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Abstract 

UML is widely accepted as the standard for representing the vari-

ous software artifacts generated by a development process. For this 

reason, there have been attempts to use this language to represent 

the software architecture of systems as well. Unfortunately, these 

attempts have ended in the same representations (boxes and lines) 

already criticized by the software architecture community. 

In this work we propose an extension to the UML metamodel that 

is able to represent the syntactics and semantics of the C3 architec-

tural style. This style is derived from C2. The modifications to 

define C3 are described in section 4. This proposal is innovative 

regarding UML extensions for software architectures, since previ-

ous proposals where based on light extensions to the UML meta-

model, while we propose a heavyweight extension of the 

metamodel. On the other hand, this proposal is less ambitious than 

previous proposals, since we do not want to represent in UML any 

architectural style, but only one: C3. 

Keywords: UML, metamodel, C3 style, component, connector, 

role, port 

1. Introduction 

UML [17] has become the standard for representing the software 

products obtained in the various activities (like requirement acqui-

sition, requirement analysis, system design, or system deployment) 

of a software development process. For this reason, it is not sur-

prising that there have been attempts to use UML to represent the 

software architecture of an application. However, the language is 

not designed to represent syntactically and semanticaly the ele-

ments of a software architecture. The attempts to instantiate the 

constructors defined in the UML metamodel or to extend UML by 

using stereotypes to represent these elements has driven to the 

same representations (boxes and lines) that have been widely criti-

cized by the software architecture community. Consequently, the 

only solution is to extend the UML metamodel. 

However, the extension of the UML metamodel implies the modi-

fication of the language, which means a deviation from the stan-

dard. This has been one of the reasons used in the literature to 

extend UML with stereotypes or by specifying profiles for the area 

of interest. 

In this work, we propose the extension of the UML metamodel by 

providing it with elements that, once they are instanciated, can 

represent the C3 architectural style. A question that arises at this 

point is why not using Architecture Description Languages (ADLs) 

to describe the application software architecture, therefore avoid-

ing the change to the UML metamodel. One possible answer to this 

question can be found in [19]: “The currently available architec-

tural description languages (ADLs) have not spread in industry 

mainly because they are not generic enough, are not standardized 

and are poorly supported by tools. UML is a standard, but its cur-

rent semantics fails to meet the criteria stated above: it is weak at 

describing interfaces, the abstractions it provides are not univocal 

and it provides little support for modelling architecturally signifi-

cant information”. Additionaly, the ADLs are not integrated in any 

development process (like the Unified Sofftware Development 

Process [8]), while UML is. Hence, representing the application 

architecture with UML allows the integration of this representation 

with the rest of software artifacts. 

The rest of the paper is organized as follows. In Section 2 we de-

scribe the two possible strategies to extend UML, as specified by 

the Object Management Group (OMG). In Section 3 we present 

several attempts to extend UML for representing software architec-

ture. In Section 4 we describe the main elements that appear in the 

description of the C3 architectural style (a variation of the C2 

style). In Section 5 we characterize these elements as UML meta-

classes. Finaly, Section 6 presents conclusions and future lines of 

research. 

2. Strategies to extend UML 

The OMG [17] specifies two strategies to extend UML. The first 

one uses profiles, also sometimes called lightweight built-in exten-

sion mechanisms. The most important profile element is the stereo-

type. Stereotyping is a pure extension mechanism. The model 

elements marked with a stereotype have the same structure (attrib-

utes, associations, operations) defined by the metamodel element 

that describes them, plus the constraints and tagged values added 

by the stereotype to that metamodel element. However, with 

stereotypes we can not change the semantics of the metamodel 

elements (at most, we can refine it), change its structure, nor create 

new elements of that metamodel. 

The second strategy is a heavyweight extensibility mechanism as 

defined by the specification of Meta Object Facility (MOF) [15]. 

In this strategy the goal is to extend the UML metamodel by ex-

plicitly adding new metaclasses and other metaconstructors. The 

difference between lightweight and heavyweight extension comes 

from the existence of restrictions on the way the UML profiles can 

extend the UML metamodel. These restrictions impose that any 

extension defined for an UML profile must be purely additive, i.e., 

the extensions can not conflict with the standard semantics. These 

restrictions do not apply to the MOF context, which can define any 

metamodel. 

3. Related work 

In this section we present several works that have used UML to 

represent software architectures. These works follow one of the 

following strategies to represent architectural elements: (1) they 

use the UML elements as defined by the language; (2) they use 

“light” extensions of UML; or (3) they use “heavy” extensions of 

UML. 
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The study of Garlan and Kompanek [3] is an excelent analysis of 

the possibilities of UML to represent the structural aspects of a 

software architecture. Following ACME [4], these authors identify 

the following structural aspects: components, ports, connectors, 

roles, systems, representations, bindings, properties, types, and 

styles. For their analysis they used the strategies (1) and (2) from 

the previous paragraph. In their study, the authors conclude that 

UML must be extended before it can represent software architec-

tures. 

In [9, pp. 513-514], Kandé and Strohmeier state that: “However, as 

a general-purpose language, the UML does not directly provide 

constructs related to software architecture modeling, such as con-

figurations, connectors, and styles.” For this reason, they extend 

UML by incorporating some of the key abstractions of the ADLs, 

like components, connectors, and configurations. They propose a 

profile for software architecture using lightweight and heavyweight 

extensions. These authors use the heavyweight extension mecha-

nism to incorporate  their particular interpretation of the “architec-

tural viewpoint” concept [7] to the UML metamodel, and the 

lightweight extension mechanism to specify connectors, compo-

nents, architectural patterns, and configurations. We believe, like 

Garlan and Kompanek [3], that it is not appropriate neither to 

stereotype a subsystem to represent one component nor to stereo-

type the collaboration constructor to represent a connector. Fur-

thermore, we strongly believe that these architectural elements 

must be represented in the UML metamodel as first-class entities, 

and not as stereotypes. 

Selic [21] discusses several options for the modeling of the com-

ponent architectural concept, as defined by ACME, considering 

UML subsystems, components, and classifiers. The author con-

cludes that the three UML elements can be used complementarily. 

He suggests a modification to the UML metamodel that consists of 

removing the generalization relation between subsystem and classi-

fier, and replacing it by an association representing the link be-

tween a subsystem and the classifiers that realize it. 

Medvidovic, Rosenblum, Redmiles, and Robbins [12] evaluate 

UML’s ability to represent software architectures following the 

strategies (1) and (2) stated above. Regarding the former strategy, 

they conclude that the modelling capabilities of UML as it is do 

not fully satisfy the requirements to describe the structure of soft-

ware architecture. The reasons are that (a) UML does not provide 

special constructors to model architecture elements and (b) the 

rules of a given architectural style are directly reflected in its ADL, 

while with UML we have to apply these rules mentaly to emulate 

the structural constraints. Moreover, the authors doubt of UML’s 

ability to correctly model aspects related with the components’ 

dynamic behaviour or with their interactions. Regarding the latter 

strategy to extend UML (light extension with stereotypes), the au-

thors study how UML can support the constructors present in the 

ADLs: C2, Wright, and Rapide. With respect to C2, the authors 

conclude with a set of deficiencies of UML that prevent it to ex-

plicitly represent some architectural aspects. For instance, UML 

allows to specify the messages  received by a class, but it does not 

allow to specify those sent by the class. 

We can not finish this section without referring to the works of 

OMG in this area. OMG has launched four Request For Proposal 

(RFP) for UML 2.0: Infrastructure, Superstructure, OCL, and Dia-

gram Interchange. Out of these four RFP, we will discuss the first 

two, since they are more closely related with software architecture. 

From UML 2.0 Infrastructure [13] we can highlight that UML 2.0 

will define a kernel of the language and new extension mecha-

nisms. The question is whether elements to describe software ar-

chitectures will be included in this kernel and , in case they are not, 

whether we will be able to define an architecture description lan-

guage with the new extension mechanisms. Regarding UML 2.0 

Superstructure [14], we are particularly interested in the following 

statement (Page 25): “However, the ability to model architectures 

is a common requirement for most software domains and, conse-

quently, should be part of the core modeling capabilities of UML 

rather than being limited to a profile.” Hence, we presume that 

UML 2.0 will define elements to describe software architectures. 

However, and at the moment, some of the proposals sent for revi-

sion [16][24] do not deal with this aspect significantly. 

Other related works can be found in [1], [2], [5], [6], [10], [18], 

[19], [20], and [23]. 

4. The C3 architectural style 

Shaw and Garlan [22] define an architectural style as a description 

of component types accompanied by a pattern of  execution control 

and/or data transfer. In this context, C3 is an architectural style 

derived from the C2 style [11]. The modifications introduced in the 

C2 style to obtain C3 are the following:  

 C3, unlike C2, does not predetermines the kind of  inheritance 

of the components. It lets the components to choose it. 

 In C2 the internal structure of a component is based on four 

elements: internal object, wrapper, domain translator, and dia-

log & constraints. This structure is specially designed to deal 

with applications with a strong component of graphical user 

interface. As stated by Medvidovic [11], this structure does 

not restrict the composition properties of the architecture. In 

our style C3, we do not force the structure of the components, 

hence allowing to work with components like those of 

CORBA (CCM), DCOM (COM), or JavaBeans. 

 We augment the definition of the C2 component interface 

elements, providing means for each element to declare, on top 

of a direction, a name, a set of parameters, and a possible re-

sult, preconditions and postconditions. 

5. A proposal of heavyweight extension to UML to 

describe the C3 architectural style 

To extend the metamodel we have followed two rules: 

 We do not remove any existing metaconstructor nor modify 

their syntax or semantic. 

 The new metaconstructors must have as few relations as pos-

sible with the metaconstructors already defined, i.e., they must 

be self-contained (as much as possible). 

The objective behind these rules is to simplify the implementation 

of this extension in tools that already support the current UML 

metamodel 1.4. 

To describe our proposed extensions to the UML metamodel we 

will use the same technique used by OMG to describe the meta-

model. We will describe them from three viewpoints, (1) Abstract 

Syntax, (2) Static Semantics, and (3) Dynamic Semantics. 



We will introduce the extensions to the UML metamodel to repre-

sent the structural aspect of the C3 architectural style in a new 

package which we call C3Description, located in the package 

Foundation (see Figure 1). There is a dependency between 

C3Description and Core because the former uses constructors de-

fined in the latter. There is a dependency between C3Description 

and Data Types because the former uses types defined in the latter. 

 

Figure 1. Relationships between the C3Description package 

and the rest of packages in Foundation. 

5.1 Abstract Syntax 
The abstract syntax for the package C3Description is shown in 

Figure 2. Although not shown in the figure, the new constructors 

are added to the metamodel as subclasses of ModelElement (which 

defines the name metaattribute) which is itself a subclass of Ele-

ment (the root metaclass). As can be seen in Figure 2, we use the 

constructors Constraint, Attribute, and Parameter, defined in the 

package Core, and the types Boolean and ProcedureExpression, 

defined in the package Data Types. 

5.1.1 Architecture 

This element represents a container of the construction blocks that 

can appear in a C3 architecture. In the metamodel it is stated that 

an architecture is formed by two or more components and one or 

more connectors. As attribute an architecture has name (inherited 

from ModelElement). 

5.1.2 Component 

In a component, the top and bottom domains are represented with 

two ports: one with value top in the attribute domain and one with 

value bottom in that attribute. A component is an active element in 

the sense that it has its own control flow(s). A component has a 

state, shown in the state variables described by the constructor At-

tribute. A component can declare an invariant, which is supported 

by the metaclass Constraint, defined in the package Core. In Figure 

2 the relation between Component and Constraint is made explicit 

for the sake of clarity, since Component inherits this relation from 

ModelElement. A component can be composed, in the sense that it 

can contain an architecture. As attributes it has name (inherited 

from ModelElement) and isActive, which indicates that the com-

ponent has its own control flow(s). 

5.1.3  Connector 

A connector has one or more interaction points, characterized with 

the constructor Role. A connector is an active element, in the sense 

that it has its own control flow(s). A connector can be composed, 

in the sense that it can contain an architecture. A connector sup-

ports a filtering policy. As attributes it has name (inherited from 

ModelElement) and isActive, which indicates that the connector 

has its own control flow(s). 

5.1.4 InterfaceElement 

This constructor represents an operation involved in the interaction 

of a component with its environment. As attributes it has name 

(inherited from ModelElement) and direction, which is an enumer-

ated type with values {prov, req} indicating whether the compo-

nent supports the operation or requires it to be provided by the 

environment, respectively. An interface element can have a pre-

condition and/or a postcondition associated with it. These are es-

tablished over the state variables of the component and/or the 

parameters. Moreover, an interface element declaration can have 

parameters in the role of arguments as well as in the role of results, 

as defined in the package Core of UML. 

5.1.5 Filter 

This constructor represents the filtering policy of the connector to 

which it is associated. As attributes it has name (inherited from 

ModelElement) and f, which is an expression that represents the 

filtering policy. 
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Figure 2. Abstract syntax for the C3Description package. 

 

5.1.6 Port 

A port represents a point of interaction of a component with its 

environment. It has a domain that specifies whether the port repre-

sents the top or the bottom domain of its component. A port can be 

connected to a role of a connector. It declares a set of elements that 

forms the component interface in its top and bottom domains. As 

attributes it has name (inherited from ModelElement) and domain, 

which is an enumerated type with values {top, bottom}. 

5.1.7 Role 

A role represents a point of interaction of a connector with its envi-

ronment. It has a domain that specifies whether the role belongs to 

the top or the bottom domain of the connector in which it is de-

fined. A role can be connected to a port of a component or to an-

other role in some other connector. As attributes it has name  

(inherited from ModelElement) and domain. 

5.2 Well-formedness rules 
Due to space restrictions, we only present the well-formedness 

rules for connectors. They are shown in Figure 3. 

5.3 Dynamic Semantics 
In this section we detail the dynamic semantics of the elements 

component and connector of the package C3Description. 

5.3.1 Component 

As we said above, a component has a top domain and a bottom 

domain. The top domain specifies the set of notifications to which 

the component responds and the set of requests issued by the com-

ponent. The bottom domain specifies the set of notifications issued 

by the component and the set of requests to which the component 

responds. If we assume that between a component and a connector 

there is a total communication in the sense of [11], then the follow-

ing properties can be established: 

 The set of requests issued by a component must be a subset of 

the operations offered by the components placed above it. 

 The set of notifications to which a component can respond 

must be a subset of the notifications that the components 

above it can issue. 

 The set of notifications issued by a component must be a sub-

set of the notifications that the components placed below it 

can respond. 



 The set of requests to which a component responds must be a 

subset of the requests issued by the components below it. 

5.3.2 Connector 

The primary function of a connector is to conduct the traffic of 

messages between components. As a secondary function, a connec-

tor supports a filtering policy. In C3, two policies are defined (in-

herited from C2): 

 Message filtering, each message is sent only to those compo-

nents that can understand it and respond to it. 

 Message sink, the connector ignores each message sent to it. 

[1] A connector has one or more roles. 

context Connector inv oneOrMoreRoles: self.role -> size()  1 
  

[2] A connector supports only one filtering policy. 

context Connector inv aFilter: self.filter -> size() = 1 

 

[3] The roles of a connector can not be connected among themselves. 

context Connector inv noAutoconexión: 

 self.role -> forAll (r1, r2 | r1 <> r2 implies r1.role <> r2) 

 

[4] A connector can be a simple or a composed element. 

context Connector inv composition: 

 self.architecture -> size () = 0 xor self.architecture -> size () = 1 

 

[5] The top interface of a connector is the union of the top interfaces of the components and 

connectors connected to its bottom roles. 

context Connector inv topInterface: topInterface (self) 

 

being: 

 

topInterface (c: Connector): Set; 

topInterface (c) =  

 let bottomRoles : Set = self.role -> select (r | r.domain = Domain::bottom) in 

 bottomRoles -> iterate (r:Role ; acc:Set = Set{} |  

  if r.port-> size() = 1 then acc -> union (r.port.interfaceElement) 

  else 

   if r.role -> size() = 1 then acc -> union (topInterface (r.role.connector)) 

   else 

   endif 

  endif) 

 

[6] The bottom interface of a connector is the union of the bottom interfaces of the components 

and connectors connected to its top roles. 

context Connector inv bottomInterface: bottomInterface (self) 

 

being: 

 

bottomInterface (c: Connector): Set; 

bottomInterface (c) =  

 let topRoles : Set = self.role -> select (r | r.domain = Domain::top) in 

 topRoles -> iterate (r:Role ; acc:Set = Set{} | 

  if r.port-> size() = 1 then acc -> union (r.port.interfaceElement) 

  else 

   if r.role -> size() = 1 then acc -> union (bottomInterface (r.role.connector)) 

   else 

   endif 

  endif) 

 

 [7] A connector can have zero or more connectors connected in its top domain. 

context Connector inv conTopCon: 

let topRoles: Set = self.role -> select (r| r.domain = Domain::top) in 

(topRoles -> select (r| r.role -> size() = 1))-> size()  0 
 

[8] A connector can have zero or more connectors connected in its bottom domain. 

context Connector inv conBottomCon: 

let bottomRoles: Set = self.role -> select (r| r.domain = Domain::bottom) in 

(bottomRoles -> select (r| r.role -> size() = 1))-> size()  0 

 

Figure 3. Well-Formedness Rules (connectors). 



6. Conclusions and Future Work 

In this work we have described extensions to the UML metamodel 

to represent software architectures. We have underlined the inabil-

ity of the language to represent all the aspects of a software archi-

tecture and hence concluded the need to extend the metamodel. 

Regarding this point, this work proposes an extension to the UML 

metamodel to describe the C3 architectural style, centered in its 

main elements: components and connectors. The description of this 

extension has followed the same structure used by OMG to de-

scribe the metamodel: abstract syntax, well-formedness rules, and 

dynamic semantics. 

In this work we have described structural aspects of the C3 archi-

tectural style. We are currently studying the introduction of dy-

namic and configuration aspects of C3 to the proposed extension. 

The integration of these aspects requires the representation in the 

metamodel of the concept of “viewpoint” as defined in [7]. Once 

the complete description of C3 is in the metamodel, we plan to 

integrate the description in a tool like Rational Rose. We believe 

this integration provides several benefits. On one hand, we would 

be putting together academia, that uses ADLs, and industry, that 

uses UML. On the other hand, this integration allows us to study 

the potential transitions from the products generated during the 

requirement analysis to the software architecture of the system, and 

from the software architecture to the low-level design. In the mid-

term, we plan to use the experience obtained in the creation of this 

prototype for C3 to generalize this work for other architectural 

styles. 
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