

Mesh movement strategy based on octree decomposition

M. Gómez, M. Cordero-Gracia, J. Ponsin, E. Valero E.T.S.I. Aeronáuticos, Madrid, Spain

Problem: Transfer deformations between meshes

BodyTransfer

Transfer deformations from a structural mesh to an aerodynamic or surface mesh.

MeshMove

Transfer deformations from an aerodynamic mesh to a volumetric mesh.

Transfer deformations from a structural mesh (CSM grid) to an aerodynamic mesh (CFD grid)

 Transfer deformations from an aerodynamic mesh (CFM grid) to a volumetric mesh (CFD grid)

- Transfer deformations from the boundary mesh to the volumetric mesh for a wide range of perturbations.
- Efficiency in computational resources (time and memory).
- Mesh quality preservation.
- Applicability to any 3D data set (any kind of 3D meshes: structured, multiblock structured, unstructured and hybrid).

Methodology:

Interpolation of deformations with Radial Basis Functions.

Strategy:

Definition of interpolation domains that cover the whole mesh.

Generation
Management of domains with Octree data structure

Definition of an optimal ordering to the domain deformation sequence.

Interpolation

- Given N_s centers $\{x_1^s,\ldots,x_{N_s}^s\}$ and their displacements $\{h_1^s,\ldots,h_{N_s}^s\}$, and N_a evaluation nodes $\{x_1^a,\ldots,x_{N_a}^a\}$
- The problem consists on obtaining the displacements $\{h_1^a,\dots,h_{N_a}^a\}$ via interpolation methods, in a smooth an regular way

RBF Interpolation method

Reconstruct a continuous spatial distribution $h(\bar{x})$ using the discrete values \bar{x}_i^s

$$h(\bar{x}) = \sum_{i=1}^{N_s} w_i \, \Phi(||\bar{x} - \bar{x}_i^s||) + \Pi(\bar{x})$$

where

- ullet w_i are the coefficients.
- Φ is a fixed basis function which is radial with respect to the Euclidean distance (*Radial Basis Function*)
- Π is a m degree polynomial that depends on the Φ function.

Requirements

Interpolation condition

$$h_i^s \equiv h(\bar{x}_i^s)$$

Zero condition

$$\sum_{i=1}^{N_s} w_i \, q(\bar{x}_i) = 0$$

for all polynomials q with a degree $deg(q) \leq deg(\Pi)$

To avoid transfer of fictitious displacements, zero degree polynomials are required

$$\Pi(\bar{x}) = \gamma_0 \Longrightarrow \sum_{i=1}^{N_s} w_i = 0$$

RBF Interpolation

Coefficients computation

$$\left. \begin{array}{ll} h_i^s = h(\bar{x}_i^s) & i = 1, \dots, N_s \\ \sum w_i = 0 \end{array} \right\} \Longrightarrow \text{ System of } N_s + 1 \text{ equations}$$

$$\begin{pmatrix} 0 \\ h_1^s \\ h_2^s \\ \vdots \\ h_{N_s}^s \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 & \dots & 1 \\ 1 & \Phi_{s_1 s_1} & \Phi_{s_1 s_2} & \dots & \Phi_{s_1 s_{N_s}} \\ 1 & \Phi_{s_2 s_1} & \Phi_{s_2 s_2} & \dots & \Phi_{s_2 s_{N_s}} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & \Phi_{s_{N_s} s_1} & \Phi_{s_{N_s} s_2} & \dots & \Phi_{s_{N_s} s_{N_s}} \end{pmatrix} \begin{pmatrix} \gamma_0 \\ w_1 \\ w_2 \\ \vdots \\ w_{N_s} \end{pmatrix}$$

$$\bar{h}^s = C_{ss}\,\bar{\omega}$$

RBF Interpolation

Applying to evaluation nodes

$$h_i^a = h(\bar{x}_i^a) = \sum_{k=1}^{N_s} w_k \Phi(||\bar{x}_i^a - \bar{x}_k^s||) + \gamma_0 \quad i = 1, \dots, N_a$$

$$\begin{pmatrix} h_1^a \\ h_2^a \\ \vdots \\ h_{N_a}^a \end{pmatrix} = \begin{pmatrix} 1 & \Phi_{a_1s_1} & \Phi_{a_1s_2} & \cdots & \Phi_{a_1s_{N_s}} \\ 1 & \Phi_{a_2s_1} & \Phi_{a_2s_2} & \cdots & \Phi_{a_2s_{N_s}} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & \Phi_{a_{N_a}s_1} & \Phi_{a_{N_a}s_2} & \cdots & \Phi_{a_{N_a}s_{N_s}} \end{pmatrix} \begin{pmatrix} \gamma_0 \\ w_1 \\ w_2 \\ \vdots \\ w_{N_s} \end{pmatrix}$$

$$\bar{h}^a = A_{as}\,\bar{\omega} = A_{as}\,C_{ss}^{-1}\,\bar{h}^s$$

Radial Basis Functions

Function

Definition $\Phi(\bar{x})$

Volume Spline

$$||\bar{x}||$$

Wendland \mathcal{C}^0

$$(1-||\bar{x}||)_{+}^{2}$$

Wendland \mathcal{C}^2

$$(1 - ||\bar{x}||)_{+}^{4} (4||\bar{x}|| + 1)$$

Wendland \mathcal{C}^4

$$(1-||\bar{x}||)^6_+ (35||\bar{x}||^2+18||\bar{x}||+3)$$

RBF interpolation method

Advantages

- Valid for any dimensional problem.
- Translation and rotation invariant.
- Smooth representation.
- Possibility to manage any kind of 3D data (only) depend on the distance between nodes).

Disadvantages

Time and memory consumption.

Mesh movement methodology

Problems

- Numerical viability
 - Mesh size
- Accuracy
 - Distance between centers and evaluation nodes

Strategy

- Generate local interpolation domains
 - Enough centers to guarantee a reliable interpolation,
 - Not too many to ensure a manageable C_{ss} matrix size.

Interpolation domains

Non-disjoint sets of centers and evaluation nodes, linked by their proximity.

Common Interpolation domains

Non-disjoint sets of centers and evaluation nodes, linked by their proximity.

Octree data structure

COMAS Interpolation domains

Non-disjoint sets of centers and evaluation nodes, linked by their proximity.

Octree data structure

The whole mesh is recovered by the union of all domains.

Interpolation domains

Each domain represents a full interpolation problem.

- A domain is characterized by
 - The centers and evaluation nodes that form its own C_{ss} and A_{as} matrices.

Its position index in the ordered sequence of domains.

Centers and evaluation nodes (i)

- An interpolation domain is made up of:
 - one kernel cube containing the evaluation nodes
 - and all neighbour cubes

Centers and evaluation nodes

- An interpolation domain is made up of:
 - one kernel cube containing the evaluation nodes
 - and all neighbour cubes

- As the interpolation is going on the domain's sequence
 - the evaluation nodes of the neighbour cubes already deformed, act as centers.

Advancing front strategy

Information travels through concentric layers surrounding the boundary.

From the surface to the farfield

- Domains whose kernel contains surface nodes make up the first layer.
- Once the first domain has been chosen, it is possible to cover the whole boundary travelling across neighbouring kernels.

Computational strategy

Computational bottlenecks

- Number of interpolation domains.
- Maximum size of the interpolation matrix in each domain.

Solution

Two user-provided parameters.

Computational strategy

Computational bottlenecks

- Number of interpolation domains.
- Maximum size of the interpolation matrix in each domain.

Solution

- Two user-provided parameters.
- Max. number of nodes within an octree cube.
 - It controls the number of interpolation domains
 - It is related with the preprocessing time

Computational strategy

Computational bottlenecks

- Number of interpolation domains.
- Maximum size of the interpolation matrix in each domain.

Solution

- Two user-provided parameters.
- Max. number of centers within an interpolation domain.
 - It controls the size of the interpolation matrix C_{ss}
 - It is related with the evaluation time

Mesh quality metrics

Mesh quality metrics

Two quality algebraic metrics have been incorporated to measure the quality of the deformed mesh in order to:

Prove the validity of the methodology.

Stop the computation cycle: Maximum allowed deformation

when any of the quality parameters go below a prescribed threshold (degenerated mesh).

Mesh quality metrics

Relative size metric

$$f_{size} = \min\{\tau, \frac{1}{\tau}\}$$

Degenerated deformed element $\Longrightarrow f_{size} < 0$

Shape metric

 f_{shape} combination of skew metric and element edge-length ratios

Three edges at one vertex coplanar $\iff f_{shape} = 0$

Numerical results

Inviscid mesh. NACA0012

- 34.000 surface mesh nodes
- 180.000 volumetric mesh nodes

Types of deformations

Torsion

$$\varphi(y) = \frac{y}{L} \, \varphi_L$$

 $\varphi_L \equiv$ twist at wing tip

Bending

$$\eta(y) = \frac{y^2(6L^2 - 4Ly + y^2)}{3L^4}$$

 $\eta \equiv \text{vertical displacement}$

Robustness tests

- Maximum deformation running the algorithm once.
- Maximum deformation running it iteratively.

Test	spline	Wend. \mathcal{C}^0	Wend. \mathcal{C}^2
$arphi_{L_{max}}$ one step	51°	$37^{\rm o}$	$34^{\rm o}$
$arphi_{L_{max}}$ multiple steps	$100^{\rm o}$	$65^{\rm o}$	$50^{\rm o}$
η_{max} one step	54%L	38%L	34%L
η_{max} multiple steps	100%L	100% L	100% L

$$m{Mesh \ quality \ condition}: \ f_{size} > 0 \ f_{shape} > 0 \ f_{mesh \ novement \ strategy \ based \ on \ octree \ decomposition}}$$

70% twist at wing tip

Close to wing tip (80% span)

Leading edge

Mean values of quality parameters:

$$f_{size} = 0.996$$
 $f_{shape} = 0.9996$

Viscous mesh. ONERA M6

Original mesh

Deformed mesh

(Wing rotation of 10°)

- 43.200 surface mesh nodes
- 1.500.000 volumetric mesh nodes Mesh movement strategy based on octree decomposition- p. 30

Quality mesh test

Two flow computations have been carried on using DLR_TAU code (Mach=0.2, Re = 11.2×10^6)

1. Over the original mesh with $\alpha = 10^{\rm o}$

- 2. Over the deformed mesh with $\alpha = 0^{\circ}$
 - Mean values of quality parameters:

$$f_{size} = 0.984$$
 $f_{shape} = 0.995$

Quality mesh test

Pressure coefficient distributions at sections of wing

- An general interpolation tool based on RBFs together with an advancing front strategy for moving 3D meshes has been developed.
- It can be applied to any kind of meshes (structured or unstructured).
- It is robust, efficient and preserves the quality of the original mesh for very large deformation.
- It can be parallelized because of the inherent domain decomposition strategy.

Thank you

INTERNATIONAL CONFERENCE ON COUPLED PROBLEMS IN SCIENCE & ENGINEERING

Eccomas Sta. Eulalia, Ibiza 17-19 June 2013