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Abstract We show the existence of sets with n points (n > 4) for which every convex 
decomposition contains more than f§« — § polygons, which refutes the conjecture that 
for every set of n points there is a convex decomposition with at most n + C polygons. 
For sets having exactly three extreme points we show that more than n + s/2(n - 3) - 4 
polygons may be necessary to form a convex decomposition. 
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1 Introduction 

Let y be a finite set of points in general position in the plane, i.e., no three points of V lie 
on a straight line. A convex subdivision of V is a set of convex polygons [Pi,..., Pk] 
with vertices in V such that U; Pi = conv(y) and Pi n Pj is a (possibly empty) face of 
both Pi and Pj (see [6]). In this paper we impose the following additional condition: 
the polygons Pi must be empty, i.e., no element of V is contained in the interior of 
any of the polygons. This condition is equivalent (for points in general position) to the 



requirement that every element in V should be a vertex of at least one polygon in the 
subdivision. We use the name convex decomposition (or just decomposition) to refer 
to this special type of subdivision. 

The number of polygons in a decomposition is called the size of the decomposition. 
Let G(V) be the minimum size among the decompositions of V. Let g(n) be the 
maximum value of G(V) among the sets V of n points in general position in the 
plane. Aichholzer and Krasser [2] showed g(n) > n + 2. On the other hand we have 
the trivial bound g(n) < In — 5 for n > 3 (by considering triangulations). Hosono 
[5] proved g(n) < |~(7/5)(« - 3)1 + 1. Sakai and Urrutia [7] announced the bound 
g(n) < (4/3)n - 2. Rivera-Campo and Urrutia conjectured that g(n) < n + C for 
some constant C (see Conjecture 6 in Section 8.5 of [3]). It is clear that if a set V with 
n vertices admits a decomposition into convex quadrilaterals then G(V) < n. Thus, 
roughly speaking a formula of the type g(n) <n + C for constant C would indicate 
that the triangles that we may be forced to use to obtain a convex decomposition of 
V can be offset by sufficiently many polygons with five or more faces. In this paper 
we refute this conjecture by showing that g(n) > (35/32)n - 3/2 for n > 4. We 
present an improved, simpler version (with corrected proofs) of the construction in 
our unpublished draft [4] (cited in [1,5]). 

We refer to [1] for bounds on related objects such as pseudo-convex decompositions 
and convex and pseudo-convex partitions and coverings. 

2 Basic Construction 

First we review the idea of contraction in the context of decompositions. It is convenient 
when performing contractions to identify a decomposition S with the geometric graph 
consisting of the vertices and sides of the polygons in S. Let V be a finite subset of R2. 
Let p e R2 - V and suppose that V U {p} is in general position. Define cell(p, V) as 
the cell that contains p in the line arrangement determined by V, i.e., x e cell(p, V) 
if and only if x and p are on the same side of / for every line / through any two 
points in V. In other words, V U {x} and V U {p} have the same order type. It is 
clear that if S is a convex decomposition of V U {x} and x e cell(p, V) then there 
exists a decomposition S' of V U {p} which is combinatorially equivalent to S. More 
in general, if S is a decomposition of V U V\ and V\ c cell(p, V), where p may be 
contained in V\ but not in V, we obtain from S a decomposition of V U {p} if we 
contract every element of V\ to p. 

We work in the more general setting of R2 U {pco}, where /?«, is the point at infinity 
in the direction of the positive x-axis. An edge between a vertex v of R2 and p^ is 
simply an infinite ray that starts at v and extends in the positive horizontal direction. 
If V c R2 then V U {poo} is in general position if V is in general position and no 
two vertices of V have the same y coordinate. Suppose V c R2 and let V U {poo} 
be in general position. Define cell(pco, V) as the unbounded region determined by 
the following rule: x e cell(pco, V) if and only if for every line / through two points 
in V, x lies above / if / has negative slope and below / if / has positive slope. If 
V\ c cell(pco, V) and S is a decomposition of V U V\ U [poo] (note /?«, is not 
contained in V\ nor V) we obtain a decomposition of V U {poo} by contracting V\ to 



Fig. 1 a A decomposition of V U V\ U {pco}, where V\ is the set containing the three points shown on the 
right, b A decomposition of V U {poo}, obtained by contracting V\ to jt?oo in a 

Poo. In this case the contraction amounts to deleting V\ and every edge incident to it, 
and adding an edge (i.e., ray) between v and /?«, for each v e V adjacent to a vertex 
in V\. See Fig. 1. 

Let B = {(0, 0), (0, 1)} and B* = B U {poo}- We consider first decompositions of 
the convex hull of B* (the "triangle" bounded by the lines y = 0, x = 0 and y = 1). 

Inductively, define the sets L 0 , . . . , Lk+i as follows. Let L0 = 0, L\ = {(1, 5)} and 
suppose the sets LQ, ..., L*, k > 1, have been chosen so that the following properties 
hold for 0 < i < k: 

(i) Lj+i c cell(p«„ B U L i U - U Lt). 
(ii) The vertices in L;+i form a vertical layer concave to the left, i.e., every vertex 

v in Lj+i is contained in a line having Z? U L\ U • • • U L;+i — {u} on one side 
and Poo on the other side. This is equivalent (by property (i)) to requiring the set 
B U Lj+i to be in convex position, 

(iii) |L;+i | = i + 1. Additionally, when ordered according to their y-coordinates the 
elements of L; and Lj+i alternate. 

(iv) B* U Li U • • • U Lj+i is in general position. 

Then Lk+\ can be chosen so that properties (i)-(fv) are satisfied for 0 < i < k + 1: 
on account of the general position cell(/?«,, B U Li U • • • U L*) contains an infinite 
rectangle of height 1, i.e., there exists a number M such that the convex hull of 
((M, 0), (M, 1), pco} is contained in cell(pco, BUL,U- • -UL^.Fon e { 1 , . . . , £+1) 
choose yi in the open interval (y~i-i,y~i) where y i , . . . , y* are the y-coordinates in 
increasing order of the k points in L^ and yo = 0, yt+i = 1. Also choose the numbers 
yi to be distinct from all the y-coordinates of the points in L\ U • • • U L^ to ensure 
general position. Now choose xt > M such that the points (x;, y;) form a vertical 
layer concave to the left (as defined in (ii)) while preserving the general position, and 
let Lk+i = {{xi, y i ) , . . . , (Xk+i, y*+i)}. 

For every k > 1, denote the set L\ U • • • U L^ by C*. See Fig. 2. 



Fig. 2 A decomposition of B * U C4. P is obtained from P when L4 is contracted to poo • Note that P is 
incident to poo, hence P c P 

3 Results 

We are interested in the sets B*UQ because the discrepancy between its size and the 
size of its decompositions is large. Define A (S) for any decomposition S of a set of 
vertices V to be \S\ - | Vmt |, i.e., the difference between the number of polygons in 
the decomposition and the number of vertices of V that lie in the interior of conv(V). 
Let Roo (S) be the set of polygons in S incident to poo • 

Theorem 1 If S is a decomposition of B* U C* then A(S) > \Roo(S)\-

Proof 1 By induction on k. The case k = 1 is clear since the only decomposition S 
of B* U L\ satisfies \S\ = 3, |^co(5)| = 2 and there is one interior vertex. 

Assume the theorem is true for k > 1. Let 5 be a decomposition of B*UQ + i . Since 
Lk+i c cell(pco, BUCk) we obtain a decomposition 51 of B ' U Q by contracting Lk+i 
to Poo. For P e 5 let P be the polygon obtained from P after contracting Lk+i to Poo. 
Note that P may be a degenerate polygon (i.e., with empty interior) consisting only of 
the point poo or of a horizontal ray joining a point to /?«,. Clearly P is degenerate if 
and only if P is incident to at most one point in B U C*. Let 7?new(5) be the subset of 
5 consisting of the polygons P for which P is degenerate. The map P ->- P restricted 
to 5 - Pn e w establishes a bijection with S, so |5| = \S\ + \Rnew(S)\. If we think of 
the decomposition S as being obtained from S by reversing the contraction then the 
polygons in Rnew are the new polygons that have not been counted in S. Applying the 
inductive hypothesis we obtain 

A(S) = \S\ - ICt+il = |5| + \Rnew(S)\ - \Ck\ - \Lk+1\ 

= A(S) + \Rnew(S)\-k-l > \Roo(S)\ + \Rnew(S)\ - k - 1 (1) 

Note that if P e Roo(S') - Rnev,(S) then P e Roo (S) since an unbounded polygon 
(i.e., incident to /?«,) either becomes degenerate or remains unbounded after the con
traction. But we also have elements in Roo(S) that come from bounded polygons in 
S. Let Rbnd(S) be the set of polygons P in S - Roo(S) such that P e Roo(S). Then 
IRooiS)] = \Rbnd(S)\ + \Roo(S) - Rnew(S)\. Substituting in (1) we obtain 

A(S) > \Rona(S)\ + \Roo(S) - Rnew(S)\ + |^n e w(5) | -k-1 

>|/? t ad(S')| + | / ? 0 0 ( 5 ) | - * - l (2) 



Therefore the result follows if we show that |^b n d(5) | > fc+l.Now, for each vertex 
v in Lk+\ there is a polygon Qv in Roo(S) that contains v in its interior (since the 
polygons in S cover conv(Z?*) and Lk+\ C cell(pco, B U Ck)). Let P„ be the polygon 
in S such that P„ = Qv. We want to show that Pv £ Roo(S) and that Pv ^ P„/ 
for v ^ i/. Suppose Pv e Roo(S). The two rays incident to Poo on the boundary of 
Pv are horizontal, therefore, by convexity, every vertex of Pv lies either between the 
two parallel lines defined by these rays or at the endpoint of one of the rays. Hence, 
Pv e Roo(S) implies Pv c Pv (see Fig. 2). Since v belongs to the interior of Pv and 
Pv ^ Pv it follows that v belongs to the interior of Pv, which contradicts the fact that 
Pv is an empty polygon. Therefore Pv e Rbnd(S) for all v e Lk+\. 

Finally suppose Pv = Pv< for some v, v' e Lk+\, v ^ v'. Then Pv = Pv< so 
Pv contains both v and v' in its interior. By its convexity Pv contains the segment 
joining v and v'. But there is a vertex w in Lk whose y coordinate lies between the 
y coordinates of v and v' (the coordinates of Lk and Lk+\ alternate). Since Lk is 
concave to the left w has to be incident to /?«, in the decomposition S. Thus, the ray 
coming out of w intersects the segment between v and v' which is supposed to be 
contained in the interior of Pv. This contradiction shows that Pv ^ Pv< for v ^ v'. 
Hence |tfbnd(S)| > k + 1 and the result follows from (2). • 

Corollary 2 For any decomposition S of B* U C*, A(S) >k + l. 

Proof 2 Lk is concave to the left. Therefore every v e Lk is incident to p^, so 
R00(S)>k+l. D 

Corollary 3 For any decomposition SofB*UCk,the number of polygons not incident 
to poo is at least | Q |. • 

Recall that G(V) is defined as the minimum size of a decomposition of V and 
g(n) as the maximum value of G(V) among all the sets with n elements in general 
position. Let #3 (n) be the maximum value of G( V) among the sets V c M2 in general 
position having n elements of which exactly three lie on the boundary of conv(V). 
In order to obtain a bound for #3 we replace poo by an actual point on R2. Let 
Zk e cell(/?oo, B U C*). It is clear that any decomposition of B U Ck U {ẑ } yields a 
decomposition of B* U Ck with the same number of polygons when Zk is contracted 
to poo. Combined with Corollary 2 we obtain the following bound on #3: 

Theorem 4 £3(3 + \Ck\) > \Ck\+k+\. O 

In order to obtain a result valid for every n, observe that #3 (n +1) > ^3 (n) +1 (i.e., 
g3 is strictly monotonic). Indeed, let V be a set of n points of which exactly three, bi,b2 
and&3, lie on the boundary of conv(V) and such that G(V) = £3(71). Let V' be the set 
V U {w} where w satisfies w e conv(V) n cell (ft 1, V - {bi}) and the line through b\ 
and w separates &2 from the rest of the points in V (wis very close to the side &1&2 and 
to the vertex b\). Then every decomposition of V' contains the triangle with vertices 
b\, &2 and w. Moreover, every decomposition S of V' produces a decomposition S of 
V when w is contracted to b\. Since the triangle b\b2W collapses after the contraction 
we obtain \S\ > \S\ > \G(V)\. Therefore, g3(n + 1) > G(V') > G(V) = g3(n). 
Taking V to be a set such that g(n) = G(V) and proceeding in a similar way we also 
obtain the monotonicity of the function g(n). 



Fig. 3 A decomposition of the 

set D42 

Theorem 5 g3(n + j) > g3(n) + j and g(n + j) > g{n) + j . a 

Let nk = 3 + \Ck\ = 3 + k(k + l)/2. Solving for k we obtain k = (l/2)(—1 + 
VI + 8(n^ - 3)). Therefore, taking nk < n < nk+\ we have £ < (l/2)(—1 + 
VI + 8(« - 3)) < k + 1. From this inequality and Theorems 4 and 5 we obtain the 
following bound on #3: 

Theorem 6 For alln > 3, #3(«) > n — 4 + V2(« — 3). 

Proof 3 Let nk < n < nk+\. By Theorems 4 and 5, g3(«) > g3{nk) + n - % > 
% - 3 + £ + 1 + n - nk. But k + 1 > (l/2)(—1 + VI + 8(n - 3 ) ) , so g3(n) > 
« - 3 + ( l / 2 ) ( - l + VI + 8(n - 3)) > n - 4 + V2(« - 3). • 

Now we consider a more general construction that yields a bound for the function 
g(n). Let P = [vo,..., Vh-\} be the vertices of a regular /j-gon listed in clockwise 
order. Let Bt denote the set {vt _ 1, vt} (all indices from now on are computed modulo h). 
Let Bi be the segment with endpoints t>i_i and 1;;. Let p1^ be the point at infinity in 
the direction perpendicular to Bi on the side containing conv(P). We work with p^ 
in the same way we did with p^. For example, cellCp^, V) (for V c M2) is the 
unbounded region that corresponds to cell(/?oo, V) when the plane is rotated so that 
p1^ corresponds to p^ and V to V. 

Now apply appropriate afflne transformations to Ck in order to obtain, for each i, 
sets C\ satisfying the following property: 

U ^ ' u P - f l i C c e l K p ^ f l i U C i ) . (3) 

In other words, rotate and scale Ck until the set Bi plays the role of B in our previous 
construction and then affinely compress Ck as much as necessary toward the segment 
Bi to obtain a set Cl

k such that cell(/?£„, B; U C£) contains all of conv(P) except for B, 
and a small neighborhood around it. Let DA,* = PUUiCl

k. See Fig. 3 for an example. 
Let S be a decomposition of Dh,k- From (3) it follows that if we contract every 

vertex not in Bt U C\ to p^ we obtain a decomposition which is combinatorially 
equivalent to a decomposition of B* U Ck. In particular, from Corollary 3 we see that 
in any decomposition S of D^* and for each i the number of polygons incident only 
to vertices in Bi U C£ is at least k(k + l)/2. In addition to these hk(k + l)/2 polygons, 



S must contain at least hk/2 more polygons which are incident to the diagonals that 
connect the last layer of each C\ with vertices outside Bi U C\ (there are at least hk/2 
such diagonals). Therefore, for every decomposition S of Dh,k, \S\ > hk(k + 2)/2. 
Hence, 

Theorem 7 G(Dh,k) > hk(k+ 2)/2,forh > 3, £ > 1. a 

The quotient between hk(k + 2)/2 and \Dh^k\ does not depend on h and attains 
a maximum, among integer values ofk, at k = 5. Since \Dh,s\ = I6h the previous 
theorem yields g(n) > (35/32)n when n = I6h, h > 3. For arbitrary n, we obtain 
the following theorem: 

Theorem 8 g{n) > | |w — \,forn > 4. n 

Proof 4 For n > 48, let n = 16h + c with 0 < c < 16. By Theorem 5 we get 
g(n) > g{l<Sh) + c > (35/32)16/! + (35/32)c - (35/32 - l)c = (35/32)n -
(3/32)c > (35/32)n - 3/2. For 9 < n < 47, note that the bound on g3(n) in 
Theorem 6 is better than the bound on g(n) in Theorem 8 for these values of n, i.e., 
n - 4 + V2(« - 3) > (35/32)n - 3/2 for 9 < n < 47. By definition g(n) and 
g3(n) are the maximum values of G(V) over two classes of sets, one containing the 
other, hence g(n) and g3(n) satisfy g(n) > g3(n) for all n. Therefore in this case 
g(n) > (35/32)n - 3/2 by virtue of Theorem 6. The case 4 < n < 8 can be verified 
using Theorem 4 for k = 1,2 and the monotonicity of g. • 

4 Conjectures 

We conjecture that our bound for #3 (Theorem 6) is tight up to a constant. Also we note 
that our basic construction seems to admit a direct generalization to higher dimensions 
and thus it is likely that the results and proofs concerning this construction (i.e., up to 
Theorem 6) might also have a generalization. 
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