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Abstract 

Using the Bayesian approach as the model selection criteria, the main purpose in this study is to establish a practical road 
accident model that can provide a better interpretation and prediction performance. For this purpose we are using a structural 
explanatory model with autoregressive error term. The model estimation is carried out through Bayesian inference and the best 
model is selected based on the goodness of fit measures. To cross validate the model estimation further prediction analysis were 
done. As the road safety measures the number of fatal accidents in Spain, during 2000-2011 were employed. The results of the 
variable selection process show that the factors explaining fatal road accidents are mainly exposure, economic factors, and 
surveillance and legislative measures. The model selection shows that the impact of economic factors on fatal accidents during 
the period under study has been higher compared to surveillance and legislative measures. 
© 2014 The Authors. Published by Elsevier Ltd. 
Selection and peer-review under responsibility of CIT 2014. 
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1. Introduction 

The main purpose in this study is to establish a practical road accident model that can provide a better 
interpretation and prediction performance. Structural explanatory models have proven to be very useful tool for 
traffic accident analysis. The models can range from simple regression model to much more sophisticated models. 
The main objective however remains the same i.e. is the identification of the explanatory factors that are the main 
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causes of the road accidents. The explanatory model structures have two main characteristics, the treatment of the 
variables through transformations, and the error structure.  

In this study we are proposing a Bayesian Model Selection methodology, as the model selection strategy, where 
the best model from the list of candidate structural explanatory models is selected. The model structure is based on 
the Zellner's (1971) explanatory model with autoregressive errors. For the selection technique we are using a less 
parsimonious model, where the model variables are transformed using Box and Cox (1964) class of transformations. 
A similar approach has been carried out by Gaudry (1984), known as DRAG family models (Gaudry and Lassarre, 
2000). However the model presented here differs from DRAG type of models by being less parsimonious.  

A model selection strategy is proposed and the model estimation is carried out through Markov Chain Monte 
Carlo and Gibbs sampler. A prediction analysis is done for further cross validation. The proposed strategy allows the 
consecutive estimation of several models at once thus making the model estimation and selection process more 
efficient and less time consuming compared to DRAG models.  

The rest of this chapter is organized as follows. In the first section the basic model structure is introduced. The 
section is followed by data description. In section 4 the methodology is proposed. In the section 5 the results of 
BMS and the interpretation are discussed. The section also includes the prediction analysis. The article ends with the 
conclusions and further work. 

2. Model Structure 

2.1. Structural explanatory models 

The following structural explanatory model with AR(2) error term is considered (Zellner, 1971): 

t
l

ltlt

t
k

ktk

wuu

uXY

2

  (1) 

where  are the regression coefficients,  is an error term with the AR(2) structure and  are assumed to be white 
noise, . 

We assume the power transformation of the variables included in the model. The transformation of the 
observations helps to achieve the normal distribution and linear growth function. The predictive accuracy has also 
been shown to improve substantially (Lee and Lu, 1987; Keramidas and Lee, 1990). The transformation is done as 
follows (Box & Cox, 1964): 
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where is the transformation coefficient. In this study we propose asimpler approach to select the power 
transformation.For the dependent and independent variables it is limited to three values, .  
 

3. Data description 

The empirical analysis in this study was carried out using the data on fatal road accidents in Spain. The data covers 
the period of 2000-2011. The response variable is the number of fatal accidents (ACCMOR). There are 28 
explanatory variables used as traffic safety factors belonging to the following categories (Table 1): exposure, 
economic factors, driver behavior surveillance, fleet characteristics, road infrastructure, weather conditions, labor 
conditions and legislation. The general data were collected from different sources: Government's General Traffic 
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Directorate, Ministry of Public Works, National Meteorological, National Statistics Office and the Ministry of the 
Economy and Finance. For the Bayesian estimation process 132 observations were used. The remaining 12 
observations were used to assess the prediction performance of the selected models. 

 
Table 1.Explanatory variables 

Group  Variable  Name 

Exposure Heavy vehicles VHP 

 Vehicle kilometres travelled VKM 

 Fuel consumption CONGAS 

Economic Total unemployment PARO 

Factors Total number of employed OCUP1 

 Employed in construction sector OCUP2 

 Meat production PRDCRN 

 Industrial  production index IPI 

 Cement consumption CONCEM 

 Maintenance investment MANT 

 Fuel prices PRCOM 

Weather  Rainfall PREC 

and Labor Sunny days HSOL 

Conditions Days ground covered with snow SLNV 

 Foggy days DNIE 

 Weekend and holidays SDF 

 Easter break SEMSAN 

 Labor days DLAB 

Driver Young drivers (2 years) COND 

Characteristics Alcohol controls CONALC 

and Surveillance Radar checks RADAR 

 Driving license suspended SUSP 

Fleet Vehicles older than 10 years VEH10 

Characteristics Vehicles equipped with ABS (%) ABS 

Road  Proportion of high   capacity   
Infrastructure roads in the  whole interurban network LONRAC 

 Length of toll roads LONRED 

Legislative Measures Penalty Point System PPS 

 Penal  Code Reform PCR 

4. Methodology 

In this study we propose the following strategy for Bayesian model selection of structural explanatory models: 
 Set the basic model structure with the autoregressive error structure and monotonic transformation values; 
 Build a sequence of models with untransformed response and transformed predictors. The transformation is 

not applied to dummy and quasi dummy variables. The number of models will depend on the number of 
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variables and corresponding transformation values included in the model. Select the variables that produce 
better goodness of fit measures; 

 Estimate the models with the transformed values of the selected variables and transformed dependent 
variable; 

 Select the candidate models with a better goodness of fit measures and right signs for the predictor, that is 
specified based on the substantive reasons or previous empirical studies; 

 Select a single best model for the posterior prediction analysis. 

4.1. MCMC 

Assuming that for a given process there are K candidate models , determination of the most adequate one consists 
of choice of prior distributions, p(M=k) for computing the posterior model probability, p(M=k|Y=y). This procedure 
is referred as Bayesian Model Averaging and is implemented by using Bayes theorem. The posterior probabilities 
sum up to one and the best model will have the highest probability. Bayesian statisticians have derived numerous 
ways to evaluate and select models for inference (Gelman et al., 2004). The major limitation for the use of Bayesian 
approaches is the computation of the posterior distribution that requires integration of high-dimensional functions 
when a larger set of parameters is included in the model. However, this problem has been overcome by Markov 
Chain Monte Carlo (MCMC) methods which have their roots in the Metropolis algorithm (Metropolis et al., 1953) 
developed by physicists to compute complex integrals by expressing them as expectations for some distribution and 
then estimate this expectation by drawing samples from that distribution.   

One particular MCMC method is the Gibbs sampler, originally developed for image processing. The Gibbs 
sampler is an iterative MCMC method designed to draw samples from the intractable joint distributions by sampling 
tractable full conditionals. See Robert and Casella (2004) for more details. 

5. Results 

5.1. Model estimation 

The Bayesian estimation of the models begins with the assigning the prior distributions to the parameters. We are 
using Jeffrey's uninformative priors for the parameters. The model estimation was done using the Gibbs sampler 
constructed with the WinBugs software. 
    The first stage is the variable selection. Given the model structure and selected prior distributions, we are 
interested in selection of the variables that have significant effect on the response and explain the model variability 
best. There are originally 28 independent variables, meaning 228=268435456 models potentially, where each model 
includes a combination of 1 to 28 variables. In order to shorten this number and simplify the estimation process, 
initially a set of 378 models, where each model contains combination of 2 variables were constructed. 

Table 2.  Pseudo- values of selected two- input models for three different values of power transformation, . 

TIM 1X  
2X  5.0X

 1.0X
 5.0X

 

28 VKM CONGAS 0.804 0.803 0.815 

107 OCUP1 MANT 0.867 0.837 0.802 

236 PRECOM LONRAC 0.834 0.833 0.810 

314 CONALC SUSP 0.823 0.812 0.811 

325 RADAR VEH10 0.819 0.819 0.835 

327 RADAR LONRAC 0.810 0.828 0.836 
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329 RADAR PPS 0.820 0.810 0.811 

334 SUSP VEH10 0.804 0.810 0.810 

346 VEH10 PPS 0.803 0.804 0.802 

 
    The variables were introduced in the model with the assigned transformation values. The transformation 
coefficient was limited to have three values = (0.5, 0.1, 0.5). At this initial stage there was no assumption made as 
to which power transformation is preferred for a given variable. Thus all the variables were transformed using the 
same value of  and the set of 378 models were estimated three times, using only one value of . The response 
was not transformed. 378 3=1134 models were visited in 2000 iterations and in three chains. Given the fact that the 
DIC statistics can only be compared if the data set is the same, we use pseudo R² value to see how likely the model 
variables explain the model. 
        For each value of power transformation parameter, a set of 50 models with the highest R² value were selected. 
The variables that appeared the most in the set of 50 models, for each value of , are believed to explain the model 
better. The results of the variable selection procedure suggest the selection of 11 variables (Table 2).  
    The next stage is the transformation selection for both independent and dependent variables. The transformation 
value for the dependent variable was obtained through the optimization process, where the non-transformed 
dependent and independent variables were introduced and the optimal value was selected (Venables and Ripley, 
2002). The transformation value for dependent variable was set to . 
    Somehow the transformation selection for independent variables is not as trivial. Given the ambiguity of the 
variable selection process, it was not clear which power transformation value was the optimal one for a given 
variable, thus the ideal would be transform each variable with all three values of  for the model estimation, and 
thus determine the maximum  for each variable. Considering that there are 12 variables, this would mean 
3¹²=531441 potential models. To simplify this we are using DRAG model approach (Gaudry, 1984) to the 
transformation selection, i.e. the transformation is applied to the entire group of variables belonging to the same 
category rather than each variable separately. Selected 11 variables belong to 6 categories (Table 1), one of them 
being a legislation group with a dummy variable, meaning this variable is not subject to the power transformation. 
Thus, overall there are 3 =243 variable group combinations, hence 243 models have to be estimated. 

Table 3. Selected variables and the expected signs, based on previous empirical studies. 

Group Variable Expected 
sign 

G1 VKM  

 CONGAS  

G2 VEH10  

G3 OCUP1  

 MANT  

 PRECOM  

G4 CONALC  

 RADAR  

 SUSP  

G5 LONRAC  

G6 PPS  
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    243 models were estimated using three chains taken to 10,000 iterations. The prior information for the 
parameters,  are remained the same as in the first stage. 
   The model selection was based on the expected signs of the regressor estimates based on existing literature on 
road safety anddeviance information criteria- DIC (Spiegelhalter et al., 2002). Based on the previous empirical 
studies, a preliminary assumption on the signs of the selected variables is made (Table 3). Taking into account the 
estimates of the parameters, the model with better goodness of fit and matching coefficient signs were selected. 
Based on the DIC value, the model M=236 was selected as the best single model (DIC=93). Pseudo-R² value for this 
model is 0.9388, meaning more than 93% of the variability is explained (Table 4). 

Table 4. Bayesian estimation of selected model, M=236. 

Parameters Mean S.D. Median Elasticity BCT 

VKM 6.353 1.157 6.355 1.113 0.1 

CONGAS 6.584 2.633 6.541 1.183 0.1 

VEH10 2.256 17.320 2.351 0.031 -0.5 

OCUP1 0.006 0.021 0.005 0.068 0.5 

MANT -0.059 0.083 -0.057 -0.142 0.5 

PRECOM -0.332 0.505 -0.332 -0.077 0.5 

CONALC -0.00001 0.001 0.000 -0.001 0.5 

RADAR -0.000048 0.000 0.000 -0.008 0.5 

SUSP -0.018 0.006 -0.019 -0.185 0.5 

LONRAC -43.740 14.430 -43.400 -0.969 0.5 

PPS -0.244 0.215 -0.240 -0.011 NA 

 0.219 0.100 0.217   
 0.154 0.105 0.152   
 9.437 1.258 9.393   

DIC 93     
 0.9388     

 
In order to understand how the change in certain variables affects the response, the elasticities of the regressors 

were computed (Liem et al., 2008): 
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for the dummy variable (untransformed). To explain the effect of the variables on the response in percentages, the 
elasticity estimates for the transformed variables are multiplied by 10, while for the untransformed variable the 
multiplier coefficient is 100. That would mean that, a 10% increase in VKM, CONGAS, VEH10 and OCUP1 will 
increase the fatal accident rate by 11.1%, 11.8%, 0.3% and 0.6% respectively. While a 10% increase in MANT, 
PRECOM, CONALC, RADAR, SUSP and LONRAC will reduce the accident rate by 1.4%, 0.7%, 0.01%, 0.08%, 
1.8% and 9.6% respectively. The effect of PPS is counted as a 1.1% decrease in the fatal accident frequency. The 
results of the estimation procedure conform to the existing literature on road safety. 
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5.2. Prediction analysis 

The prediction analyses were conducted for further cross validation of BMS. For estimation 132 observations 
were included in the model while the remaining 12 observations were used to assess the Bayesian prediction 
performance. Taking into account the results of the model selection, Model 236 was used. Given the autoregressive 
structure of the error term, AR(2), the estimation starts after period, . New observation values of dependent 
variables are predicted by employing the Bayesian estimates of the parameters obtained from the results of model 
selection. The estimation was carried out with the WinBUGS software. The Gibbs sampler was run in 10,000 
iterations in 3 chains. 

To evaluate the prediction performance of the model, 95% posterior prediction intervals were computed. As can 
be seen in Figure 1 all of the observations fall within the posterior prediction interval.Additionally the prediction 
error (Table 5) of the estimates ( ) was computed using the following formula: 

 

T t

tt
Y Y

YYPE 100              (5) 

Table 5. Posterior prediction intervals, M=236 

Date Observation Prediction P.E. Lower 
P.I. 

Upper 
P.I. 

Jan-11 129 145 12 115 179 

Feb-11 117 139 19 107 174 

Mar-11 118 144 22 111 182 

Apr-11 122 157 29 120 198 

May-11 149 144 3 113 184 

Jun-11 127 154 21 115 193 

Jul-11 183 175 4 133 220 

Agu-11 176 176 0 135 221 

Sep-11 150 151 1 115 191 

Oct-11 139 141 1 109 180 

Nov-11 139 127 9 95 166 

Dec-11 134 152 13 103 213 

Figure 1. Posterior predictions, 2009- 2011 
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6. Discussion and further research 

In this study we are considering a structural explanatory macro model for the analysis of road safety. Although 
these models are known to be very effective, these models are non parsimonious and thus, usual maximum 
likelihood estimation can be very lengthy. It has been shown that model selection based on p-values does not 
consider model uncertainty. Moreover, the significance of a specific parameter change is conditional on the set of 
the other parameters included in the model. Thus a sequential model and parameter selection can produce 
misleading results. 

To overcome this problem we are proposing a model selection strategy using a Bayesian approach. The structural 
model used in the study is parsimonious. The explanatory variable selection procedure has used models with 
combinations of only two explanatory variables. This restriction adopted for simplicity has proved adequate in view 
of the results. By limiting the initial parameters (AR structure of the error term and the power transformation values) 
to few values, the focus on the model selection procedure is on the explanatory variable selection and BCT 
parameter estimation for both explanatory and response variables. The performance and improvement of the 
goodness of fit measures only depend on these two factors.  

The results of the Bayesian estimation closely follow those obtained in previous empirical studies on road safety 
analysis. Moreover, the prediction analysis yields good results. The methodology has thus proved to be successful in 
providing a quick, simple and effective model selection strategy, which could easily be sophisticated and 
generalized with some additional but feasible computational cost (e.g. considering three input models in the 
explanatory variable selection procedure instead of just TIMs). The application to DRAG-type models provides an 
interesting alternative to the algorithm implemented in the TRIO software. The use of Bayesian techniques is 
directed to a better approximation to the true data generating process. These points will be further studied. 
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