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Abstract. In this paper we study non-negative radially symmetric solutions of 
the parabolic-elliptic Keller-Segel system 

ut = Au-V • (uVv), x eR2, t > 0, 
, (*) 

0 = Av + u +f0-S(x), xeR2,t>0, 

where /o > 0 and <5 is the Dirac distribution. This system describes the chemo-
tactic movement of cells under the additional circumstance that an external appli
cation of a chemoattractant at a distinguished point is introduced. 

It is known that without such an external source the number 8JT plays the 
role of a critical mass in (•), in the sense that if the total mass /x := f-^2 UQ of the 
cells exceeds 8JT then the solutions may blow up within finite time and collapse 
into a Dirac-type singularity, and that this does not occur when /x < 8JT. 

The present paper shows that this critical number is reduced to 8JT — 2/o by 
an application of the signal substance in the above way. Indeed, it is proved that 
whenever /o > 0 and UQ ^ 0, a measure-valued global-in-time weak solution 
can be constructed which blows up at x = 0 immediately. Now if /x < 8JT — 2/Q 

-h. 
then this solution satisfies u(x, t) < C(r)\x\ 2a for t > r > 0 and \x\ < 1 and 
hence does not blow up in LF (R ) for any 1 < p < 4JT//O. On the other hand, 
if /x > 8JT — /o then the mass will asymptotically completely concentrate at the 
origin, that is, «(-, t) converges to /x • S as t —>• oo in the sense of Radon measures. 

Introduction 

Chemotaxis is the biological phenomenon whereby single-cells or multicellular or
ganisms move guided by concentration gradients of a chemical. The response of 
the organisms to the chemical substance may be positive, leading to movement 
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toward higher concentrations of the chemical, or negative, moving away from it. 
Chemotaxis appears in many different biological processes such as motion of bac
teria, immune system response, migration of cells in embryonic development, and 
formation of blood vessels in tumor growth. 

One of the first mathematical models which appears in the literature to describe 
aggregation of certain types of bacteria was proposed by Keller and Segel [17,18], 
see also Patlak [26]. In the classical Keller-Segel system in the two-dimensional 
setting, the density distribution u = u(x,t) of the living organisms is governed by 
the PDE 

ut = AM - V - ( H V U ) , i e R 2 , t > 0, 

where v represents the concentration of a chemoattractant substance. Secondly, in 
many biologically meaningful situations this chemoattractant is produced by the 
cells themselves (see [13] for a number of examples). Under the assumption that 
molecules diffuse much faster than cells, v approximately satisfies an elliptic equa
tion 

0 = Av + g(u,v), i e R 2 , ( > 0 , 

where the function g represents the balance of production and degradation of the 
signal substance. 

In the pioneering work [16], the authors consider the particular case g(u, v) = 
u — 7̂ 7 fa Mo in a circle Bo(R) c K 2 o f radius R and they prove that radially sym
metric solutions exist globally and remain bounded if the total mass f^ UQ of cells is 
small, whereas some solutions may blow up in finite time with respect to the norm in 
L°°(S~2) when f^ UQ is suitably large. This critical mass phenomenon, already con
jectured in [8], attracted a considerable interest in the subsequent years, and quite 
a complete answer is available in the radial version of the corresponding Cauchy 
problem in the whole space R2 where accordingly g(u,v) = u. In fact, in this 
framework the number 8JT plays the role of a critical mass in the sense that when
ever /R 2 Mo < 8TT, the solution is global and bounded, whereas if _/"R2 wo > 8:r then 
the solution will blow up in finite time. A comprehensive demonstration of this, 
using approaches originating from [22], can be found in [1]. In addition, a rich lit
erature has revealed that a critical mass phenomenon also occurs in a number of re
lated chemotaxis systems, both of parabolic-elliptic and of parabolic-parabolic type, 
and also in non-radial frameworks and in corresponding Neumann-type boundary-
value problems. Here the main difference arising in the non-symmetric bounded 
domain case appears to be the fact that the mass threshold is then halved to An, 
which is due to the possible occurrence of blow-up on the boundary of the domain 
(see [2,6,20,23] for parabolic-elliptic systems and [9,15,24,28] for fully parabolic 
analogues). 

As to the qualitative behavior of such large mass solutions near blow-up, 
formal arguments suggest that the cell population aggregates at the origin in the 
strongest conceivable sense, namely, that the spatial profile of the first component 



u of an unbounded solution should approach a Dirac mass near its blow-up time 
(see [34]). In the borderline case _/"R2 wo = 8TT, such a collapse into a Dirac mea
sure occurs in infinite time, as was proved in [7]. Some further results on blow-up 
mechanisms in this and related Keller-Segel systems support the conjecture that this 
tendency toward Dirac-type singularity formation in fact is a generic phenomenon 
(see [11,12] and [31,32] as well as [33] for a simplified argument). 

It is the purpose of the present work to examine in how far these mechanisms 
are influenced by an external source of chemoattractant. The motivational back
ground for this stems from the observation that artificial gradients of chemoattrac-
tants are frequently introduced in experiments, see for instance [37] where corre
sponding effects on the migration of hematopoietic progenitor cells are studied. 

As a prototypical model for such a process, subsequently we shall consider the 
problem 

ut = AM - V • (MVD), x G R2, t > 0, 

• 0 = Av + u + f08(x), i e R 2 , ( > 0 , (0.1) 

u(x, 0) = UQ(X), j e E 2 , 

with a constant /o > 0, where UQ ^ 0 is a given radially symmetric bounded 
non-negative function with finite total mass, that is, 

/j, := I uo(x)dx < oo. (0.2) 

Here, S denotes the Dirac distribution supported at the origin, and thus (0.1) de
scribes the respective evolution when the chemoattractant is introduced precisely at 
the spatial origin, with constant rate fo. In this framework, the question we address 
is the following: 

Does the source term fo • S(x) reduce the threshold number 8JT 
for chemotactic aggregation into a Dirac singularity! 

Our main results in this direction state that the critical mass is actually reduced to 

\xc := Sn — 2/o, 

but as compared to the borderline case /o = 0 this threshold has a slightly different 
meaning. Indeed, we shall first prove that for any choice of /o > 0, a global 
solution of (0.1) exists in some generalized sense (cf. Definition 1.1); however, any 
such solution blows up immediately: 

Theorem 0.1. Let /o > 0. Then for all to > 0 there exists a globally defined radial 
weak solution u of (0.1). If fo > 0, then this solution satisfies 

HMllz.°°(R2x0b,«>+r)) = °° l°ral1 X > °- ( 0 3 ) 

Now the size of the initial mass, as compared to \JLC, decides whether the above 
solution approaches a Dirac singularity, or remains less singular: 



Theorem 0.2. 

i) Assume that /o > 0, and that UQ satisfies (0.2) with some /x > Sn — 2/o. Then 
the radial weak solution u from Theorem 0.1 satisfies 

u(x,t) —̂  fiS(x) as t —>• oo 

in the sense of Radon measures over R2 . 
ii) Suppose that /o £ [0, An), and that UQ satisfies (0.2) with some \i < 8JT —1 fa-

Then for all x > 0 there exists C(x) > 0 such that for the radial weak solution 
u from Theorem 0.1 we have 

u(x, t) < C(x)\x\ 2TT for all x e B\(0) andt > x. 

In particular, given any p e W,-f-) and x > 0 one can find C{x) > 0 with the 
property that 

II"(- ,0IIL^(BI(0)) < C{x) for all t > x. 

Theorems 0.1 and 0.2 can be also applied to the case /o = 0 to obtain results similar 
to those derived in [2], where finite-time blow-up and continuation of solutions for 
the supercritical case were described. In this context we also refer to [30], where 
certain global weak solutions for the case / 0 = 0 were constructed. We also 
mention the recent work [5] which is related to our Theorem 0.1 in that it can be 
used to state a nonexistence result for classical, and also for some weak, solutions 
of (1.2) in any time interval when /o > 0. However, this apparently does not 
immediately entail that (0.3) is valid for the (very weak) solution that we will obtain. 

This study is to be understood as a first step towards understanding the behavior 
of chemotactic movement under the influence of external sources. One mathemat
ically interesting open problem is to clarify the behavior in the critical-mass case 
fi = 8JT — fo when /o > 0. Also, allowing for more general source terms f(x), 
not necessarily in the radial setting, would be worthwhile being studied, because 
it might be thought of as a preparatory step for the corresponding optimal control 
problem which targets at approaching a desired distribution of cells after a given 
time by suitably adjusting an external application of signal. 

Let us remark that clearly v can be expected to be unique only up to addition 
of constants. However, since we do not address the uniqueness question for (0.1) in 
this paper, we refrain from introducing an extra normalization condition for v such 
as fB (0-, v = 0, because this evidently does not change any of the claimed results. 

The paper is organized as follows. In Section 1 the auxiliary problem for the 
unknown 

W(s,t) : = 2 / ru{r,t)dr, s > 0, t > 0 
Jo 

is introduced and preliminary properties of W are studied. In Section 2 we present 
the proof of instantaneous blow-up for /o > 0 (Theorem 0.1). In Section 3 we 
address the problem for supercritical mass (Theorem 0.2 (i)). The last section is 
devoted to the analysis of the subcritical case (Theorem 0.2 (ii)). 



1. Existence of measure-valued solutions 

Following [16], we transform (0.1) by introducing 

W(s,t):=—l u{x,t)dx, s>0,t>0, 

which in the case of a radially symmetric u = u(r, t) means that we set 

' / ru{r, 
Jo 

W(s,t) = 2 / ru{r,t)dr, s > 0, t > 0. 
Jo 

We are thereby formally led to considering the degenerate parabolic initial-boundary 
value problem 

Wt = 4sWss + WWS + 2F0WS, s > 0, t > 0, 

W(0,0=0, lim W(s,t) = - , t>0, (1.2) 

W(s,0) = W0(s), 5 > 0 , 

with parameter 

F°-2^ 
and initial data 

WQ(S) := 2 / puo(p)dp, s > 0. 
Jo 

Observe that if UQ is non-negative and bounded fulfilling (0.2) then WQ satisfies 

' (HI) W0 e W1,0O((0, co)), 

(H2) W0s > 0 in (0,oo), (1.3) 

(H3) W0(s) -* - ass ^ oo. 

Clearly, in view of (1.1) for each t the function W(-, t) must be non-decreasing, 
and if u enjoys the expected mass-conservation property /R 2 u(x, t)dx = \i then 
W(s,t) —>• ^ as s —>• oo. In particular, this means that W is bounded and hence 
standard parabolic regularity theory tells us that Ws is smooth in (0, oo) x (0, oo), 
because the PDE in (1.2) is uniformly parabolic in each cylinder (50, 00) x (0, 00) 
with so > 0. As a consequence, away from the origin we expect the pointwise 
identity Ws(s, t) = u(+fs, t) suggested by (1.1), and the only possibility for u(-, t) 
to develop a singularity corresponds to a jump of W(-, t) at s = 0 with jump size 
determined by JV(0+, t) := lim5\o W(s, t). Thus, once we are given a possibly 



discontinuous solution W of (1.2) we can reconstruct u according to the measure-
valued identity 

u{x, t) := Ws{\x\2, t) + nW(0+, t) • S(x) (1.4) 

for t > 0. For the study of global-in-time solutions of (0.1) it therefore appears to 
be natural to act in the framework of Radon measures. To become more precise in 
the following definition, we let .Mrad(R2) denote the space of radially symmetric 
Radon measures on R2, that is, the space of all functionals X, radially symmetric 
about x = 0, defined on the space C Q ( R 2 ) of compactly supported continuous 
functions over R2. Here we recall that such a functional A is radially symmetric 
about x =0 i fA(§ | - ) = 0 f o r a l l ^ = f(r,(j>) G C~(R 2 ) . 

Definition 1.1. Let /o > 0, and assume that UQ G L°°(R2) is non-negative and 
JX := JV2 UQ is finite. Then by a radial weak solution of (0.1) in R2 x (0, oo) we 
mean a function 

u e C°([0, oo); MmA(^2)) 

such that the function W : [0, co) x [0, co) defined by (1.1) satisfies W(s, t) —>- ^ 
as s —>• oo for all ? > 0 and 

/•OO / -0O / -0O 

- / / StW- S(;0)W0 
Jo Jo Jo 

/•OO /-OO 1 /-OO /-OO f /-OO /-OO 

= 4 / / (sOssW-- / tsW
2-^ / fcW 

J0 J0 2 Jo Jo 27T Jo Jo 

for all f G C£°([0, oo) x [0, oo)), where Wo(s) := ^ fB (0) uG(x)dx for 5 > 0. 

In order to construct such solutions of (1.2) by a suitable approximation proce
dure, we fix a cut-off function / G C°°([0, oo)) such that / = 0 on [0, ^ ] , / = 1 

on [1, oo) and / ' > 0 on [0, oo), and for e G (0, 1) we introduce x^EHs) '•= / ( - )» 
s > 0. Then 

> 0on[0 , oo), (1.6) 

(1.7) 

X(£) = 0on[0 , §], x(E) = l o n [ e , oo) and XsE) > 0 

and 

l x i £ ) l < y and l/ (£)l < — 

are valid with c z := Hx'H^aaoo)) + HX"IIL °°((0,oo))- Moreover, 

X ( £ ) ( ^ ) / l i a s s ^ - 0 

holds for all s > 0. 



We first make sure that the approximate problems 

Wt
(E) = 4sW^] + x(£) 0)W{e) WJ£) + 2FoX

(£) (s) WJ£), s > 0, t > 0, 

W(EH0,0=0, lim ^ ( £ ) (5 ,0 = - , t>0, (1.8) 

W(£)(5,0) = W0(s), 5 > 0 , 

allow for a comparison principle: 

Lemma 1.2. Let FQ>Qande >0 , a«<iassume that W and W_belong to C°([0,oo)x 
[0, oo)) n C2>1((0, oo) x (0, co)) andsatisfy 

Wt > AsWss + xis)(s)WWs + 2F0x
is)(s)Ws (1.9) 

and 

Kt < 45-^55 + X(E\s)WWs + 2F0x
(E\s)Wj (1.10) 

/or all s > Q and t > 0. Moreover, suppose that the initial data WQ := W(-, 0) ara<i 
JV0 := JV(-, 0) satisfy (1.3) with positive numbers JZ and \i, respectively, and that 

W0 > W0 holds on (0, co). Then W >Win [0, co) x [0, co). 

Proof. According to our hypotheses, d := W_ — W satisfies 

d(0, t) < 0 and lim d(s, t) < 0 for all t > 0 

and 
d{s, 0 ) < 0 for all 5 > 0, (1.11) 

and subtracting (1.9) from (1.10) yields 

dt < 4sdss + -x(£) • (W2 - W2)s + 2F0X
 {e)ds for all s > 0 and t > 0. 

Let £(<i) := (d — y)+ for y > 0; then, multiplying by ^ ^ and integrating by parts 
gives 

+ i r ^ - ( E 2 - w 2 ) - ^ - j / , o o ^ i M . ( w 2 _ W 2 ) . ^ ) ( L 1 2 ) 

2 Jo 52 2 Jo 5 

+ ^o /"°° ^ ^ • ^ 2 W - F0 f" ^ ^ • ^ 2 W for all t > 0. 
Jo 52 Jo s 



(s) 

Here the fourth and the last term on the right are non-negative, because x5 > 0 

and JV2 > W whenever ^(d) > 0. Next, by Young's inequality we have 

"°° x{E)(s) 

r°° 1 r°° 1 
4 i (««).2 + s/. ?-(2?-^) 

7772\2 
• X{d>y} 

and 

for x^ = 0 on [0, | ] and 0 < x^ < 1. By means of the estimate 

(W2-W2)2 = (W+W)2d2<(=—-) • d2< ci({d - Y)\+Y2) in{rf>y}, 

valid for ci := 2 ( = ^ ) 2 , from (1.12) we thereby obtain 

1 d f°° %2(d) cx C°° %2(d) cx C°° %2(d) 1 C°° %2(d) 

2 dt Jo s ~ 64 J | s2 4 J | s3 4 J0 s 

f°° £2(d) C]y
2 f°° ds C]y

2 f°° ds 
+F0 

f°° | V ) cjy^ r°°ds_ ciy^ r 
7 | s2 64 i f 52 + 4 j , 

C°° £2(d) 
< c2 / — - + c2y2 for all ? > 0, 

Jo s 

where c2 is a positive constant possibly depending on e but not on y. It remains to 
integrate the resulting ODE, to recall (1.11) and to let y —>- 0 to infer that d+ = 0, 
which implies the claim. • 

We next prove that the approximate problem (1.8) is uniquely solvable in the 
classical sense: 

Lemma 1.3. Assume that Fo > 0, and that Wo satisfies (1.3) with some \i > 0. 
Then for each e e (0, 1) there exists precisely one function 

W(s) e C°([0, co) x [0, cx))) n C24((0, oo) x (0, oo)) 

which satisfies (1.8) z« ?/ze classical sense. 



(1.13) 

Proof. Since uniqueness trivially results from Lemma 1.2, we only need to prove 
existence of a classical solution. To achieve this, for S > 0 we consider the degen
erate parabolic problem on a bounded interval, 

W(s,S) = 4sW(e,S) + x(e)(s)W(e,S)w(e,S) 

+2Fox(E\s)W^'S), s G (0, S), t > 0, 

W^E'S\0, t) = 0, W^E'S\S, t) = W0(S), t > 0, 

W(E"s\s,0) = W0(s), 5 G ( 0 , 5), 

and the uniformly parabolic regularizations thereof given by 

-Wt
{e'S'Tl)=4(s + r,)w£S'Tl) 

+x(e)(s)W(-e<s<riW$e'S'r') 

+2F0X
(E)(s)W^S',1\ s G (0, S), t > 0, (1.14) 

W(-E's'r>\0,t)=0, W(-E<s<ri(S,t) = W0(S), t>0, 

W(E'S^(s, 0) = WQ(s), S G (0, S), 

where r\ G (0, 1). By standard parabolic theory, (1.14) admits a classical solution 
W(e,s,v) £ C 0 ( [ 0 ) 5] x [0; oo))nC2'l([0, S] x (0, oo)), which is global in time and 
bounded, because the inequalities 0 < Wo < ^ along with the maximum principle 
entail the uniform two-sided a priori bound 0 < W^ ' 5 ' ^ < ^ . In conjunction with 
parabolic regularity theory ([21]), this moreover provides uniform estimates for the 

family ( W ^ ' ^ ^ ^ i ) in the spaces cfoc
2((0, S] x [0, oo)) andC^e'1+1((0, S] x 

(0, oo)) for some 9 > 0. Thus, the Arzela-Ascoli theorem enables us to extract 
a sequence of numbers rjj \ 0 such that Wle'S^ -> W^E'S) in C®oc((0, S] x 

[0, oo)) n C^((0, S] x (0, oo)) as r] = rjj ^ 0 for some limit function W(£ '5) 

which can easily be seen to satisfy the first and third lines in (1.13) as well as 
W^E'S\S, t) = Wo(S, t) for all t > 0. In order to obtain continuity also down to 
s = 0, we use that by (1.6) and (1.7), x ( £ )(s) < Cjf for all s > 0 and e G (0, 1), 
whence 

w(e,s,r,) < 4(s + tfW&S*) + CBSW(B,SIV) 

holds in (0, S) x (0, oo) with Cs := c-f{^ + 2F0), because W ^ " ^ < f. Using 

W(s, t) := c\ eCst • s with c\ := || WQS ||L°°((O,OO)) as an upper comparison function 
here, we find that 

W(E"s^\s,t) <c1e
c*t -s in[0, oo) x [0, oo) for all e G (0, 1) ,5 > 0 

(1.15) 
and t) G (0, 1). 

Accordingly, the convergence W^E'S,r]^ —>- W1-8,5-1 is actually locally uniform in 
[0, oo)x[0, oo) and W1-8,5-1 also satisfies the desired boundary condition W1-8,5-1 (0,t) = 
0 for all t > 0. 



Next, since (1.15) implies that W{s'S\s, t) < c\ eCst • s in [0, CXD) X [0, CXD) 
for all e e (0, 1) and S > 0, we may follow a similar reasoning to find a se
quence of numbers Sk -> co such that W^-5*) -> Wis) in Cj°oc([0, CXD) X [0, CXD)) n 

Cj ' ((0, CXD) x (0, CXD)) as Sk —• CXD, where W^ is a non-negative function solving 
(1.8) in the classical sense. Note here that since WQS > 0, the maximum principle 
ensures that wf ' 5 ' ^ > 0 in (0, S) x (0, CXD) for all e e (0, 1), S > 0 and x\ e (0, 1) 
and hence l im^oo W ^ ( 5 , ?) exists and coincides with X\Tas=sk-+oQ 
l im^oo W0(Sk) = £ for all t > 0. • 

We can proceed to prove global existence of a weak solution of the original 
problem in the radial framework: 

Lemma 1.4. Let /o > 0 and assume that u§ e L°°(R2) is radially symmetric, 
non-negative and satisfies (0.2). Then there exists at least one radial weak solution 
u o/(0.1) in the sense of Definition 1.1. More precisely, the solutions W^ o/(1.8) 
increase to a limit W as s \ 0, a«<i w as defined by (1.4) solves (0.1) r'« ?/ze claimed 
sense. 

Proof Using that x (-e-) /* 1 in (0, CXD) as e \ 0, we see by comparison that VK(-e,5,,'-) 

is nonincreasing with respect to e e (0, 1). Accordingly, we have 

W(£) / W in (0, CXD) x (0, CXD) as e \ 0 (1.16) 

with some limit function W which, as an easy consequence, satisfies the bound
ary condition W(s, t) —>• ^ as s —>• CXD for all t > 0. Moreover, if we fix 
f G C^°([0, CXD) x [0, CXD)) and test (1.8) by f to obtain an obvious analogue of 
(1.5) fore > 0, by (1.16) we can takes \ 0 in each integral to arrive at (1.5) in the 
limit. D 

Adopting a notion introduced in [10], in the sequel we shall call the function 
W defined through (1.16) the proper solution of (1.2). 

Applying Lemma 1.2 to appropriate solutions of (1.8) and taking limits, we 
easily obtain the following favorable comparison property of proper solutions: 

Lemma 1.5. Suppose that FQ > 0 and that W and W_ are proper solutions ema
nating from Wo and W_0, where Wo and W_0 satisfy (1.3) with certain JZ > 0 and 
\x > 0, respectively. If Wo > WQ in [0, CXD) then W > W_in [0, CXD) X [0, CXD). 

For later use, let us provide a statement on time monotonicity of some proper 
solutions of (1.2): 

Lemma 1.6. Assume that Fo > 0 and that Wo satisfies (1.3). Moreover, suppose 
that there exists so > 0 such that Wo = 0 in [0, SQ], that Wo £ C2([so, CXD)) with 
liminf5^5o WQS(S) > 0, and that 

AsWoss + WoWos + 2F0W0s > 0 in (s0, oo). (1.17) 

Then the proper solution W of (1.2) fulfils 

Wt>0 in (0, CXD) x (0, CXD). (1.18) 



Proof. By construction of / ^ , for all sufficiently small e > 0 we have 

I(s) := 4sW0ss + xis)W0W0s + 2F0X
is)W0s > 0 

in the sense of distributions over (0, oo), because I(s) = 0 for all s e (0, SQ) 2> 
(0, e), since I(s) > 0 for all s e (SQ, oo) by (1.17), and because liminf5^5o WQS (S) > 
0 = limsup5 *5 Wos(s). Therefore, a standard reasoning (see [27, Ch. 52]) allows 

us to conclude that the solutions W^ of (1.8) satisfy Wt > 0 in (0, co) x (0, co) 
for all e e (0, 1), from which (1.18) easily follows. • 

2. Instantaneous blow-up 

It is the purpose of the present section to make sure that, in a sense to be specified 
below, the spatial derivative Ws of the proper solution W of (1.2) blows up imme
diately, and that hence so does u. In order to prepare this, we state two auxiliary 
lemmata, the first of which can be regarded as a variant of Gronwall's lemma: 

Lemma 2.1. Suppose that O e W ^ 0 0 ^ ) is non-decreasing, and that for some 
t\ e R, T > 0 and c e R we are given two functions y e C°([t\, t\ + T)) and 
z e Cl([t\, t\ + T)) such that 

y(t)>c+ <$>(y(t))dt forallt e(h,ti + T) (2.1) 

and 

Then 

\z'(t) = $>(z(t)) for all t eituh + T) 

[z(h)=c. 

y(t)>z{t) for all t e(h,h + T). (2.2) 

Proof. For r\ > 0 we let zv € Cl{[t\, t\ + Tv)) denote the maximally extended 
solution of 

h^t) = <S>(Zv(t)), tG(h,h + Tv), 

[Zr,(h) =C-Tj. 

Then by a continuous dependence argument we have lim sup \ 0 Tv > T, and hence 
for proving (2.2) it is sufficient to show that y(t) > Zr](t) for all t e [t\, t\-\-Tv) with 
Tjj := min{r, Tv}. Indeed, if this was false then there would exist ti e (t\, t\ + Tv) 
such that y > Zrj on [t\, t-i) and 

y(t2)=zv(t2). (2.4) 



Integrating (2.3) and using the monotonicity of <t> along with (2.1) we then would 
obtain 

rh _ _ rh 
zv(t2) =c-ri+ / <t>(zr,(t))dt <c-ri+ / <t>(y(t))di 

Jti Jti 

<c+ <S>{y{t))dt<y{t2), 
Jti 

which contradicts (2.4) and ends the proof. • 

Next, by explicit construction we provide a family of time-independent func
tions that will essentially play the role of test functions for (1.2) in the proof of 
Lemma 2.3 below: 

Lemma 2.2. Let FQ > 0 and let S e (0, 1) be such that S > 2 °. Then there exist 
positive constants a,b,^,ko and KQ such that for any choice ofy > 0 the function 
(p = (p(Y) : (0, co) —>- (0, co) defined by 

<p{s) :--

f a _ A S 
—-s ° — b if 0 < s < —, 
y" y 

e-y» if s>-
y 

(2.5) 

belongs to Wl(£°((0, oo)) and satisfies 

4s<pss + (8 — 2Fo)(ps > koy<p a.e. in (0, co) (2.6) 

as well as 

L 
00 cpHs) K0 

, r-TT7ds < - T • (2-7) 
o \<Ps(s)\ yl 

Proof. Given FQ and S, we fix c\ > 0 large enough fulfilling c\ > FQ + 28 — 4, so 
that 

= Ci + 4 - FQ 

satisfies £ > S. Therefore 

a := e s and b := I 1 )e s 

are both positive. Now defining <p as in (2.5), we have 



and hence cp is continuous on (0, CXD). Since moreover 

aS 
-s-i if 0 < 5 

yO (2.8) 

-ye' -ys if s > —, 
y 

we find 

r*+ l* -* . f c - * - l lim %(s) = - — . ( ! ) = - y ^ e " * . £" - ' =-ye 
S/L yh \y) 

and we infer that also <ps is continuous on (0,oo) and therefore clearly <p e 
72,oo W[oc ((0, CXD)). A further differentiation of (2.8) shows that for large s 

Ascpss + (8 - 2F0)<ps = 4y2se~ys - (8 - 2F0)ye~ys 

= [4ys -S + 2F0]ye-ys 

> [4^-S + 2F0]ye-ys 

= 2c\y(p(s) for all s > —, 
Y 

(2.9) 

whereas for small s 

Ascpss + (8 - 2F0)(ps 
4«S(S + 1) _5_! ( 8 - 2 F 0 ) a 5 _5_i 

yO y° 
4aS 
yS 

4aS 
for all 5 < —, 

Y 

2-F0 because S > 2 °. Since fo > 0, on the other hand we have <p(s) < —$s and 

therefore 

45 IS 

4s(pss + (S-2F0)(Ps > 

2-F0 

y • <p(s) for all s < —. 
Y 

Combined with (2.9), this establishes (2.6) upon an obvious choice of ko, so that it 
remains to prove (2.7) for suitably large ^o- To this end, we compute 

Ji \vs(s)\ y Ji ' i \<Ps(s)\ 
~ysds 

1 

yJ"-
(2.10) 



and estimate, again using the positivity of b, 

•J cp2(s) , f? y2SS ^ a^~& 

p P f f r U ^ - g — * = °* , . (2.11) 
Jo 1^(^)1 Jo aK-s-i 8(2-8)y2 

Evidently, (2.7) is a consequence of (2.10) and (2.11). • 

We are now in the position to state our key result in respect of immediate blow

up: 

Lemma 2.3. Suppose that FQ > 0 and that WQ satisfies (1.3) for some \i > 0. 
--F 

2 Then for any positive a > . ° a«<i eac/z ?o > 0 ?/ze proper solution W of (1.2) 

W(s, 0 
sup = co for all r > 0. (2.12) 

s>0,te(to,to+t) s 

In particular, we have 

l|W^Loo ( (0oo)x((0j(0+T)) = oo forallx>0. (2.13) 

Proof. If the lemma were false, there would exist a > 2 °, to > 0 and ci > 0 
such that 

W ( s , 0 < c i s " for alls >0and? e [?0,?O + T]. (2.14) 

Our goal is to show that then there exists some large y such that, with cp = cp^ 
taken from Lemma 2.2, the function 

/•OO 

y(t) := (p{s)W{s,t)ds, t>0, (2.15) 
Jo 

blows up before t = to + r. To this end, we note that since a > — ^ and Fo > 0, 
we can fix 8 e (0, 1) such that 

n p 

8<a and S> - , (2.16) 

and then let the positive constants a,b,^,ko and ̂ 0 be as provided by Lemma 2.2. 
We next pick K > 0 small fulfilling 

hot 
K < — , (2.17) 

" 8 v ' 

so that with t\ := to + | , the number 

c2:=W(K,h), (2.18) 



is positive. We here use the fact that W is positive in ( | , CXD) X (0, CXD) by the 
strong maximum principle applied to (1.2), which in fact is uniformly parabolic in 
( | , CXD) x (0, CXD). Finally, we let y > 1 be large enough fulfilling 

y > 

and 
l + ^ . e K K < e 2 K K _ 

Cl 

(2.19) 

(2.20) 

Upon these choices, we let <p := <p^ be as given by (2.5) and, for e e (0, 1), we 
multiply the PDE in (1.8) by (p(s)x^E-'(s). For arbitrary 

so > i ii 
y' y 

(2.21) 

an integration by parts over s e (0, so) yields 

- (p(s)x(s\s)W^\s,t)ds 
dt Jo 

j P cpX
{E) • | w £ > + \x{E)((W^)2)s + 2Fox{E)W, 

4Jo (^x(e))«ww-ijf (<p(x{e))2)s(w^)2 

-2F0£ (V(x{E))2) 

(2.22) 

W(E) + B(t) 

with 

B(t) := Us(PX
(E)W^ -4(s(px(E))sW

(E) + -cp{x{s))2(W{s))2 

+ 2Focp{x{E))2WiE) 

for t > 0. Here we calculate 

(s(px(E))s = scpsx
{E) + <PXie)+s<PX$e) 

and 

, < X h ,<X> ( £ ) (*PX w ) « = s feX w + ^PsrE> + 2s<psXr + 2cpxf> + scpx , 0) _1_ Orn v 0) ,<X> (2.23) 



as well as 
(v(x(s))2)s=Vs(x(s))2 + 2cpx <X>Y<X> 

As • 
(2.24) 

Thus, since x^ = 0 on (0, | ) and / ^ = 1 on (e, CXD) 9 so, the boundary terms in 
(2.22) become 

B(t) = 450e"K5oW5
(£)(50, t) +4[ys0e-ys° - e~ys°] • W(E)(S0, t) 

+ -e-ys°(w(s\s0, t)\2 + 2F0e-ySoW^\s0,t) fort > 0. 

(s) 
Recalling that Ws ' > 0, dropping the non-negative terms we thus find that 

Bit) > 4(ys0 - l)e-ySoW(E)(s0, t) 

> 0 for all f > 0 

due to (2.21). Therefore, using (2.23) and (2.24) in (2.22) we obtain 

d r° 
dt 

/ (p{s)x{e\s)W{e\s,t)ds>A\ sVssx
{e)W{e)+% I (psX{s)W{s> 

Jo Jo Jo 

/••so rso rso 
1 / scp^W^ + 8 / cpx^W^ + 4 / scpx^W^ 

Jo Jo Jo 

\ P ^0c(£))W£))2- fV £ ) ;c i £W £ ) ) 2 

^ JO JO 
(2.25) 

/••so /••so 

• 2 F o / ^ ( x ( £ ) ) 2 ^ ( £ ) - 4 F o / ^ ( £ ) x i £ ) ^ £ ) 
Jo Jo 

/••so 

JO 
4 5 f e + 8 ^ - 2 F 0 ^ X ( £ ) 

1 Z'50 

X(£)W(£) 

with 

and 

If 
2 Jo 

hit) 

<Ps(x(E))2(W(E))2 + h(t) + I2(t) for all t > 0, 

/••so 

JO 
8s<p5 + 8<p - ^x ( £ ) W(£) - 4F0^X (£ ) 

/••so 

hit):=4 scpx^W^. 
Jo 

x(s)w(s) 



Now using that Xs < — > \Xss I < -? a n d X$ = 0 on (e, 00), in view of our 
hypothesis (2.14) on W and the facts that Wis) < W < % and X{E) < 1, we can 
estimate 

hit) > f 
Jo 

[I 
%s\<Ps\ + -(p + 4F0cp 

IT 

s y 

and similarly 

X ry 7 
— • c\s as 
e 

cYC] [8S + ^+4F0]a fE 

j ^ ^ jrj 0 j _ / s-d+ads for a n r e ( r o > ^ + r ) 

\h(t)\ < ^Y1 • — • I sl~d+ads forallf e fo . fo + r) 
Jo 

whenever e < —, because in that case we know that 0 < (pis) < -^s s for all 

s e (0, e). Since 5 < a, we conclude that there exists C3 > 0 such that 

h{t) + I2{t) > -c3e
a-s forallt €ito,t0 + r). (2.26) 

Next, the property (2.6) of <p implies that 

Ascpss + 8% - 2F 0 ^X ( £ ) > ^ o / ^ + 2F0%(1 - X(E)) a.e. in (0, TO), 

so that altogether an integration of (2.25) shows that 

/••so 

3,(^0)(f) : = / ^ ( 5 )x ( £ ) (5 )W ( £ ) (5 ,0^ , r > 0, 
Jo 

satisfies 

"t rs0 

y(E'S0Ht) > y{E'So)ih) + koy 
>h 

"t fs0 

+ 2F0 ' 
>h 

1 f* fs° 

ft /••so 

/ / cpx(s)W(s) 

Jti Jo 
ft rso 

/ / <Psii-x(E))x(E)w(^ 
Jti Jo 

Vsix{e))2iW{e))2-C3ea-&-it-h) foraUre(ri ,ro + r ) , 

provided that e < —. Invoking the dominated convergence theorem along with the 
exponential decay of (pis) and (ps(s) as s —>• 00, we may take SQ / 00 to see that 
y(e)(f) : = |0°°^(5)x(£)(5)W(£)(5,0^, t > 0, fulfills 

t>t poo t>t poo 

y{E)it)>y{E)ih)+koY / / cpx{E)W^+2F0 / / Vsil-x{E))x{E)W^ 
JhJo Jtjo 

! pt poo \^^l) 

- x / / <Psix(E))2iW(E))2-c3e
a-s-it-h) for all teih,t0 + T). 

^ Jh Jo 



Here, since for some C4 > 0 we have 

%(5)(i-x(£)W)x(£)(5)w(£)(5,o < \<ps(s)W(s,t)\ < c4(l + s"-8'1) • e~ys 

for all s > 0 and t e [to, to + r ] , by (2.14) and the definition of <p, one more 
application of the dominated convergence theorem asserts that 

ft /"OO 

2F0 / <ps(l ~ xis))xis)WiE) -* 0 a s e \ 0 
J(l Jo 

for all? e (h,to + r), because S < a. In the remaining terms making up (2.27), we 
apply the monotone convergence theorem in taking e \ 0 to conclude that again 
since a > S, the function y defined by (2.15) satisfies 

"t />00 rl rOO 1 rl re 

y(t) > y(h)+kQy <pW-- / cPsW
2 fo raUreCr i . ro+r ) , (2.28) 

Jti Jo 2 j t l Jo 

because / ^ /* 1 on (0, CXD) and W ^ y W in (0, CXD) X (0, CXD). In order to take 
advantage of the quadratic term in (2.28), we employ Holder's inequality and (2.7) 
to see that 

< - r • / \<Ps\W2 for all? > 0 , 
Y2 Jo 

and thereby (2.28) becomes 

y(t)>y(h) + k0y y{t)dt + ?—-\ y2{t)dt forall t e (?i, ?0 + t ) . 
A ^0 J(, 

/2 r* 

Consequently, Lemma 2.1 states that 

y{t)>z{t) forallf €(fi,f0 + r ) , (2.29) 

where z is the solution of 

iz' = Az + Bz2, t>h, 

[zih) =y(h), 

with 
Y2 

A:=k0Y and B := — . (2.30) 
•So 



The solution of this Bernoulli-type initial-value problem is explicitly given by 

1 
z(t) 

_L_ + — ) e-A(t-h) B 

A 

t G (h,h + T), (2.31) 

J(h) A, 

with its maximum existence time determined by 

A 
T 

1 / A \ 
- l n ( l + ). 
A V By(U)) 

Now by (2.18) and the fact that Ws > 0, we can estimate y{t\) from below accord
ing to 

y(h) f 
Jo 

(p(s)W(s, t\)ds > C2 / <p{s)ds = C2 I 
J K J K 

CO 

e-y
sds = —e-KY, 

y 

because (2.19) ensures that K > i- and hence cp{s) = e ys for all s > K. Thus, by 
(2.30) and (2.20) we have 

/ 

T < In 
koy 

1 

\ 

1 + 
koy 

\ 

< \n(e2KY) 
koy 

y^_ C2 

Ko ' y 
_ 2K 

ko 

-icy 

koKo 
— • In 1 + 
koy \ c2 

7Ky 

But in light of (2.17) this means that T < \, so that (2.29) and (2.31) entail that y 
blows up before or at t = t\ + ^ = to + ^-. Since S < 1 and hence cp is integrable 
over (0, CXD), this is evidently incompatible with the boundedness of W and thereby 
proves that the assumption (2.14) must have been false. • 

Proof of Theorem 0.1. The conclusion results upon a reformulation of Lemma 2.3 
in terms of u rather than W. • 

3. Formation of Dirac-type singularities when \x > Sn — 2/o 

In this section we shall see that if \i > 8JT — 2/o then u will asymptotically exhibit 
a Dirac-type singularity at the origin. As a first step towards this, let us explicitly 
construct initial data such that the corresponding solution of (1.2) will lie below W, 
but will be increasing with time. 



Lemma 3.1. Suppose that FQ > 0, and that (1.3) is satisfied with some 

jX > 8JT — ATTFQ. (3.1) 

Then for all positive jl e (8TT —AJXFQ, IX) there exist SQ > 0 and Wq £ VK1,oo((0, oo))n 

C2([0, co) \{s0}) 5MC/T //za/JV0 = 0 m [0, s0], liminf5Vo W0s(s) > 0, JV0(s) -> | 
a s i - > oo, a«<i SMC/T //za/ 

45W055 + ]V0iV05 + 2F0W0s = 0 in (s0, oo) (3.2) 

a5 we// as 
iZ0 < Wo m (0, oo). (3.3) 

(3.4) 

Proof. Abbreviating a := ^ , from (1.3) we know that there exists some large si 
0 such that 

WQ(S) > a for all s > s\. 

Since a > 8 — 4Fo by assumption, both 

and 

2(a + 2F0 - 4) 

a + 2^o - 4 

4 

(3.5) 

(3.6) 

are positive and moreover b < - . Therefore we can pick some small c > 0 such 
that 

5 0 := 

V / 
We now let 

Ko(s) •-- 1 
b + csP 

s\-

if s e [0, so], 

if 5 > SQ, 

(3.7) 

and we see, using (3.7), that W_0 has the claimed regularity properties, whereas (3.4) 
and (3.7) guarantee that W_0 < WQ on [0, CXD). Furthermore, computing 

Easts) 

W0ss(s) 

1CS 
/ 3 - 1 

(b + csP)2 

- l)bcsP-2 

and 

+ l ) c 2 ^ - 2 

(b + csP? 



for s > SQ, we see that liminf5^5o W_0s(s) > 0, and that for s > SQ 

4sW0ss + W0W0s+2FoW0s 

1 

(b + csP? 

(b + csP? 

./*-! Afiifi - l)bcsp~l -Afiifi + l)czs 2 c 2/? - l 

+ ab + acsp — 1 J*- i csp~l + 2pcF0s
p-1 • (b + csp) p-\ 

+Pc 

4(P- l)b + ab- l+2F0b 

- 4{fi + 1) + a + 2F0 

J*- i 

« , 2 j 0 - l 

According to (3.5) and (3.6), it can be easily checked that 

-4(P + l)+a + 2F0=0 and 4(/3 - l)fo + afo - 1 + 2F0b = 0, 

whereby (3.2) follows and the proof is complete. • 

The following statement will be useful in identifying possible limits of solu
tions of (1.2) a s ( - ) - CXD in Lemma 3.3 below. It rules out non-trivial steady states 
i/r of (1.2) having their 'mass' lims_s.00 ^(s) larger than 8JT — 4JTFO. 

Lemma 3.2. Let Fo > 0 and assume that x/r e C2((0, CXD)) is a non-negative solu
tion of 

0 = Asfss + ffs + 2F0fs, s > 0, 

with the additional properties \ps > 0 on (0, CXD) and 

[i 
\js(s) y — as s —>- CXD 

n 

with some \i > 0. Under these assumptions 

\i > 8JT — 4JTFO, 

then 
/x 

tf/ = — in (0, CXD). 
n 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

Proof. We may confine ourselves to the case \x > 0, in which we substitute s = e % 
and let 

z(£) :=f(e-S), ^ e l . 

Then computing 

fs -ehi= and i/rss = e^iz^ + Zt=), 



from (3.8) we obtain 

0 = 4e~^ • e2Hz^ + z$) - z • (ehi=) + 2F0 • (-e*z?) 

= e^ • (4z^ + Az>: - zz% - 2F0Zi=), % £ R, 

which shows that if we write a := 2-FQ we have 

0 = 4z^ + Aaz>: - zz$ = Uzi: + Aaz - -z2\ on. 

Therefore there exists c e R such that 4z^ + Aaz — ̂ z + 4c = 0 or, equivalently, 

1 
** -az + -z —c 

8 
on. (3.12) 

By (3.9), c is determined by taking £ —>• — oo and thus satisfies 

n 8 \7t / Sn 
(-) = ^ ' ( - 8 + 4^0 + - ) > 0 (3.13) 
\7T / HIT \ it/ 

according to (3.10). Using that i/rs > 0, we have z^ < 0 on R and hence an ODE 
argument applied to (3.12) shows that z(£) \ Zoo as £ —>• +oo, where Zoo must be 
a steady state of (3.12) and thus satisfy 

0 = -azco + -Zoo ~ c> 
o 

that is, 

Zoo e 4a + y/l6a2 + 8c, 4a - y i 6 a 2 + 8cl = {—, 4a - 7 l 6 a 2 + 8c 
it 

Since 4a < V l 6 a 2 + 8c by (3.13), this means that zc 

be a constant, as claimed. 
and therefore z must 

• 
The following lemma prepares the main result of this section. 

Lemma 3.3. Let FQ > 0 and suppose that (1.3) is fulfilled with some 

\JL > 8it — 4itFo. 

Then the proper solution W of (1.2) satisfies 

W(s, t) —>- — as t —>- oo, 

(3.14) 

(3.15) 

?/ze convergence being uniform on compact subsets of (0, CXD) . 



Proof. We let S > 0 be given and fix a positive fi e (8JT — ATTFQ, fx) close enough 
to \i such that 

- > - - S . (3.16) 
n n 

Applying Lemma 3.1 provides a minorant W_0 of WQ with the properties listed in 
that lemma. According to Lemma 1.5 and Lemma 1.6, the corresponding proper 
solution W_ satisfies W_ < W in [0, co) x [0, co) and 

Wt>0 in (0, oo) x (0, oo). (3.17) 

Since W < •£ in [0, oo) x [0, oo), in view of (3.16) and the monotonicity of W with 
respect to s, it is sufficient for proving (3.15) to show that 

W(s,t) / - ast^oo (3.18) 
n 

for all s > 0. To this end, we note that due to (3.17) we have 

W_{s,t) / f{s) a s ? ^ o o (3.19) 

with some non-negative limit function i/r that clearly is non-decreasing on (0, oo) 

and satisfies i/r < •£ on (0, oo) as well as 

f{s)/— a s s ^ o o . (3.20) 
Tt 

Since W_ solves the PDE in (1.2) classically in (0, oo) x (0, oo), parabolic estimates 
ensure that the convergence in (3.19) is locally uniform in (0, oo) x (0, oo), which 
entails that i/r is smooth in (0, oo) and solves 

0 = Asfss + ffs + 2F0fs in (0, oo). 

Along with (3.20) and the fact that ft > 8JT — 4JTFO, in view of Lemma 3.2 this 

means that i/r = ^ and thereby establishes (3.18). • 

Proof of Theorem 0.2 i). The assertion is precisely that of Lemma 3.3, restated in 
the original variables. • 

4. Emergence of mild singularities for \x < Sn — 2/o 

In order to complete our identification of the number \JL = 8JT — 2/o as a critical 
mass in (0.2), in this section our goal is to show that if the cellular mass is below 
this threshold then the singularity of the solution will be comparatively mild in the 
sense that u(-,t) remains bounded in some Lp space for all times. To begin with, 
we establish an upper bound for W^ near 5 = 0 that is independent of t and e: 



Lemma 4.1. Suppose that FQ G [0, 2), and that WQ satisfies (1.3) with some 

fi<87T-4iTFo. (4.1) 

Then there exists C > 0 swc/z that for all e > 0 ?/ze solution of (1.8) fulfills 

W{e\s, t)<Cs2-^ for alls > 0 a«d ? > 0. (4.2) 

Proof. Writing a := 2 °, for a > 0 we introduce 

ir{a){s) :-- as 

1 -\ 5« 
8a 

5 > 0, 

and compute 

and 

f^(s) aas 
a-\ 

a \2 
(l + —sa) 
V 8a / 

(4.3) 

(4.4) 

(4.5) 
a (I - a)asa-2 + -(a + l)a2s2a-2 

^(S) = 5 
(1 + 5«) 
V 8a / 

for 5 > 0. We observe that \jr (-a-) (5) increases both with 5 and with a, and that 
f(a)(s) / 8 a as a —>- CXD 

for all s > 0. Since W0(s) < ^ < 8a for all s > 0 by (4.1), and since 

liminf ilr^a\s) —• +co as a ^ 00, 

from the fact that Wo5 G ̂ t o c ^ ' °°)) w e e a s i i y infer that for some large a > 0 we 
have 

W0(5) < fia) (s) for all s > 0. (4.6) 

Now by (4.4) and (4.5), we find that 

4sf^ + f{a)f(f)+2FQf(f) 
-4a(1 - a ) ^ " " 1 - i ( a + l ^ V " " 1 

C1 + &*")" 

+ -
n« „„, .a-i 2aaFo5" _ 1 + l a 2 ^ 2 " " 1 

as •aas 

(1+i^y 
1 

( 1 + § ^ ) 3 ' 

+ 

aa 

(1 + ̂ a r 

• 4 ( l - a ) + 2 F 0 

0 for all s > 0 

- ( a + l ) + a + - F 0 

, a - l 

,2a - l 



because of the definition of a. Since 0 < x^ < 1 a n d YS > 0, this entails that 

-45 f$ -xis)f{a)i>ia) - 2F0X
(£) f(

s
a) > 0 in (0, co) 

and hence \jr(-a-) is a stationary supersolution of (1.8). Therefore in view of (4.6), by 
comparison we infer that W^E'S\s, t) < ^a\s) and hence 

W{s\s, t) < f{a\s) for all s > 0 and t > 0. 

Using (4.3), from this we immediately obtain (4.2). • 

Using a Bernstein-type technique, from the above result we can derive the 
natural analogue for the spatial derivative of W: 

Lemma 4.2. Let F§ e [0, 2) and suppose that (1.3) is satisfied with some \i < 
8JT —ATTFQ. Then for all x > 0 there exists C(x) > 0 such that the proper solution 
W of (1.2) fulfills 

Ws (s,t) < C(x)(l + s 2 | for all s > 0 and any t > x. (4.7) 

Proof Since in (^, CXD) X (0, oo) we know that W is a bounded smooth solution of 
the uniformly parabolic PDE in (1.2) , interior parabolic regularity theory ensures 
that Ws is bounded in (1, oo) x (x, oo), and hence we only need to establish (4.7) 
for s e (0, 1] and t > x. For this purpose, we fix s e (0, 1) and let the non-negative 
function Q = Q(s, t) be defined through the substitution 

W{e\s,t) = Q2{s,t), s > 0 , t > 0 . 

Then, using (1.8), we compute 

2QQt=4s(2QQss + 2Q2
s) + 2xis)Q3Qs+4F0x

is)QQs 

and thus we have 

O2 

Qt = 4sQss + 4s^ + xiE)Q2Qs + 2Fox{E)Qs for* > 0 and t > 0. 

By further differentiation, 

QsQss & AQ2
S 

Q Q2 Q 
, 0) n n2 _i_ „ 0) n2 n _i_ -? F„ „ 0) n _i_ -? F„ „ 0), 

G*« = 45g5 5 5 + 4 & 5 + 8s ̂ ^ - 4 5 ^ f + 4 ^ f + xiE) Q2Qs 
Q Q Q 

+ 2X
 {b> Q Qt + x?> Gz Qs + 2F0X »> Qss + 2FQXf' Qs 

for s > 0 and t > 0. 

(4.8) 

Wenowfixz e C°°([0, co)) suchfhatz(O) = 0, z = 1 on [r, co) andO < z'{t) < \ 
for all t > 0, and let ^ 

f ( s ) : = ( s ( 2 - s ) 2 ) , s e [ 0 , 2 ] , (4.9) 



with 

Then 

Fo+2 
(4.10) 

g(s,t):=z(t)l;(s)Ql
s(s,t), s € [0 ,2 ] , t > 0, 

vanishes at s = 0, at s = 2 and whenever t = 0, so that if for some r > 0, g attains 
a positive maximum over [0, 2] x [0, T] at some point (50, to) £ [0, 2] x [0, T], 
then necessarily so £ (0, 2) and to £ (0, T], and hence gs = 0, g55 < 0 and gt > 0 
hold at this point. Since 

gs =2zZQsQss+ztsQ2
s and 

fc = 2z? G, G,55 + 2z? GL + 4zf5 G, Qss + zKss Q
2
S, 

2f 
at (50, ?o) w e thus have Qss = —^jy- and therefore by (4.8) 

0<gt =iK Ql + IzK Qs-\4s Qsss + 4QSS + 8s 
Q G2 G 

MrZ, M Wrfl, , < X > , 

z'?G? + 4s 

+x(E> QL G« + 2 * w G Gz + xs
E> QzQs + 2F0X

 (E> Q 

+ 2Fox(/)Qs 

gss - 2z( GL - 4*& 2^ G55 - zf™ G? 

G5G5 e, , , e Mrflt , < x > , +2zi;Qs-\4Qss+8s^^-4s^+4^+x(E>QzQss+2x(E>QQz
s 

G Q Q 

+ xE> QlQs + 2Fox(s) Qss + 2FoxE> Qs 

< z't;Q2
s+4s {-^(-^-^(-if)-^} 

+ 2 l { G . . { 4 ( - ^ ) + 8 , | . ( - ^ ) - 4 . | + 4 | 

+ x •" a2 • ( - ^ ) + 2x <" e a2 + xid G2 a 

+ 2 f o x " , - ( - ^ i ) + 2 f o x i " e , 

/>- /o2 o „ f / r-2 1 c ? / ^ 2 ,,„„>- ^ 2 A„i. r,2 Q „ „ > - Qs 
t-2 j-2 

z'K Ql ~ 2sz^ Q2
S + Zsz^r Ql - 4sz^ssQl - 4zKsQl - 8 « ^ 

-8szK% + 8zf % - x{E)zUQ2Q2s +4x
{E)zt;QQ3

S + 2x^zt; Q2Q2
S 

Q Q 

-2Fox(E)zt;sQ2
s+4Fox(/)zt;Ql 



Rearranging this shows that at (SQ, to) we have 

G2 " 1 Q Q X Q-

+ \z'S+ 6 s z % - 4szf55 - 4zf5 - x
{e)ztsQ2 + 2x(

s
E)zi; Q2 

- 2 F 0 X ( £ ) z ^ + 4Foxi£ )zf}-G5
2 

or, equivalently, 

-z^G + z^G + ^ ^ G 3 -G, 

+^-(z /-G2 + 6 z ^ G 2 - 4 z ^ G 2 - 4 z - G 2 (4.11) 

-x ( £ )z^G4+2xi£ )z^G4-2^ ( £ )z^G2+4^ ( £ )z^G2) . 
5 5 5 5 J 

2-fp 

Now Lemma 4.1 says that there exists c\ > 0 such that G(5» 0 < c i 5 4 , that is, 

Q(s,t) <c\s~ for all 5 > Oand? > 0 (4.12) 
in view of (4.10). Notice that W(

s
e) > 0 implies Qs > 0. Using (4.12) and the 

facts that x^ < 1 a n d z < 1, on the right of (4.11) we can estimate by Young's 
inequality 

s 2s 

< 4 ~ ' ~ J • S2 

• & < ^ G 2 + z^G2(i + ̂ G2)2 

^ G 2
 + ^-(^)2.(l + i . c ? . 2 - ) 2 (4.13) 

= l-zt;Q2
s+4&-c2

l-(\+
l--c2

l-2
2-&)2, 

because f(s) < (4s)s and we know that so e (0, 2). Next, we observe that from 
(4.9) we easily si 
c2 > 0 such that 
(4.9) we easily see that i;s > 0 for s e [0, ^\ a n d that since 5 > 1 there exists 

\Us)\<c2s
S-\ \tss(s)\<c2s

s-2 and ^T<c2s
s-2 for all s e (0,2). (4.14) 

Since G.s > 0, the remaining term —z^sQQs obtained from the first bracket in 
(4.11) is non-positive for s < | , whereas for s e ( | , 2 ) we again use Young's 
inequality to find 

1 t2 

-zKsQQs < -zi;Q2 + z^Q2. 



In view of (4.14) and the boundedness of Q we conclude that at all points we have 
the upper estimate 

-zKsQQs < ^z^Q2 + c3 (4.15) 

for some c3 > 0. In conjunction with (4.12), (4.14) also entails that there exist 
C4 > 0 and c$ > 0, depending on x only, such that 

-.iz^-Q2+6z^rQ
2-4zi;ssQ2-4z^Q2-x[E,z-Q''-2Fox[E,z-Q 

8 | s f s s s 
<X>, i ln4_oz^<X>,^2 

C4- SS-1 . S2-S + S2(S-1)-S . S2-S + sS-2 . S2-S + sS-2 . S2-S 

+ sS-2,s2(2-S)+0 <C5 

(4.16) 

whenever s e (0,2). Finally, recalling that our requirements on / ^ were such that 
(s) (s) c 

• - 0 on (s, oo) and xl'• < ~r, we obtain 

1 

8 
2x^z^Q4 + 4Fox^z^-Q2 

<c6-\--e
s-1-e2(2-^ + --es-1-e2-s\<c1 

(4.17) 

for all s e (0, 2) with appropriately large c^ > 0 and cj > 0. All in all, from 
(4.11), (4.13), (4.15), (4.16) and (4.17) we infer that there exists c8 = c8(r) such 
that g(s, t) < cj in (0, 2) x (0, T), which since T > 0 was arbitrary entails that 
? G? < c8 in (0, 2) x (T, CXD). Rewritten in terms of W^E\ this means that 

(w^(s,t)y 4Q2(s,t)Q2
s(s,t)<4cs 

1 

as) 
Q2(s, t) 

< 4?8 • s " • c^s 2„2-S 
1* 

A 2 2-2S 
• 4c\c%s for all s e (0, 1] and t > r, 

because f (s) > 515 for all 5 e (0,1]. As 2 - 25 = - F 0 by (4.10), this shows the 
validity of (4.7) for s e (0,1] and t > x and thereby completes the proof. • 

Proof of Theorem 0.2H). The statement is an immediate consequence of Lem
ma 4.2. • 
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