
Heavyweight extensions to the UML metamodel to describe the C3 architectural

style
Jorge Enrique Pérez-Martínez

Universidad Rey Juan Carlos, Spain
j.perez@escet.urjc.es

Abstract

UML is widely accepted as the standard for representing the vari-

ous software artifacts generated by a development process. For this

reason, there have been attempts to use this language to represent

the software architecture of systems as well. Unfortunately, these

attempts have ended in the same representations (boxes and lines)

already criticized by the software architecture community.

In this work we propose an extension to the UML metamodel that

is able to represent the syntactics and semantics of the C3 architec-

tural style. This style is derived from C2. The modifications to

define C3 are described in section 4. This proposal is innovative

regarding UML extensions for software architectures, since previ-

ous proposals where based on light extensions to the UML meta-

model, while we propose a heavyweight extension of the

metamodel. On the other hand, this proposal is less ambitious than

previous proposals, since we do not want to represent in UML any

architectural style, but only one: C3.

Keywords: UML, metamodel, C3 style, component, connector,

role, port

1. Introduction

UML [17] has become the standard for representing the software

products obtained in the various activities (like requirement acqui-

sition, requirement analysis, system design, or system deployment)

of a software development process. For this reason, it is not sur-

prising that there have been attempts to use UML to represent the

software architecture of an application. However, the language is

not designed to represent syntactically and semanticaly the ele-

ments of a software architecture. The attempts to instantiate the

constructors defined in the UML metamodel or to extend UML by

using stereotypes to represent these elements has driven to the

same representations (boxes and lines) that have been widely criti-

cized by the software architecture community. Consequently, the

only solution is to extend the UML metamodel.

However, the extension of the UML metamodel implies the modi-

fication of the language, which means a deviation from the stan-

dard. This has been one of the reasons used in the literature to

extend UML with stereotypes or by specifying profiles for the area

of interest.

In this work, we propose the extension of the UML metamodel by

providing it with elements that, once they are instanciated, can

represent the C3 architectural style. A question that arises at this

point is why not using Architecture Description Languages (ADLs)

to describe the application software architecture, therefore avoid-

ing the change to the UML metamodel. One possible answer to this

question can be found in [19]: “The currently available architec-

tural description languages (ADLs) have not spread in industry

mainly because they are not generic enough, are not standardized

and are poorly supported by tools. UML is a standard, but its cur-

rent semantics fails to meet the criteria stated above: it is weak at

describing interfaces, the abstractions it provides are not univocal

and it provides little support for modelling architecturally signifi-

cant information”. Additionaly, the ADLs are not integrated in any

development process (like the Unified Sofftware Development

Process [8]), while UML is. Hence, representing the application

architecture with UML allows the integration of this representation

with the rest of software artifacts.

The rest of the paper is organized as follows. In Section 2 we de-

scribe the two possible strategies to extend UML, as specified by

the Object Management Group (OMG). In Section 3 we present

several attempts to extend UML for representing software architec-

ture. In Section 4 we describe the main elements that appear in the

description of the C3 architectural style (a variation of the C2

style). In Section 5 we characterize these elements as UML meta-

classes. Finaly, Section 6 presents conclusions and future lines of

research.

2. Strategies to extend UML

The OMG [17] specifies two strategies to extend UML. The first

one uses profiles, also sometimes called lightweight built-in exten-

sion mechanisms. The most important profile element is the stereo-

type. Stereotyping is a pure extension mechanism. The model

elements marked with a stereotype have the same structure (attrib-

utes, associations, operations) defined by the metamodel element

that describes them, plus the constraints and tagged values added

by the stereotype to that metamodel element. However, with

stereotypes we can not change the semantics of the metamodel

elements (at most, we can refine it), change its structure, nor create

new elements of that metamodel.

The second strategy is a heavyweight extensibility mechanism as

defined by the specification of Meta Object Facility (MOF) [15].

In this strategy the goal is to extend the UML metamodel by ex-

plicitly adding new metaclasses and other metaconstructors. The

difference between lightweight and heavyweight extension comes

from the existence of restrictions on the way the UML profiles can

extend the UML metamodel. These restrictions impose that any

extension defined for an UML profile must be purely additive, i.e.,

the extensions can not conflict with the standard semantics. These

restrictions do not apply to the MOF context, which can define any

metamodel.

3. Related work

In this section we present several works that have used UML to

represent software architectures. These works follow one of the

following strategies to represent architectural elements: (1) they

use the UML elements as defined by the language; (2) they use

“light” extensions of UML; or (3) they use “heavy” extensions of

UML.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148671191?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The study of Garlan and Kompanek [3] is an excelent analysis of

the possibilities of UML to represent the structural aspects of a

software architecture. Following ACME [4], these authors identify

the following structural aspects: components, ports, connectors,

roles, systems, representations, bindings, properties, types, and

styles. For their analysis they used the strategies (1) and (2) from

the previous paragraph. In their study, the authors conclude that

UML must be extended before it can represent software architec-

tures.

In [9, pp. 513-514], Kandé and Strohmeier state that: “However, as

a general-purpose language, the UML does not directly provide

constructs related to software architecture modeling, such as con-

figurations, connectors, and styles.” For this reason, they extend

UML by incorporating some of the key abstractions of the ADLs,

like components, connectors, and configurations. They propose a

profile for software architecture using lightweight and heavyweight

extensions. These authors use the heavyweight extension mecha-

nism to incorporate their particular interpretation of the “architec-

tural viewpoint” concept [7] to the UML metamodel, and the

lightweight extension mechanism to specify connectors, compo-

nents, architectural patterns, and configurations. We believe, like

Garlan and Kompanek [3], that it is not appropriate neither to

stereotype a subsystem to represent one component nor to stereo-

type the collaboration constructor to represent a connector. Fur-

thermore, we strongly believe that these architectural elements

must be represented in the UML metamodel as first-class entities,

and not as stereotypes.

Selic [21] discusses several options for the modeling of the com-

ponent architectural concept, as defined by ACME, considering

UML subsystems, components, and classifiers. The author con-

cludes that the three UML elements can be used complementarily.

He suggests a modification to the UML metamodel that consists of

removing the generalization relation between subsystem and classi-

fier, and replacing it by an association representing the link be-

tween a subsystem and the classifiers that realize it.

Medvidovic, Rosenblum, Redmiles, and Robbins [12] evaluate

UML’s ability to represent software architectures following the

strategies (1) and (2) stated above. Regarding the former strategy,

they conclude that the modelling capabilities of UML as it is do

not fully satisfy the requirements to describe the structure of soft-

ware architecture. The reasons are that (a) UML does not provide

special constructors to model architecture elements and (b) the

rules of a given architectural style are directly reflected in its ADL,

while with UML we have to apply these rules mentaly to emulate

the structural constraints. Moreover, the authors doubt of UML’s

ability to correctly model aspects related with the components’

dynamic behaviour or with their interactions. Regarding the latter

strategy to extend UML (light extension with stereotypes), the au-

thors study how UML can support the constructors present in the

ADLs: C2, Wright, and Rapide. With respect to C2, the authors

conclude with a set of deficiencies of UML that prevent it to ex-

plicitly represent some architectural aspects. For instance, UML

allows to specify the messages received by a class, but it does not

allow to specify those sent by the class.

We can not finish this section without referring to the works of

OMG in this area. OMG has launched four Request For Proposal

(RFP) for UML 2.0: Infrastructure, Superstructure, OCL, and Dia-

gram Interchange. Out of these four RFP, we will discuss the first

two, since they are more closely related with software architecture.

From UML 2.0 Infrastructure [13] we can highlight that UML 2.0

will define a kernel of the language and new extension mecha-

nisms. The question is whether elements to describe software ar-

chitectures will be included in this kernel and , in case they are not,

whether we will be able to define an architecture description lan-

guage with the new extension mechanisms. Regarding UML 2.0

Superstructure [14], we are particularly interested in the following

statement (Page 25): “However, the ability to model architectures

is a common requirement for most software domains and, conse-

quently, should be part of the core modeling capabilities of UML

rather than being limited to a profile.” Hence, we presume that

UML 2.0 will define elements to describe software architectures.

However, and at the moment, some of the proposals sent for revi-

sion [16][24] do not deal with this aspect significantly.

Other related works can be found in [1], [2], [5], [6], [10], [18],

[19], [20], and [23].

4. The C3 architectural style

Shaw and Garlan [22] define an architectural style as a description

of component types accompanied by a pattern of execution control

and/or data transfer. In this context, C3 is an architectural style

derived from the C2 style [11]. The modifications introduced in the

C2 style to obtain C3 are the following:

 C3, unlike C2, does not predetermines the kind of inheritance

of the components. It lets the components to choose it.

 In C2 the internal structure of a component is based on four

elements: internal object, wrapper, domain translator, and dia-

log & constraints. This structure is specially designed to deal

with applications with a strong component of graphical user

interface. As stated by Medvidovic [11], this structure does

not restrict the composition properties of the architecture. In

our style C3, we do not force the structure of the components,

hence allowing to work with components like those of

CORBA (CCM), DCOM (COM), or JavaBeans.

 We augment the definition of the C2 component interface

elements, providing means for each element to declare, on top

of a direction, a name, a set of parameters, and a possible re-

sult, preconditions and postconditions.

5. A proposal of heavyweight extension to UML to

describe the C3 architectural style

To extend the metamodel we have followed two rules:

 We do not remove any existing metaconstructor nor modify

their syntax or semantic.

 The new metaconstructors must have as few relations as pos-

sible with the metaconstructors already defined, i.e., they must

be self-contained (as much as possible).

The objective behind these rules is to simplify the implementation

of this extension in tools that already support the current UML

metamodel 1.4.

To describe our proposed extensions to the UML metamodel we

will use the same technique used by OMG to describe the meta-

model. We will describe them from three viewpoints, (1) Abstract

Syntax, (2) Static Semantics, and (3) Dynamic Semantics.

We will introduce the extensions to the UML metamodel to repre-

sent the structural aspect of the C3 architectural style in a new

package which we call C3Description, located in the package

Foundation (see Figure 1). There is a dependency between

C3Description and Core because the former uses constructors de-

fined in the latter. There is a dependency between C3Description

and Data Types because the former uses types defined in the latter.

Figure 1. Relationships between the C3Description package

and the rest of packages in Foundation.

5.1 Abstract Syntax
The abstract syntax for the package C3Description is shown in

Figure 2. Although not shown in the figure, the new constructors

are added to the metamodel as subclasses of ModelElement (which

defines the name metaattribute) which is itself a subclass of Ele-

ment (the root metaclass). As can be seen in Figure 2, we use the

constructors Constraint, Attribute, and Parameter, defined in the

package Core, and the types Boolean and ProcedureExpression,

defined in the package Data Types.

5.1.1 Architecture

This element represents a container of the construction blocks that

can appear in a C3 architecture. In the metamodel it is stated that

an architecture is formed by two or more components and one or

more connectors. As attribute an architecture has name (inherited

from ModelElement).

5.1.2 Component

In a component, the top and bottom domains are represented with

two ports: one with value top in the attribute domain and one with

value bottom in that attribute. A component is an active element in

the sense that it has its own control flow(s). A component has a

state, shown in the state variables described by the constructor At-

tribute. A component can declare an invariant, which is supported

by the metaclass Constraint, defined in the package Core. In Figure

2 the relation between Component and Constraint is made explicit

for the sake of clarity, since Component inherits this relation from

ModelElement. A component can be composed, in the sense that it

can contain an architecture. As attributes it has name (inherited

from ModelElement) and isActive, which indicates that the com-

ponent has its own control flow(s).

5.1.3 Connector

A connector has one or more interaction points, characterized with

the constructor Role. A connector is an active element, in the sense

that it has its own control flow(s). A connector can be composed,

in the sense that it can contain an architecture. A connector sup-

ports a filtering policy. As attributes it has name (inherited from

ModelElement) and isActive, which indicates that the connector

has its own control flow(s).

5.1.4 InterfaceElement

This constructor represents an operation involved in the interaction

of a component with its environment. As attributes it has name

(inherited from ModelElement) and direction, which is an enumer-

ated type with values {prov, req} indicating whether the compo-

nent supports the operation or requires it to be provided by the

environment, respectively. An interface element can have a pre-

condition and/or a postcondition associated with it. These are es-

tablished over the state variables of the component and/or the

parameters. Moreover, an interface element declaration can have

parameters in the role of arguments as well as in the role of results,

as defined in the package Core of UML.

5.1.5 Filter

This constructor represents the filtering policy of the connector to

which it is associated. As attributes it has name (inherited from

ModelElement) and f, which is an expression that represents the

filtering policy.

Architecture

Component

isActive: Boolean = true

Connector

isActive: Boolean = true

containscontains

0..1 0..1

Port

domain: Domain

Role

domain: Domain

2..* 1..*

2 1..*

conTocon

11

1
1

declares

0..*

has has

supports

1

direction: Direction

InterfaceElement

<<enumeration>>

Domain

(from Data Types Package)

<<enumeration>>

Direction

<<precondition>>

Constraint

<<postcondition>>

Constraint

Attribute

Parameter

0..1 0..1

<<invariant>>

Constraint

0..1 0..*

declares

declares

0..*

Filter

f: ProcedureExpression

specifies

specifies

Figure 2. Abstract syntax for the C3Description package.

5.1.6 Port

A port represents a point of interaction of a component with its

environment. It has a domain that specifies whether the port repre-

sents the top or the bottom domain of its component. A port can be

connected to a role of a connector. It declares a set of elements that

forms the component interface in its top and bottom domains. As

attributes it has name (inherited from ModelElement) and domain,

which is an enumerated type with values {top, bottom}.

5.1.7 Role

A role represents a point of interaction of a connector with its envi-

ronment. It has a domain that specifies whether the role belongs to

the top or the bottom domain of the connector in which it is de-

fined. A role can be connected to a port of a component or to an-

other role in some other connector. As attributes it has name

(inherited from ModelElement) and domain.

5.2 Well-formedness rules
Due to space restrictions, we only present the well-formedness

rules for connectors. They are shown in Figure 3.

5.3 Dynamic Semantics
In this section we detail the dynamic semantics of the elements

component and connector of the package C3Description.

5.3.1 Component

As we said above, a component has a top domain and a bottom

domain. The top domain specifies the set of notifications to which

the component responds and the set of requests issued by the com-

ponent. The bottom domain specifies the set of notifications issued

by the component and the set of requests to which the component

responds. If we assume that between a component and a connector

there is a total communication in the sense of [11], then the follow-

ing properties can be established:

 The set of requests issued by a component must be a subset of

the operations offered by the components placed above it.

 The set of notifications to which a component can respond

must be a subset of the notifications that the components

above it can issue.

 The set of notifications issued by a component must be a sub-

set of the notifications that the components placed below it

can respond.

 The set of requests to which a component responds must be a

subset of the requests issued by the components below it.

5.3.2 Connector

The primary function of a connector is to conduct the traffic of

messages between components. As a secondary function, a connec-

tor supports a filtering policy. In C3, two policies are defined (in-

herited from C2):

 Message filtering, each message is sent only to those compo-

nents that can understand it and respond to it.

 Message sink, the connector ignores each message sent to it.

[1] A connector has one or more roles.

context Connector inv oneOrMoreRoles: self.role -> size() 1

[2] A connector supports only one filtering policy.

context Connector inv aFilter: self.filter -> size() = 1

[3] The roles of a connector can not be connected among themselves.

context Connector inv noAutoconexión:

 self.role -> forAll (r1, r2 | r1 <> r2 implies r1.role <> r2)

[4] A connector can be a simple or a composed element.

context Connector inv composition:

 self.architecture -> size () = 0 xor self.architecture -> size () = 1

[5] The top interface of a connector is the union of the top interfaces of the components and

connectors connected to its bottom roles.

context Connector inv topInterface: topInterface (self)

being:

topInterface (c: Connector): Set;

topInterface (c) =

 let bottomRoles : Set = self.role -> select (r | r.domain = Domain::bottom) in

 bottomRoles -> iterate (r:Role ; acc:Set = Set{} |

 if r.port-> size() = 1 then acc -> union (r.port.interfaceElement)

 else

 if r.role -> size() = 1 then acc -> union (topInterface (r.role.connector))

 else

 endif

 endif)

[6] The bottom interface of a connector is the union of the bottom interfaces of the components

and connectors connected to its top roles.

context Connector inv bottomInterface: bottomInterface (self)

being:

bottomInterface (c: Connector): Set;

bottomInterface (c) =

 let topRoles : Set = self.role -> select (r | r.domain = Domain::top) in

 topRoles -> iterate (r:Role ; acc:Set = Set{} |

 if r.port-> size() = 1 then acc -> union (r.port.interfaceElement)

 else

 if r.role -> size() = 1 then acc -> union (bottomInterface (r.role.connector))

 else

 endif

 endif)

 [7] A connector can have zero or more connectors connected in its top domain.

context Connector inv conTopCon:

let topRoles: Set = self.role -> select (r| r.domain = Domain::top) in

(topRoles -> select (r| r.role -> size() = 1))-> size() 0

[8] A connector can have zero or more connectors connected in its bottom domain.

context Connector inv conBottomCon:

let bottomRoles: Set = self.role -> select (r| r.domain = Domain::bottom) in

(bottomRoles -> select (r| r.role -> size() = 1))-> size() 0

Figure 3. Well-Formedness Rules (connectors).

6. Conclusions and Future Work

In this work we have described extensions to the UML metamodel

to represent software architectures. We have underlined the inabil-

ity of the language to represent all the aspects of a software archi-

tecture and hence concluded the need to extend the metamodel.

Regarding this point, this work proposes an extension to the UML

metamodel to describe the C3 architectural style, centered in its

main elements: components and connectors. The description of this

extension has followed the same structure used by OMG to de-

scribe the metamodel: abstract syntax, well-formedness rules, and

dynamic semantics.

In this work we have described structural aspects of the C3 archi-

tectural style. We are currently studying the introduction of dy-

namic and configuration aspects of C3 to the proposed extension.

The integration of these aspects requires the representation in the

metamodel of the concept of “viewpoint” as defined in [7]. Once

the complete description of C3 is in the metamodel, we plan to

integrate the description in a tool like Rational Rose. We believe

this integration provides several benefits. On one hand, we would

be putting together academia, that uses ADLs, and industry, that

uses UML. On the other hand, this integration allows us to study

the potential transitions from the products generated during the

requirement analysis to the software architecture of the system, and

from the software architecture to the low-level design. In the mid-

term, we plan to use the experience obtained in the creation of this

prototype for C3 to generalize this work for other architectural

styles.

References

[1] Abi-Antoun, M. and Medvidovic, N. (1999). Enabling the refinement of a

software architecture into a design. In Proceeding of The Second International

Conference on The Unified Modeling Language (UML’99). CO, USA: Springer-

Verlag.

[2] Egyed, A. and Medvidovic, N. (2001). Consistent architectural refinement and

evolution using the Unified Modeling Language. In Proc. of the 1st Workshop on

Describing Software Architecture with UML, co-located with ICSE 2001. Toronto,

Canada, pp. 83-87.

[3] Garlan, D. and Kompanek, A.J. (2000). Reconciling the needs of architectural

description with object-modeling notation. UML 2000 – The Unified Modeling

Language: Advancing the Standard. Third International Conference. York, UK:

Springer-Verlag.

[4] Garlan, D., Monroe, R. and Wile, D. (2000). Acme: Architectural description

of component-based systems. Foundations of Component-Based Systems, Cam-

bridge University Press.

[5] Gomaa, H. and Wijesekera (2001). The role of UML, OCL and ADLs in soft-

ware architecture. In Proceedings of the Workshop on Describing Software Archi-

tecture with UML, 23rd International Conference on Software Engineering,

Toronto, Canada.

[6] Hofmeister, C., Nord, R.L. and Soni, D. (1999). Describing software architec-

ture with UML. In Proc. of the First Working IFIP Conf. on Software Architec-

ture. San Antonio, TX: IEEE.

[7] IEEE (2000). IEEE Recommended practice for architectural description of

software-intensive systems.

[8] Jacobson, I., Booch, G. and Rumbaugh, J. (1999). The unified software devel-

opment process. Massachusetts: Addison-Wesley.

[9] Kandé, M. M. and Strohmeier, A. (2000). Towards a UML profile for software

architecture descriptions. UML 2000 – The Unified Modeling Language: Advanc-

ing the Standard. Third International Conference. York, UK: Springer-Verlag.

[10] Lüer, C. and Rosenblum, D.S. (2001). UML component diagrams and soft-

ware architecture- experiences from the WREN project. In Proceedings of the

Workshop on Describing Software Architecture with UML, 23rd International

Conference on Software Engineering, Toronto, Canada.

[11] Medvidovic, N. (1999). Architecture-based specification-time software evolu-

tion. (Doctoral Dissertation, University of California, Irvine, 1999).

[12] Medvidovic, N., Rosenblum, D.S., Redmiles, D.F. and Robbins, J.E. (2002).

Modeling software architectures in the unified modeling language. ACM Transac-

tions on Software Engineering and Methodology, 11 (1), 2-57.

[13] OMG (2000). Request for proposal: UML 2.0 infrastructure RFP.

[14] OMG (2000). Request for proposal: UML 2.0 superstructure RFP.

[15] OMG (2001). Meta Object Facility (MOF) specification (version 1.3.1).

[16] OMG (2001). OMG Unified Modeling Language specification (initial sub-

mission). Version 2.03, interim superstructure submission. Financial Systems

Architects, MEGA International, Mercury Computer Systems, TogetherSoft, Hi-

tachi.

[17] OMG (2001). Unified Modeling Language specification (version 1.4).

[18] Rausch, A. (2001). Towards a software architecture specification language

based on UML and OCL. In Proceedings of the Workshop on Describing Software

Architecture with UML, 23rd International Conference on Software Engineering,

Toronto, Canada.

[19] Riva, C., Xu, J. and Maccari, A. (2001). Architecting and reverse architecting

in UML. In Proceedings of the Workshop on Describing Software Architecture

with UML, 23rd International Conference on Software Engineering, Toronto,

Canada.

[20] Robbins, J.E., Medvidovic, N., Redmiles, D.F. and Rosenblum, D. (1998).

Integrating architecture description languages with a standard design method. In

Proceedings of the International Conference on Software Engineering (pp. 209-

218). Kyoto, Japan: IEEE.

[21] Selic, B. (2001). On modeling architectural structures with UML. In Proceed-

ings of the Workshop on Describing Software Architecture with UML, 23rd Inter-

national Conference on Software Engineering, Toronto, Canada.

[22] Shaw, M. and Garlan, D. (1996). Software architecture. Perspectives on an

emerging discipline. N.J., USA: Prentice-Hall.

[23] Störrle, H. (2001). Turning UML-subsystems into architectural units. In Pro-

ceedings of the Workshop on Describing Software Architecture with UML, 23rd

International Conference on Software Engineering, Toronto, Canada.

[24] U2 (2001). 2U submission to UML 2 RFP, initial submission to superstruc-

ture. Adaptative, Data Access, Kinetium, Softlab, Siemens.

