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Ahstract- The main objective of this paper is the development 

and application of multivariate time series models for 

forecasting aggregated wind power production in a country or 

region. 

Nowadays, in Spain, Denmark or Germany there is an 

increasing penetration of this kind of renewable energy, 

somehow to reduce energy dependence on the exterior, but 

always linked with the increase and uncertainty affecting the 

prices of fossil fuels. 

The disposal of accurate predictions of wind power generation is 

a crucial task both for the System Operator as well as for all the 

agents of the Market. 

However, the vast majority of works rarely consider forecasting 

horizons longer than 48 hours, although they are of interest for 

the system planning and operation. 

In this paper we use Dynamic Factor Analysis, adapting and 

modifying it conveniently, to reach our aim: the computation of 

accurate forecasts for the aggregated wind power production in 

a country for a forecasting horizon as long as possible, 

particularly up to 60 days (2 months). 

We illustrate this methodology and the results obtained for real 

data in the leading country in wind power production: 

Denmark. 

Index Terms- Multivariate Time Series, Unobserved 

Components, Dimensionality Reduction, Forecasting, Wind 

Power Production. 

I. INTRODUCTION 

Energy consumption has been increasing since the 
Industrial Revolution took place, but the traditional use of 
fossil fuels has to be reduced due to its negative environmental 
consequences (emission of Green House Effect gases). 
Besides, nuclear power plants have been discussed worldwide, 
particularly after the accident in Fukushima. The 
aforementioned reasons, as well as the need of reducing the 
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exterior energy dependence of the vast majority of countries 
which do not produce them, have implied important changes 
in the regulation of the electric sector. The use of renewable 
energies has been promoted, and among all of them, wind 
based one is the one whose development has been largely 
greater in the last years. 

One of the advantages of wind is its geographical 
availability. However, the main criticism about it is related to 
its huge variability and trouble in computing accurate 
forecasts, even for relatively short forecasting horizons. 

Extreme situations have been registered in the historical 
data. For illustration purposes the case of the Iberian Peninsula 
where between August and November 2009 the percentage of 
load covered by wind power generation oscillated from a 
minimum of 1 % to a maximum of 50%. These issues make 
difficult its integration in the Electric System. In spite of that, 
wind power generation is, among all renewable energy 
sources, the one with the largest development in the last 
decade. 

Denmark can be considered (according to the data from 
the World Wind Energy Association in 2010) a leading wind 
power country, having achieved a record penetration of wind 
power. 

This justifies the election of the Danish hourly data of 
wind power production (both in the East and West) to 
empirically illustrate the methodology presented in this paper. 
Moreover, the availability of the Danish data through its 
website www.energinet.dk is an additional advantage. 

The disposal of accurate forecasts of wind power 
production is a need for the System Operator of any country. 
An inaccurate forecast (excess or default) could be the cause 
of serious operation problems (such as an excess of production 
or use of non-clean energies). Thus, the development of 
quantitative tools that are able to compute adequate forecasts 
in terms of prediction accuracy is a crucial task, not only for 
the System Operator but also for all the agents involved in the 
S ystemlMarket. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148671502?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


We propose a model to forecast aggregated wind power 
production in a region or even in a country and not for single 
wind farms as many other authors do, our focus/task is also a 
very useful one, and in case of being successful, wind power 
producers can take advantage of our results, allowing them to 
schedule, for instance, maintenance tasks in their wind farms 
when the aggregated wind power production of the region is 
larger according to the forecasting model. 

Although most System Operators have developed tools for 
wind power forecasting (see for instance the online tool for the 
Iberian Market, SIPREOLICO, [1]), usually, these ones as 
well as other forecasting methods have their forecasting 
horizons really limited (24-48 hours ahead) since for longer 
ones their performance dramatically degrades. This also 
applies for forecasting at single wind farms or wind speed 
forecasting. 

As far as the state of the art in this subject is concerned, we 
refer here just some of the most well known ones. Since we 
are going to focus on computing forecasts for the aggregated 
wind power production in a region, we will focus on related 
previous works. 

In [2] the author proposed a new recursive procedure to 
estimate time-varying parameters, with application to several 
wind farms. Reference [3] presented a methodology for the 
combination of forecasts for wind power forecasting. 

In [4] the authors introduced a proposal for aggregated 
wind power production in a region by looking for similar 
features between the predicted wind vector and historical ones. 
The model is based on smoothed average means and weighted 
local regression. 

In [5] they presented an analysis of the influence on 
electricity prices of the computed one-day-ahead wind power 
production forecasts. 

The authors of [6] introduced a scenario generation 
method for the short run that allows considering dependency 
among the prediction errors as well as the predictive 
distribution of the wind power production. 

In [7] the authors proposed several multivariate tools to 
check the validity of the scenarios as well as functional-based 
diagnostic methods, whose application to several sets of 
scenarios, demonstrates their usefulness to select among them. 

Something that is common to the vast majority of papers 
on wind power production, both in the case dealing with 
aggregated data for a region or country or for single wind 
farms, is the short forecasting horizon for which the forecasts 
are calculated. And this is the gap that this work tries to fill in. 

For this purpose we will use as starting point the 
multivariate time series models, particularly, we present 
unobserved component models (dynamic factor analysis) as 
the ones developed by [8] - [10]. These works implied 
important methodological contributions from the econometric
statistical perspective. Although dynamic factor models and 
dimensionality reduction techniques are not new in the 
statistical framework (see [11] - [15] for demographic, 
macroeconomic or financial application of these models), their 
use was not extended in the context of energy and power 

markets but their usefulness and accuracy for long term 
forecasting has been demonstrated for complex data such as 
electricity prices. 

That is why, in this work we will apply these techniques 
(Dynamic Factor Models and unobserved component models), 
and adapt them adequately to face an interesting problem, 
such as mid term forecasting (up to two months ahead) of 
hourly wind power production (aggregated one in a region or 
country). 

We will illustrate the application of these models using the 
hourly data of aggregated wind power production in Eastern 
and Western Denmark. Our methodology is able to consider 
"the interdependence structure of prediction errors, induced by 
movement of meteorological fronts, or more generally by 
inertia of meteorological systems", whose importance was 
remarked in [16]. 

The rest of the paper is organized as follows. In Section II 
we introduce the data as well as some of their main empirical 
features that somehow justify the methodology here presented. 
In Section III the forecasting procedure here proposed, based 
on jointly modeling the hourly data of Western and Eastern 
Denmark, capturing the multivariate evolution over time of 
the data by a smaller (than the original 48 hourly series) 
number of unobserved components or common factors, is 
presented. In Section IV the numerical results obtained when 
computing one to two months ahead hourly forecasts are 
presented. Finally, Section V concludes and 

II. THE DATA. DESCRITIVE STATISTICS AND EMPIRICAL 

FEATURES 

In this work we consider the hourly data of the Eastern and 
Western area in Denmark. We consider hourly data in the 
period I st of January 2006 till de 29th of February 2012. 

In Figure 1 we provide the evolution over time of hourly 
wind power production during January 2008, both in the 
region Denmark West and East, respectively. Although the 
level and variability are different, just a visual inspection of 
these plots shows a common pattern in the evolution over time 
of the productions in the two zones considered. The procedure 
here used to compute forecasts of wind power production 
takes advantage of this. 
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Figure 1. Wiud power production, Denmark West and East, January 2008. 

Moreover, in Figure 2 we provide the evolution over time 
of the 24 hourly time series of hourly wind power productions, 
also for Denmark West and East. In this case the frequency of 
each of the 48 series (24 for West and 24 for East) is daily. It 
can also be additionally seen that apart from the common 
pattern affecting both areas, we can explicitly detect the 
common pattern affecting the evolution over time of the 24 
series of each region. 

Thus, from our point of view, a very reasonable way of 
extracting both the common component affecting all the 
hourly series in a zone as well as the common behavior 
between East and West, would be modeling the 48-
dimensional vector of hourly series of the two regions jointly. 

Additionally, considering for each zone the data as a 24-
dimensional vector of series instead of a single one with daily 
seasonality (s=24, where s is the order of seasonality) is an 
alternative way to model the seasonal component that has 
been successfully used when modeling and forecasting load 
and prices in the energy context, and which is known as the 
parallel approach, [17] and [18]. 

Particularly, referred to electricity prices, unobserved 
component models have demonstrated to be one of the most 
efficient methodologies for long-term forecasting. That is why 
we are here interested on studying its performance in long 
forecasting horizons compared to the vast majority of recent 
literature on the field (rarely longer than 48 hours ahead). 
Here, our main focus will be in one and two-month-ahead 
forecasts, which already represents a great extension of the 
traditional lengths of the forecasting horizons. To the best of 
our knowledge, the literature is very scarce on attempts to 
extend the forecasting horizon. 

Besides, our proposal can be seen as an alternative to 
consider spatial correlation between the panels of series. 

24 hour� series, hourly,;nd power production, Jan and Feb 2012, DENMARK WEST 

24 hourly series, hour�wind power production, Jan and Feb 2012, DENMARK EAST 

Figure 2. Vector of 24 series of hourly wind power productions, Denmark 
West and East (top and bottom) during January and February 2012. 

III. METHODOLOGY. THE DYNAMIC FACTOR MODEL. 

ESTIMATION RESULTS 

In this Section a Dynamic Factor Model (DFM) for the 48-
dimensional vector of wind power productions in the two 
areas aforementioned in Denmark is presented. The model 
here considered is an extension of the Seasonal DFM 
presented in [10] for electricity prices, since we try to consider 
not only the multivariate structure of the 24 hourly series but 
also the relationship between the production in both areas 
related to the "movement of meteorological fronts, or more 
generally by inertia of meteorological systems", as pointed out 
in [16]. 

Thus, the vector of series to model is the following: 

PWl,! PWZ4,1 PEl,! PE24,1 

Pt = [PWt PEt] = PW1,d PE1,d PE24,d 

PW1,TJ PE1,TJ PE24,TJ 

where PWh,d is the hourly wind power production in the 
Western area of Denmark at hour h of day d, and the same 
holds for PEh,d in the Eastern area. PWt and PEt are 
respectively the 24-dimensional vectors of hourly productions 
in the West and East. 

A possible alternative when modeling a vector of series 
instead of a single one is the estimation of V ARIMA models, 
the multivariate extension of the well-known ARIMA 
(AutoRegressive Integrated Moving Average) models. 

However, when the dimension of the vector of series is 
large, as it is our case, even estimating the simplest V ARIMA 
model, which is the V AR(1), equivalent to the AR(1) in the 
univariate case implies estimating a large number of 
parameters. 



Be aware that estimating just this simple model, a V AR(1), 
that relates hourly productions at day t with the ones in the 
previous day t-l, implies estimating an autorregressive 
coefficient, Cl>, which is in fact a 48 by 48 matrix!, as follows: 

(1) 

where at is identically independent multivariate Gaussian 
noise, whose mean is a 48 by 1 vector of zeros, and its 
variance-covariance matrix is �a, i.e., at----+N4S(04Sxj, �a). 

That is why, dimensionality reduction techniques had been 
widely used in economics, financial or demographical 
applications, among others. However, the use of this 
methodology was not extended in the energy context till 
relatively recently. But some recent publications have 
demonstrated that these techniques are very powerful ones for 
long-term forecasting of electricity prices. Here, we adapt this 
methodology to the case of modeling and forecasting 
aggregated hourly wind power production in two close 
regions, where apart from the relationship among hourly series 
we have to consider the relationship due to closeness and 
consequent sharing of meteorological conditions. 

Thus, the DFM proposed is the extension/adaption of the 
one considered in [10], to the particular characteristics of the 
data, PI = [PWI PEl] here under study, that fortunately does 
not imply relevant changes in the estimation procedure there 
described. Thus, the model to estimate is the following: 

(2) 

where f, is an r«48 dimensional vector of unobserved 
common factors (usually r is not larger than 2 or 3 2) that 
contain the common features of the 48 original hourly series 
of wind power productions (24 from the East and 24 from the 
West area). n is a 48 by r loading matrix that relates the 48 
observed series with the vector containing the r unobserved 
common factors f, = [!Jt. ... , J,·,l Each of the fit, . . . , fr' are 
modeled as single univariate ARIMA models. 

e, is a 48 dimensional vector of specific components, 
containing then the specific features of each original series 
PWh,d and PEh,d' Splitting the dynamical features of each of 
the original series into its common and specific components is 
very attractive in terms of interpretation. 

This procedure can be seen as the complex extension of 
the well known multivariate analysis technique Principal 
Component Analysis (PCA). All the details of the estimation 
can be encountered in [10]. Here we consider data from 
several regions and this allows considering spatial 
dependence, the estimation procedure is not modified. 

The loading matrix contains the eigenvectors related to the 
r largest eigenvalues, which in fact coincides with the Singular 

1 In an univariate AR( I ) model, the autorregressive coefficient <jl is an scalar. 

2 the election of r is made using the percentage of the variability of the 
original data that is explained when considering 1, 2, 3, . . .  common factors 
Usually, r common factors are considered enough to describe the original 
data when they explain about 80% or more of the variability of the original 
data 

Value Decomposition (SVD) described in [11] in this and 
other cases. Details on this issue can be found in [II l 

For illustration purposes, we provide in Figures 3 and 4 the 
data boxplot of the hourly data both Eastern and Western 
Denmark corresponding to the last 20 weeks of 20 10 (12th 

August 2010 till the end of December 2010), after adding a 
constane, taking logs and centering the data. With these 
historical data we compute one-week, one-month and two
month ahead forecasts of the hourly wind power production, 
i.e., for every hour in the last day in January 2011, and every 
hour in the last day of February 201l. Figures 3 and 4 show 
not only the level, but also the variability are different in 
different hours considered. Also it is shown that the variability 
of the Western area is larger than the Eastern. 

West Denmark, transformed hourly Wind Power Prod, 1211 Aug 201 0 - 31 st Dec 2010 

Figure 3. Transformed series of hourly wind power production, West and 
East Denmark. 12tl' of August 2010 till 31" December 2010. 
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BOXPLOT. West Denmark, transrormed nourly Wind Power Prod, 12th Aug 201 0 - 31 st Dec 2010 
t t t t 

'1D� BOXPLOT. East Denmark, transformed hourly Wind Power Prod, 12th Aug 2010- 31st Dec 2010 

Figure 4. Transformed series of hourly wind power production, West and 
East Denmark. 12tl' of August 2010 till 3]" December 2010. 

Then, in Figure 5 we provide the estimated loads obtained 
when estimating a DFM for these data (1 th August 2010 until 
the end of December 20 I 0). They are the weights use to build 
the linear combination of the original series, obtained to 
maximize the percentage of variability of the original series 

J We add a constant before taking logs to able to do the latter. 



(those in Figure 3). In this particular case the percentage of the 
total variability of the original data explained by the r = 2 
unobserved common factors extracted is 90.09%, 74.37% by 
the first common factor and 14.72% by the second unobserved 
common factor. These factors are built as linear combinations 
of the 48 series shown in Figure 3 using the weights in Figure 
5. 

The first common component is built by giving positive 
weights to all the series (48), larger to those in the West region 
since their variability is clearly larger according to Figure 3. 
The second common factor is built giving positive weights to 
those hours (1 to 12) in which the wind power production is 
larger according to Figure 4. Also this second common factor 
gives smaller weights in modulus to the series corresponding 
to the Eastern area. The reason for that was aforementioned. 
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Figure 5. Loads for first aud second common factor (blue and green 
respectively) extracted for the hourly data in West and East Denmark. 

In Figure 6 we show how the series in Figure 3 and their 
main features are well resembled by the common factors 
estimated as detailed above. Just for illustration purposes we 
show this for the wind power production in hour 1 for West 
Denmark, and for hour 24 in the Eastern region. 

! 10') Eas� DenmaI1c, hourtyWind Power production.12t1l Aug 2010 - 31st Dec 2010 
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Figure 6. Part of the original series that is explained by the common factors 
extracted. Results for hour I in the West region (top) and hour 24 in the East 

(bottom) . 

Related to Figure 6, the difference between the series and 
the part of each one explained by the common components or 
factors are the so called specific components. They are 
stationary, which means they do not have unit roots (there is 
no need to take a difference on them to stabilize the mean). 
This implies that the forecasts of these specific components 
are only relevant when the forecasting horizon is really short. 
For longer ones the forecasts converge to zero (their mean). 

IV. MID TERM FORECASTING OF HOURLY WIND POWER 

PRODUCTION 

In this Section we will firstly describe the computational 
exercise carried out to check the performance of the proposed 
methodology in terms of forecasting accuracy. 

We have dealt with the hourly data of both East and West 
regions in Denmark, from the 15t of January 2006 till the 29th 

of December 2012. 

Forecasting with a Dynamic Factor Model, as proposed 
here consists of forecasting the common and specific 
components, and using equation (2) to compute the forecasts 
for Pt as follows: 

A /'..� 
PT+H = 0.j T+H + eT+H, 

where T is the instant of time of the last day used to estimate 
the model and H represents the forecasting horizon, in our 
case this is 30 or 60 days. 

We have considered 2 different historical lengths to 
estimate the models used to forecast: 15 and 20 weeks, 
without important differences between the forecasting results 
obtained. An open question for further research would be to 
carry out a computational experiment through which we can 
properly obtain the best historical length to use. 

The forecasting experiment carried out consisted of using a 
rolling window of 15 weeks, and computing one-month-ahead 
forecasts with hourly disaggregation for the two regions, as 
well as two-months-ahead forecasts. Thus, one and two 



month-ahead forecasts have been computed for every hour and 
day in this period. This makes our results reliable, since out
of-sample forecasts have been computed for every day in a 
large span of years (2006, 2007, 2008, 2009, 2010, 2011 and 
the first two months in 2012). 

The same experiment was done considering 20 weeks for 
the historical length of the data to estimate the models used to 
forecast. 

Then, the Normalized Mean Absolute Error (NMAE) is 
computed for every hour and day. Given that the period for 
which the forecasts have been computed is so large, the 
conclusions obtained allows evaluating the validity of the 
proposed forecasting methodology4 to produce accurate mid
term forecasts. The NMAE for a particular day d and hour h is 
defined as follows: 

NMAE(h d) = I �l,d - Ph,d I 
, Ie ' d 

where Ph,d is the true hourly wind power production at hour h 
� 

of day d, and P h,d is the forecast for this data. ICd is the 
installed capacity at day d. This forecasting accuracy metric is 
one of the most well-known ones (read [4] for a revision on 
the accuracy metrics used in wind power forecasting). 

In Figures 7, 8 and 9 the NMAE for all the out-of-sample 
forecasts computed for every day in the period 2006 till the 
end of February 2012 with different forecasting horizons 
considered are shown, which are respectively 7 days, one 
month and two months. 
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One-week-ahead forecasting errors. Forecasts computed for ailihe days in the period 2006 - february 2012 
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Figure 7. NMAE. Oue-week-ahead forecasts. 

4 (based on an existent econometric model, the Dynamic Factor Model, but 
extended to be able to take into account the relationship between aggregated 
hourly productions in regions which are close to each other, and then affected 
by common meteorological circumstances) 

w � 019 

One-month-ahead forecasting errors. Forecasts computed for a1llhe days in the period 2006 - february 2012 
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Figure 8. NMAE. One-month-ahead forecasts. 

One-week-ahead forecasting elTors. Forecasts computed for alilhe days in the period 2006 - february 2012 
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Figure 9. NMAE. Two-months-ahead forecasts. 

The accuracy of the results obtained is demonstrated, and even 
clearer if compared with NMAEs around 0.08 and 0.1 for 
forecasting horizons of just I or 2 days, see [4] for a 
comparison with results obtained in these cases. 

Additionally, the forecasting errors remain relatively stable, 
although extending the forecasting horizon from one week up 
to two months. This means that the model proposed captures 
adequately the level of the series under study, and capturing 
these levels is the key when extending the forecasting horizon 
so longer (2 months). 

V. CONCLUSIONS AND FURTHER RESEARCH 

In this work we present a methodology that is able to 
compute mid-term forecasts for the aggregated wind power 
production in an area or region with hourly disaggregation, 
which is a crucial task for all the agents involved in the 
operation of electricity markets. For instance, from the 
perspective of a wind power producer forecasts for these 
horizons could be useful to program the maintenance of the 
wind farms, selecting the most convenient period for this task. 

To the best of our knowledge, till now there were no 
available procedures that were able to compute accurate 



forecasts for recasting horizons longer than 48 or 72 hours. In 
that cases the NMAE were around 8 - 10%. Here, we obtain a 
NMAE of 17.72% for West Denmark when the forecasting 
horizon is 2 months, i.e. 1440 hours. For East Denmark we 
obtain an NMAE of 20.12%. These average errors were 
calculated for a large span of years (6 years and 2 months), 
which makes the conclusions trustable and significant. 

Thus, the achievement of this work is the calculation of 
accurate mid term forecasts for wind power production. The 
methodology has been illustrated with the Danish data, but of 
course it is of application to any other country. Furthermore, 
this should be seen as a starting point for extending even 
further the forecasting horizons. They were not longer than a 
few days (usually 2 or 3 in previous works). 

Interesting extensions of this work could be: 

1. Carrying out a formal comparison of forecasting 
results depending on the length of the rolling window 
considered (historical data used to estimate the 
models used to forecast). 

2. Using bootstrap techniques to calculate scenarios, 
i.e., not only point forecasts but also probabilistic 
ones. This can be done by following the ideas in [19]. 
The main idea is to generate bootstrap replicas of the 
common factors as well as bootstrap replicas of the 
specific ones. Then, generating bootstrap replicas of 
the original series, and re-estimating the model for 
each replica. This allows computing confidence 
intervals of all the parameters in the model. Then, to 
compute bootstrap-based forecasting intervals this 
scheme should be slightly modified to be able to 
replicate the condition distribution of future 
observation given the data. 

3. Extending the forecasting horizons even longer, once 
that this methodology has been identified as a useful 
one in this direction. 
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