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ABSTRACT 

We demonstrate a new class of semiconductor device: the Optically Triggered Infrared 

Photodetector (OTIP). This photodetector is based on a new physical principle that allows the 

detection of infrared light to be switched ON and OFF by means of an external light. Our 

experimental device, fabricated using InAs/AlGaAs quantum-dot technology, demonstrates 

normal incidence infrared detection in the 2–6 μm range. The detection is optically triggered by a 

590-nm light-emitting diode. Furthermore, the detection gain is achieved in our device without 

an increase of the noise level. The novel characteristics of OTIPs open up new possibilities for 

third generation infrared imaging systems1. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148671407?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2

 

 

Infrared (IR) photodetectors are used in a wide variety of applications in the scientific, 

medical, industrial and military areas. In the mid (3–5 μm) and long (8–12 μm) wavelength 

infrared (MWIR and LWIR) atmospheric windows, there are currently two main competing IR 

photodetector technologies: variable, low-bandgap photodiodes and photoconductive devices 

that exploit the quantum confinement in wide-gap materials, such as quantum well IR 

photodetectors (QWIP)2, 3 and quantum dot IR photodetectors (QDIP)4. Photodiodes extract 

photo-excited carriers from a p–n junction under reverse bias. Photoconductors allow light 

detection due to the change in the device conductivity caused by the increase in the number of 

free carriers when light is absorbed. Photoconductors require voltage biasing to operate too. 

HgCdTe5, 6 photodiodes have been the leading performing technology for the last half century, 

but they present some disadvantages: substrates for HgCdTe growth are scarce and expensive, 

and large-area growth inhomogeneity hinders the fabrication of large-format photodetectors7. For 

this reason different low bandgap materials, such as InAsSb supperlattices8, 9 or, more recently, 

InAsBi10 have been investigated as promising alternatives for the MWIR range. QWIPs, and 

specially QDIPs, have been regarded as possible alternatives in the MWIR and LWIR ranges, for 

they are technologically mature and their detection wavelength can be engineered over these 

ranges, up to 12 μm11-13. However, they cannot, so far, compete in performance with their 

photodiode counterpart.4 With that goal, big efforts are being made for achieving increased 

responsivities and lower dark currents14-16. The difficulty of this task lies in the dependency of 
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both parameters with the applied voltage in voltage-driven photodetectors. In this respect, good 

performance results have been obtained in photodiodes working in photovoltaic mode17. 

In this letter, we present and characterize, for the first time, a new type of IR photodetector that 

we call “Optically Triggered Infrared Photodetector” (OTIP). Along this work we will describe 

the novel physical principle responsible for IR light detection in the OTIP. We will demonstrate 

a successful implementation of the OTIP using InAs/AlGaAs quantum dots (QDs) technology. 

We will experimentally show that, in contrast with the aforementioned established technologies 

and others18, the OTIP has the following differentiating features: 1) it is optically triggered, 

hence it can be commuted with light in optical communication systems, 2) it does not require an 

electrical power supply, and 3) the external light-bias provides photo-detection gain without 

increasing the detector noise level. In addition to these features, our device shares, in principle, 

the intrinsic advantages of photo-detection using semiconductor QDs: control of peak response 

wavelength, the possibility of multiband detection19, and the use of a mature and available 

technology. 

Figure 1 shows the simplified device structure of the OTIP, its band diagram and an equivalent 

circuit. It consists of a QD-region sandwiched between conventional p– and n–semiconductors. 

In the QD-stack region, the electron confinement in the QDs allows the classification of the 

electron energy levels into three simplified groups (Figure 1b): the conduction band (CB), 

formed by the electron states with energy above the conduction band edge of the barrier material; 

the valence band (VB), consisting of the electron states with energies lower than the valence 

band edge of the barrier, plus the highly packed confined electron states in the valence band 

potential well of the QD; and the intermediate states, formed by the confined electron states in 

the conduction band potential well of the QD. We call these intermediate states the “intermediate 
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band” (IB) because the operation of the OTIP will be mostly described based on the intermediate 

band solar cell (IBSC) theory framework.20, 21 

The detection of IR light in our device works as follows: IR photons, in the mid-long 

wavelength range, promote electronic transitions from the IB to the CB. These transitions are 

represented by arrow “5” in Figure 1b and by the current generator JIR in the circuit model in 

Figure 1c. However, in an ideal device, the absorption of these IR photons would not yet produce 

any photocurrent because there is no path for the electrons pumped to the CB to return to the IB 

and repopulate it. Hence, once electrons have circulated through the external circuit, returning to 

the IB would require some mechanism capable of pumping these electrons back from the VB to 

the IB. This pumping mechanism does not exist when the device is illuminated only with mid-

long wavelength IR radiation. When explained in terms of the circuit model in Figure 1c, 

returning to the IB would imply an electrical current flowing in reverse through diode D2. 

Because we assume D2 to be ideal, this current flow is not possible. Therefore, when illuminated 

with IR radiation only, the electrons that have been pumped to the CB recombine back to the IB 

through diode D1 and no external photocurrent is detected. 

We will now see how this operation mode changes if, prior to the detection of IR light, the 

device is illuminated with a supra-bandgap biasing light source (SBG in Figure 1b) whose 

photons, when absorbed, are capable of pumping electrons from the VB to the CB (arrow “1” in 

Figure 1b). In the absence of the IR light, some of the electrons generated by the SBG will 

circulate through the external circuit. Not all the generated electrons will circulate because, in 

general, some will recombine directly from the CB to the VB (arrow “2” in Figure 1b) and some 

will also recombine to the VB but via the IB (arrows “3” and “4” in Figure 1b). In the circuit 

model in Fig. 1c, the photo-excitation of electrons by the SBG is represented by the current 
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generator JG, and the recombination paths to the VB that we have described are represented by 

current JD3 (through diode D3) when not going via the IB, and by currents JD1 and JD2 (through 

diodes D1 and D2, respectively) when assisted by the IB. Therefore, the current through the 

external circuit when there is no IR light, JSC0, is given by  SC G D D . However, 

when IR illumination is added, the net carrier recombination from the CB to the IB diminishes. 

As a consequence, the current though the external circuit is modified by JSC, which verifies that 

SC G D D IR SC  SC, where  . 

Figure 2 illustrates the detailed semiconductor layer structure with which we have 

implemented our OTIP. The material growth was carried out by molecular beam epitaxy. The 

OTIP device structure is grown on a (100) n-GaAs substrate. Ten layers of InAs QDs are grown 

embedded in 60-nm ndoped Al0.35Ga0.65As barriers. The barriers are doped with approximately 

10 Si atoms per QD in order to highly populate the IB with electrons and increase the IR 

absorption22. However, doping of the barriers is not strictly necessary for the OTIP operation 

since, even in the undoped case, part of the QDs (those which are closest to the nemitter) are 

filled with electrons because they are placed in a space charge region23. 

The InAs deposited for the QDs formation is two monolayers thick. The barriers separating the 

QDs from the p and n–regions are 130 nm thick. The QD-stack is sandwiched between a 200-nm 

pdoped and a 500-nm ndoped Al0.35Ga0.65As emitter. Above and below the emitters, a 50-nm 

Al0.78Ga0.22As window layer and a 105-nm Al0.41Ga0.59As back surface field layer, respectively, 

are grown with the aim of minimizing the recombination of photo-generated carriers in the 

surfaces of the device. Metal contacts are placed on the top and at the bottom of the structure. 

Finally, a 30-nm highly doped p-GaAs contact layer is grown above the window layer to allow 

the formation of ohmic contacts. 
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Standard photolithography techniques were used for processing the sample. The back contact 

was made by evaporating 100 nm of Au-Ge alloy, 25 nm of Ni, and 300 nm of Au, and followed 

by rapid thermal annealing (370 ºC, 180 s). The front contact was made by evaporating 45 nm of 

Cr and 330 nm of Au. After lift-off, wet etching removed the p-GaAs contact layer, which 

remained only underneath the front metal grid. MESA etching completed the processing, 

delimiting 1 mm-radius circular devices. Samples were mounted on a copper disk that acted as 

the contact and a heat sink. 

Figure 3a shows the experimental spectral response (JSC divided by the incident SBG power, 

PSBG) of our device measured at a temperature (T) of 9 K as a function of the wavelength of the 

normal incident IR photons. In the experiment, which will be described in detail later on, these 

photons come from an IR emitter after passing through a monochromator and adequate optical 

filters. The sample was simultaneously illuminated by a 590-nm (2.1 eV) light-emitting diode 

(LED)  note that, at T = 9 K, the bandgap of our device is 2.0 eV, which is smaller than the 

LED photon emission energy. Several LED-biasing currents (LBC) were used in the experiment, 

ranging from 0 to 60 mA, as indicated in the legend. This LED plays the role of the SBG as 

explained above. 

The results in Figure 3a demonstrate that the OTIP operates as an optically triggered IR 

photodetector since, first, it responds to the MWIR light and, in addition, this response increases 

with the irradiance of the LED (which is modulated by the LBC), being nearly zero when the 

LED is OFF. The reason why the photocurrent induced in the OTIP is not exactly zero when the 

LED is OFF, as expected by the theory for the ideal device explained above, will be discussed 

later. Proper OTIP operation was demonstrated also at T = 60 K. This result is presented in the 

Supporting information. At higher temperatures the measured signal was reduced and finally met 
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the noise level of the measurement (at around 100 K). A possible explanation for this reduction 

in the response is that thermal excitation of electrons from the IB to the CB competes with 

optical excitation, thus reducing the sensitivity of the device. 

We used the experimental set-up depicted in Figure 3b for the measurements. This set-up is a 

modification of the one described in ref.24, which served to initially demonstrate the photocurrent 

due to MWIR illumination in QD-based IBSCs. Commercially available 590-nm LEDs and a 

Newport 140 W IR SiC lamp were used as the SBG and the IR light sources, respectively. The 

IR source was chopped and directed into a three-grating Newport 1/4 m monochromator. A set of 

IR long-pass optical filters was placed at the exit of the monochromator to minimize the impact 

of residual broadband and second order light on the measurements. Light was directed to be 

normally incident onto the sample. The sample was placed in a closed-cycle He-cryostat and 

connected to a low-noise Stanford Research Systems SR570 transimpedance amplifier. This 

amplifier also served as the voltage source to bias the sample. The final signal detection was 

made using a Stanford Research Systems SR830 lock-in amplifier to measure at the chopping 

frequency (177 Hz). All the results presented in Figure 3 were measured for zero voltage bias. 

The results presented in Figure 3a demonstrate IR detection in the 2000–6000 nm range, 

peaking at 3350 nm. This broadband energy spectrum (≈ 400 meV) is explained by the 

combination of possible electronic transitions between the bound states in the conduction band of 

the QDs and/or between these bound states and the extended states in the CB.25 The measured 

detection range arises as a result of a large energy difference between the IB and the CB due to 

the large difference in the bandgaps of the InAs and the Al0.35Ga0.65As. The detection range can 

be tuned to longer wavelengths by changing the QD material and/or the host material or by 

modifying the growth conditions of the QDs. The response valley at approximately 2340 nm is 
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an artifact in the measurement that was caused by the optical filters. The detection valley 

measured at approximately 4260 nm corresponds to the atmospheric absorption of CO2.  

It was previously stated that, in an ideal device, no photocurrent would be produced under only 

IR illumination. However, our practical OTIP can still marginally detect IR light when the LED 

is switched OFF. This behavior is explained by diode D2 not being ideal and thus capable, due to 

reverse leakage, of providing a path for returning to the IB to the electrons in the VB. In this 

situation, the measured JSC corresponds to the reverse current flowing through D2 and is 

limited by its reverse saturation current. 

To further characterize the OTIP gain, Figure 3c shows the integrated value of the 

photocurrents presented in Figure 3a (normalized to the value obtained for 0 mA LBC) as a 

function of the measured LED irradiance (normalized to the value for 60 mA LBC). The 

irradiance of the LED was measured using a Newport calibrated Si-photodiode. It can be seen 

that the optically triggered detection increases with the LED irradiance, but at a decreasing rate. 

This suggests that the photo-detection might saturate at a sufficiently high SBG bias 

illumination. This hypothesis is further supported by voltage dependent photocurrent 

measurements presented in the Supporting Information. The maximum measured gain factor is 

6.2. The noise level remained unchanged for all the values of the bias current. This is shown in 

Figure 3d, where a magnification of the 1000–2000 nm measured range is shown for 0 and 60 

mA LBCs. However, it would be expected that an increase in the light biasing, which implies a 

larger JSC0, would also increase the measurement noise. The fact that the noise level remained 

unchanged implies that the light biasing was not the dominant noise source in our measurements. 

As a consequence, the gain in photo-detection can be understood as a gain in the signal-to-noise 

ratio and, hence, in the detectivity. The measured responsivity of our device (in the order of 0.1 
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mA/W) is lower than that of state-of-the-art voltage-driven IR photodetectors (up to hundreds of 

mA/W). Further studies are needed to increase the performance of this new kind of devices. 

Nonetheless, the optical commutation of the OTIP opens up possibilities for new detection 

application. For this reason, it is important to experimentally evaluate what photon energies are 

able to activate the IR detection of the OTIP. 

The set-up presented in Figure 3b was modified to measure the two-photon photocurrent as 

described in ref.24. In this case, a monochromator diffracting the light from a halogen lamp 

provided a continuous-wave primary light source. The light from an IR light source, filtered with 

a 350-µm-thick GaSb wafer (so that only photons with energy lower than the GaSb gap, 0.73 eV, 

could reach the sample) was chopped and used as a secondary source. Visible and near-IR 

wavelengths were swept with the primary source to evaluate what photon energies, in 

combination with the broadband IR illumination, led to the production of photocurrent in the 

OTIP. Figure 4 shows the photocurrent response (open circles) of the studied device as a 

function of the incident wavelength of a monochromatic beam in combination with normal 

broadband IR illumination. The measurement was performed at T = 9 K. For energies above the 

Al0.35Ga0.65As bandgap, EG, there is a wavelength-dependent response. This means that the 

extracted photocurrent is indeed produced by the combination of high and low energy photons 

illuminating the sample. The photocurrent drops abruptly at EG and then, for longer wavelengths, 

it decays slowly. For wavelengths longer than 1300 nm, the measured photocurrent becomes 

constant. We have called this constant value of the photocurrent the “offset-level”. This value 

can be understood as the photocurrent produced as a result of the broadband IR illumination 

only, which promotes electrons from the IB to the CB. As described in the main text, if the diode 

D2 between the VB and the IB is not ideal, its reverse current can close the loop for electrons in 
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the VB to return to the IB. The result of subtracting the offset level from the measurement is also 

plotted (solid line). This curve more clearly illustrates the photocurrent response of the OTIP due 

to the simultaneous illumination with two photons of different energy, one of them in the MWIR. 

The supra-bandgap response, in this curve, remains high, but the sub-bandgap response 

decreases quickly for longer wavelengths until it is no longer detectable beyond 1300 nm. This 

result corroborates that our device produces IR detection gain due to a secondary-light bias for a 

wide range of supra-bandgap energies. The emission energy of the LED used for the 

measurements presented in Figure 3 is indicated in Figure 4. 

In conclusion, we have proposed and experimentally characterized a novel IR photodetector, 

showing response to normally-incident light in the 2–6 μm range. The inclusion of QDs in-

between a p-n junction allows IR detection to be switched ON and OFF by means of external 

light biasing at short-circuit conditions. We have demonstrated that OTIP operation can be 

driven by a continuous range of photon energies above the bandgap of the device. We have 

measured a gain in photo-detection up to 6.2 using a 690 nm LED as external light source, with 

no increase in the measurements noise. Our device breaks with the traditional trade-off between 

responsivity and dark current, present in voltage-driven photodetectors. We believe that this new 

device opens up new possibilities for implementing third generation infrared imaging systems. 

The fact that it does not need electrical power supply and that it can be optically commuted, 

make the OTIP attractive for optical communications. 
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Figure 1. An illustration of the OTIP structure and operation. (a) The simplified semiconductor 

structure of the OTIP. (b) The 1D band diagram of a barrier/QD/barrier semiconductor zone. The 

electrons in the barriers are pumped from the VB to the CB due to the SBG light source (1). 

Subsequently, they either are extracted as photocurrent, relax to the VB (2) or relax to the IB in 

the QDs (3). Electrons in the QDs are pumped from the IB to the CB due to the IR illumination 

(5) or relaxed from the IB to the VB (4). (c) The equivalent circuit of the processes described in 

(a). JG, and JIR represent the pumping of electrons due to the SBG and IR light sources, 
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respectively. JD1, JD2 and JD3 represent the CBIB, the IBVB and the CBVB electron 

relaxations, through diodes D1, D2 and D3, respectively. JSC is the short-circuit current flowing 

through the detector.  

 

Figure 2. A detailed layer structure of the experimental device. Ten layers of InAs QDs are 

sandwiched between Si–doped Al0.35Ga0.65As barriers. The QD-stack is placed between p and 

ndoped Al0.35Ga0.65As emitters. 
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Figure 4.Semilog plot of the measured two-photon photocurrent as a function of the 

monochromatic beam wavelength (open circles), and the result of subtracting the wavelength-

independent photocurrent response, or “offset level”, from that measurement (solid line). The 

bandgap, EG, of the Al0.35Ga0.65As at T = 9 K and the energy of the LED used in this work are 

indicated. 
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