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Abstract.— Cascade is an information reconciliation protocol proposed in the context of secret key agreement in quantum cryptography. This protocol allows
removing discrepancies in two partially correlated sequences that belong to distant parties, connected through a public noiseless channel. It is highly interactive,
thus requiring a large number of channel communications between the parties to proceed and, although its efficiency is not optimal, it has become the de-facto
standard for practical implementations of information reconciliation in quantum key distribution. The aim of this work is to analyze the performance of Cascade, to
discuss its strengths, weaknesses and optimization possibilities, comparing with some of the modified versions that have been proposed in the literature. When
looking at all design trade-offs, a new view emerges that allows to put forward a number of guidelines and propose near optimal parameters for the practical
implementation of Cascade improving performance significantly in comparison with all previous proposals.

Table 1. Parameters used for the original, modified and

optimized versions of Cascade. A frame length of n =
104 bits was considered except for the optimization la-

beled as (8) where the frame length is n = 214.

Protocol Block sizes (approx.) Cascade BICONF Block

k1 k2 ki passes reuse

orig. [1] 0.73/Q 2k1 2ki−1 4 no no

mod. (1) [2] 0.92/Q 3k1 – 2 yes no

opt. (3) 1/Q 2k1 n/2 16 no no

opt. (4) 1/Q 2k1 n/2 16 no yes

... results not included here

opt. (7) 2�log2 1/Q� 4k1 n/2 14 no yes

opt. (8) 2�α� 2�(α+12)/2�n/2a 14 no yes
aα = log2(1/Q)− 1

2
, k3 = 212 = 4096 and ki = n/2 for i > 3.

Initially, the original Cascade [1] is compared to the modified pro-

tocol described in [2], that uses two passes of Cascade and sub-

sequent iterations of BICONF. Efficiency, channel uses and frame

error rate (Figs. 1, 2 and 3, respectively) have been exhaustively

computed for a base frame length of n = 104 bits (as in [1, 2], which

allows for a fair comparison).

Fig. 1 shows that the efficiency of the modified version of Cascade

improves for this frame length when Q > 0.5%. Other frame lengths

have also been computed. For these, Cascade’s efficiency does

not improve while it does, although marginally, for the modified ver-

sion.
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Fig. 1. Reconciliation efficiency, fEC = (1−R)/h(Q), for the orig-

inal Cascade [1] and the modified version in [2] labeled as (1).

Efficiency and channel uses curves for both protocols exhibit a

sawtooth behavior due to the discreteness of the block sizes.

Jumps occur at those values of Q where k1 changes its integer

value, and subsequently k2, etc. Some of these are marked in

Figs. 1 & 2. The effect of k2 is clearly seen in Fig. 2 for the modi-

fied version of Cascade as a smaller amplitude sawtooth behavior

seen for the same value of k1.

Fig. 2 also shows that the price to pay for improving the efficiency

is an increase (a significant one) in the number of channel uses.

By channel uses we mean the number of communication rounds

or pair of messages exchanged through the noiseless channel to

disclose parity values.
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Fig. 2. Number of channels uses or communication rounds.

However, in the next figure we show that there also exist a dis-

crepancy in the failure probability of the reconciliation protocol, or

frame error rate (FER). Fig. 3 shows now that the FER is signifi-

cantly higher for the modified version of Cascade. Therefore, al-

though the efficiency improves, the fraction of successfully recon-

ciled frames worsens. Different frame lengths have been consid-

ered and compared, and it is evident that while the FER with the

frame length in Cascade, this is not the case for the modified ver-

sion, for which for lengths of 105 bits the FER remains remarkably

constant at 10−3.
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Fig. 3. Frame error rate (= failure probability).

Next, we studied the ability of Cascade to adapt to variations in the

communication channel. Simulations have been carried out using

two different input parameters: (i) the error rate p used to initialize

the protocol, i.e., the first block size k1 is now derived from p and

not from Q; and (ii) Q the actual quantum bit error rate. Note that

p may stand for a (poor) estimate of Q. Therefore, Fig. 4 shows

how the protocol behaves under time-varying channel conditions.

These give more insight about some parameters used in the pro-

tocol (e.g., block sizes) and suggests possible optimizations.
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Fig. 4. Reconciliation efficiency, fEC = (1−R)/h(Q), of Cascade

with constant first block size k1.

As shown, the efficiency improves for Q > p. A price to pay for a

better efficiency is a sharp increase in the number of exchanged

messages (not shown), due to more errors being detected and cor-

rected during the later algorithm passes. However, the FER is not

significantly affected. Thus, we empirically show that the efficiency

of the original Cascade is optimal for the three cases p = 1%, 2%
and 5% when Q ≈ 1.46%, 2.85% and 6.87%, respectively. Taking

into account that the FER does not significantly increase, and dis-

regarding the channel uses, it follows that the block size k1 ≈ 1/Q
is presumably optimal.

Then, a modification of [2] is proposed by replacing BICONF for

a number of passes of Cascade with block size half of the frame

length, as already hinted in [3], but using the first block size sug-

gested as optimal in our previous simulations. This optimized ver-

sion of Cascade is labeled as (3) in Fig. 6 and Table 1. Further,

we also consider the subblock reuse proposed in [3], optimized

version labeled as (4).

We also use a description of the information leakage that takes into

account the frame error rate εEC, leakEC = (1− εEC)(1−R)+ εEC,

to optimize the number of passes. Fig. 5 shows how the leakage

improves with the number of passes. A description of the efficiency

that considers this leakage can be also used to look for the opti-

mal block sizes, thus penalizing those parameters with high FER

values.
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Fig. 5. Information leakage as a function of the number of passes.

Finally, to find the optimal block sizes that minimize the efficiency

we use a Compass search algorithm. This showed that the opti-

mal efficiency is obtained in most cases for k1 and k2 values that

are powers of two or nearby values. Results with the optimized

block sizes are shown in Fig. 6, version labeled as (7), and the

values for the block sizes are given in Table 1. Consequently, an

optimization was later computed for a power of two frame length

n = 214 and considering also the third block size k3. The results for

this frame length shows even more convincingly, the importance of

using power of two block sizes. In fact, this is even more impor-

tant than any other protocol optimizations to improve the average

reconciliation efficiency of Cascade. Results with the suggested

parameters and a frame length of 214 are also shown labeled as

(8), and the block sizes are also given in Table 1. For a further

description see [4].
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Fig. 6. Reconciliation efficiency, ηEC = ((1 − εEC)(1 − R) +
εEC)/h(Q), for the optimized versions of Cascade proposed in [4].

Conclusions.— We provide a comprehensive comparison of

the Cascade reconciliation protocol and some of its modified ver-

sions that have been proposed in literature. Results of exhaustive

simulation have been used to compare the efficiency, communica-

tion rounds and frame error rate for all discussed versions. Based

on the analysis of our results, we also propose an optimized ver-

sion of Cascade that utilizes previous ideas, and leads to a near

optimal implementation of the protocol.
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