then, Z = uvw and aY(a) = [xyu, xy, xz}. After applying a to Y we get
{f(u, v, w), g(u, v), h(w), u], respecting the order in which the set xyzu is writ
ten. The (singleton) set of variables u appears in terms f(u, v, w), g(u, v), u which
correspond to the initial variable set xyu after applying a. The set of variables [v, w]
appears in terms f(u, v, w) and g(u, v), coming from the initial set of variables xy.
The set of variables [w] appears in terms f(u, v, w) and h(w), which come from the
set of variables xz.

If Y = xyz, we get aY(a) = [xy, xz}. IfY= xyu, we get aY (a) = [xyu, xy, x}.

Each member of aY (a) is called a sharing group, and each sharing group represents
a set of variables shared between the members of the group.

Lemma 3 For each sharing group S e aY (a), there exists a set X ^ 0 of variables
shared between all members of S, and not shared by any other sharing group.

Proof First, let us note that from Definition 8, S ^ 0 . Let X be the set of variables from
Z = (Y \ dom(er)) U range(er), for which x e X implies [y e Y\x e vars(ya)} = S.

X cannot be empty, because otherwise S would have to be empty. Let S' ^ S be
another sharing group from aY {a), and X' such that x' e X' implies [y e Y\x e
vars(yer)} = S'. If x' e X, then S = S', which is a contradiction. Therefore, X and
X' must be disjoint. •

It is easy to see that there exists an infinite number of substitutions 6 such that aY (9) =
aY {a)—for example, one for each unique renaming of variables in range(er). We now
consider how expressive the sharing information contained in the abstract substitution
aY {a) is compared to the (concrete) substitution a.

Definition 9 (Sharing ordering) For two variables y, y' e Y and an abstract substi
tution aY {a), we write y c s y' if for all S e aY {a), y e S implies y' e S.

Theorem 2 For a set of variables of interest Y and a substitution a:

(1) For arbitrary y, y' e Y, y, y' £ X, ify c.s y' then X —>s y' implies X —>s y.
(2) For arbitrary y e Y, X —>a y, y ^ X, implies [x e Y \x c s y A x <£ dom(er)} c

X.
(3) Ifrange(er) c Y, then [a] = {(X(y), y) \y e Y n dom(er)}, where X(y) = [x e

Y\x C s yAx ^dom(er)}.

Proof (1) Assume y ^s y' and X -^a y', and let S1, S2, • • •, Sn (n > 0) be
all sharing settings containing y. From Lemma 3, there are n non-empty and
pairwise disjoint sets V1, V2, • • •, Vn such that Un

=1Vi = vars(ya). Since y' e
Si, for each i = 1.. .n, we have vars(ya) = Un

=1Vi c vars(y'a) c X, i.e.,
X —>a y.

(2) Assume X -^a y, i.e., vars(ya) c X. For an arbitrary x e Y, x £ dom(a),
vars(xa) = {x}. If x ^s y, then x shares with y in at least one sharing group.
Therefore, x e vars(ya), i.e., [x] c vars(ya). By disjointedness over all such
x, we have [x e Y\x c s y A x ^ dom(a)} c vars(ya) c X.

(3) From Definition 6, we know that [a] = {{X, y) \ (y \-+ t) e a A X = vars(t)}.
Now we need to prove that for each mapping (y —>- t) e a, vars(t) = X(y).

(3.a) Assume x e vars(t). Therefore, x & dom(a), because circular substitutions in
a are forbidden. Since range(er) c Y, we have x e Y. Finally, let S e aY{a)
be a sharing group containing x. By definition, S = [w e Y\z e vars(wer)} for
some z. Because x e S this implies z e vars(xa) = {x}. Therefore, z must be
the same as x. And, therefore, y must belong to S. In other words xEs y. This
completes all conditions needed for x e X(y).

(3.b) Assume x e X(y). Therefore, x e Y, x c s y and x & dom(a). Since x e Y
and x $. dom(a), x has to appear in at least one sharing setting S e aY {a). We
also know y e S. Following the same argument from (3.a), S = [w e Y\x e
vars(wer)}, and from y e S, we conclude x e vars(yer) = vars(t).

•

Theorem 2 tells us what we can infer about functional dependencies from a (a), without
knowing a directly, but with the knowledge of a (a). In the most basic case, from
y E s y' we conclude that whatever functionally determines y' also determines y.
We can draw more informative conclusions if we are equipped with what is usually

calledfreeness information [30]: whether somex e Y belongs to dom(er) or not. With
freeness information we can (at least partially) reconstruct the left side of “—>&”. And,
by both having the freeness information and extending Y to include all variables from
range(er), we can in fact reconstruct the sharing basis [a]. This tells us that, under
these conditions, the abstract substitution aYio) is as expressive as a when it comes
to functional dependencies.

4 Sharing analysis

From the previous sections, we conclude that the abstract substitution aY {a) is enough
to derive the functional dependencies we need. The question now is how to infer this
abstract substitution. The way we do it is by using a sharing analysis, applied to a
Horn clause (logic program) version of the service composition.

In this section, we present the steps necessary for preparing inputs for the sharing
analysis, describe briefly the analysis itself, and discuss the interpretation of the analy
sis outputs. Sharing analysis is an instance of program analysis, and therefore we start
by describing the process of transforming a definition of a service composition into a
Horn-clause program as appropriate for the analysis. We use the approach from our
previous work on fragmentation analysis [18].

4.1 Derivation of control and data dependencies

As a first step towards creating a Horn clause representation of a service composition,
we find out a feasible order of activities which is coherent with their dependencies and
which allows the composition to finish successfully. How to do this obviously depends
on the palette of allowed relationships between activities, with respect to which we
opted for a notable freedom by adopting a relatively general abstract composition
model. To find such an order we first establish a partial order between workflow
activities which respects their dependencies; in doing this we also detect whether
there are dependency conflicts that may result in deadlocks. While there is ample
work in deadlock detection [3,5], we think that the technique we propose is clean, can
be used for arbitrarily complex dependencies between activities, and uses well-proven,
existing technology, which simplifies its implementation.

Definition 10 (Abstract composition model) An abstract composition model is a tuple
AC (A, C, D), where:

- A is a finite set of activities;
- C is a set of formulas expressing control flow preconditions for each a e A, of

the form pre-a = <f>, where 0 is a propositional formula built from the usual
logical connectives (v, A , ¬ , —>-, and o) and the propositional symbols done-a'
and succ-a' for a' e A, with the following meaning:
- done-a' is true if aj has completed;
- succ-a' (when done-a' holds) indicates that the outgoing condition from a'

has evaluated to true;
- The combination done-a' = 0 and succ-a' = 1 is illegal.

{ai , 02,03,04}

{pre-a3 = done-ai A done-a2 ,
pre-a4 = done-a2J

{{yi,{ai}, { « 3 }) , (2/2, {a2>, {03 , a 4 » }

Fig. 6 An example workflow. Arrows indicate control dependencies

- D is a finite set of data items in the compositions (giving the core data dependen
cies), consisting of tuples of the form (x, W, R), where x is a data item, W c A
is the set of activities that write x, and R c A is the set of activities that read x.

This abstract composition model is able to express some of the most frequently
used composition workflow patterns, such as AND/OR/XOR splits and joins. How
ever, thanks to the flexibility of the encoding we will use for the sharing analysis, it
introduces two significant extensions compared to other workflow models:

- In our approach, the activities inside a workflow can be simple or structured.
The latter include branching (if-then-else) and looping (while and repeat-until)
constructs, arbitrarily nested. The body of a branch or a loop is a sub-workflow,
and activities in the main workflow cannot directly depend on activities inside that
sub-workflow. Of course, any activity in such a sub-workflow is subject to the
same treatment as activities in the parent workflow.

- Second, we allow an expressive repertoire of control dependencies between activ
ities besides structured sequencing: AND split-join, OR split-join and XOR split-
join. We express dependencies similarly to the link dependencies in BPEL but
with fewer restrictions, thereby supporting OR- and XOR-join.

Commonly, the preconditions in C use “done” symbols, whereas “succ” symbols
are added to distinguish mutually exclusive execution paths. We do not specify here
how the “succ” indicators are exactly computed.

Note that each activity in the workflow is executed at most once; repetitions are rep
resented with the structured looping constructs (yet, within each iteration, an activity
in the loop body sub-workflow can also be executed at most once).

Example 10 Figure 6 shows an example. The activities are drawn as nodes and con
trol dependencies indicated by arrows. Data dependencies are textually shown in a
“fraction” or “production rule” format next to the activities: items above the bar are
used (read) by the activity, and items below are produced. Note that only items y1 and
y>2 are data dependencies; others either come from the input message (x1, X2), or are
the result of the workflow (z1, 22). Item y1 is produced by a1 and used by 0,3, and y2
is produced by a2 and used by a 3 and a4.

Many workflow patterns can be expressed in terms of such logical link depen
dencies. For instance, a sequence “a.j after a” boils down to pre-a^ = done-a;.
An AND-join after ai and aj into at becomes pre-a^ = done-a; A done-a^. An
(X)OR-join of a; and aj into at is encoded as pre-a^ = done-a; v done-a^.

A =

C =

D =

Fig. 7 An example of deadlock
dependency on logic formula:
• can be either A or V

l"3 T
pre-a3 = done-a2 • done-a4

And an XOR split of ai into aj and ak (based on the business outcome of ai) becomes
pre-aj = done-ai A succ-ai, pre-ak = done-ai A ¬succ-ai. In terms of execution
scheduling, we take the assumption that a workflow activity ai may start executing as
soon as its precondition is met.

4.2 Validity of control dependencies

The relative freedom allowed in the use of logic formulas to specify control depen
dencies comes at the cost of possible anomalies that may lead to deadlocks and other
undesirable effects. These need to be detected beforehand, i.e., at design/compile time
using some sort of static analysis. Here, we are primarily concerned with deadlock-
freeness, i.e., elimination of the cases when activities can never start because they wait
on events that cannot happen.

Example 11 Whether a deadlock can happen or not depends on both the topology and
the logic of control dependencies. Topological information is in general not enough
to determine deadlock freeness, unless there are no loops in the graph. Figure 7 shows
a simple example where the dependency arrows are drawn from ai and aj whenever
pre-aj depends on ai finishing. If the connective marked with • in pre-a3 is v, there
is no deadlock: indeed, there is a possible execution sequence, a1 — a2 — a3 — a4. If,
however, • denotes A, there is a deadlock between a 3 and a4.

Therefore, in general, checking for deadlock-freeness requires looking at the formulas.
We present one approach that relies on simple proofs of propositional formulas. We
start by forming a propositional logical theory r from the workflow by including all
preconditions from C and adding axioms of the form done-ai -> pre-ai for each
ai e A. These additional axioms simply state that an activity ai cannot finish if its
preconditions were not met. On that basis, we introduce the following definition to
help us detect deadlocks and infer a task order which respects the data and control
dependencies:

Definition 11 (Dependency matrix) For a given composition model AC(A, C, D), the
dependency matrix A is a square Boolean matrix such that its element 5ij, correspond
ing to ai, aj e A, is defined as:

I 1, if r, pre-ai h done-aj
ij =

0, otherwise

pre-a2 =
done-ai

pre-a4 =
done-aiA
done-a3

For every data dependency (x, R, W) e D, and for each a e R, we wish to ensure
that a cannot start unless at least one of b e W has completed, since otherwise the
data item x would not be ready. Expressed with a logic formula, that condition is
pre-a -> VbeW\{a}done-b.

The computation of A involves proving propositional formulas, which is best
achieved using some form of SAT solver. Such solvers are nowadays very mature
and widely available either as libraries or standalone programs. It follows from the
definition that 5ij = 1 if and only if the end of aj is a necessary condition for the start
of ai. It can be easily shown that A is a transitive closure of C, and that is important
for the ordering of activities in a logic program representation. However, the most
important property can be summarized as follows.

Proposition 1 (Freedom from deadlocks) The given workflow AC(A, C, D) with
dependency matrix A is deadlock-free if and only if Vai e A, 8ii = 0.

Proposition 2 (Partial ordering) In a deadlock-free workflow AC(A, C, D), the depen
dency matrix A induces a strict partial ordering -< such that for any two distinct
ai, aj e A, aj -< ai iffSij = 1.

4.3 Generating Horn clause representations

The Horn clause representation of a service composition introduced in this section
is essentially a logic program with semantics corresponding to that of a subset of
standard Prolog with operational semantics based on SLD resolution [25]. The goal
of that program is to represent the computation of all the substitutions that express
functional dependencies and data attribute sharing of the composition, as described in
Sect. 3. In other words, the purpose of such program is not to operationally mimic the
scheduling of workflow activities, but to express and convey relevant data and control
dependency information to the sharing analysis stage.

Based on the strict partial ordering -< induced by the dependency matrix A, in
the deadlock-free case it is always possible to totally order the activities so that -<
is respected. The choice of a particular order has no impact on our analysis, because
we assume that the control dependencies, from which the partial ordering derives,
include the data dependencies. From this point on we will assume that activities are
renumbered to follow the chosen total order. The workflow can then be translated into
a Horn clause of the form:

w(V) «— T{a1), T{a2), • • •, T(an) (3)

where V is the set of all logic variables used in the clause, and T{ai) stands for the
translation of activity ai into a logic (Prolog) goal. For simple activities (such as a
service invocation or an assignment), T{ai) gives a sequence of equations (explained
below) that relate its inputs and outputs. The complex activities, such as branches
or loops, along with their constituent parts (e.g., loop body and then/else parts) are
recursively translated into separate clauses following the scheme (3) above, and T{ai)
is a call to such generated clause.

Logic variables in V are used to represent input and output messages, variables
comprising the composition state, internal state of component services (as in Table 1),
and the data sets read by individual activities. For each activity a* e A we designate a
set Xi of logic variables that represent data items read by a*, a set Yi of logic variables
that stand for data items produced by a*, as well as the sets Ui and U[that represent
the state of a component service to which a belongs before and after its execution. We
designate a variable set A; c Xi Ui that represents the total inflow of data into a*. The
task of the translation is to connect Xi, Yi, Ai, Ui, and U[correctly.

The translation scheme is mechanical. We first present the scheme for simple activ
ities. Using Prolog notation, where variable names start in upper case, we use Ai to
denote all inputs to activity ai, and Yi to denote its output. We use Xia to denote the
part of Ai used in computing Yi. It is always safe to assume that all data an activ
ity accesses is also used in producing its output, i.e., Ai = Xia, but if we can obtain
sufficient guarantees to safely exclude some item in Ai from Xia, we can draw more
precise conclusions about the functional dependencies, as discussed in Sect. 3.1. e.g.,
if a; contains a loop internally, data used in evaluating the loop condition (included
in Ai) may not be used in the computation of the loop output Yi. Next, if a; is an
invocation of a stateful component service, we use Wi_0 to symbolically denote its
previous internal state, and wi for its state after executing ai. The part of Ai used for
updating the internal state is denoted by Xib. Again, a safe assumption is Ai = Xib,
while more precision can be obtained by safely restricting Xib when possible. We use
Xi = [Xi1, XJ2, • • •, Xim] (m > 0) to denote the union of Xia and Xib. For analyzing
data attributes that may be injected by an external activity, we optionally introduce Mj
to represent those attributes injected into the output Yi, and Ni for those injected into
the internal state Wi.

To round up our translation scheme for simple activities, we need to take into
account that they can be placed inside a loop, and in that case we are interested in
the most general sharing that includes all potential loop iterations. For that reason,
we include in Ai and Yi their previously collected values Ai_0 and Yi_0, respectively
(which are ground on first iterations and outside the loops). Thus, T{ai) can be put in
the shape of a sequence:

Ai = [Xi, Wi_0 I Ai_0],
Yi = [Xia, Wi_0, Mi I Yi_0] ,
Wi = [Xib, Ni I Wi_0]

where the Prolog notation [A,B|C] means a list that starts with A and B, and continues
with the elements of list C. Note that for convenience we are using lists here, since
the shape of the data structure is not significant for the abstract substitutions presented
in Section 3.4, on which the sharing analysis is based. Each of the equations of the
form X = t at the point of execution in a Prolog program where the currently computed
substitution is a, provided that X ^ dom(er) (which is ensured by construction in our
scheme), extends a with a new mapping (Xh> t). The translation scheme above is
rather generic and can be simplified in several ways, depending on the activity:

- If a; is stateless, we remove the third equation from the scheme and replace wi_0
with [] (the empty list).

al6c(A16 ,A17 ,A26 ,A27 ,E,C,
X al6
A16 = [E] ,
C = [E . J ,
X all
A17 = [C , I] ,
P = [C . I] ,
a26c(A26,A27,P,N,W4).

I ,P,K,W4) :

a2Sc(A25,A26,A27,D,P,N,W3,W4) : -
X a25
A25 = [D,W3],
P = [D.W3] ,
a26c(A26,A27,P,N,W4).

a26c(A26,A27,P,N,W4) :-
X 0.26
A26 = [P] ,
W4 = [P,] ,
% a21
A27 = [W4] ,
N = [W4] .

- 23
24

2fl

28

30

32

34

30

30

40

42

44

40

48

SO

a5_(A6_0,A8_0,A9_0,q_0,W2_0,A6,A8,A9,Q,W) :-
X exit loop
A6 - A 6 . 0 ,
A8 = A8_0,
A9 = A9_0,
Q - Q-0,
w = w.o.

a5 (A6 0,A8 0,A9 0 , q 0,W2 0,A6,A8,A9,q,W) :-
X 0.6
A6_l - [Q_0,W2_0IA6_0],
Q-l = [W2_0IQ_0],
a7c (A8_0 ,A9_0 ,Q_l ,W2_0 ,A8_ l ,A9_ l ,q_2 ,W2_l) ,
X loop
a5_(A6_ l ,A8_ l ,A9_ l ,q_2 ,W2_ l ,A6 ,A8 ,A9 ,q ,W) .

a7c(A8_0,A9_0,q_0,W2_0,A8,A9,q,W2) :-
X case a8
A8 - [Q . 0 , W 2 . 0 I A 8 . 0] ,
Q = [Q - 0] ,
W2 = [q_0IW2_0],
X pass aS
A9 - A 9 . 0 .

a7c(A8_0,A9_0,q_0,W2_0,A8,A9,q,W2) :-
X case a9
A9 - [[] IA9_0] ,
X pass a8, q and u/2
A8 = A8_0,
d = Q-0,
W2 - W2_0.

Fig. 8 Fragments of translation to Horn clause form of the composition from Fig. 1

– If ai has a state, but does not update it, we replace Xib and Ni in the third equation
with []. With respect to the abstract substitutions, Wi_0 and Wi ≡[[],[]|Wi_0]
are indistinguishable.

– If ai updates its state without first reading it (e.g., by issuing an UPDATE SQL
command), we replace Wi_0 in the first equation with [].

– If ai is not inside a loop, we replace Ai_0 and Yi_0 with [].
– If we are not interested in data attributes, we replace Mi and Ni with [].
– When Mi or Ni need to be represented, but their content is not important, we

can replace them with the underscore symbol “_” that represents an anonymous
variable in Prolog.

– The scheme is easily extended to the activities that have several pieces of state
and/or several outputs.

Example 12 Figure 8 shows several fragments of the Horn clause representation of
the composition from Fig. 1, in Prolog notation (comments start with “%”, and “ ”
is written as “ : -”) . Lines 16–22 show a clause for predicate a26c that models data
dependencies from a26 to the finish, i.e., for a26 and a27. We use the same labels for
data items and service state from Table 1, but in uppercase. Lines 18–19 model activity
a26 (Payment processing). Line 18 indicates that the activity reads the transfer order
p, and line 19 indicates that the state of the seller’s account w4 now depends on p and
its earlier state (unknown to a26 and thus represented with the underscore). Note that
a26 does not have a direct output, so the second equation is missing. However, w4 is
accessed by a27 (Shipment, modeled by lines 21–22), which checks that the payment
has settled, and serves as the input for the shipment notice n. Since a27 does not modify

state w4, the third equation is missing. All named variables from lines 17–22 are also
found in the list of arguments to a26c in line 16, to propagate substitutions.

Example 13 Lines 1–14 in Fig. 8 show the clauses for predicates a16c and a25c that
model data dependencies from a16 and a25 to the finish, respectively. a16c models the
data dependencies of a16 and a17, and calls a26c at its end. Likewise, a25c models
the dependencies of a25 and calls a26c.

For complex constructs, such as loops and XOR-splits, the translation generates
additional Prolog clauses depending on the type of construct. These are illustrated in
the examples that follow.

Example 14 Lines 23–36 in Fig. 8 show the translation of the loop construct a5 as
predicate a5_. The first clause (lines 23–29) models the case of exiting from the loop
where the initial values from a previous iteration (with suffix “_0”) are propagated
to the exit. The second clause (lines 30–36) models a loop iteration. Its body consists
of the translation of the loop body: activity a6 (Search catalog) in lines 32–33, and
a7 which is an XOR-split implemented in line 34 as a call to a specially generated
predicate a7c (see the next example). The variables in the iteration use suffix “_0”
if they come from a previous iteration, and suffix “_1” if they result from the current
one. The final line (36) recursively calls a5_ and passes to it the “_1” versions as the
new initial ones.

Example 15 Lines 38–51 in Fig. 8 show the translation for the XOR-split (if-then-
else) construct a7. Each of the two branches is translated as a separate clause of a7c.
Lines 40–42 in the first clause model activity a8 (Add to cart), which uses the previous
values of q and w2 (line 40, see Table 1) to update q and w2, respectively (lines 41–42).
Line 47 in the second clause shows the translation for a9 (Skip option), which does
not alter the state, nor produces any outputs. Since both clauses need to have the same
interface to the calling code (in line 34), they enumerate the union of all variables
from translations of both a8 and a9. The variables that are not used in a clause are
propagated from the previous values with the suffix “_0”. This is the case with A9 in
the first clause (line 44), and with A8, Q and W2 in the second clause (lines 49–51).

4.4 Sharing analysis proper

In this subsection we give a brief overview of the actual sharing analysis employed in
our approach. It is an instance of abstract interpretation [7], a static analysis technique
that interprets a program by mapping concrete, possibly infinite sets of variable values
onto (usually finite) abstract domains, together with data operations, in a way that is
correct with respect to the original semantics of the programming language. In the
abstract domain, computations usually become finite and easier to analyze, at the cost
of lack of precision, because abstract values typically cover (sometimes infinite) sub
sets of concrete values. However, the abstract approximations of the concrete behavior
are safe, in the sense that properties proven in the abstract domain necessarily hold
in the concrete case. Whether abstract interpretation is precise enough for proving
a given property depends on the problem and on the choice of the abstract domain.

Yet, abstract interpretation provides a convenient and finite method for calculating
approximations of otherwise, and in general, infinite fixpoint program semantics, as
is typically the case in the presence of loops and/or recursion.

We use a combined, abstract interpretation-based sharing, freeness, and groundness
analysis for logic programs [30], which computes abstract substitutions and freeness
information as described in Sect. 3.4. For a deterministic Horn clause program (i.e.,
with a single possible execution path) without loops, the sharing analysis computes
abstract substitution 0 = aY (a), where a is the substitution computed by that pro
gram, and Y are argument variables to a predicate that is called (e.g., arguments of
a26c in Fig. 8). For programs with non-determinism (i.e., where several control flows
are possible, as in the case of the two clauses of a7c), the sharing analysis computes
0 = Un

=1o!Y (eri), where er i,... ,an are the substitutions computed by the alternatives.
And, for the cases of looping (such as a5_), the sharing analysis computes a fixed
point & that is either equal or a superset of any aY (a) where a can be computed by
the loop. Therefore, the result & is a safe approximation, in the sense that it includes
all possible sharing groups. The sharing analysis is combined with a freeness analysis,
which infers which variables are unbound, i.e., have not been substituted with a non-
variable term. The sharing analysis also infers groundness information, determining
with variables are bound to terms that do not contain any variables (note that those
variables can be excluded from any sharing group in which they may appear). Some
logic program analysis tools, like CiaoPP [16], have been developed which give users
the possibility of running different analysis algorithms on input programs. We build
on one of these analysis available in CiaoPP: shfr [6,30].

When analyzing attributes, the inputs to the Horn clause program that represent
incoming messages and internal activity attributes are normally initialized to contain
a configuration of variables that represents conceptually the content in terms of data
attributes of such messages. For instance, input D in predicate a25c from Fig. 8 (lines
10-14) corresponds to one of the cases of identification documents from Figure 5,
which are characterized by the attributes m1,... ,m5 from Fig. 4. If D represents a
passport, we can add D=[Ml,M2,M3] before calling a25c. This is not necessary if
D is the only input that uses these attributes.

4.5 Interpretation of sharing results

As mentioned above, the result of sharing analysis is an abstract substitution & such
that aY (9) c & for all concrete substitutions 9 that can be computed by the Horn
clause program. In other words, no potential sharing group is left from &. Therefore
we can construct a relation <s from & in the same way as c s is constructed from
aY (9) in Definition 9. However, it can be easily verified that such <s must be a subset
of c s for each 9 for which aY (9) c &.

Proposition 3 For an abstract substitution & and its relation (<s) ^ Y between
variables of interest from Y, and for any concrete substitution 9 such that a(9) c ©
and the relation (^s) c Y induced by it, it holds that (<s) c (Cs).

Proof First, note that xCsx and x <s x hold trivially for each x <E Y. Next, suppose
that for arbitrary distinct x, y e Y we have x <s y, but not x c s y. That is only
possible if aY (0) contains some sharing group S such that x e S, but y £ S. But since
<*Y (#) ^ ©, then S e & also, which conflicts with the assumption x <s Y. Therefore,
no such S can exist, i.e., it follows that xcsy must hold.

Example 16 Suppose that Y = [x, y} and two possible concrete substitutions are
91 = [x H> f(u), y H> g(u,v)} and 62 = [x H> g(u, U), y H> fO)}. Then,
aY{01) = {xy, y}, i.e., (^s)1 = {{x, y)}, and aY(62) = [x, xy], i.e., (cs)2 =
{(y, x}}. However, for 0 = aY{01) U aY(02) = {x, xy, y}, we have (<s) = 0 .

This means that <s derived from & can be used as a lower approximation for c s

induced by any concrete 6. A natural way to compute the upper bound for c s is given
using the following definition:

Definition 12 (Maximal sharing ordering) Let & be an abstract substitution, and Y

a set of variables of interest. For arbitrary x, y e Y, we say that x<sy if either no
S e & contains x, or there exists some S e & such that x e S and y e S.

Proposition 4 For an abstract substitution & and its relation (<s) ^ Y between
variables of interest from Y, and for any concrete substitution 0 such that aY{9) c ©
and all variables from Y appear in a{9), with the relation (Cs) c Y induced by it,

(&) ^ (<s).

Proof Suppose that for arbitrary x, y e Y, x c s y. Since all variables from Y must
appear in at least one sharing group in aY{6), and x ^s y, then there has to exist
S e aY{9) such that x e S and y e S. From aY{6) c ©, we conclude that S e 0,

and from Definition 12, we obtain x<sy.

To summarize, x < s y implies that all components of x are necessarily components

of y, while x<sy implies that all components x may possibly be components of y.

Both <s and <s are directly obtained from the result of sharing analysis &.

4.6 Complexity and precision of the sharing analysis

The shfr sharing and freeness analysis for logic programs is known to produce the most
precise sharing results (i.e., the least over-approximation of &), but its computational
cost may grow, in the worst case, exponentially with the number of variables. Other,
more efficient, but less precise sharing analysis techniques have been proposed, such
as the clique sharing analysis [31], or the pair-sharing analysis [24]. An abstract sub
stitution &' obtained from such a less precise sharing analysis technique is generally
a superset of & obtained from shfr. It can be easily verified that in that case:

(<'s) ^ (<s) ^ < &) C (<s) C (<s)

where < s and <s correspond to &'.

On the other hand, one way to increase the precision of the approximation with < s

and <s is to remove some of the alternative clauses from the Horn clause program
whose effect on 0 is to inflate it due to the union of abstract substitutions for each
alternative. That can be done, for instance, when a (partial) trail of the execution of
the composition is known.

Example 17 Let us take a look at the clauses of predicate a7c from Fig. 8, lines
(38-51). The abstract substitution from the first clause ®1 is (in Prolog syn
tax) [[A8_0,A8], [A9_0,A9], [Q0_0,A8,Q,W2], [W2_0,A8,Q,W2]],
while &2 from the second clause is [[A8_0,A8], [A9_0,A9], [Q_0,Q],
[W2_0,W2]]. Their union & = &1 U ©2 is more general, but less precise than both
©1 and ©2. Learning which branch was taken from the traces, or predicting which
branch will necessarily be taken eliminates either ©1 or ©2 and gives a more precise
result.

5 Examples of application

In this section we show how the framework for functional dependencies from Sect. 3
and the analysis method from Sect. 4 can be used to address the problems mentioned
in Sect. 2 as motivation for this work.

The steps described in Sect. 4 are currently almost completely automated and we
have developed prototype tools centered around the CiaoPP program analysis and
transformation system [16] that accept a description of a service composition in an
abstract composition form (introduced in Sect. 4.1), prepare the Horn clause repre
sentation of the composition which is subject to the sharing analysis, and extract the
sharing results from the analysis outputs. We are working on a set of pre-processing
tools that accept composition definitions written in (fragments of) widely accepted
composition languages, such as BPMN, WS-CDL [41], and BPEL [21]. The proto
type tools also export the sharing results in a form suitable for FCA-based concept
lattice visualization using external tools.

5.1 Parallelization

The general control structure of a service composition can often be adapted to provide
more flexibility while not violating the control and data dependencies. One example is
parallelization, which allows composition activities to start as soon as their control and
data dependencies allow. Automatic parallelization can be performed by interpreting
the results of the sharing analysis over variables that represent data items and or
activities (Sect. 4.5). Our criterion for parallelization will be based on the following:
an activity can start as soon as all the necessary data (including the internal state
of the component services) is available. Note that the necessary control and data
dependencies are already encoded in the ordering of activities in the composition in
the translation to the Horn clause program.

Table 2 A representation of a sharing result Θ as a context

Group/attrib. Activity inputs
a0 a2 a4 a5 a10 a12 Q14 a16 a17 a26 a27

S1 • / • / • / • / • / • / • / • / • / • /

s 2 • / • / • / • / • / • / • / • / • /

s 3 • / • / • / • / • / • /

s4 • / • / • /

s5 •/ •/

04,012 a s , a i a
ao 02 a i 6 014 017 0261^27
o o o o o o
T J.

Fig. 9 Conceptual lattice (laid out horizontally for convenience) grouping together activities and data based
on functional dependencies

Let us look at a class of use cases of the composition in Fig. 1 where the user always
logs in (instead of starting an anonymous session), and where payments are always
made by credit card. In that class of use cases, from the composition model in Fig. 1 we
prune branches with activities a 3, a 13, a 18, and a 19. The sharing analysis of the pruned
composition returns an abstract substitution & with five sharing groups S1, S2, S3, S4,
and S5, over the set Y of variables of interest which represent activity inputs. The
membership of the variables from Y in the sharing groups is shown schematically in
Table 2.

The necessary condition for parallelization of two activities is that both draw all
of their inputs from the same set of previously computed data items and component
states. We use the relation <s derived from &, because we are interested only in
functional dependencies that hold under any concrete substitution. For two variables
x, y e Y, x <s y guarantees that all data needed to compute x is included in the data
needed to compute y. Or, equivalently, if there is not enough data to compute x, then
y cannot be computed either. If we recall the notion of FCA concept lattices from
Sect. 3.2, with Y as the set of objects, & as the set of attributes, and the membership
of variables from Y in the sharing groups from &, then we can easily verify that for
each x e Y, {x}" = [y e Y \ x <s y}. Therefore, we can represent the conceptual
hierarchy of activities, induced by the guaranteed sharing ordering <s, in the form of
a concept lattice, such as in Fig. 9 for our parallelization example.

The relationship between this conceptual hierarchy and the functional relationships
modeled with “^>” is the following: if the inputs of a conceptually higher set of
activities A1 depend on some set of inputs X and component states {/(i.e., XU —> A1),
then for a conceptually “lesser” set of activities A2, we have XUV —> A2, where V
is some non-empty set of additional inputs or updated states of component services.
This property holds even in a general case, when the lattice does not have a linear form
as in Fig. 9. Within a group of activities at the same level in this conceptual hierarchy,
control dependencies can be freely rearranged as long as they do not clash with data

dependencies: if an activity a receives the output of a', then a must come after a', but
otherwise a and a' can be parallelized.

In Fig. 9, activity a0 at node T waits for the input u, without needing any previous
information. Activity a2 receives u and produces w4 (the next concept node after T).
In the second concept node from T, activities a4, a16, and a12 can all be executed in
parallel, while for the fourth node, a5, a10, and a14 must be executed sequentially in
that order because of the data dependencies shown in Table 1. Note that in the latter
case, the sequence a5-a10-a14 represents a sub-workflow for an iterative browse-
select-iterate-exit process typical of e-commerce Web portals, but can in principle be
replaced by another set of activities that implement a different procedure for creating
an invoice, e.g., based on a list of items supplied by the buyer, without the activities
that come before or later observing any difference.

When evaluating the usability of the sharing approach for the automatic paral-
lelization of activities, we need to take into account the complexity and accuracy
of the sharing analysis on the one hand, and the quality of information about data
dependencies in the workflow on the other hand. Using our prototype tools, the trans
lation of a service workflow encoded as an abstract composition model (Sect. 4.1)
is linear in the number of activities and data items in the composition, and does not
present a major computational overhead. Also, the interpretation of the results from
the sharing analyzer is straightforward, since the structure of the resulting abstract sub
stitution is directly transposed into the shape used by Table 2 (unless there is a need
for visualization which involves more complex lattice construction). The greatest part
of the computational complexity when applying the proposed approach is consumed
by the sharing analysis proper using CiaoPP. On a low-end personal computer running
Mac OS X v.1.7.5, this stage consumes approximately between 1,100 and 1,800ms,
depending on the run.

When it comes to the quality of information on data dependencies in the compo
sition, it should be noted that we may not normally have full information about how
each invocation of a component service affects its internal state, which was in our
motivation example explicitly represented in the lower part of Table 1. In the case
of several operations on the same service (unless we know it is stateless), to ensure
correctness we need to make a safe assumption that each operation may modify its
internal state. That may introduce additional data dependencies which tend to reduce
the level of parallelization, by losing opportunities to parallelize activities when that
is not safe.

The left-hand side of Fig. 10 shows a simple sequence of six service invocations,
which refer to operations on three distinct services (1), two services (2), and a single
service. If the operation s1 updates the state of Service A, this in case (1) creates
an additional data dependency between s1 and s2, in case (2) between s1 and s2 and
between s1 and s3, in case (3) between s1 and each si,i = 2..6, etc. The graph on the
right-hand side of Fig. 10 shows theproportion of possible parallelization opportunities
used, depending on the quality of the assumptions about the impact of the invocations
on the state of the respective services. The values in the graph are averages across all
possible combinations of state impact for the six activities and the corresponding safe
assumptions, crossed with all possible combinations of forward data dependencies
between the operations on different services.

S2

S3

S4

SS

S6

S2

S3

: S4

SS

se

si

; S2

; « 3

;ss

;se

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Quality of assumptions about operation state impact (1.0=full)

Fig. 10 Effect on the information on service statefulness on the level of parallelization

The rightmost point on the graph unsurprisingly shows that the completely correct
assumptions lead to utilization of all opportunities for parallelization in the sequence
in all three cases. However, as the quality of the assumptions decreases, by assuming
more impact on the state than necessary, more and more parallelization opportunities
are lost, depending on how many actual services are involved. In case (3), where all
operations belong to the same service, assuming that they all affect its state (when
that is not the case) leads to a loss of about 83 % of all parallelization opportunities
(counting parallelization of each s1–s6 separately), while in case (1) the loss is smaller
(about 50 % on average) because the additional dependencies caused by the wrong
assumptions play a smaller role compared to all other potential data dependencies.

5.2 Fragmentation

It is often of interest to take a service composition that is designed and represented
as an orchestration, i.e., with a centralized control flow, and to break it into parts
(called fragments) that can be executed in a distributed manner, possibly on servers
that belong to different organizational domains. That process is called fragmentation,
and it is a form of adaptation that can be applied at design time or at run time [26].
We can use the sharing approach to support fragmentation by assigning activities to
organizational-domain-based fragments based on the content of the data they handle.
This time we model data attributes that describe the content of data, in the sense
discussed in Sect. 3.2. We extend our earlier work on automatic attribute inference
and fragment identification based on sharing [18,19].

To illustrate the approach, we look at the part of the service composition from Fig. 1
which starts with the activity a15 (an XOR-split), and look only at the branches that
correspond to credit card payment (activities a16, a17) and bank transfer (a18). We
modify slightly the generation of Horn clauses to expose the component state w4 and
the credit card information c as input variables of interest for the analysis, along with
the invoice i and the user info e that are inputs to that part of the composition from
Fig. 1.

Table 3 The sharing result Θ for a case of fragmentation based on data sharing

Data object Sharing groups from Θ

e

c

i

w4

a16

a17

a18

a26

a27

n

p

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

s •/

s •/

s •/

/
/

/ • / • /

s •/
s •/ •/ •/

s •/ •/ •/ •/

s •/ •/ •/

s •/ •/ •/ •/

e<a = {e,ai6}
c <a = {c,017, 0 2 6 , 0 2 7 , P , n }
i<s = {*, 0 1 7 , 0 1 8 , 0 2 6 , Q27,P, n}

WA<S = {w4,a27,n}

(a) T h e s u m m a r y of < s for a t t r i b u t e ca r r i e r s . (b) T h e a t t r i b u t e i n h e r i t a n c e r e l a t i on .

Fig. 11 Attribute inheritance arising from by 0 in Table 3

Acti
vity
0 1 6
0 1 7
0 1 8
0 2 6
0 2 7

e
/

Inherits from
c
X

/

/
/

i W4

/
/
/
/ /

The result of the sharing analysis in this case is an abstract substitution & with
twelve sharing groups, shown schematically in Table 3. A horizontal line visually
separates the variables that are the source of data attributes (e, c, i and W4) from
others whose attributes we wish to infer. In this case, & is a union of abstract sub
stitutions arising from two alternative paths of execution (a16-a 17–026–^27 and a18-
0.26–0-27), and includes sharing groups from both. We wish to assign data attributes
in a safe way, i.e., without leaving any potential attribute out. Therefore, this time
we use the relation <s, which is an upper approximation of the actual sharing
ordering c s .

Forx e Y, we write (x<s) to denote the setof ally e Y such that x<sy. Figure 11a
shows the summary of <s for variables that carry data attribute. Part (b) of the figure
shows that summary turned into an attribute inheritance relation where the “•/ ” marks
come from part (a), and the “x” mark come from the fact that c is an output of a16
in Table 1 (note that a variable ai in Table 3 and Fig. 11a represents only the inputs
to the activity with the same name). The attribute inheritance relation tells us that the
activities can be grouped into four groups:

ai6
CC

details

an
CC autho

rization 026

Payment
processing

a i 5
a i s

< ^
Bank transfer

details

027

Shipment -o
Fig. 12 A sample fragmentation scheme between four domains

– a16 handles only the user profile (e) and his or her credit card details (c), without
needing to know about the goods purchased (i) or the state of the seller’s bank
account (w4). This job can be outsourced to any freely or commercially available
B2C online payment portal.

– a18 handles the information from the invoice i to collect the buyer’s bank account
information and produce the bank transfer order p. This can, in principle, be done
by the buyer.

– a17 and a26 handle the information on the buyer’s credit card (c) and the invoice
(i) to issue and process the payment order (p), and to realize the order (a26). This
job is best suited for the buyer’s bank. Note that a26 does not always see c, but
only when the a16–a17 branch is taken. However, our goal is to assign attributes
for the most general case.

– a27 handles the buyer’s credit card details (c), the invoice (i), and the state of the
seller’s account (w4) to produce the shipment notice (n). This job is best handled
by the seller. Note again that the credit card information is only potentially present.

Figure 12 shows a sample fragmentation scheme where part of the original com
position is remodeled as a choreography that involves four communicating fragments
placed in domain/role swim-lanes: Seller, Buyer, Buyer’s Bank, and B2C, following
the above classification of activities based on inheritance of data attributes.

Note that in principle the fragmentation based on data attributes can be combined
with the parallelization approach from the preceding subsection, to obtain finer-grained
fragments that reflect both data attribute inheritance and functional dependencies. e.g.,
using the lattice from Fig. 9, we can further subdivide the fragment in the Buyer’s
bank swim-lane into two, a17 and a26. A basis of fine-grained composition fragments
can be useful for automatic, on-demand merging of fragments based on the desired
functionality or Quality of Service (QoS) constraints [44].

Using our prototype implementation, in our previous work [19] we have evaluated
the sharing-based approach to fragmentation using an E-Health case study collected

x: Patient ID

'Or-
a-i: Retrieve

medical history

y: Medical history

—-tt;
N

 N -istablef

a 2 : Retrieve
medica

tion record

(X4: Select new
medication

a5: Log
treatment

0,3: Contii
last prescription

inue J

stable

-O
z: Medicat ion record

Fig. 13 A drug prescription workflow in BPMN from E-Health scenario

I

y: Medical history Q - , c . C r i t e r i o n

z: Medication record
a41 : " u n testi

to produce
medication

criteria

p: Prescr. candidate

Fig. 14 BPMN diagram of the composite activity a4 from Fig. 13

within the S-Cube project [12]. Figure 13 depicts a drug prescription workflow in
BPMN notation, annotated with data dependencies. The process is initiated by the
arrival of a patient with an appropriate identification (labeled as x in the figure). Next,
two parallel activities (a1 and a2) are run to retrieve the patient’s medical history and
medication record. The data items resulting from these two activities are respectively
marked y and z. Additionally, while retrieving the medical history, activity a1 informs
about the stability of the health of the patient. Depending on it, either the last prescrip
tion is continued (activity a3) or new medication is selected (activity a4). Finally, the
treatment of the patient is logged (activity a5). Activity a4 is in itself a service com
position, shown in Fig. 14. It contains a loop that iteratively refines the prescription
based on medical tests.

The organization responsible for medicine prescription may want to split the work
flow among several partners, based on what kind of information they are allowed
to handle. Registry and Archive cannot look into the patient’s symptoms, tests, or
insurance coverage data. Medical examiners can at most see the symptoms and tests,
without reference to the coverage information. Medication providers can only take
care of symptoms and coverage, without reference to the medical tests. All tasks that
cannot be assigned to the partners according to these rules are kept by the central
Health organization.

Item
X

d

e

G2, Z

» l j V-> V, «42, C

03 , a4 , a 4 i

as

Name

/

/
/
/
/

Address

/

/
/
/
/

SSN

•

/
/
/
/

Symp.

/
/
/
/
/

Tests

/

/
/

Cover.

/
/

/

Fig. 15 The resulting context for the drug prescription workflow analysis

Main medical workflow 04: Select
new

medication

03: Con
tinue last

prescription

Workflow for service 04.

2 x

ax: Retrieve
medical
history

•si
a-2,: Retrieve
medication

record

a5 : Log
treatment

Fig. 16 An example fragmentation for the drug prescription workflow

Figure 15 shows the sharing analysis results for the drug prescription workflow.
The upper part of the table (above the line) shows inputs, where the columns represent
data attributes, x stands for PatientID in Fig. 13, while d and e represent the contents
of the databases used by activities a1 and a2 to produce (on the basis of x) data items
y (Medical history) and z (Medication record), respectively. The lower part of the
table shows the inferred attributes of all intermediate data items and activities from the
main workflow and the sub-workflow for activity a4. Figure 16 shows the assignment
of activities to fragments that correspond to the health organization and its partners.

The table in the upper part of Fig. 15 shows an alternative assignment of the attributes
to the inputs to the drug description workflow, where insurance coverage information
also appears in the medical history database, and forms a part of the medical history
record for the patient. In this case, the sharing analysis results give rise to a reas
signment of activities to the swim-lanes as shown in the lower part of Fig. 17. In
this case, the health organization keeps to itself the activities that were delegated to
Medical Examiners in Fig. 16, since it is not safe to entrust such external entity with
the insurance coverage details.

I tem

x, a5

d
e

«2, Z

y, p, other a.

Name

/

/
/

Address

/

/
/

SSN
/

/
/

Symp.

/
/
/
/

Tests

/

/

Coverage

/
/
/
/

Swimlane
Health Organization
Medical Examiners

Medication Provider
Registry &; Archive

Activities
a i , 03, a4, 041, 042
(empty)
d2

a5

Fig. 17 Alternative context and fragmentation scheme for the drug prescription workflow

5.3 Constraining component search and validation

As mentioned in Sect. 3.2, the compliance of a message with a structural data descrip
tion (a semantic data type accepted by the service) in itself does not guarantee that
an invoked service will be able to perform its task successfully. The reason for that is
that XML messages may have many optional or alternative parts that may be present
or absent in a structurally compliant message, yet whose presence or absence may
cause the service to fail. Or, the message may contain references (foreign keys) to
non-existent or wrong entities. In our approach, we use data attributes to represent
the content, rather than the structure of a message, which, on top of the structural
matching, may help us in reasoning about whether some service implementation is
suitable for the given task.

Let us look again at the example composition from Fig. 1, where activity a25
performs loan approval based on the documents collected in a19 and a20 . Let us suppose
that, as it usually happens in reality, these documents are not passed repeatedly to a25,
but are rather stored in a “loan request file” for the buyer (a “logical” file, not a file
in the O.S. sense), represented with W3 in Table 1, which is created by a19, updated
by a20, and consumed by a25. For the sake of argument here, we shall also assume
that the seller’s invoice i is inserted into W3, so that a25 accesses W3 as an integrated
super-document with all pieces of information placed inside.

Figure 18 presents a hypothetical concept lattice of eight credit approval candidate
services, for “small,” “medium,” and “big” consumer loans. The small loans are up to
3000 monetary units, the medium ones are between 3000 and 10000, and the big loans
are 10000 monetary units or more. The candidate services are characterized by means
of the required data attributes of the loan request file W3 at their inputs. Small loans
can be approved in cash by smallCash. It requires name, pin, address, and cont
(besides v < 3000), while all other loan approval services pay directly to the seller,
and therefore require sacc. All attributes required by a candidate can be collected
from the lattice diagram by following all lines that go from it to the top. e.g., form
med2, that is the set {ssn, tax, sacc, name, dep, v > 3000}.

Let us now suppose that, as a result of a previous data attribute analysis, we conclude
that the identity document d supplied by a19 at the start has some set of attributes
D c {name, address, ssn, pin}, and that the set I of attributes for the invoice i is

Attribute
name

address
ssn
pin

sacc
v<3000
v>3000

v> 10000
dep
tax
crec
cont

Meaning
Buyer's name given.
Buyer's address given.
Buyer's SSN given.
Buyer's PIN given.
Seller's account number given.
Value less than $3000.
Value $3000 or more.
Value $10 000 or more.
Security deposit secured.
Tax declaration presented.
Credit record presented.
Work contract presented.

Fig. 18 A hypothetical concept lattice of credit approval procedures

0,22

—
+
-
+
-
+
-
+

0123

—
-
+
+
-
-
+
+

<J24

—
-
-
-
+
+
+
+

Validated candidates
(none)
small, medl
(none)
small, medl, med2, bigl , big3
(none)
smallCash, small, medl, med3, big2
(none)
smallCash, small, medl, med2, med3, b ig l , big2, big3

Activity
<»22

023

<»24

Contributes attributes
pin, tax, crec
dep
cont, ssn

Fig. 19 Adaptive search for loan approval service candidates

one of {sacc, v < 3000}, {sacc, v > 3000}, or {sacc, v > 3000, v > 10000}. The
question we ask is what loan service candidate we need to chose to ensure that enough
information is provided to the service to perform its function.

Figure 19 shows an adaptive search for service candidates for D ={name, address,
ssn}, depending on a combination of a22, a 23, and a24 executed within a20. Each of
these activities contributes some additional information, represented in the lower table
in the figure. In this case, a22 must always be executed, and for a “big” loan, also at
least one of a23 or a24. If D was computed based on the minimal sharing (relation

<s), we obtain candidates that certainly comply, and if it was computed based on <s,
we obtain the set of all potential candidates.

6 Related work

This paper builds on the previous publications by the authors that focused on fragmen
tation and attribute inference for service compositions [18,19]. In this paper we expand
the approach by providing a common, logic-based foundation for both representing

and reasoning about functional dependencies as well as data attributes in service com
positions, with the goal of supporting adaptation. We also introduce and formalize
the upper and lower approximation of the sharing ordering which are, e.g., used for
parallelization, fragmentation, and component search and validation.

Service adaptation has been widely studied, and [11] gives a good overview of
the methodological framework and some of the techniques proposed. The problem of
automatic adaptation of service interfaces at the level of protocols in terms of protocol
realizability and compatibility has been extensively studied, for instance by Ponge et
al. [35], and other authors. In our approach, we start from the assumption that the
adapted composition, or its fragments, need to preserve the original protocol present
before the adaptation. The difference is that we do not use transition systems and
automata to reason about the protocol invariants, but instead introduce data depen
dencies on the shared component state between the invocations. While well suited
for analyzing functional dependencies and data attributes, more advanced interac
tions involving, e.g., timed conversations and transactional behavior would require
combining our approach with the protocol-based techniques.

Another interesting area in service adaptation research relates to automatic conver
sion of operations and message formats based on semantic descriptions. Describing
the semantics of Web services, message types, and operations, as well as Web service
search and matching, has been well studied, and a good overview and guide through
the current state of the art can be found in Euzenat et al. [13]. In this paper we deal with
the issue of semantic matching indirectly, by using Boolean tests to detect properties
of data (Definition 3 in Sect. 3.2), while not making a direct use of more powerful data
abstraction techniques based on, e.g., XQuery and XSLT. However, our discussion
of component search and compliance testing (Sect. 5.3) relies on the assumption that
adequate semantic descriptions and registries of prospective component candidates
are readily available.

Automatic service composition, based on adaptive planning, has been studied by
Beauche and Poizat [4]. It represents an alternative to our parallelization approach
(Sect. 5.1) in that it starts from a set of service components and their pre- and post
condition and data, and tries to combine them into a composition (with parallelization
when possible). Our sharing-based analysis, in comparison, starts from an already
existing composition, which is then analyzed and decomposed into subsets of activities
that can be parallelized. Therefore, in our approach, the pre- and post-conditions of the
basic blocks and the properties of their data are inferred rather than given in advance,
which is well suited for finer-grain parallelization based on ad hoc artifacts.

Service fragmentation, as a form of adaptation, has been surveyed by Mancioppi
et al. [27]. In this paper, we are dealing with the problem of deciding which activities
in the original composition should be assigned to which fragments, and we choose
the information content described by data attributes to be the criterion. Other authors
have proposed different criteria for fragmentation. Tan and Fan [37] proposed a tech
nique for workflow fragmentation in a way that maximizes the distribution of process
activities among nodes of a grid or cluster of process execution (enactment) engines.
The proposed approach is a form of run-time fragmentation that is transparent to
the user/designer and is meant to be automatically applied by the nodes of the dis
tributed process execution engine. The work by Yildiz et al. [14,42] concentrates

on fragmenting workflows between services in different business domains. The data
items that are passed between the external services have different security or con
fidentiality levels, and therefore need to be protected from unauthorized lookup in
different domains. Similarly to ours, their approach is also motivated by information
flow control, but is restricted to acyclic workflows. There are also other approaches
to fragmentation, such as that by Zaplata et al. [43], which instead of partitioning the
composition, assign different execution paths to nodes in the distributed enactment
environment. Of course, after assigning activities to fragments using some criteria,
the actual work of creating and deploying executable fragments involves many tech
nical details and is very dependent on the composition language. For BPEL, a detailed
discussion can be found in the work by Khalaf and Leymann [22,23].

The technical foundations of variable sharing analyses for logic programs have
been proposed by Jacobs and Langen [20] and by Muthukumar et al. [28–30] and
have been used effectively in program parallelization by Bueno et al. [6,28]. These
analyses are instances for logic programs of the framework of abstract interpretation,
a general approach to program analysis that was originally proposed by Cousot and
Cousot [8] and has been since applied to a great variety of languages and properties.
An overview of its general application to several analysis problems can be found in
the book on program analysis by Nielson and Hankin [32]. A clique sharing analysis
that offers interesting cost trade-offs has been described by Navas et al. [31].

Using Formal Concept Analysis (FCA) for representing and reasoning about
conceptual properties of objects is described in the standard texts by Ganther and
Stumme [15] and Davey and Priestley [9].

7 Conclusions

Sharing analysis can be used as an underlying technique for ensuring correctness of
adaptation actions in service compositions, by taking into account and analyzing both
the control and data dependencies. Two important classes of data dependencies—
functional dependencies and data attributes—can be captured using a single repre
sentation framework that centers on the notions of logic variables, substitutions, and
Horn clauses, for which well-developed sharing analysis techniques and tools exist.
The technique is well suited for compositions involving complex control structures,
including loops, branches and parallel flows. Parallelization, fragmentation, and com
ponent selection and compliance checking are some forms of adaptation whose cor
rectness depends on respecting—and can be informed by—the data sharing invariants
inferred by means of sharing.

In this paper we have presented a sharing-based framework for supporting adap
tation of service compositions by means of analysis of functional dependencies and
data attributes pertaining to data objects, component states, and activities inside a com
position. The results of the analysis can be used for several adaptation related tasks:
e.g., for rearranging or parallelizing activities, fragmenting a composition based on the
attributes of data handled by its activities, or constraining the search for the replacement
components.

The logical basis of representation allows us to derive pure Horn clause programs,
a subset of standard Prolog programs, to capture both data and control dependencies,
in the presence of complex control structures, such as branches and loops. On such
programs we apply an analysis of sharing of logic variables which produces results
that aggregate all possible groups of variables (representing data objects, component
states, and activities) for all possible control paths in the composition. We introduce
the notions of minimal and maximal sharing ordering to approximate sharing in any
particular run, and use these approximations to reason about functional dependencies
and data attribute inheritance. The precision of the approximation can be improved by
eliminating unused control paths based on process traces or behavior prediction.

Acknowledgments The authors were partially supported by Spanish MEC project 2008-05624/TIN
DOVES and CM project P2009/TIC/1465 (PROMETIDOS).

References

1. Agrawal R, Imielin´ski T, Swami A (1993) Mining association rules between sets of items in large
databases. In: Proceedings of the 1993 ACM SIGMOD international conference on management of
data, SIGMOD ’93, pp 207–216. ACM, New York. doi:10.1145/170035.170072. http://doi.acm.org/
10.1145/170035.170072

2. Armstrong WW (1974) Dependency structures of data base relationships. In: IFIP congress,
pp 580–583 (1974)

3. Awad A, Puhlmann F (2008) Structural detection of deadlocks in business process models. In:
Abramowicz W, Fensel D (eds) International conference on business information systems, LNBIP,
vol 7. Springer, Berlin, pp 239–250

4. Beauche S, Poizat P (2008) Automated service composition with adaptive planning. In: Proceedings
of the 6th international conference on service-oriented computing, ICSOC ’08. Springer, Berlin. doi:
10.1007/978-3-540-89652-4-42. http://dx.doi.org/10.1007/978-3-540-89652-4-42

5. Bi HH, Zhao JL (2004) Applying propositional logic to workflow verification. Inf Technol Manage
5:293–318

6. Bueno F, García de la Banda M, Hermenegildo M (1999) Effectiveness of abstract interpretation in
automatic parallelization: a case study in logic programming. ACM Toplas 21(2):189–238

7. CousotP,Cousot R(1977) Abstract interpretation:aunified lattice model for static analysisofprograms
by construction or approximation of fixpoints. In: ACM symposium on principles of programming
languages (POPL’77). ACM Press, New York

8. CousotP,Cousot R(1977) Abstract interpretation:aunified lattice model for static analysisofprograms
by construction or approximation of fixpoints. In: Proceedings of POPL’77. ACM Press, New York,
pp 238–252

9. Davey BA, Priestley HA (2002) Introduction to lattices and order, 2nd edn. Cambridge University
Press, Cambridge

10. Dezani-Ciancaglini M, De’Liguoro U (2010) Sessions and session types: an overview. In: Proceedings
of the 6th international conference on Web services and formal methods, WS-FM’09. Springer, Berlin,
pp 1–28. http://dl.acm.org/citation.cfm?id=1880906.1880907

11. Di Nitto E, Ghezzi C, Metzger A, Papazoglou M, Pohl K (2008) A journey to highly dynamic, self-
adaptive service-based applications. Autom Softw Eng 15:313–341. doi:10.1007/s10515-008-0032-x.
http://dx.doi.org/10.1007/s10515-008-0032-x

12. DiNitto E (2009) S-Cube deliverable CD-IA-2.2.2: collection of industrial best practices, scenarios
and business cases. Tech. rep., S-Cube Consortium

13. Euzenat J, Shvaiko P (2007) Ontology matching. Springer, Heidelberg
14. Fdhila W, Yildiz U, Godart C (2009) A flexible approach for automatic process decentralization using

dependency tables. In: ICWS, pp 847–855
15. Ganter B, Stumme G, Wille R (eds) (2005) Formal concept analysis, foundations and applications.

Lecture notes in computer science, vol 3626. Springer, Berlin

http://dx.doi.org/10.1145/170035.170072
http://doi.acm.org/10.1145/170035.170072
http://doi.acm.org/10.1145/170035.170072
http://dx.doi.org/10.1007/978-3-540-89652-4-42
http://dx.doi.org/10.1007/978-3-540-89652-4-42
http://dl.acm.org/citation.cfm?id=1880906.1880907
http://dx.doi.org/10.1007/s10515-008-0032-x
http://dx.doi.org/10.1007/s10515-008-0032-x

16. Hermenegildo MV, Bueno F, Carro M, López P, Mera E, Morales J, Puebla G (2010) An overview
of Ciao and its design philosophy. Tech. Rep. CLIP2/2010.0, Technical University of Madrid (UPM),
School of Computer Science. Under consideration for publication in Theory and Practice of Logic
Programming (TPLP)

17. Hintikka J (2004) Independence-friendly logic and axiomatic set theory. Ann Pure Appl Logic
126(1–3):313–333

18. Ivanovic´ D, Carro M, Hermenegildo M (2010) Automatic fragment identification in workflows based
on sharing analysis. In: Weske M, Yang J, Maglio P, Fantinato M (eds) Service-oriented computing–
ICSOC 2010, no. 6470. LNCS. Springer, Berlin, pp 350–364

19. Ivanovic´ D, Carro M, Hermenegildo M (2011) Automated attribute inference in complex service
workflows based on sharing analysis. In: Proceedings of the 8th IEEE conference on services computing
SCC 2011. IEEE Press, New York, pp 120–127

20. Jacobs D, Langen A (1989) North American conference on logic programming. MIT Press, Cambridge
21. Jordan D et al (2007) Web services business process execution language version 2.0. Tech. rep., IBM,

Microsoft et al
22. Khalaf R (2007) Note on syntactic details of split BPEL-D business processes. Tech. Rep. 2007/2,

IAAS, U. Stuttgart
23. Khalaf R, Leymann F (2012) Coordination for fragmented loops and scopes in a distributed business

process. Inf Syst 37(6):593–610
24. Lagoon V, Stuckey P (2002) Precise pair-sharing analysis of logic programs. In: Principles and practice

of declarative programming. ACM Press, New York, pp 99–108
25. Lloyd J (1987) Foundations of logic programming, second, extended edn. Springer, Berlin
26. Ma Z, Leymann F (2009) Bpel fragments for modularized reuse in modeling bpel processes. In:

Mauri JL, Giner VC, Tomas R, Serra T, Dini O (eds) ICNS. IEEE Computer Society, New York,
pp 63–68

27. Mancioppi M, Danylevych O, Karastoyanova D, Leymann F (2011) Towards classification criteria for
process fragmentation techniques. In: BDP2011, colocated with BPM’11

28. Muthukumar K, Bueno F, de la Banda MG, Hermenegildo M (1999) Automatic compile-time paral-
lelization of logic programs for restricted, goal-level, independent and-parallelism. J Logic Program
38(2):165–218

29. Muthukumar K, Hermenegildo M (1989) Determination of variable dependence information at
compile-time through abstract interpretation. In: North American conference on logic programming.
MIT Press, Cambridge, pp 166–189

30. Muthukumar K, Hermenegildo M (1991) Combined determination of sharing and freeness of program
variables through abstract interpretation. In: ICLP’91. MIT Press, Cambridge, pp 49–63

31. Navas J, Bueno F, Hermenegildo M (2006) Efficient top-down set-sharing analysis using cliques. In:
Eight international symposiumonpractical aspectsofdeclarative languages, no. 2819. LNCS. Springer,
Berlin, pp 183–198

32. Nielson F, Nielson HR, Hankin C (2005) Principles of program analysis, 2nd edn. Springer, Berlin
33. Object Management Group (2011) Business process model and notation (BPMN), Version 2.0. http://

www.omg.org/spec/BPMN/2.0/PDF
34. Papazoglou MP, Pohl K, Parkin M, Metzger A (eds) (2010) Service research challenges and solutions

for the future internet–S-Cube–towards engineering, managing and adapting service-based systems.
Lecture notes in computer science, vol 6500. Springer, Berlin

35. Ponge J, Benatallah B, Casati F, Toumani F (2007) Fine-grained compatibility and replaceability
analysis of timed web service protocols. In: Parent C, Schewe KD, Storey VC, Thalheim B (eds) ER,
Lecture notes in computer science, vol 4801. Springer, Berlin, pp 599–614

36. Shvaiko P (2005) A classification of schema-based matching approaches. J Data Seman 4:146–171
37. Tan W, Fan Y (2007) Dynamic workflow model fragmentation for distributed execution. Comput Ind

58(5):381–391. http://dx.doi.org/10.1016/j.compind.2006.07.004
38. Ullman JD (1988) Database and knowledge-base systems, vol 1. Computer Science Press, Maryland
39. Väänänen J (2007) Dependence logic: a new approach to independence friendly logic. Cambridge

University Press, Cambridge (London mathematical society student texts)
40. Valtchev P, Missaoui R, Godin R (2004) Formal concept analysis for knowledge discovery and data

mining: The new challenges. In: ICFCA, pp 352–371
41. World Wide Web Consortium (2005) Web services choreography description language version 1.0.

http://www.w3.org/TR/ws-cdl-10/

http://www.omg.org/spec/BPMN/2.0/PDF
http://www.omg.org/spec/BPMN/2.0/PDF
http://dx.doi.org/10.1016/j.compind.2006.07.004
http://www.w3.org/TR/ws-cdl-10/

42. YildizU,Godart C(2007) Informationflow control with decentralized service compositions. In: ICWS,
pp 9–17

43. Zaplata S, Kottke K, Meiners M, Lamersdorf W (2009) Towards runtime migration of ws-bpel
processes. In: ICSOC/ServiceWave Workshops, pp 477–487

44. Zemni MA, Benbernou S, Carro M (2010) A soft constraint-based approach to qos-aware service
selection. In: Weske M, Yang J, Maglio P, Fantinato M (eds) Service-oriented computing–ICSOC
2010, no. 6470. LNCS. Springer, Berlin, pp 596–602

