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Abstract

We present a model of Bayesian network for continuous variables, where densities and con-
ditional densities are estimated with B-spline MoPs. We use a novel approach to directly
obtain conditional densities estimation using B-spline properties. In particular we imple-
ment naive Bayes and wrapper variables selection. Finally we apply our techniques to the
problem of predicting neurons morphological variables from electrophysiological ones.
Keywords: Bayesian networks, regression, MoP, conditional density estimation, non
parametric.

1. B-spline

B-splines or basis splines (Schoenberg, 1946) are polynomial curves that form a basis for
the space of piecewise polynomial functions (Faux and Pratt, 1979) over a closed domain
Qx = [ex,&x] € R. Given an increasing knot sequence (or split points) of Ly + 1 real
numbers 6 = {ag,a1,...,ar, } in the approximation domain Q = [¢, &] with a;—1 < a;,
e =ag and £ = ay, one can define M = L 4+ r — 1 different B-splines with order r spanning
the whole domain €. The jth B-spline B ; (x),j=1,...,M,is
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where w) () is the first derivative of wjy—ry (¥) = [[[X0(z — @jx—rx+u), ax = ag for

every k < 0, a = ar, for every k > L and H(x) is the Heaviside function

1 2>0
H(x):{o i;(;

B-splines form a basis of piecewise polynomial function of order r and thus every piece-
wise polynomial ¢ over €, which is differentiable in (¢, &), could be expressed as,

L4r—1

o(z) = Z a; B} ().

i=1
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We have some useful properties,
1. ¢ is differentiable in (e, ), and continue in [e, &]. (reqularity)
2. faj >=0forevery j=1,...,L+r —1 then ¢(x) >= 0. (positivity)
3. ¢(x) =0 for every z ¢ [¢,&]. (compact support)
4. ¢(x) =1 if and only if a; =1 for every j =1,..., L +r — 1. (partition of unity)

5. Jp Bj(z) = 2=,

r

We can extend the above definitions for piecewise n-variate polynomial. In particular,
for r; the order of the B-splines, and L; + 1 the number of knots for the i-th dimension, we

have
n

¢(X) = Z ajh---,jn B;éz,ﬁ(xz)’ X € Ql X - X Qn;
Jj1=1,...,M; =1

Gn=1,....Mp

where M; = L; +r; — 1, is a n-variate piecewise polynomial over hyper-rectangular pieces,
defined by the Cartesian product of the knots sequences. As the univariate case, we have
the follow properties,

1. ¢ is differentiable in (€1,&1) X - -+ X (€, &n), and continue in its closure.
2. If o, j, >= 0 for every ji, ..., jn then ¢(x) >=0.

3. 9(x) = 0 for every x ¢ [e1,€1] X -+ X [en, Eul.

2. Densities and Conditional Densities Estimation

In this section we expose methods for densities and conditional densities estimations, based
on B-spline MoPs.

2.1 Densitiy

Lépez-Cruz et al. (2013) developed a method, which is an extension of Zong (2006); Zong
and Lam (1998), for the estimation of multivariate densities with B-spline, in particular,
given knots sequences and orders for each dimension, the algorithm find the coefficients
of the B-spline representation that maximise the likelihood (MLE MoP). We moreover
observe that the given method outputs proper densities, that is, integrate to one and are
non-negative. We present now a simple heuristic search strategy (Varando et al., 2014) to
find knots sequences and orders for every dimension, for a given dataset D of observations
for the random vectors (Xy,...,X,) with density f(z1,...,2,). Algorithm 1 is a simple
greedy search over the space of the parameters, we start from the B-spline MoP with order
2 and 2 knots in every dimension and we gradually increase the order or the number of
knots in one of the dimensions, selecting at every step the solution that minimize the BIC
score.
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Algorithm 1: MoP search algorithm

Data: D a dataset of (Xy,..., X)) observations

Result: ¢; MoP B-spline approximation of f

¢ = min(D);

£ = max(D);

¢ =MLE MoP with orders 2 and 2 knots for every dimension over
[61751} X X [6717571];

score = AIC(¢,D);

SCOTEpeyy = SCOTE;

while score, e, < score do

SCOT€peyy = SCOTE;

QZ) = ¢new ;

fori=1,...,ndo
¢i1 =MLE MoP with ¢-th order increased by one ;
¢i2 =MLE MoP with ¢-th number of knots increased by one ;
score; j = BIC(¢; j,D) ;

end

SCOT€ney = min(score; ;);

Onew = MoP corresponding to scoreneqy;

end
return ¢y = ¢;

2.2 Conditional Density

We consider now a conditional density g(z|y), that is a function of (z,y) = (z,y1,...,Ym)
such that,

/Rg(m|y)daj =1 VyeR™ (2)

In Varando et al. (2014) we present two algorithms for estimating conditional densities as g,
those algorithm use the method of Lépez-Cruz et al. (2013) for multivariate densities (with
an heuristic search as in Algorithm 1) combined with a conditional sampling or a Lagrange
basis interpolation technique to obtain a MoP approximation of g(x|y). The problems of
the algorithms in Varando et al. (2014) are that:

e They perform a lengthy two-steps procedure: estimation of the MoP of the joint
probability, estimation of the MoP of the conditional density.

e One of the two methods (Lagrange interpolation) outputs general MoPs and not B-
spline MoPs, they are not continuous, have an huge numbers of parameters, are not
proper conditional densities (Equation 2) and do not have theoretical properties (as
consistency, MLE, non-negative, integrate to one).

e The method that perform a conditional sampling and then learn a B-spline MoP is
computationally costly and dose not provide a proper conditional density, that is a
function that satisfies Equation 2.
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Observing that the above problems could be a huge drawback in building Bayesian
network regression models we present now a novel approach to directly find, given knots
sequences, §; and orders 7; for each dimension, the B-spline MoP ¢(x|y) that maximise the
conditional likelihood, that is

CL($, D)= Y o(zly).

(z,y)eD

The algorithm is an adaptation of the original algorithm of Zong (2006) for finding the
MLE of the B-spline coefficients. For the sake of simplicity we present now the algorithm
in the bivariate case, that is for estimating a conditional density f(z|y) with z,y € R, the
extension to f(z]y) x € R and y € R™ is obvious.

Consider a dataset of N i.i.d. observations D = {(zM),yM), ..., (M) (M) of (X,Y)
with density f(z,y), suppose that for every y € Qy = [ey,&y]| there exist a conditional
density of X|Y, that is f(z|y) such that

/R f(aly)de = 1.

Given Qx = [ex, {x], knots sequences dx, dy and orders rx, ry we want to find a bivariate
B-spline MoP ¢4, .3(z|y) such that,

L o) (2ly) = 27T T i B (2)B)Y ()
2. fﬂx o(zly)de =1 Yy € Qy
3. ¢(zly) = 0
4. ¢ = argmaxCL(¢, D)
As in Zong (2006) we convert conditions (2), (3) above for the coefficients o ;
o N hxtrxlo, i [BIX=1 Vj=1,...,Ly +ry —1
e ;; >0 Vi=1,...,Lx+r,—landj=1,...,L,+ry —1

And we obtain an iterative methods that converges to the set of coefficients that maximise
the conditional likelihood.
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Algorithm 2: Maximum Conditional Estimation

Data: D a dataset of (X,Y’) observations, orders rx, ry and knots sequence dx, dy
Result: {o;;} the set of B-spline coeflicients correspondent to the maximum
conditional likelihood model

_ 1 L
Qij = IxFrx-T [ prx for every i, j ;

LCL = 10g(CL(¢4a, 1, D)
while (LCLyew — LCL > toll) do

arer = 3 BX@B W)
i, (@)D~ Gfa; 1 (aly) 7
aTLE’U) ’
1,
j = i

ST [ BIX ;
LCLpew = 1og(CL(¢{a, ;3 D) ;
end

return {c;;} ;

We observe that Algorithm 2 is exactly as the algorithm for multivariate MoP’s in Lopez-
Cruz et al. (2013), with a different kind of normalization that ensures the conditional density
properties.

We can then apply the same heuristic search as in Algorithm 1 to search for the set of
knots and value for the orders parameters that maximize the BIC score.

To resume we now have two algorithm, implemented as two functions in R, that com-
putes joint density and conditional density B-spline MoP estimation, maximising the BIC
score (AIC score could be used too). We will denote those functions as search.mop and
condtionialSearch.mop. We observe that the learned (conditional) B-spline MoP densities
are actual (conditional) densities, i.e. they are non-negative and integrate to one (for every
conditioning value).

3. B-spline Mops Bayesian network

We define a framework for define, computing inference and learning structure for non para-
metric Bayesian network based on B-spline MoPs densities and conditional densities.

A B-spline MoPs Bayesian network (BMoP-BN) is a Bayesian network such that densi-
ties and conditional densities are specified with B-spline MoPs.

So given a defined BN structure N over some variables X1,..., X, fitting the corre-
sponding BMoP-BN to a dataset D is equivalent to computing with functions searc.mop or
conditional Search.mop the densities ad conditional densities specified by the BN structure
N. We will refer to this operation as fit.bmopbn (N, D).

3.1 Inference

To compute posterior density we just multiply each densities and conditional densities
substituting evidence when given, the result is a function of the variables with no evidence.
We can now compute posterior mean by numerical integration or by sampling, and mode
by numerical optimization.
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Those methods for computing posterior density, mean and mode are very naive and do
not take advantage of the B-spline MoP form of the densities. To make the most of the
particular type of densities we are using we should use an algorithm that multiply B-spline
MoPs and obtains the result as a B-spline MoP, moreover using an exact method for the
integration and/or for deriving the posterior density in B-spline form would implies a gain
in computation complexity and in accuracy of the results.

4. Regression Models

We use now BMoP-BN to perform regression, we present different models based on BMoP-
BN. Given a target variable Y and features X1, ..., X, we consider the following methods.

BMoP-NB we consider a Naive Bayes (NB) structure, that is the BMoP-BN with arcs from Y to
every X;.

BMoP-NBWR The same as BMoP-NB but with features selection via a wrapper approach. We start
with a NB without features and at each step we try every possible BMoP-NB with
one more feature, the one that perform best in term of MSE (estimated with k-fold
cross validation) is selected.

Where MSE is the mean square error defined as

1 .
MSE = & > y—i(x)?

and rmse its root.
We implemented the estimation of the predicted values both with posterior mean, and
with posterior mode.

5. Electro-Morphological Regression
5.1 Problem Description

Connecting Electro physiological and Morphological variables is a common problem in Neu-
roscience (Connors and Regehr, 1996). In particular interested is been devoted to connect
morphology and functionality of single neurons (Torben-Nielsen et al., 2007; Maturana et al.,
2014) or circuit of neurons (Shepherd et al., 2005).

Recent advances in searching the relationship between morphological and electro phys-
iological variables of single neurons focus on models of neurons (multicompartment models
in Maturana et al. (2014) and L-system models in Torben-Nielsen et al. (2007)) and try
to replicate given fire-patterns with different possible models of neurons, using for example
NEURON software for simulating the electro-response.

We would like to study, instead, directly the relationship between electro physiological
and morphological variables, moreover in contrast to the state of the art, we try to predict
morphological variables starting from electro physiological ones.
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5.2 Results on Neurological Datatset

Datasets The raw dataset consist in 48 observation of 32 electrophysiological variables
(E) and 46 morphological variables. The dataset contains missing data and constant vari-
ables that we remove. We split the morphological variables in two subsets, axon’s variables
(A) and basal/soma variables (B). For every set of variables (A, B or E) we select a subset
of observation avoiding the missed data, respectively O4, Op and Og. We have that

A = 22
IB| = 24
1E| =20

We then build two datasets, one with U A variables (datal) and one with £'U B variables
(data2). Every dataset has no missing value that is, datal for example contains observation
in Oy N Opg. The dataset datal has 39 observations and data2 has 44 observations. In this
document we report results just for the axonal variables.

Numerical Results We list now some evaluations, we compare our method to some state
of the art regression models as K-NN (our simple R implementation), and M5 (WEKA),
DecisionStump (WEKA), Linear Regression with attributes selection (as in WEKA, default
options). We also report results for the constant regression model (Const) that predict the
mean of the training values. As the dataset has few observation we perform leave-one-out
cross validation.

Axon_Term_ | Axon_Max_ Axon_total Axon_total
Mean_Branch | Path_Length | _volume _Surface
_Length _Area
3-NN 66.34 568 841 8307
5-NN 64.46 552 825 8285
10-NN 57.38 509 801 8172
20-NN weighted | 56.61 489 779 7800
M5’ 58.17 527 833 8431
DecisionStump | 47.97 548 972 9550
Linear Regression | 47.92 643 839 8522
Const 55.58 485 766 7555
BMoP-NB 52.41 658 745 8087
BMoP-NBWR | 44.48 554 818 8256

Table 1: Root mean squared error, computed with leave-one-out cross validation. For every
column the best result is marked in boldface.

From the results in Table 1 we observe that BMoPs models are able to achieve slightly
better results than the other regression models, at the cost of a large increase in computa-
tional complexity (times of model’s learning are not even comparable).
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Figure 1: Posterior density for Axon_Term_ Mean_Branch_Length

5.3 Artificial Dataset

Consider a dataset with 50 observations of five independent variables X1, ..., X5 distributed
as standardized Normal distributions (mean = 0 and sd = 1). We analyse our BMoP models
over those variables, we perform the regression of C = Z?Zl X;+eand of Q = Z?:l X2 +4e
where € is some noise, Normal distributed with mean 0 and standard deviation 0.001.
Results are reported in Table 2.

C Q
M5’ 0.001 3.25
Linear Regression | 0.001 3.1
Const 1.93 2.93
BMoP-NB 1.53 2.66

Table 2: Root mean squared error, computed with leave-one-out cross validation. For every
column the best result is marked in boldface.

From the results on the artificial dataset we see how B-MoPs models seems able to
deal with regression of non-linear functions. In the case of linear relations, we observe
how M5’ and Linear regression obviously obtain very good results. In particular M5’ and
Linear regression with just 50 observations are able to obtain the optimal errors (empirical
error=theoretical errors). B-MoPs obtains results that are slightly better than the Constant
regression both in non-linear as in linear case.

Acknowledgments

This research has been partially supported by the Spanish Ministry of Economy and Com-
petitiveness through Cajal Blue Brain (C080020-09). The authors thankfully acknowledges
the computer resources, technical expertise and assistance provided by the Supercomputing
and Visualization Center of Madrid (CeSViMa).



TR:UPM-ETSIINF /DIA /2014-2

08

0.6
1

02

T T T T T
0 1 2 3 4

T

Figure 2: Posterior density for Axon_Term_ Mean_Branch_Length
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