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Abstract. Graph automorphism (GA) is a classical problem, in which
the objective is to compute the automorphism group of an input graph.
In this work we propose four novel techniques to speed up algorithms
that solve the GA problem by exploring a search tree. They increase
the performance of the algorithm by allowing to reduce the depth of the
search tree, and by effectively pruning it.
We formally prove that a GA algorithm that uses these techniques cor-
rectly computes the automorphism group of the input graph. We also
describe how the techniques have been incorporated into the GA algo-
rithm conauto, as conauto-2.03, with at most an additive polynomial
increase in its asymptotic time complexity.
We have experimentally evaluated the impact of each of the above tech-
niques with several graph families. We have observed that each of the
techniques by itself significantly reduces the number of processed nodes
of the search tree in some subset of graphs, which justifies the use of
each of them. Then, when they are applied together, their effect is com-
bined, leading to reductions in the number of processed nodes in most
graphs. This is also reflected in a reduction of the running time, which
is substantial in some graph families.

1 Introduction

Graph automorphism (GA), graph isomorphism (GI), and finding a canonical
labeling (CL) are closely-related classical graph problems that have applications
in many fields, ranging from mathematical chemistry [4,20] to computer vision
[1]. Their general time-complexity is still an open problem, although there are
several cases for which they are known to be solvable in polynomial time. Hence,
the construction of tools that are able to solve these problems efficiently for a
large variety of problem instances has significant interest. This work focuses on
the GA problem, whose objective is to compute the automorphism group of an
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input graph (e.g., by obtaining a set of generators, the orbits and the size of this
group). In this paper, novel techniques to speed up algorithms that solve the GA
problem are proposed. Additionally, most of these techniques can be applied to
increase the performance of algorithms for solving the other two problems as
well.

1.1 Related Work

There are several practical algorithms that solve the GA problem. Most of them
can also be used for CL (and consequently, for GI testing). For the last three
decades, nauty [13,14] has been the most widely used tool to tackle all these
problems. Other interesting algorithms that solve GA and CL are bliss [6,5],
Traces [17], and nishe [19,18]. Recently, McKay and Piperno have jointly released
a new version of both nauty and Traces [15] with significant improvements over
their previous versions. Another tool, named saucy [3,7,8], which solves GA (but
not CL), has the advantage of being the most scalable for many graph families,
since it is specially designed to efficiently process big and sparse graphs. Recently,
it was shown that the combined use of saucy and bliss improves the running times
of bliss for the canonical labeling of graphs from a variety of families [9].

All these tools are based on the same principles, using variants of the Weisfeiler-
Lehman individualization-refinement procedure [21]. They explore a search tree,
whose nodes are identified by equitable vertex partitions, using a backtracking
algorithm to compute the automorphism group of the graph and, optionally,
a canonical labeling. The efficiency of an algorithm depends on the speed at
which it performs basic operations, like refinement, and, mainly, on the size of
the search tree generated (the number of nodes of the search tree which are
explored). There are two main ways to reduce the search space: pruning, and
choosing a good target cell (and vertex) for individualization.

Miyazaki showed in [16] that it is possible to make nauty choose bad target
cells for individualization, so its search space becames exponential in size when
computing the automorphism group for a family of colored graphs. This suggests
that a rigid criterion cell selector may be easily misled so that many nodes are
explored, while choosing the right cells could dramatically reduce the search
space. Thus, different colorings of a graph, or just differently labeled instances,
may generate radically different search trees. Algorithms for CL use different
criteria to choose the target cell for individualization, but these criteria must
be isomorphism invariant to ensure that the search tree for isomorphic graphs
are isomorphic, what is not necessary for GA. Examples of cell selectors are: the
first cell, the maximum nonuniformly joined cell, the cell with more adjacencies
to non-singleton cells, etc. A cell selector immune to this dependency on the
coloring or the labeling would be desirable.

Pruning the search space may be accomplished using several techniques. Or-
bit pruning and coset pruning are extensively used by GA and CL algorithms.
Perhaps, the most sophisticated pruning based on orbit stabilizer algorithms is
that of the latest versions of nauty and Traces [15], that use the random Schreier
method. However, when the number of generators grow, the overhead imposed



is not negligible. Conflict propagation is used by bliss [5] to prune brother nodes
when one of them generates a conflict which was not found in the corresponding
node of the first path. Conflicts may be detected at the nodes of the search tree,
or during the refinement process as done by conauto [12] (for GI) and saucy [8].

Limited early automorphism detection, when a node has exactly the same
non-singleton cells (in the same position) as the corresponding (and compatible)
node in the first path, is present in all versions of conauto [10]. Recently, this
feature has been added to saucy [8] under the name of matching OPP pruning.
A more ambitious component detection was added to bliss [5] for early automor-
phism detection. However, components are not always easy to discover and keep
track of.

1.2 Contributions

In this paper we propose a novel combination of four techniques to speed up
GA algorithms, but which can be used in GI and CL algorithms as well. (Such
extensions are out of the scope of this work.) These techniques can be used in
GA algorithms that follow the individualization-refinement approach. One key
concept that we define, and that is used by some of the proposed techniques,
is the property of a partition being a subpartition of another partition (see the
definition in Section 3).

We propose a novel approach to early automorphism detection (EAD) with-
out the need of explicitly identifying components, unlike the component recur-
sion of bliss. EAD is based on the concept of subpartition, and its correctness is
proved by Theorem 2. This technique is useful, for example, when the graph is
built from regularly connected sets of isomorphic components, and components
which have automorphisms themselves.

A second technique which, to our knowledge, has never be used in any other
GA algorithm is backjumping (BJ) in the search tree, under the condition that
the partition of the current node is a subpartition of its parent node. In this case,
if the current node has been fully explored and no automorphism has been found,
instead of backtracking to its parent node, it is possible to backtrack directly
to another ancestor. Specifically, to the nearest ancestor of which the current
node is not a subpartition. The correctness of BJ is proved by Theorem 3. This
technique helps, for example, when there are isomorphic and non-isomorphic
components in a graph.

As previously stated, the target cell selector for individualization is key to
yield a good search tree. We propose a dynamic cell selector (DCS) that tries
to generate a tree in which nodes are subpartitions of their parent nodes, so the
previous techniques can be applied. If that is not possible, it chooses the vertex
to individualize to be the one, among a non isomorphism invariant subset of all
the possible candidates, that generates the partition with the largest number of
cells. DCS adapts to a large variety of graph families. Since it is not isomorphism
invariant, it cannot be applied to CL. However, it can be used for GA, using a
different one for CL, once the automorphism group has been computed, in a way
similar to the combined use of saucy and bliss for CL proposed in [9].



The last technique proposed is conflict detection and recording (CDR), an
improvement of the conflict propagation of bliss. Besides recording a hash for
each different conflict found exploring branches of the nodes of the first path,
the number of times each conflict appeared is counted. Then, if the number of
times a certain conflict has been found on a node outside the first path exceeds
the number of times it was found in the corresponding node of the first path,
then no other branches need to be explored in this node. This technique helps
in a large variety of graph families.

We have implemented the four techniques described, and integrated them into
our program conauto-2.0,3 resulting in the new version conauto-2.03. It is worth
to mention that all versions of conauto process both directed and undirected
graphs (in fact they consider all graphs as directed).

We have performed an analysis of the time complexity of conauto-2.03. It
is easy to adapt prior analyses [12] to show that conauto-2.0 has asymptotic
time complexity O(n3) with high probability when processing a random graph
G(n, p), for p ∈ [ω(ln4 n/n ln lnn), 1−ω(ln4 n/n ln lnn)] [2]. We then show that,
in the worst case, the techniques proposed here increase the asymptotic time
complexity of conauto-2.03 by an additive polynomial term with respect to that
of conauto-2.0. In particular, DCS can increase the asymptotic time complexity
in up toO(n5), while EAD and BJ in up toO(n3). Finally, CDR does not increase
the asymptotic time complexity. Hence, if conauto-2.0 has polynomial execution
time, the execution time of conauto-2.03 does not become superpolynomial. Fur-
thermore, as will be observed experimentally, in some cases the techniques added
can drastically reduce the computing time.

We have experimentally evaluated the impact of each of the above techniques
for the processing of several graph families, and different graph sizes for each
family. To do so, we have compared the number of nodes traversed by conauto-2.0
and the number of nodes traversed when each of the above techniques is applied.
Then we have compared the number of nodes traversed, and the running times
of conauto-2.0 and conauto-2.03. The improvements are significant as the size
of the search tree increases, and the overhead introduced is only noticeable for
very small search trees.

1.3 Structure

The next section defines the basic concepts and notation used in the analytical
part of the paper. In Section 3 we define the concept of subpartition and state the
main theoretical properties, which imply the correctness of EAD and BJ. Then,
in Section 4 we describe how these results have been implemented in conauto-
2.03 and in Section 5 we evaluate the time complexity of conauto-2.03. Finally,
in Section 6 we present the experimental evaluation of conauto-2.03, concluding
the paper with Section 7.

3 The original algorithm conauto [12] solves the GI problem but not the GA problem;
conauto-2.0 is a modified version that computes automorphism groups and uses
limited, though quite effective, coset and orbit pruning.



2 Basic Definitions and Notation

Most of the concepts and notation introduced in this section are of common use.
For simplicity of presentation, graphs are considered undirected. However, all
the results obtained can be almost directly extended to directed graphs.

2.1 Basic Definitions

A graph G is a pair (V,E) where V is a finite set, and E is a binary relation over
V . The elements of V are the vertices of the graph, and the elements of E are
its edges. The set of graphs with vertex set V is denoted by G(V ). Let W ⊆ V ,
the subgraph induced by W in G is denoted by GW . Let W ⊆ V and v ∈ V , we
denote by δ(G,W, v) the number of neighbors of vertex v which belong to W .
More formally, δ(G,W, v) = |{(v, w) ∈ E : w ∈ W}|. If W = V , then it denotes
the degree of the vertex.

Two graphs G = (VG, EG) and H = (VH , EH) are isomorphic if and only if
there is a bijection γ : VG → VH , such that (v, w) ∈ EG ⇐⇒ (γ(v), γ(w)) ∈ EH .
This bijection γ is an isomorphism of G onto H. An automorphism of a graph
G is an isomorphism of G onto itself. The automorphism group Aut(G) is the
set of all automorphisms of G with respect to the composition operation.

An ordered partition (or partition for short) of V is a list π = (W1, ...,Wm)
of nonempty pairwise disjoint subsets of V whose union is V . The sets Wi are
the cells of the ordered partition. For each vertex v ∈ V , π(v) denotes the index
of the cell of π that contains v (i.e., if v ∈ Wi, then π(v) = i). The number of
cells of π is denoted by |π|. Let A ⊆ V , πA denotes the partition of A obtained
by restricting π to A. The set of all partitions of V is denoted by Π(V ). A
partition is discrete if all its cells are singletons, and unit if it has only one
cell. Let π, ρ ∈ Π(V ), then ρ is finer than π, if π can be obtained from ρ by
replacing, one or more times, two or more consecutive cells by their union. Let
π = (W1, ...,Wm) and v ∈ Wi, the partition obtained by individualizing vertex
v is π↓v = (W1, ...,Wi−1, {v},Wi \ {v},Wi+1, ...,Wm).

A colored graph is an ordered pair (G, π) ∈ G(V )×Π(V ). Partition π assigns
color π(v) to each vertex v ∈ V . Let π = (W1, ...,Wm), for each vertex v ∈ V ,
its color-degree vector is defined as d(G, π, v) = (δ(G,Wi, v) : i = 1, ...,m).
A colored graph (G, π) is equitable if for all v, w ∈ V , π(v) = π(w) implies
d(G, π, v) = d(G, π,w). (I.e., if all vertices of the same color have the same
number of adjacent vertices of each color.) The notion of isomorphism and au-
tomorphism can be extended to colored graphs as follows. Two colored graphs
(G, π) and (H, ρ) are isomorphic if there is an isomorphism γ of G onto H, such
that γ(v) = w implies π(v) = ρ(w).

Two equitable colored graphs (G, π) ∈ G(VG)×Π(VG) and (H, ρ) ∈ G(VH)×
Π(VH) are compatible if and only if (1) |π| = |ρ| = m; (2) let π = (W1, ...,Wm)
and ρ = (W ′1, ...,W

′
m), then for all i ∈ [1,m], |Wi| = |W ′i |; (3) and for all v ∈ VG,

w ∈ VH , π(v) = ρ(w) implies d(G, π, v) = d(H, ρ,w). Note that, if two colored
graphs are not compatible, then they can not be isomorphic.



2.2 Individualization-Refinement and Search Trees

Most algorithms for computing GA or CL use variants of the Weisfeiler-Lehman
individualization-refinement procedure [21]. This procedure requires two func-
tions: a cell selector and a partition refiner. A cell selector is a function S that,
given a colored graph (G, π), returns the index i of a cell Wi ∈ π such that
|Wi| > 1. A partition refiner is an isomorphism-invariant function R that, given
a colored graph (G, π), returns (G, π) if it is already equitable. Otherwise, it
returns an equitable colored graph (G, ρ) such that ρ is finer than π.

The automorphism group of a graph is usually computed by traversing a
search tree in a depth-first manner. A search tree of a graph G ∈ G(V ) is a
rooted tree T (G) of colored graphs defined as follows.

1. The root of T (G) is the colored graph R(G, (V ))4.

2. Let (G, π) be a node of T (G). If π is discrete, it is a leaf node.

3. Otherwise, let π = {W1, ...,Wm} and assume S(G, π) = j, j ∈ [1,m], and
Wj = {v1, ..., vk} (recall that |Wj | > 1 from the definition of a cell selec-
tor). Then, (G, π) has exactly k children, where the ith child is (G, πi) =
R(G, π↓vi).
A path in T (G) starts at some internal (non-leaf) node and moves toward

a leaf. A path can be denoted as π0[v1〉π1...[vk〉πk, indicating that, starting at
node (G, π0) and individualizing vertices v1, ..., vk, node (G, πk) is reached. The
depth (or level) of a node in T (G) is determined by the number of vertices which
have been individualized in its path from the root. Thus, if (G, π0) is the root
node, then π0 is the partition at level 0, and πk is the partition at level k. The
first path traversed in T (G) is called the first-path, and the leaf node of the
first-path is called the first-leaf.

Theorem 1. Let G = (V,E) be a graph. Let (G, π) and (G, ρ) be two compatible
leaf-nodes in T (G). Then, mapping γ : V → V such that, for all v ∈ V , π(v) =
ρ(γ(v)) is an automorphism of G.

Proof. Direct from the definition of compatibility among colored graphs, and
the fact that, since (G, π) and (G, ρ) are leaf-nodes, all their cells are singleton.

3 Correctness of EAD and BJ

In this section we define specific concepts needed to develop our main results, like
the concept of the kernel of a partition, and that of a partition being a subpar-
tition of another partition. Then, we state theorems that prove the correctness
of the EAD and BJ techniques.

We start by defining the kernel of a partition, which intuitively is the subset
of vertices in non-singleton cells with edges to other vertices in non-singleton
cells, but not to all of them. More formally, we can define the kernel as follows.

4 We write R(G, (V )) and S(G, π) instead of R((G, (V ))) and S((G, π)) to avoid du-
plicated parentheses.



Definition 1. Let (G, π) ∈ G(V ) × Π(V ) be an equitable colored graph, π =
(W1, ...,Wm) and W =

⋃
i:|Wi|>1Wi. Then, the kernel of partition π is defined

as κ(π) = {v ∈ W : δ(G,W \ {v}, v) ∈ [1, |W | − 1]}. The kernel complement of
π is defined as κ(π) = (V \ κ(π)).

Now we can define the concept of a subpartition of another partition.

Definition 2. Let (G, π) and (G, ρ) be two equitable colored graphs such that ρ
is finer than π. Then, ρ is a subpartition of π if and only if each cell in the
kernel of ρ is contained in a different cell of π. (I.e., ρκ(ρ) = πκ(ρ).)

The next result allows for early automorphism detection (EAD) when, at
some node in the search tree, the node’s partition is a subpartition of an an-
cestor’s partition. In practice, it limits the maximum depth in the search tree,
necessary to determine if a path is automorphic to a previously explored one.

Definition 3. Let G ∈ G(V ) and T (G) its search tree. Let (G, πk) be a node of
T (G). Let (G, πl) and (G, ρl) be two descendants of (G, πk) such that (1) they
are compatible, and (2) πl and ρl are subpartitions of πk. Let πl = (W1, ...,Wm)
and ρl = (W ′1, ...,W

′
m). For all i ∈ [1,m], let βi be any bijection from Wi to W ′i .

Let us define the function α : V → V as follows.
– For all v ∈ κ(πl), α(v) = βπl(v)(v).

– For all v ∈ κ(πl), α(v) = f(v), where f(v) = v if v ∈ κ(ρl), and f(v) =
f(β−1(v)) if v ∈ κ(ρl).

Theorem 2. Let G ∈ G(V ) and T (G) its search tree. Let (G, πk) be a node of
T (G). Let (G, πl) and (G, ρl) be two descendants of (G, πk) such that (1) they are
compatible, and (2) πl and ρl are subpartitions of πk. Then, (G, πl) and (G, ρl)
are isomorphic, and α (as defined in Definition 3) is an automorphism of G.

Interestingly, some of the properties used for early automorphism detection
in other graph automorphism algorithms are special cases of the above theorem.
For instance, the early automorphism detection used in saucy-3.0 is limited to
the case in which all the non-singleton cells are the same in both partitions. This
corresponds to the particular case of Theorem 2 in which κ(πl)∩ κ(ρl) = ∅, and
all the cells in κ(πl) are singleton.

The following theorem shows the correctness of backjumping (BJ) when
searching for automorphisms. This allows to backtrack various levels in the search
tree at once.

Theorem 3. Let (G, πk) be a node of T (G). Let (G, πl) and (G, ρl) be two
compatible descendants of (G, πk). Let (G, πm) and (G, ρm) be two descendants
of (G, πl) and (G, ρl) respectively, such that πm is a subpartition of πl and ρm is
a subpartition of ρl. If (G, πm) and (G, ρm) are compatible but not isomorphic,
then (G, πl) and (G, ρl) are not isomorphic either.

A direct practical consequence of Theorem 3 is that, when exploring alter-
native paths at level k, if a level m is reached that satisfies the conditions of the
theorem, it is not necessary to explore alternative paths at level l. Instead, it is
possible to backjump directly to the closest level j ∈ [k, l) such that ρm is not a
subpartition of ρj .



4 Implementation of the Techniques in conauto-2.03

The starting point is algorithm conauto-2.0, which is the first version of co-
nauto that solves GA. It obtains a set of generators, and computes the orbits
and the size of the automorphism group using the individualization-refinement
approach. Its cell selector chooses a non-singleton cell with the largest number
of adjacencies to non-singleton cells, and the one with the smallest size among
them. The basic algorithm works in the following way. It starts by generating
the first path, recording the positions of the individualized cells at each node
of the path, for future use. Then, starting from the leaf parent, it explores each
alternative branch. When a leaf node compatible with the leaf of the first path
is reached, an automorphism is found and stored. Then, the algorithm moves to
the parent node and explores the new branches of its subtree, which will gener-
ate paths of length two. This process continues until the root node of the search
tree has been explored, using limited coset and orbit pruning.

EAD is implemented as follows. The first path is explored to find, for each
non-leaf node (G, π), its nearest successor (G, ρ) which is a subpartition of (G, π).
Note that a leaf node is a subpartition of all its ancestors. (G, ρ) is recorded as
the search limit for (G, π). Then, when searching for automorphisms from (G, π),
if a new node compatible with (G, ρ) is found, an automorphism α is inferred
applying Definition 3. This requires a subpartition test which is linear in the
number of cells, that will be executed, for each non-leaf node in the first path, at
most as many times as the length of the path from that node to the leaf. Every
time the search limit is not a leaf, a subtree is pruned.

BJ requires the execution of the subpartition test for the ancestors of each
node (G, π) of the first path, until a node of which it is not a partition is found.
That will be the backjump point for node (G, π). The point is recorded, and BJ
can be subsequently applied with zero overhead.

EAD and BJ can only be applicable if there are nodes in the first path that
satisfy the subpartition condition. Without a cell selector that favours subparti-
tions, they cannot be expected to be useful in general. Hence, a cell selector like
DCS is needed. DCS works in the following way. At node (G, π), it first selects, as
candidates, one cell in κ(π) of each size and number of adjacencies to its kernel.
From each such cell, it takes the first vertex v, and computes the corresponding
refinement R(G, π↓v). If it gets a partition which is a subpartition of π, it selects
that cell (and vertex) for individualization. If no such cell is found, it selects the
cell (and vertex) which produces the partition with the largest number of cells.
Observe that this function is not isomorphism-invariant (not all the vertices of
a cell will always produce compatible colored graphs), and it has a significant
cost in both time and number of additional nodes explored. However, it pays off
because the final search tree is drastically reduced for a great variety of graphs,
and other techniques compensate the overhead introduced.

Conflict detection and recording (CDR) requires a function to compute the
hash of each conflict found, and storing a couple of integers for the hash and the
counters. The cost incurred is very limited and there is a large variety of graphs
that benefit from this technique.



5 Complexity Analysis

It was shown in [12] that conauto-1.0 is able to solve the GI problem in poly-
nomial time with high probability if at least one of the two input graphs is a
random graph G(n, p) for p ∈ [ω(ln4 n/n ln lnn), 1 − ω(ln4 n/n ln lnn)]. Using
a similar analysis, it is not hard to show a similar result for the complexity of
conauto-2.0 solving the GA problem. I.e., conauto-2.0 solves the GA problem
in polynomial time with high probability if the input graph is a random graph
G(n, p) for p ∈ [ω(ln4 n/n ln lnn), 1− ω(ln4 n/n ln lnn)].

We argue now that the techniques proposed in this work only increase the
asymptotic time complexity of conauto-2.0 by a polynomial additive term. This
implies that there is no risk that, if a graph is processed in polynomial time by
conauto-2.0, by using these techniques it will require superpolynomial time with
conauto-2.03. Let us consider each of the techniques proposed independently.

DCS only increases the execution time during the computation of the first-
path. This follows since it is only used by the cell selector to choose a cell, and
the cell selector is only used to choose the first-path. (Every time the cell selector
returns a cell index, this index is recorded to be used in the rest of the search
tree exploration.) The cell selector is called at most a linear number of times
in n, where n is the number of vertices of the graph. Then, DCS is applied
a linear number of times. Each time it is applied it may require to explore a
linear number of branches. Each branch is explored with a call to the partition
refiner function, whose time complexity if O(n3). Therefore, DCS increases the
asymptotic time complexity of the execution by an additive term of O(n5).

Regarding EAD, like DCS, it requires additional processing while the first-
path is created. In particular, for each partition π in the first-path, the closest
partition down the path which is a subpartition of π is determined. This process
always finishes, since the leaf of the first-path is a trivial subpartition of all the
other partitions in the first-path. There is at most a linear number of partitions
π and, hence, at most a linear number of candidate subpartitions. Moreover,
checking if a partition is a subpartition of another takes at most linear time.
Hence, EAD adds a term O(n3) to the time complexity of processing the first-
path. On the other hand, when the rest of the search tree is explored, checking the
condition to apply EAD has constant time complexity. If EAD can be applied,
an automorphism is generated in linear time. Observe that if EAD were not
used, then an equivalent automorphism would have been found, but at the cost
of exploring a larger portion of the search tree (which takes at least linear time
and may have up to exponential time complexity). Hence the application of EAD
does not increase the asymptotic time complexity of exploring the rest of the
search tree, and may in fact significantly reduce it.

The time complexity added by BJ to the processing of the first-path is similar
to that of EAD, i.e., O(n3), since for each partition in π the task is to find the
closest partition up the first-path which is not a subpartition of π (if such a
partition exists). The application of BJ in the exploration of the rest of the
search tree takes constant time to check and to apply, while the time complexity
reduction can be exponential.



CDR on its hand involves no processing during the generation of the first-
path. Then, during the exploration of the rest of the search tree, every time a
conflict is detected, the hash of that conflict is computed and the corresponding
counter has to be updated (see Section 4). This takes in total at most linear
time. Observe that conflict detection, which takes at least linear time, has to be
done in any case. Hence, CDR does not increase the asymptotic time complexity
of the algorithm.

6 Evaluation of the Techniques in conauto-2.03

In this section, we evaluate the improvement in performance of conauto-2.0 by
adding the proposed techniques. The experiments have been carried out in an
Intel(R) Core(TM) i5 750 @2.67GHz, with 16GiB of RAM under Ubuntu Server
9.10. All the programs have been compiled with gcc 4.4.1 and optimization flag
‘-O2’, and all the results have been verified to be correct. First, we evaluate the
impact of each of the techniques proposed separately on the number of nodes
that are explored during the search. Then, we evaluate the impact of their joint
use in conauto-2.03 with respect to conauto-2.0. Finally, we compare the run-
ning times of conauto-2.03 vs. conauto-2.0. For the experiments, we have used
all the graphs in our benchmark [11], which include a variety of graph fami-
lies with different characteristics. It includes strongly regular graphs, random
graphs, projective planes, Hadamard matrices, multiple variations of Miyazaki’s
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Fig. 1. Performance evaluation for the different techniques in conauto-2.0.



construction, different kinds of union graphs, etc. When counting the number
of nodes of the search tree explored, each execution was stoped when the count
reached 108. For the time comparison, a timeout of 5,000 seconds was estab-
lished. When an execution reached the limit, its corresponding point is placed
on boundary of the plotting area. The plots are shown in Figure 1.

As can be observed in the plots, EAD, BJ, and CDR never increase the num-
ber of nodes explored. This number slightly increases with DCS in some graphs,
but only in a few executions with small search tress, and the benefit attained for
most graphs is very noticeable. In fact, many executions that reached the count
limit without DCS, lay within the limit when DCS is used (see the rightmost
boundary of the plot). In the case of component-based graphs with subsets of
isomorphic components, EAD is able to prune many branches, but with other
graph families it has no visible effect. That is why the diagonal of the plot is
crowded. BJ has a similar effect, but for different classes of graphs. It is mostly
useful for component-based graphs which have few automorphisms, so they are
complementary. EAD exploits the existence of automorphisms, and BJ exploits
the inexistence of automorphisms. CDR is useful with a variety of graphs. It is
mostly useful when the target cells used for individualization are big and there
are few automorphisms. When DCS and/or BJ are combined with DCS, their
effect increases, since DCS favours the subpartition condition, generating more
nodes at which EAD and BJ are applicable. When all the techniques proposed
are used (in conauto-2.03), the gain is general (big search trees have disapeared
from the diagonal), and the overhead generated by DCS is compensated by the
other techniques in almost all cases.

The techniques presented help pruning the search tree, but they have a com-
putational cost. Hence, we have compared the time required by conauto-2.0 and
conauto-2.03, to evaluate the computation time paid for the pruning attained.
The results obtained show that the improvement in time is general and only a
few runs are slower (with running time below one second). Additionally, many
executions that timed out in conauto-2.0 are able to complete in conauto-2.03
(see the rightmost boundary of the time plot). Finally, we want to mention that
exetensive experiments, not presented here for lack of space, show that only DCS
increases the running time of the algorithm, and only for a few cases, while all
the other techniques never increase the running times.

7 Conclusions

We have presented four techniques than can be used to improve the performance
of any GA algorithm that follows the individualization-refinement approach. In
particular, a new way to achieve early automorphism detection has been proposed
which is simpler and more general than previous approaches, and its correction
has been proved. These techniques have been integrated in the algorithm conauto
with only a polynomial additive increase in asymptotic time complexity. We have
experimentally shown that, both isolated and combined, the proposed techniques
drastically prune the search tree for a large collection of graph instances.
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