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Abstract: Topology control is an important technique to improve the connectivity and the

reliability of Wireless Sensor Networks (WSNs) by means of adjusting the communication

range of wireless sensor nodes. In this paper, a novel Fuzzy-logic Topology Control (FTC) is

proposed to achieve any desired average node degree by adaptively changing communication

range, thus improving the network connectivity, which is the main target of FTC. FTC is a

fully localized control algorithm, and does not rely on location information of neighbors.

Instead of designing membership functions and if-then rules for fuzzy-logic controller, FTC

is constructed from the training data set to facilitate the design process. FTC is proved to be

accurate, stable and has short settling time. In order to compare it with other representative

localized algorithms (NONE, FLSS, k-Neighbor and LTRT), FTC is evaluated through

extensive simulations. The simulation results show that: firstly, similar to k-Neighbor

algorithm, FTC is the best to achieve the desired average node degree as node density varies;

secondly, FTC is comparable to FLSS and k-Neighbor in terms of energy-efficiency, but is

better than LTRT and NONE; thirdly, FTC has the lowest average maximum communication

range than other algorithms, which indicates that the most energy-consuming node in the

network consumes the lowest power.

Keywords: Wireless Sensor Networks; fuzzy-logic control; topology control; network

connectivity
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1. Introduction

Topology control has been proposed as a technique to address many problems in networks by adding

or deleting nodes/links according to certain algorithms/protocols, with the aim of obtaining expected

network properties. In Wireless Sensor Networks (WSNs), the topology control is usually achieved

by means of changing the communication range (equivalently, transmission power), scheduling sensor

nodes to active/sleep mode, placing sensor nodes in specific positions, etc. Since energy availability is

one of the most precious resources for sensor nodes, one of the goals of the topology control in WSNs is

usually to reduce energy consumption, while at the same time preserving other fundamental properties,

such as network connectivity, reliability, fault-tolerant, coverage, etc.

The node degree means the number of one-hop neighbors a node has. If all nodes in a network are still

connected after removal of any k−1 nodes, the network is called k−connected network. A network that

is k−connected indicates that the node degree of each node is at least k, but the network is not necessary

k − connected if the node degree for each node is at least k. The reasons considering the node degree

as the goal of the topology control are the following. Firstly, the node degree suggests fault-tolerance

capability of network. If a node has a higher node degree, it implies that there are more alternative

paths to route the data when one or more neighbors fail. Secondly, if the node degree is the order of

Θ(log n), where n is the total number of nodes in a network, the whole network is connected with high

probability [1]. This result helps to design a localized algorithm, because each node in the network only

has to take care of its own node degree. Thirdly, the node degree has an impact on the signal inference.

Nodes experience lower contention when accessing a wireless channel if the node degree is lower. As a

result, a tradeoff between network connectivity and link quality has to be taken into account.

In order to obtain the desired node degree, many algorithms are proposed to adjust sensor nodes’

communication range to control the desired number of nodes in neighbor list, e.g., [2,3]. Because

collecting global information is a time-consuming and energy-consuming process in large and distributed

WSNs, these algorithms are usually localized, so they only rely on local and its one-hop neighbors’

information. However, they also usually depend on calculating its neighbors’ locations, e.g., through

sensor nodes equipped with GPS, which is not always available in sensor nodes.

In this paper, we propose a localized fuzzy-logic approach, without the assumption that location

information is needed, to adaptively control the communication range of each node in order to achieve

the desired node degree. It is named Fuzzy-logic Topology Control, FTC for short. Fuzzy-logic is a very

powerful control algorithm. Fuzzy-logic control has been proved to be a very successful control approach

to many complex nonlinear systems [4,5]. It is relatively simple to convert knowledge of domain

experts to control algorithms. Usually, the design of fuzzy-logic controllers starts with constructing

the membership functions for linguistic input/output and if-then rules, such as [6,7]. Unfortunately, it

is not easy to tune the parameters of membership functions and if-then rules for fuzzy-logic controllers

to achieve desired performances when the system is very complicated or dynamic. For instance, if the

number of nodes in a network increases or decreases because of node failures or adding new nodes, the

membership functions may have to be re-designed, which would be a tedious work. Alternatively, we

can also start from a training data set obtained from already acquired knowledge, such as the node degree

distribution [8,9]. The fuzzy-logic controller can be constructed from the training data set, leaving the
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cumbersome process of tuning fuzzy controller parameters to learning algorithms. In this paper, we

construct FTC from the training data set. More specifically, the training data set is derived from the

mathematical description of the network. In addition, there is an integral controller outside fuzzy-logic

controller to control the fuzzy-logic input.

To the best of our knowledge, this paper is the first that applies the fuzzy-logic controller based

on a training data set to be used in topology control for WSNs. We study the impact of the integral

controller parameters on network properties, and prove that the system is stable, accurate and has short

settling time. In order to compare it with other representative localized algorithms (NONE, FLSS [2],

k-Neighbor [10], LTRT [3]), FTC is evaluated by extensive simulations. The simulation results show

that very similar to k-Neighbor algorithm, FTC is able to achieve desired average node degree even

when node density varies, and FTC is better than NONE, FLSS and LTRT algorithms. Besides, in terms

of energy consumption, FTC is comparable to that of FLSS and k-Neighbor, but saves more energy than

NONE and LTRT.

The rest of this paper is organized as follows. An introduction of related works is provided in

Section 2. Section 3 presents our proposed control algorithm FTC. We evaluate FTC by comparing

it with other localized algorithms in Section 4. Section 5 concludes our work.

2. Related Works

Topology control for network connectivity issues has been widely studied. Latest surveys can be

found in [11–14]. One of the fundamental problems in network is how to make the network connected

or k − connected. For instance, if two networks are k − connected, the resultant network formed by

joining them together is also a k − connected network if there are k − vertex disjoint edges connecting

them [15]. The connectivity problem can be formalized as a linear programming (LP)

problem [16–18]. Study [18] considers the special issue that some nodes’ batteries are renewable. It

presents the algorithm to optimize the power assignment by employing LP model. The connectivity

problem can also be formalized as a Steiner tree or minimal spanning tree problem, e.g., [2,3,19–23].

Many works focus on study of the node degree k. One of the most interesting problems is the value

of k to make the whole network connected. If all nodes in a network are uniformly deployed at random,

there are some asymptotical results showing the condition when the entire network is connected with

high probability as n → +∞, where n is the number of nodes in a network. There is a generic form:

if k ≥ c1 log n, the network is connected with high probability; if k < c2 logn, the network is

not connected with high probability. For instance, if k ≥ 0.5193 logn, the network is connected

with high probability [24]. If k < 0.074 logn, the network is disconnected with probability one;

if k ≥ 5.1774 logn, the network is connected with probability one [25]. Study [26] finds that if

k ≤ 0.3043 logn the network is not connected with high probability; if k ≥ 0.5139 logn, then the

network is connected with high probability. There is no evidence showing that c1 = c2. It is worth

mentioning that once the network is connected with high probability, it is also immediately k−connected

with high probability [24,27].

Previous results are asymptotical in nature, so they may not be able to be applied to real world

scenarios easily. From a more practical perspective, it is necessary to propose topology control
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algorithms/protocols to make the network connected with high probability, while conserving as much

energy as possible. However, the optimal solutions are usually not available. The problems, such

as minimizing power consumption while maintaining a k − connected network [28]; minimizing

number of links to obtain a 2 − connected network [29]; minimizing the number of node placement

for k − connected [30]; minimizing the number of relay nodes for 2 − connected network [31,32],

are NP-hard or NP-complete. Therefore, heuristic algorithms/protocols are proposed, such as [33],

SPAN [34], CCP [35], PEAS [36], k-Neighbor [10], FGSS [2], FLSS [2], LTRT [3] and FTC, which

is shown in this paper. Some of them are centralized algorithms, such as FGSS [2]. FGSS has proved

that the maximum transmission radius among all nodes in the network is minimized. In WSNs, because

the number of the nodes deployed in the field is very large, processing capability is relatively low, and

power in each sensor nodes is very limited, a centralized algorithm is not very practical. Hence, localized

and lightweight algorithms/protocols are expected for WSNs. Ref [33] proposes a greedy algorithm: it

starts from a complete graph, and then reduces nodes to reach desirable connectivity, or starts from an

empty graph and later connect edges until connectivity is reached, then it cuts off unnecessary nodes

but maintains the same connectivity. In this paper, our proposed FTC is a localized approach based on

fuzzy-logic theory and does not depend on neighbor location information. The results show that FTC

is able to achieve comparable performances to FLSS and better than LTRT, but FLSS and LTRT both

utilize the neighbor location information.

Control theory has been applied to WSNs. Ref [37] proposes a protocol that applies a control-theoretic

approach to control packet reception ratio (PRR) directly. The receiver monitors all incoming

packages and records the package transmission failures, and then computes the transmission power

needed for next round. This information will be sent to the sender side. Some advanced control

theories, such as fuzzy-logic control, are proposed to address various challenges in WSNs, e.g., energy

optimization [38,39], clustering [40], and routing issues [41,42]. The one tackled in this paper is neither

a routing, nor a network clustering problem. In general, routing or clustering algorithms are built on

the basis that the network topology is well connected. We study a more fundamental problem from

the network connectivity point of view. As presented in this paper, the fuzzy-logic system serves as an

inference engine for each sensor node to modify its communication range. Unlike other fuzzy-logic

control methods for WSNs, such as [6,7,38–43], this paper employs a training data set to design

fuzzy-logic controller, rather than starting from designing membership functions and if-then rules. Our

proposal is more flexible to deal with network dynamics, such as different node densities.

3. Fuzzy-Logic Topology Control (FTC)

In this section, we first present the design of Fuzzy-logic Topology Control (FTC), and then propose

a protocol that can run on sensor nodes. We utilize topology control based on fuzzy-logic to achieve

the desired node degree, in turn improving the network connectivity. Because WSNs are large-scale and

distributed networks, the algorithm/protocol running in a sensor node is localized, only depending on the

node itself and its one-hop neighbors’ information.
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3.1. WSNs Topology Control Using Fuzzy-Logic

In general, there are two ways to design the fuzzy-logic controller. The most commonly used approach

is to design the membership functions and the if-then rules on the basis of understanding the system from

domain experts. However, due to the complexity and dynamic of the system (such as WSNs), the design

of the membership functions and if-then rules might not be easy. Without any (or with incomplete)

knowledge about a system, tuning the parameters often takes very long time, e.g., the shape of the

membership functions. Another way to design fuzzy controllers is to use the training data set obtained

from extensive experiments or mathematical description if it exists. By means of applying some learning

algorithms, the fuzzy controller can be learnt from training data set. In this paper, our FTC leverages the

second approach.

3.1.1. FTC Output and Input

Figure 1 shows the system design of FTC. Adjusting the communication range (or equivalently

transmission power) is a very common capability in many sensor nodes, e.g., Sun SPOT (Sun Small

Programmable Object Technology) sensors. Hence, the output of FTC is the communication range

(CR). Since the target is to reach a specific node degree (ND) for FTC, one of the inputs is the

desired or reference ND, denoted by NDref or k. Note that in this paper, we use NDref and k

interchangeably, because NDref is used in control systems and k commonly represents the node degree

in the graph theory. On the other hand, for a large and random network, the number of nodes within

its communication range is unknown. Nevertheless, according to the network deployment strategy,

the probability that a node has node degree k is known. For a random and uniform deployment, the

probability that the node degree is at least bigger than k is given by Equation (1) (see [9]), where r is

the node communication range, n is the total number of nodes in the field, node density ρ = n
A

, and A is

the area of the field. Therefore, the probability that a node has degree k is another fuzzy-logic controller

input, denoted by Prob. In practice, k is an integer and communication range has an upper bound rmax,

so integer k > 0 and 0 ≤ r ≤ rmax.

Figure 1. Fuzzy-logic topology control (FTC).

= k

P (ND ≥ k) = f(k, r) = 1−
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3.1.2. FTC Learning Data Set

Provided a training data set from Equation (1), the fuzzy controller can be obtained through

learning algorithms, such as neuro-adaptive learning algorithm. With the help of the Matlab “adaptive

neuro-fuzzy inference system” (ANFIS) tool, FTC controller is not difficult to get. In ANFIS,

the membership function parameters are automatically tuned through a backpropagation algorithm

individually or in combination with a least square method. Once the data training is completed, the

fuzzy inference system is available by simply using the function “evalfis” provided by Matlab. Hence,

we concentrate on how to generate the training data set. As illustrated in Figure 1 and Equation (1),

the inputs are NDref and Prob, and the output is CR. Given ρ, NDref ∈ {k1, k2, · · ·km} and

CR ∈ {r1, r2, · · · , rj}, Prob = f(NDref , CR) can be calculated from Equation (1). The training

data set T is a s× 3 matrix in the form of [NDref , Prob, CR], where s = m · j. For instance, one item

in the training data set could be [3, 0.9, 25]. It means that the CR is set to 25m if the probability that

NDref ≥ 3 is 0.9.

3.1.3. Prob0 and K

Since NDref is characterized by the probability, it is necessary to adjust the node degree if a node

does not reach NDref . For instance, if CR = 25m can not lead to actual ND = NDref , then next step

is to adjust Prob to a higher value according to the node degree error eND. As shown in Figure 1, there

is an integral controller outside the fuzzy control to adaptively change Prob. From the control theory

point of view, the system properties (e.g., steady state) are controlled by parameter Prob0 and K. If eND

is less than 0, K is configured to be half of its initial value. As a result, CR tends to increase faster than

decrease. In Section 4.2, we will further discuss the impact of Prob0 and K by simulation.

3.2. FTC Protocol

According to the design of FTC in Section 3.1, corresponding FTC protocol is presented in this

section, as shown in FTC protocol running for a generic node. Each node broadcasts the HELLO

message at the maximum communication range rmax, in order to collect neighbors’ information. The

communication range is modified accordingly based on the fuzzy-logic controller.

On the one hand, in this paper, we only consider undirected links (that is, there is a link between

two nodes if and only if they are both in each other’s communication range), because in practice many

routing protocols assume that the link between two nodes are undirected. On the other hand, FTC is a

localized control algorithm running at each node independently. As a result, the node degree changes

over time. For instance, node u is the neighbor of v at this round of communication range updating, but

it is likely that in next round u is not the neighbor of v due to the communication range of u and/or v

being altered. We will show in Section 4.2 that the system goes to steady state by appropriately defining

the value of “rounds” in the FTC protocol.
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FTC protocol (for a generic node i)

Require:

1: Training data set, T = [k,Prob,CR];

2: Maximum communication range, rmax;

3: Reference node degree, NDref ;

4: Initial Probability, Prob0;

5: Initial K, K0;

6: Number of rounds, rounds;

Ensure:

7: Obtain the fuzzy-logic control system by ANFIS, ANFIS(T );

8: CRi ⇐ rmax;

9: Prob ⇐ Prob0;

10: while rounds > 0 do

11: Broadcast HELLO message with current CRi;

12: For messages received from other nodes, store the ID of its neighbors;

13: Calculate the number of neighbors ND in the neighbor list;

14: Calculate eND = ND −NDref ;

15: if eND < 0 then

16: K = K0;

17: else

18: K = K0

2
;

19: end if

20: Prob ⇐ Prob−K · eND;

21: CRi ⇐ evalfis(NDref , P rob); %The outputCRi can be calculated by CRi = evalfis(k, Prob)

22: rounds ⇐ rounds− 1

23: end while

4. Simulation-Based Performance Evaluation

In this section, we evaluate our proposal FTC by using Matlab, comparing FTC with three

representative localized topology control algorithms (FLSS, k-Neighbor, and LTRT), together with

an algorithm without any control algorithms, called NONE in this paper. We will introduce them in

Section 4.3.

4.1. Preliminaries

FTC is applicable to a network when all nodes are randomly and uniformly deployed, because the

training data derived from Equation (1) assumes that all nodes are randomly and uniformly deployed.

However, FTC can be applied to other deployment strategies as long as the node degree distribution is

able to be obtained. In our simulations, nodes are uniformly deployed at random in a 100 × 100 m2 field.

All nodes are stationary after the deployment. The maximum communication ranges, denoted as rmax,

for each node are the same, and rmax = 30m. Each node is capable of adjusting its communication
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range within [0 rmax]m. In this paper, we call one “round” simulation when all nodes finish the process

of executing a topology control algorithm one time. Recall that n is the total number of nodes deployed

in the field, and k is the desired node degree (namely, NDref = k). In Section 4.4, in order to simulate

different node densities, the number of nodes deployed in the area varies from 50 to 90 nodes. We

randomly generate 50 networks for each specific number of nodes. For each network, we run different

algorithms separately. The results are the average of 50 deployments.

4.2. Analysis of FTC Properties

As we mentioned in Section 3.1, FTC is affected by two parameters (Prob0 and K) outside the

fuzzy-logic controller. The simulator provides average node degree calculated by the sum of node degree

for all nodes divided by the number of nodes in the network. Figure 2 shows the impact of K on network

settling time, accuracy and stability. Firstly, the average node degree quickly converges to its steady state

value (after about 10 rounds). Secondly, the average node degree converges to the reference node degree

k = 3. A lower K results in a more stable system, but longer convergence time. For instance, K = 0.02

is more stable than K = 0.1, but K = 0.02 takes longer time to reach steady state. Thirdly, the system

is stable, but the system demonstrates heavier oscillation behavior when K is bigger.

Figure 2. Average node degree with different K (Prob0 = 0.8, n = 60, k = 3).
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Figure 3. Average node degree with different Prob0 (K = 0.02, n = 60, k = 3).
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Figure 3 illustrates different features at the first several rounds. If Prob0 is higher at the beginning, the

nodes are more likely to be connected than Prob0 is lower. Nevertheless, the average node degree goes

to stable state after 10 rounds as well. As a result, Prob0 has an impact on the initial status of network.

In short, the simulation results illustrate that K has an important influence on network settling

time, accuracy and stability. In the following simulations, we choose K = 0.02, Prob0 = 0.8 and

rounds = 15 to configure the parameters described in FTC protocol.

4.3. NONE, FLSS, k-Neighbor, LTRT

In this section, we briefly introduce four algorithms we have compared FTC with. More details can

be found in the corresponding references.

• NONE: once all sensor nodes are deployed in the field, each node configures its communication

range to the maximum communication range, and the communication range does not change

during the simulation. NONE generates the most connected network, thus gives the upper bound

of network connectivity. NONE algorithm is used to simulate the case that there is no topology

control applied to WSNs.

• Fault-tolerant Local Spanning Subgraph (FLSS) [2]: each node runs at their maximum

communication range to collect neighbors’ information, e.g., IDs, locations. Based on this

information, each node first sorts all edges in an ascending order, and then only selects edges

according to the order if it is not k − connected to it. Maybe some edges are directed, but it is

optional to only consider bi-directional edges by deleting directed edges, or turning directed edges

into bi-directional edges.

• k-Neighbor algorithm [10]: each node first runs at its maximum communication range as well, in

order to collect neighbor IDs and location information. Its final communication range is set to the

distance between itself and its k−th nearest neighbor. One of the important features of k-Neighbor

is that the algorithm is asynchronous. Each node starts running its topology algorithm at a random

time. However, the difference between nodes wake up is bounded by a known constant ∆. By the

time 4∆+2d+τ , all nodes terminate setting the communication range, where d is the time to obtain

a specific contention free wireless with probability P, and τ is the upper bound of processing time

for sorting neighbors. In the circumstances that the number of neighbors is less than k, k-Neighbor

algorithm modifies its communication range to the distance to the farthest neighbor.

• Local Minimum Spanning Tree (LTRT) [3]: LTRT performs local spanning tree algorithm k times.

Given a network G(V,E), where V is the set of nodes, E is the set of links. LTRT calculates one

of its spanning trees T (V, Ê1), and then removes all links in Ê1 from E. The resulting network is

denoted as G(V,E − Ê1). Next, the same process is conducted on G(V,E − Ê1). After k times,

the final network is formed by combining all trees together, that is G(V, Ê1 + Ê2 + · · ·+ Êk). The

final communication range of each node is the maximum communication range in G(V, Ê1+ Ê2+

· · ·+ Êk).

FLSS, k-Neighbor, and LTRT share some common features: they are all localized algorithms; they

all need location information of neighbors; they all aim at finding out k neighbors. There is an important

difference among them, though: FLSS and LTRT have been proven to be able to preserve the network to
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be k−connected if the original network is at least k−connected. On the contrary, k-Neighbor algorithm

only proves that the network is 1 − connected with high probability if k is the order of Θ(log n). Like

FLSS, k-Neighbor and LTRT, FTC proposed in this paper is also a fully localized algorithm to find k

neighbors, but FTC does not need location information. Similar to k-Neighbor, FTC cannot guarantee

that the network is 100% connected either, but FTC can achieve the desired k, and therefore FTC can

make the network connected with high probability if choosing k appropriately.

4.4. Comparison and Discussion

First, we evaluate whether FTC is able to trace the NDref or k. As illustrated in Figure 4, the average

node degree is very close to the desired node degree when k = 2 as the number of nodes varies from 50

to 90. When k is bigger, the average node degree is slightly lower than expected, because it is less likely

to get more neighbors. For instance, with the same communication range, the probability of having 4

neighbors is obviously lower than having only 2 neighbors. In addition, the maximum communication

range is limited. We can conclude from Figure 4 that FTC is able to achieve desired average node degree

k without knowing the locations of neighbors. Later, we will show that only k-Neighbor algorithm can

achieve desired node degree as FTC, but k-Neighbor requires location information of neighbors.

Figure 4. Different desired node degree k.
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Second, we compare FTC with other algorithms. Figure 5 shows an instance of the topology after

running different topology algorithms on the same network when k = 3 and n = 65. Figure 5a indicates

that the network is very well connected, because each node runs at the maximum communication range,

but it also causes severe signal inferences in the network, as well as too much energy consumption. LTRT

in Figure 5d shows the second most connected network. FLSS in Figure 5c, k-Neighbor in Figure 5b

and FTC in Figure 5e are quite similar. They preserve network connectivity with much lower amount of

links between nodes, which means that much less signal inferences are introduced. Figure 5 implies that

FLSS, k-Neighbor and FTC demonstrate a better tradeoff between network connectivity and link quality.

FLSS may produce directional links. We only plot the undirected links, so the resulting network running

FLSS shown in 5c is not a 3 − connected network, the original network shown in Figure 5a is at least a

3− connected network though.
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Figure 5. Example of resultant topology (n = 65, k = 3). (a) NONE; (b) k-Neighbor;

(c) FLSS; (d) LTRT; (e) FTC.
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(e)

Third, we further study the average node degree. Figure 6 illustrates the average node degree for all

algorithms when the number of nodes varies from 50 to 90. The average node degree increases when the

number of nodes increases if running NONE algorithm, but other algorithms are able to keep the node

degree at a much lower level. Particularly, FTC and k-Neighbor are not distinguishable in Figure 6, and

they are the best algorithms that are able to trace k. k-Neighbor is able to get the exact k, because it
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calculates where the k − th nearest neighbor is, based on already known distance information. FTC,

on the contrary, is able to reach the desired k (see also Figure 4), but without knowing the neighbor

locations. LTRT’s node degree is the second higher. As shown in previous Figure 5d, LTRT shows its

superiority over FTC, FLSS, and k-Neighbors concerning the network connectivity.

Figure 6. Average node degree (k = 3).
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Moreover, it is worth noting that the communication range is proportional to the energy consumption

of wireless sensor nodes. Therefore, a lower average communication range implies a lower energy

consumption, which is a significant performance when designing WSNs. Figure 7 shows the average

communication range. Recall that the maximum communication range of each node is 30 m in the

simulation. On the one hand, apart from NONE algorithm (because the communication range of each

node is fixed at maximum), other algorithms’ average communication range decreases along with the

number of nodes in the network increasing, because higher node density indicates that it is more likely

to have the desired node degree with lower communication range. With the number of hops increasing,

the energy consumption due to wireless transmission decreases, but the energy consumption due to

forwarding messages increases. Overall, though, the energy is still saved, because the energy spent on

wireless transmission is orders of magnitude higher than that spent on computation. So, we can conclude

that energy consumption is lower if the node density is high for all algorithms (except NONE). On the

other hand, from Figure 7, it can be seen that in terms of energy consumption, NONE is the worst, and

LTRT is the second worst. FTC, FLSS and k-Neighbors performance is very close to each other, but it is

better than NONE and LTRT.

Finally, Figure 8 demonstrates the average maximum communication range. FTC maintains the

lowest maximum communication range comparing it with other algorithms, which means that the most

energy-consuming node in the network consumes the lowest power. Furthermore, Figure 9 evaluates the

Energy Expended Ratio (EER) (define EER = 100 × CRavg

CRmax

%) [28]. EER is a parameter wanted to be

as small as possible. NONE is the highest; FTC is very similar to LTRT; while k-Neighbor and FLSS

are relatively lower. FLSS claims that it has achieved near optimal performance.
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Figure 7. Average communication range (k = 3).

50 55 60 65 70 75 80 85 90
10

15

20

25

30

35

Average
 Communication 

Range(m)

 

 

NONE

k−Neighbor

FLSS

LTRT

FTC

Number of Nodes

Figure 8. Average maximum communication range (k = 3).
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Figure 9. Energy expended ratio (EER) (k = 3).
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5. Conclusions and Future Works

In this paper, we address the connectivity problem in WSNs. More specifically, we proposed a novel

localized adaptive fuzzy-logic topology control algorithm, called FTC, to control the communication

range of sensor nodes in WSNs, with the purpose of achieving the desired node degree (namely the
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number of one-hop neighbors a node has), therefore in turn improving the network connectivity. Unlike

other ways to design fuzzy-logic control system, the fuzzy-logic controller of FTC is constructed from

a training data set. One of the great advantages of this approach is that it is easier to design a feasible

controller without complicated parameter adjustment for the fuzzy-logic controller, especially when the

network is highly dynamic.

FTC has been compared with four representative localized algorithms: NONE, FLSS, k-neighbors

and LTRT. The simulation results show that FTC is able to trace the desired node degree as k-Neighbor

algorithm which is based on the locations of neighbors, but FTC does not depend on location information.

On the contrary, NONE, FLSS, and LTRT are unable to achieve the desired node degree. The average

communicating range of FTC is very close to FLSS and k-Neighbor, but lower than NONE and LTRT.

It implies that the energy consumption of FTC is lower than that of NONE and LTRT. In addition, the

average maximum communication of FTC is the lowest, which means that the highest energy-consuming

node in the network running FTC protocol consumes the lowest power than running other algorithms.

The Energy Expended Ratio (EER) of FTC is very close to LTRT, but higher than FLSS and k-Neighbor.

In summary, without knowing the neighbor location information, our localized FTC shows the capability

of achieving desired node degree, maintaining network connectivity, and it is energy-efficient.

In this paper, all nodes are stationary after they are deployed. In our future works, we will take into

account the mobility of sensor nodes. Furthermore, our validations are based on computer simulations.

In order to validate FTC protocol, real experiments will be carried out on our Sun SPOT sensor platform

in the near future. The node deployment is very unlikely to be an ideal random and uniform distribution,

so we will calculate all sensor nodes’ locations through computer simulation prior to deploying them in

the field.
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Yuanjiang Huang, José-Fernán Martı́nez and Juana Sendra were responsible for the theoretical

analysis of the control system. Yuanjiang Huang, José-Fernán Martı́nez and Vicente Hernández
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