S

POLITECNICA

ESCUELA TECNICA SUPERIOR DE INGENIERIA
Y SISTEMAS DE TELECOMUNICACION

PROYECTO FIN DE GRADO

TiTULO: Desarrollo de aplicaciones basadas en Linux Embedded en una
arquitectura basada en Cyclone V SoC (System on Chip) de Altera

AUTOR: D. Marcos Rodriguez Diaz-Delgado

TITULACION: Grado en Ingenieria Electrénica de Comunicaciones

TUTOR: D. Mariano Ruiz Gonzalez

DEPARTAMENTO: Sistemas Electrénicos y de Control

Miembros del Tribunal Calificador:

PRESIDENTE: D. Neftali Nufiez Mendoza
VOCAL: D. Mariano Ruiz Gonzalez

SECRETARIO: D. Antonio Carpeiio Ruiz
Fecha de lectura: 31/03/2014

Calificacion:

El Secretario,

ACKNOWLEDGEMENTS

Special appreciation to all my college friends for being there these years, | had a great time
in this career thanks to you, | made the best friends | have. | expect to have a lot more great
moments.

Special appreciation to my dear family, who always strongly supported me and helped me to
do my best, for encouraging me to carry on.

This project would not have been possible without the generous assistance of Mr.
Antonio Carpefio Ruiz, who made a great effort to make this project succeed and helped me
to overcome all the obstacles | found.

Special appreciation to my tutor Mr. Mariano Ruiz Gonzélez, and also to professor Mr.
Matias Garrido Gonzélez, for helping with his revision of the first draft of the project report.

Lastly, special appreciation to that special person, for making me so happy.

"Education is an admirable thing, but it is well to remember from time to time that nothing that
is worth knowing can be taught.”

Oscar Wilde

ABSTRACT

We attempt to integrate and start up the set of necessary tools to deploy the design
cycle of embedded systems based on Embedded Linux on a "Cyclone V SoC" made by
Altera.

First, we will analyze the available tools for designing the hardware system of the SoCkit
development kit, made by Arrow, which has a "Cyclone V SoC" system (based on a "ARM
Cortex-A9 MP Core" architecture). When designing the SoCkit board hardware, we will
create a new peripheral to integrate it into the hardware system, so it can be used as any other
existent resource of the SoCkit board previously configured.

Next, we will analyze the tools to generate an Embedded Linux distribution adapted to the
SoCkit board. In order to generate the Linux distribution we will use, on the one hand, a
software package from Yocto recommended by Altera; on the other hand, the programs and
tools of Altera, Embedded Development Suite. We will integrate all the components needed
to build the Embedded Linux distribution, creating a complete and functional system which
can be used for developing software applications.

Finally, we will study the programs for developing and debugging applications in C or C++
language that will be executed in this hardware platform, then we will program a Linux
application as an example to illustrate the use of SoCkit board resources.

RESUMEN

Se pretende integrar y poner en funcionamiento el conjunto de herramientas necesarias
para desplegar el ciclo de disefio de sistemas embebidos basados en "Embedded Linux"
sobre una "Cyclone V SoC" de Altera.

En primer lugar, se analizaran las diversas herramientas disponibles para disefiar el sistema
hardware de la tarjeta de desarrollo SoCkit, fabricada por Arrow, que dispone de un sistema
"Cyclone V SoC" (basado en una arquitectura "ARM Cortex A9 MP Core"). En el disefio
hardware de la SoCkit se creara un periférico propio y se integrara en el sistema, pudiendo
ser utilizado como cualquier otro recurso de la tarjeta ya existente y configurado.

A continuacion, también se analizaran las herramientas para generar una distribucion de
"Embedded Linux" adaptado a la placa SoCkit. Para generar la distribucién de Linux se
utilizara, por una parte, un paquete software de Yocto recomendado por Altera y, por otra
parte, las propias herramientas y programas de Altera. Se integraran todos los componentes
necesarios para construir la distribucion Linux, creando un sistema completo y funcional que
se pueda utilizar para el desarrollo de aplicaciones software.

Por ultimo, se estudiaran las herramientas para el disefio y depuracion de aplicaciones en
lenguaje C 6 C++ que se ejecutaran en esta plataforma hardware. Se pretende desarrollar una
aplicacion de ejemplo para ilustrar el uso de los recursos mas utilizados de la SoCKkit.

Contents

o] (0] 1Y/ 0 ST TR OU PP PRPTTPPRTPPPRPPIS 7
2. FIQUrES and tables TiSt........ccueiieiieiice ettt 9
3. DOWNIOAA TINKS ... 13
A, INEFOTUCTION ...t b bbbttt et n e 15
4.1. Antecedents and DACKGIOUNGcoc..euueeeeeee ettt e ettt a e e e e s ettt a e e e e e se s saaaaeesessasssanaaas 15
4.2. Linux components to generate. BOOT fIOWcoccueeeeecueeeeesiiieeeeieeecee e et e et aestaa e e steaeessaeaesnnes 17
4.3, SOC SOIULIONS ...ttt ettt ettt s e et s e e st e st e et esate e st e esateenaseesaneenanes 19
5. ODJECLIVES ...ttt sttt e s e st e te e s e e re e be e e e e re e te et e re e reennenres 21
6. General description of software and hardware toolS...........cccccoveiiinenineree e, 23
6.1. SOCKit AEVEIOPIMENT Kitcc..eeeeeieeeeeeee ettt sttt sttt e st e st e st e snee s 23
I Y =T o Yo 8o | =SSR 25
[N (oTor do Yo 1 [got=dl o (o] (o [=3O PPN 25
6.4, IMIOFE LOOIS......c.eeeneeeeeeee ettt ettt ettt ettt ettt sttt e re e 26
7. Hardware deVEIOPMENT ..ottt ettt sb e e e nne e 27
7.1. Installing the VirtuQl MACRINEccc..veveeeeee ettt et e e ettt e e et e e ettt e e e ettt e e s saseaesssseaaessseseensees 27
7.2. Download and inStall QUAITUS Ic.ceooueeeiueiiiiieie ettt ettt saee e 28
A Y =2 14 1o IV | o I (L= Yo L O 4 [SR 31
7.4. DOWNIOAAING GHRD PIOJECL ...ttt e e ettt e e e e e ettt e e e e e esastassaaaaaeessssssanaaaseeasissses 34

7.5. Creation and configuration of a new custom component. Adding the new component to the system and

Lol 1o Lo W oo ot i) e =] 4o L o) ¢ S 41
8. SOftware deVEIOPIMENT ... reas 59
8.1. Downloading and iNStAIlING SOC EDSeoeeeueeeeeeeee e eeee et e et tta e et eeete s e s seaaesttaaeesasseaennnees 59
8.2. Generation of a preloader and a bootloader with the Altera SOftWare.............cccoeeeeeeeecvicveeeeeeeecevvennn. 61
8.3. Installing Yocto software and creating the SD card image filecccoueeeeeveveeeciiieeieeeecee e 65
8.4. Booting Linux 0N the SOCKIt DOAITeveeeeeeeieeeeee ettt e ettt e e e e e e se s aa e e e e e s sasssanaaas 71
8.5. ARM DS-5 Environment for developing and debugging applications. "Hello World" example................ 77
9. SUMMArY and CONCIUSIONSocuiiiiiieiieeie ettt sr e e ne e e e 89
10. BIBHOGIaPNY ...ttt a e ne e 93
Appendix A: Installing USB Blaster Il device driver in Windows OScccoccvevvvvennene 95
APPENTIX B: VHDL OVEIVIEWeeeiiciieiiiecie ettt ae e steete e saaeae e sraeaeenes 97
Appendix C: Programming the FPGA ... 101
Appendix D: Connection to the SoCkit and booting LINUX..........ccceveririiiniiinneenesienien, 105

1. Acronyms

S et Operative System
ST Personal Computer
IBM oo International Business Machines
GINU ... GNU is Not Unix
CPU et Central Processing Unit
ARM Lo Advanced RISC Machines
RISC.. e Reduced Instruction Set Computer
QN X e Quantum Software Systems
CE e Embedded Compact
N STV UPOURTUPROURTORN New Technology
PDA e Personal Digital Assistant
GPS Global Positioning System
SDRAM ...cooiiiiiiee e Synchronous Dynamic Random Access Memory
I USSR Phase Locked Loop
3] B PO RO PO TRTOP PR Secure Digital
IMIMIC L. MultiMedia Card
DT B Device Tree BLOB
BLOB ..o Binary Large OBject
B DT s Flattened Device Tree
RAM L Random Access Memory
ROM ettt ne s Read Only Memory
SO ettt a et e nren System on Chip
FPGA e Field Programmable Gate Array
HP S s Hard Processor System
USB . Universial Serial Bus
UART ... Universal Asynchronous Receiver-Transmitter
LED e Light-Emitting Diode
EDS .o e Environment Development System
Y S P Yocto Source Package
15 8 I OSSR Device Tree Compiler
GHRD ..ot Golden Hardware Reference Design

JTAG Joint Test Action Group

MPU .ottt Multiple Process Unit

IMIVLL e Multi Master
o SRS Peripheral Input/Output
VHDL e VHSIC Hardware Description Language
VHSIC ... Very High Speed Integrated Circuit
T e Tool Command Language
B P s Board Support Package
DTS e Device Tree Source
XML e eXtensible Markup Language
131 TSR Development Studio
RSE e Remote System Explorer
SO H Secure SHell
P Internet Protocol
TCP Transmission Control Protocol
SETP SSH File Transfer Protocol

HSMC .. High Speed Mezzanine Card

2. Figures and tables list

Figure 1: GNU/LINUX arChit@CLUIEocviiiiiiiie e 14
Figure 2: LINUX DOOE FIOWooiiic e 16
Figure 3: Altera’s SOC SOIULIONcviiiiiieiiece et nne e 17
Figure 4: Architecture of Altera’s SOC SYSIEMcooiiiiiiieiiiie e 18
Figure 5: SoCKkit development DOAIccuoiiiiiiieiine e 21
Figure 6: Back of the SoCkit development board............cccevveiiiieiicie s, 22
Figure 7: Design flow of the AIEra’s t0O0IS.........c.covvveeie i 23
Figure 8: Steps to fOllow IN thiS PrOJECT........cooi i 25
Figure 9: Quartus I dOWNIOad PAgEccueieeiiiieiieeeie e e 26
Figure 10: Quartus 11 download OPLIONSccveveiieiieie e 26
Figure 11: Downloading support for CYClIONE Vcocveiieiiie e 27
Figure 12: Installing QUANTUS T1........c.ooiiiieiiei e 28
Figure 13: MEemOIY SPACE USAJEcovueeueaueeiteeieaeesieesiesseesseesseaneessesssesssessesssessesssesssesssessesssens 28
Figure 14: INStallation dir€CLOIY.........coiiiieiieii et ne e 28
Figure 15: Jumpers configuration 0n SOCKIL..........ccciviiiiieiieic e 30
Figure 16: Micro-switches from SOCKit Dack SIdeccceriiiiiiiiiiiee e, 31
Figure 17: JTAG CHAIN MICIO-SWILCNccueeiiiiiiiiiiee e 31
Figure 18: SOCKIT CONNECIONS........cuiiiieieeieitiese et ste et e et e e ste e sre e reenaeaneenneens 31
Figure 19: Downloading GHRDcciiiiiieie e 32
Figure 20: Initial QUartus N WINAOWccooiiiiiiieiiiie e 33
FIQUIE 212 C5SX_SOC TIlB ...ttt ne e 33
FIQUIE 22: QSYS TBSTON. .. eeitietieie ittt sttt ettt et et esre e sbeeneesreenne e 34
Figure 23: First step. Setting up hardware deSigN........cccvevevieieiieese e 35
FIGUIE 24: GHRD OVEIVIBW......c.viiiieiiieieeiie st sie et sta et e teente s e saaesaesneesreeneesneenneens 35
Figure 25: ON-Chip RAM ...ttt ettt ne e 36
Figure 26: SECUIE JTAG IMASLENcueeiiiieiiieiie ettt sttt nne e 36
Figure 27: NON-SeCUre JTAG MASIENcccveiieie et sie sttt nne e 37
FIQUIE 28: SYSTEM ID ...ttt ettt e e e re e reenaeaneenneens 37
Figure 29: INTErruPt CaPLUIETocei ittt nae e 38
Figure 30: Second step. Creating a new peripheral ... 39
Figure 31: AVAlON-MM INTEITACE.........cciiie e 40
Figure 32: Example slave COMPONENT.........ccoiiiiiiiieiieie e 40
Figure 33: CONAUIT INTEITACE ..ot 41

Figure 34: Configuring the new component in QSYScccverueiiereeriesieseesie e seesee e seeeneens 44
FIgUIe 35: SYNENESIS FIIEScvieiecic ettt re e e 45
Figure 36: Analyzing synthesis files completed Without errorscccocceeeienieieieneennn 46
Figure 37: Errors in the SYNthesis FIlES........cooiiiiieii e 46
Figure 38: Some temporal errors in the configuration of the component.............cccccevvenene. 47
Figure 39: Signals of the NEW COMPONENT.........ccceiieiiiie e 47
Figure 40: Clock associated to the reset of the component...........cccccoviieiiiincn e 48
Figure 41: Connections of the new component in QSYScceouriieriirieeneeniesee e 49
Figure 42: Memory address of the Nnew COMPONENL..........ccecveieiieii e 50
Figure 43: The LWHPS2FPGA DIAQEvo ettt 50
Figure 44: Adding files to the Quartus 11 Project..........cccooveieiiiiieiiiie e 51
Figure 45: Adding libraries to the Quartus 1l Project.........cccocevvviieiiiinneeie e 51
Figure 46: Start AnalySys & SYNTNESISccveiiiieiieiice e 52
Figure 47: Running the TCL script for pin assignmentcccovveiviierieene e 52
Figure 48: Initial screen of SyStem CONSOIEoiiiiiiie i 55
Figure 49: Read value from the address of the new component...........ccccoveveniiiiinieeenne 56
Figure 50: Downloading SOC EDS.........cccoiioiiiieiiece ettt 58
Figure 51: Third step. Creating a preloader and a bootloadercccocveveiieivccc e, 59
Figure 52: Embedded Command Shell ... 59
Figure 53: BSP editor New CONFIQUIAtIONcocueiiieiiiiie e 60
Figure 54: Files needed to generate preloader and bootloadercccccevvvieiveicccieinenenn, 60
Figure 55: Generated preloader file ..o 60
Figure 56: Generated bootloader File ..o 61
Figure 57: Downloading SOPC2AtS tOO0]coiuiiiiiiiiiiie e 62
Figure 5813: Fourth step. Generating LinuX files With YSPcccccviiiieiiiienee e 63
Figure 59: Fifth step. Creating the SD card image file.........cccccovvieiiiie i 66
Figure 60: Display of the SD partitions in the terminal..........c.ccoooeiiiniiiiie e 67
Figure 61: Partitions Of the SD Card.........cccooiiiiiiiieiice e 68
Figure 62: Sixth step. Writing image file to SD Card.........cccccevviieiiiiesieese e 68
Figure 63: Seventh step. Booting Linux on the SoCKit boardcccccevviieiiern e, 69
Figure 64: Altera's SOC Development BOArd..........ccooveiiieieniiiiiee e 70
Figure 65: Preloader and U-boot 10adiNg.........ccocveiiiiiiiiiiieiesece e 71
Figure 66: Loading the Kernel and DTBcccvoiiiiiii i 71
Figure 67: LINUX OS 10A0EM.........ccuiiieieie ettt e e nneenee e 72
Figure 68: Linux does not 10ad COITECtlYcooueiiiiiiii e 73

10

Figure 69: Message of problems with file SyStemcccoviiiiiiiiiice e, 74

Figure 70: Last step. Application debugging With DS-5 ..o, 75
Figure 71: Import Project IN DS-5 ...t 76
Figure 72: Project Hello World imported 0n DS-5........coooiiiiiiiiiiieene e 76
Figure 73: Compiling the project iN DS-5coiiieiiee e 77
Figure 74: Compiled Project iN DS-5......cc.ccieiiiieiieie e 77
Figure 75: SOC EDS doOWNIOad PAgEccveivieiiiieiiieieeie et 78
Figure 76: Link to the DS-5 activation COE...........coririiiiiiiiie e 78
Figure 77: Activation Code fOr DS-5ccociieiiie et 79
Figure 78: ARM LiCENSE MANAJETccveiveiiieiieie et etestee e ee e e steente e sae e sneesreeneesneesseens 79
Figure 79: New conNection IN DS-5 ..o 80
Figure 80: Configuring a new connection in DS-5..........cccoiiiiiiiiiiinee e 80
Figure 81: Change adapter settings in WINAOWS OSccccoveieiieeiieie e 81
Figure 82: Setting IP address of hoSt COMPULETccoovviieiiee e 81
Figure 83: Checking connection between SoCKit and COMPULEr...........cccoivrviiirieniieniennnn 82
Figure 84: New connection configured in DS-5.......cccooiiiiiiiiiiieee e 82
Figure 85: Warning message in DS-5 when connecting to the SoCkit board 83
Figure 86: Debug CONTIGUIALIONSccveiieiieiicie ettt nne e 83
Figure 87: Configuring the debugging. ConNeCtioNnccoccvviiiiiiiie s 84
Figure 88: Configuring the debugging. FIleS.........ccooiiiiiiiii e, 84
Figure 89: DS-5 environment ready for debugging.......ccocevviiiiiiiicie e 85
Figure 90: EXecute apPliCALIONuciieiieiieir ettt re e nne e 85
Figure 91: Hello WOrld runs COMTECTIYoouiiiiiiiiieece e 86
Figure 92: Close connection with SOCKit board............ccooeiiiiiiiii e, 86
Figure 93: SNUttING OWN LINUXoivieieiieiiese ettt ee e sreenaeanee s 86
Figure 94: DEVICES MANAGETecveiieeieeieieesteeieesteeseessesseesaaassesseesseassesseesseeseesseesseessessensseans 93
Figure 95: Embedded Command Shell in WIndows OSoooiiiiiiininie e, 93
Figure 96: Hardware connection from Quartus Programmerccocevveenenienieenneniesenneeans 99
Figure 97: Hardware Setup in QuUartus Programmercccoceveeieeiesieeseenee e seesee e snnens 99
Figure 98: Select device in QUartus PrOgrammer..........ccccveueveeresieeseeseseesieesseseesesseessens 100
Figure 99: SoCKkit devices in QUartus Programmerccooeveeuenieeneenieseesiesiee e e seeseeas 100
Figure 100: FPGA in Quartus Programmer ready to be programmed............cccccevvervninnnnen. 101
Figure 101: Reference number of the Cyclone V SOCcccoveveiieiieie e 101
Figure 102: The FPGA was successfully programmedcccoccevveviiie i 101
Figure 103: Configuring PUTTY terminal to connect to the SoCkit boardccccueee. 103

Figure 104: Failed connection to the SoCkit
Figure 105: Warm reset in SoCkit board

Table 1: BOOTSEL and CLKSEL settings

Table 2: BOOTSEL[2:0] Setting Values and Flash Device Selection

Table 3: MSEL pin Settings for each Scheme of Cyclone V Device

Table 4: Files used to create the SD card image

12

3. Download links

[d1] VMware Player Plus for Windows:
https://my.vmware.com/web/vmware/free#desktop end user computing/vmware player/6 0

[d2] Ubuntu Desktop: http://www.ubuntu.com/download/desktop

[d3] Quartus 1l Web Edition: http://dl.altera.com/?edition=web

[d4] SoCkit GHRD: http://rocketboards.org/foswiki/view/Projects/SOCKITGHRD

[d5] "Sopc2dts™ development repository: http://git.rocketboards.org/?p=sopc-
tools.qgit;a=tree;f=sopc2dts;h=733dcf5a1a397a40c768bf592a0b2eadc46ab671;hb=HEAD

[d6] How to Use the PIO Button On the SoC Devkit Board (to download XML files):
http://rocketboards.org/foswiki/Documentation/HowToUseTheP1OButtonOnTheSocDevkitBoard

13

https://my.vmware.com/web/vmware/free%23desktop_end_user_computing/vmware_player/6_0
http://www.ubuntu.com/download
http://dl.altera.com/?edition=web
http://rocketboards.org/foswiki/view/Projects/SoCKITGHRD
http://git.rocketboards.org/?p=sopc-tools.git;a=tree;f=sopc2dts;h=733dcf5a1a397a40c768bf592a0b2eadc46ab671;hb=HEAD
http://git.rocketboards.org/?p=sopc-tools.git;a=tree;f=sopc2dts;h=733dcf5a1a397a40c768bf592a0b2eadc46ab671;hb=HEAD
http://rocketboards.org/foswiki/Documentation/HowToUseThePIOButtonOnTheSocDevkitBoard

14

4. Introduction

4. Introduction

4.1. Antecedents and background

4.1.1. Embedded Systems

The word Embedded Linux refers to the use of Linux kernel-based OS (Operative
System) on an embedded system. The first question to answer is: what is an embedded
system?

An embedded system has a specific function within an electric or mechanic larger one. It is
embedded as part of a whole device. On contrast, a general purpose system like a PC
(Personal Computer) is designed to be flexible, with an extremely wide range of
applications. Embedded systems comprise a large amount of common use devices nowadays;
from portable devices (such as digital watches or mp3 players) to bigger fixed installations
and highly complex systems (semaphores, magnetic resonance equipment, systems
embedded into vehicles, etc). Control or industrial automation equipment, general electronic
devices or microprocessor applications are embedded systems as well.

The key idea is a system dedicated to handle a specific task. Since embedded systems do
specific tasks, designers can focus their efforts to optimize them in order to reduce their size
and cost; as a result, they can increase their reliability and efficiency.

4.1.2. Linux

Now we will step into Linux world. Linux is a Unix-based OS, free and open source. It
made its appearance in 1991, when Linus Torvalds, computing student at the University of
Helsinki, started to write first Linux code lines, as a hobby and without imagining what this
project would become. Linux quickly evolved from an individual project to a worldwide
development project involving thousands of developers.

Linux is composed of the system kernel with a great number of programs and libraries,
making its use feasible. We can observe in Figure 1 the essential structure of the OS. We will
not delve into its architecture; the detailed performance of the OS is beyond the scope of this
project. We will just say that we have, on the one hand, a kernel space, with the system
kernel and a system call interface; on the other hand, the user space, with user applications
and libraries. Should you want to know more about Linux, you can visit an article on IBM's
(International Business Machines) webpage “Anatomy of the Linux kernel” (go to
bibliography).

Many times the Linux OS is called GNU/Linux, because part of the interaction between
user and hardware is handled usually with tools from the GNU project.

1 GNU is a recursive acronym for "GNU is Not Unix!", because GNU's design is Unix-like, but differs from
Unix by being free software containing no Unix code.

15

4. Introduction

Usser
Space
_""‘I
GNU/ < || [T System Call Interface |
L I
Karnal Keme!
Space
|
Archdistdung Dapencen] Kermal Codé
. J
Hardware Platform

Fig. 1: GNU/Linux architecture

4.1.3. Embedded Linux

Linux has been adapted to a wide variety of CPUs (Central Processing Unit), not only
used as processor of a desktop computer or a server, but also processors for embedded
systems such as ARM?. Linux is used as an alternative way to proprietary systems; in the
past, embedded systems development was mostly implemented with proprietary code written
in assembly language. Developers had to write all drivers for hardware devices and
interfaces starting from scratch. Linux kernel, combined with a set of some open software
utilities, can be adjusted within the limited hardware space of embedded systems.

There are more embedded OS like QNX (Quantum Software Systems), LynxOS, Windows
CE (Embedded Compact) or Windows NT (New Technology). Embedded Linux has some
advantages over the rest of embedded OS: it has a smaller size, it is easily customizable,
mature and stable (more than 20 years old and used in many devices).

Due to all its advantages, Linux has been inserted into a lot of consumer devices like PDAs
(Personal Digital Assistant), GPS devices (Global Positioning System), residential gateways
or smart phones. Today, the OS that is dominating the mobile phones market is Android,
based on a modified Linux kernel along with a custom user space.

With the availability of consumer embedded devices, user and developer communities were
founded around these devices. Replacements or improvements of Linux distribution have
been often possible thanks to the availability of source code and the communities. Because
of the large number of devices, standardized systems of automated Linux generation were
created, as OpenEmbedded, OpenWrt or BuildRoot.

2 ARM stands for Advanced RISC Machines, where RISC is the acronym for Reduced Instruction Set
Computer

4. Introduction

4.2. Linux components to generate. Boot flow

In order to build our own Linux distribution, we must generate a set of files:

Preloader: It is responsible for performing some configurations before fetching the
subsequent bootloader image. Some of its functions are: initializes the SDRAM
(Synchronous Dynamic Random Access Memory) interface, including calibration
and configuration of PLLs (Phase Locked Loop) to set up clocks, extracts the
bootloader image from the required flash controller (in our case, SD/MMC (Secure
Digital/MultiMedia Card)) and passes boot flow control over to the bootloader.

Bootloader: A simple program designed to set up everything that the OS needs to
work. On this project we will use U-Boot, an open source bootloader used for
embedded systems. Its main functions are: configures the OS environment, extracts
the OS image from the corresponding flash device (as previously mentioned, in our
case is the SD/MMC), stores the kernel and the DTB? into memory, boots the kernel
and passes the content of the DTB to it. It also provides a console that can be used for
user operations, like modifying boot parameters.

DTB: It is a binary file which represents the FDT (Flattened Device Tree), a data
structure that describes the hardware of a system and "translates" it for the OS, so that
the OS finds and registers the system devices. Some design aspects of the board it
describes are: number and type of CPUs, size and base addresses of RAM (Random
Access Memory) memory, bridges and buses, peripheral connections, interrupt
managers, etc. A FDT image can be linked statically to the kernel or transferred
during boot time.

Kernel.

File system: System that controls how information is stored (files and folders).

The steps to run an application on Linux are the following:

1.

Reset: The boot process begins when a CPU exits a reset state, and starts running
code in the memory address where the Boot ROM (Read Only Memory) is mapped.

Boot ROM: It contains code that, as we just said, runs after performing a reset. It
reads the clocks and boot configuration from the configuration pins of the chip. It
also reads the preloader from the corresponding flash device and loads it.

Preloader: Is copied into the RAM memory and executed. Its main purpose is to set
up the appropriate clocks configuration that the Boot ROM previously read and set
up the required pin multiplexing in order to route peripherals to the pins. When it
ends, it will load the bootloader to start its execution.

¥ DTB is the acronym for Device Tree Blob, where BLOB is the acronym of Binary Large OBject

17

4. Introduction

4. Bootloader: Just as we explained in the previous page, it loads the OS and passes
control software (DTB) to it.

5. Kernel: At last, the kernel is responsible for the rest of the system configuration:
interruptions, devices initialization, drivers and controllers, memory management,
etc. After all this, the applications can be executed.

User Software

Operating

Reset p Boot ROM System

Preloader = Boot Loader »-

Y

= Application

Fig. 2: Linux boot flow

4. Introduction

4.3. SoC solutions

4.3.1 What is a SoC solution?

Before taking a look to our development kit, which has a SoC (System on Chip)
solution, we will briefly explain what SoC consists in. Broadly speaking, a SoC solution is a
microchip which contains all required components to power and provide energy to a
complete system, such as a computer. A complete system needs several components to work:
microprocessor, memory, peripheral interfaces, 1/0 logic control, data converters, etc. The
components in a PC motherboard, for example, lay on separated chip. In the case of a SoC,
all the components are in a single chip instead.

A computer needs several components, and it has enough space to contain them all, but this
would be impossible to do in a device such as the SoCkit board. Thanks to SoC solutions, we
have a good computing power in smaller space. In addition, these devices do not need too
much power to work, thanks to the high scaled components integration, reducing wires.
Therefore, efficiency is increased.

4.3.2. Altera's Cyclone V SoC

Next, we talk about our development Kit. Altera develops a set of FPGAs (Field
Programmable Gate Array), classified into several families according to their features. The
SoC solution that contains the SoCkit board belongs to the Cyclone series, low-cost FPGAs.
Particularly, it belongs to the Cyclone V family.

The Altera SoC solution integrates one FPGA Cyclone V fabric with a HPS (Hard Processor
System) designed by ARM (Figure 3). This HPS is composed by a double core processor
ARM Cortex-A9, a group of peripherals and a set of high performance buses that interfaces
to the FPGA,; all this can be viewed in Figure 4.

ARM AITERAY

ARM Processor System
. 28-nm FPGA
Dual Core ARM Cortex-AS _
Wedstomsor Cycione®™V
— =
Memory Peripherals 4 Arr la‘)j V
Controller
ALRTERAY

Fig. 3: Altera's SoC solution

19

4. Introduction

Hard Processor System (HPS)
ARM Cortex-A9 ARM Cortex-A9 USEBE
NEON / FPU NEON / FPU oTG E:E]r:f*
L1 Cache L1 Cache (x2) ™
L2 Cache GPIO =
(x4) T
®
el 64-KB ITAG SPI CAN g
Flazh RAM Debuyg / (x4) (x2)
Control Trace
MNAND S50
DMA UART
Flash SOy Timers
1 @ MMC i1 SR (x2)
Shared Multiport DDR HPS to FPGA C’;‘:ﬁﬁ“
SDRAM Controller 2 FPGA to HPS g
: ration
= % =] % |t —'\? — - — - |
BRERLLR V U v |[]
*281P process E
* §-input Al Ms =
= Variable-precision DSP Q
* M10K memory and E
&40-bit MLABs E
-
5
B
3
(]
Hard Multiport DDR Hard 3,5, 6+ .
SDRAM Controller =20 PCle and 10-Gbps
Transceivers =)

Fig. 4: Architecture of Altera's SoC system

So far, we have seen a general overview of the systems whose hardware is based on; this
hardware will be integrated with the OS that we attempt to generate. This is the main
objective of this project; next, we will see the objectives we aim to in more detail.

5. Objectives

5. Objectives

We attempt to integrate and start up the set of needed tools to deploy the design cycle
of Embedded Linux based systems on Altera's Cyclone V SoC.

Firstly, we analyze the available tools for designing the hardware system of the SoCkit
development kit which includes a "Cyclone V SoC" system (based on a "ARM Cortex-A9
MPCore™ architecture). When designing the SoCkit board hardware, we will intent to check
if it is possible not only to use the pre-configured resources of the board, but also add some
ad hoc peripherals to the system configuration, new and totally customizable. We will check
the correct operation of this new component and connect it to the hardware system, so it can
be used as any other existent resource of the SoCkit board.

Next, we will analyze the open source tools to generate an Embedded Linux distribution
adapted to the SoCkit board. In order to generate the Embedded Linux distribution
configured according to our board, we will use a software package from Yocto,
recommended by Altera. This tool will be used together with Altera's software, to generate
the necessary components of the Linux OS (the ones we specified in the previous section
"4.2. Linux components to generate. Boot flow") that will implement the custom
configuration we want for our SoCkit board. After creating and compiling all needed files,
we will combine them creating a complete and functional system to be used for the
development of applications.

Finally, we will also analyze the programs for developing and debugging applications in C or
C++ language that will be executed in this hardware platform. Then, we will make a Linux
application program as an example to illustrate the use of SoCkit board resources (including
our new peripheral).

The main purpose is, summarizing, to document the whole process of generating and
creating an own customizable Embedded Linux distribution for this hardware platform,
without depending on "pre-cooked"” content provided by the manufacturer and the developer
communities, and to set up everything to open the way for software applications
development over this board.

21

5. Objectives

22

6. General description of software and hardware tools

6. General description of software and hardware tools

6.1. SoCkit development kit

The north-american company Arrow provides an easy way to learn and develop SoC
solutions: the SoCkit board. It was developed with the purpose of helping engineers to
quickly evaluate the operation and flexibility of the Cyclone V SoC system for their designs,
to be convinced of how simple is to work with these devices. Figure 5 and Figure 6 show its
resources; some of them will be briefly described since they are important for this project.
We will describe what we use them for; but actually, they can be used in other ways.

| HPE Ethernet VGA OUT Bottom Shie Componenis:

o FRCA USH 2.0 OTG 1I00MDOID VEA DB-15 Lne Mic Line e

B System Part Pot Z4BLDAC Canmectar = m Out WEcro S0 Cand Socket
JTAG USE Blasterll | USB-UART “FREA Configuraiion Mode Swich
Headier Part Paort

USB-UART Confrales.

vy T

12V D Power Supply e o

Canmector
Audio Codec
— FPGA DDRS 1GB

Allera USE Blaster ||
Contralier Chig
Prwer ONOFF Switch T
LSS OTE Cantroller
{ULEN)
E HEMC Connector
TSE PHY

LT Cannactar

HFRS DDR2 18

CLKEEL Jumper
128454 Dats LCD

G-Sensar

ARera 28-nm Cycione \f FPGA
with ARM Conex-A3

BOOTSEL Jumper

Temperakure Sensar

Clock Chrult for
FPGA and HPE

IR Receiver

LCD Backigint Jumper —

HEMC Vokage-Leval
Jumper

HPE Usar FPGA Uiser FPGA Liser KBYE
Swiliches Zafiches
HPS Byslem HPS UserkKeys HPS User FPGA User FPGA Reset Key

Reset Keys LEDs LEDs

Fig. 5: SoCkit development board

23

6. General description of software and hardware tools

W HPS
FRGA
W System
FPGA
Canfiguration i
Mode Switch LD Connectar
Q5P Flash
o Micro-SD
Connector

Fig. 6: Back of the SoCkit development board

e Cyclone V SoC: A system that combines a HPS, designed by the British company
ARM, and an FPGA by Altera, in a single chip.

e Micro-SD connector: This connector will contain the Micro-SD card where we must
write the image file containing all the elements of the Linux distribution. The Linux

OS boots from this device.

e USB-UART" connection: Used for serial communication between our board and the
computer where all software tools and programs are installed.

e Ethernet connection: Used for debugging C/C++ applications that will be executed
on the board.

e Warm reset: Used to reboot the Linux system.

¢ Buttons, switches and LEDs (Light-Emitting Diode): Some of them used to test
that the built configuration works properly.

e Jumpers CLKSEL & BOOTSEL: To select clock rates and system boot source,
respectively. They must be configured in a specific way, as we will see further.

¢ FPGA configuration switches (MSEL): They select the FPGA configuration mode.

USB-UART is the union of two acronyms, Universial Serial Bus and Universal Asynchronous Receiver-
Transmitter

24

6. General description of software and hardware tools

6.2. Altera software

Altera provides a set of tools to design and create our system:

e Quartus ITa nd Qsys: These tools are very useful because they allow the
configuration of the HPS and the FPGA of the SoCkit board. This hardware
configuration includes the selection of peripherals will be used within our design.
They generate some files to give design information to other tools that take control of
the application debugging and create some blocks of the Linux distribution.

Handoff
*ACDS: Altera Complete files
Design Suite .
& < — — Preloader F‘— ﬂ
e — Handoff Generator L—li']'emader
QUARTUS I — -
e R ——
e —— --.______—_._...--"
EW Des‘ﬁﬂ- PP sl i
» - e e
s W— e oDeiniD o -| Devicelree Bev'ce Tre:
| . — I
_-=epcne | Generator
For g
scceDs il
Ay

Fig. 7: Design flow of the Altera’s tools

e SoC EDS (Environment Development System): A set of tools that help us to
generate a preloader, a bootloader and a DTB for Linux, from the configuration files
created in Quartus 1l and Qsys. They also help us to debug applications.

e Modelsim and System Console: Tools to validate the correct operation of the FPGA
peripherals previously configured in Qsys.

6.3. Yocto Source Package

The YSP (Yocto Source Package) is an installer recommended by Altera that contains
the Yocto's generating system and all the dependencies to compile the essential elements
needed to build a full Linux distribution.

Yocto is a community project that aims to generation of Linux distributions for several
architectures. Yocto Project counts on Open Embedded, a suite of tools (we will use some of
them) that take charge of generating source code. Yocto is becoming the default standard to
generate Linux source code.

25

6. General description of software and hardware tools

6.4. More tools

6.4.1. Desktop computer

On this computer we will install and execute all software tools to configure our board
resources, generate required configuration files, create image files to build the Linux
distribution and write them to the SD card. Furthermore, we will perform the serial
communication with our board through a PuTTY terminal in order to boot the OS and
interact with it. The computer used has a 4 GB RAM memory, an i5 processor and a 64-bit
Windows 7 Professional OS.

6.4.2. Virtual machine

We need a computer with a Linux-based OS in order to use some of the tools to
generate the Linux distribution. The computer we will use has a Windows OS, as we just
mentioned. Hence, we will use a virtual machine with a Linux-based OS to perform all the
tasks.

We will use Ubuntu Linux, based on Debian distribution. It is the most popular Linux
distribution. We have to be careful; some Ubuntu versions are not compatible with the Yocto
software. This project was performed using an Ubuntu 12.04 (LTS) version. Currently, the
Yocto Project is supported on the following Ubuntu distributions: Ubuntu 10.04, Ubuntu
11.10, Ubuntu 12.04 (LTS), Ubuntu 12.10.

In order to view a detailed list of supported distributions, not only Ubuntu Linux, please refer
to "Yocto Project Reference Manual”, chapter "1.3.1. Supported Linux Distributions™ in the
bibliography (consulted in January 2014, last revision released in April 2013).

6.4.3. SoCkit Lab Materials / GHRD

GHRD (Golden Hardware Reference Design) is a pre-built hardware reference design
for our board. In a subdirectory of the folder where all the Altera’s software is installed there
is the GHRD for the "Altera SoC Development Board", another development kit for Cyclone
V, created by Altera (we will mention this board a couple of times along this project). To
obtain this design for the SoCkit board, we have to download it from the community
webpage projects Rocketboards.org. We will not get deep into the components of this design,
we will do it later as we move forward in this project.

Moreover, Arrow provides on their website a link with all the required files to perform all
the hardware design process, including useful manuals and source files. Those are the
"SoCkit Lab Materials".

6.4.4. PuTTY

PUTTY is a free and open source terminal emulator, that supports various network
protocols. It will be used to connect the computer with our board, so that we can monitor the
Linux system boot flow and interact with it.

26

7. Hardware development

7. Hardware development

We will follow some steps grouped into two categories: hardware and software
development (separated by a grey vertical line in Figure 8). Figure 8 shows all these steps in
a diagram, we will show it along the project as a guide that helps the reader not to get lost
and to know which part of the project we are in at every moment.

CREATION OF A NEW
PERIPHERAL

—_—

&\.‘ [PRELOADER & BOOTLOADER | (—
&F GENERATION WITH SoC EDS —— e APPLICATION
b i CREATION OF WRITE IMAGE BOOT
) DEBUGGING
HARDWARE QUART 5 11 < SD CARD IMAGE | ON SD CARD LINUX WITH DS-5
DESIGN » ‘ ! /
\)

r
%Q | LINUX SOURCE FILES GENERATION
\

| wiTH vocTo soURCE PACKAGE
HARDWARE
J SOFTWARE

. LT
PROGRAMMIN
L FPGA

J

Fig. 8: Steps to follow in this project

In this section we will perform all the steps that lead to a complete and functional
hardware configuration using Quartus Il and Qsys. We will also create a new custom
peripheral, add it to the design and check whether it works correctly or not.

7.1. Installing the virtual machine

First of all, we must install the software of virtualization with all the necessary tools and
programs. We are using software provided by VMware Inc.; particularly, the free tool
VMware Player[dll. Download the latest version of VMware Player and install it with the
desired options (the installation progress is very easy and intuitive).

We have to download an image file (.iso format) containing a Linux-based OS for the virtual
machine. As mentioned before, we will use Ubuntu Linux!®? (12.04 LTS version), the most
popular distribution and easy to use. To install Ubuntu Linux in the virtual machine, go to
VMware Player menu, select the "Create a New Virtual Machine" option. Select the
option "Installer disc image file (iso)'"" and browse the Ubuntu image file (the OS will be
detected automatically), choose a name, a p assword and a location for the virtual
machine and select the space on hard disk for the virtual machine.

The virtual machine will need a lot of memory space, since Yocto and Altera tools take up a
large amount of it. We will assign 100 GB of memory space to our virtual machine; this is
more than the space we need, but doing so we make sure that we have enough space and we
will not have to worry about it later.

Before finish, click on "Customize Hardware..." to view or modify the hardware
features of the virtual machine (we only modified the RAM memory in order to have a
more fluent operation). When everything is ready, click on "Finish" and the virtual
machine will start installing (this will take a while, be patient). If a command prompt is
shown instead of a desktop, type the command "startx".

27

7. Hardware development

7.2. Download and install Quartus II

Among all Altera tools, we must install Quartus II. Use the Web Edition, a free
version valid for our purpose because it includes support for low and medium cost FPGAsS,
including the Cyclone V. On the download webpage!®, select the following options (see
Figure 9):

e Software version: 13.0spl

e OS: Linux (also available for Windows).

e Download method: direct download (a download manager is available for Windows
hosts; it is not an option for Linux hosts).

It is necessary to be registered on Altera's website to download software; it is free.

Quartus Il Web Edition

Home > Support = Downloads =

Release date: June, 2013
Quartus II Web Edition v13.0spl \g‘
Select a previous version of Quartus 11; | 13.0sp1 E \\.

ﬂr 7
Operating System &

Select the operating system on which vou will run the Quartus II software.

) = .
Windows @ &% |inux

Download Method O 2kamai DLM3 Download Manager @ Direct Download
Select whether you will use the download manager {(Windows only) or directly download the files.
The download Mmanage i use the downfoad and can 5'_._.— vou recover from interrupted downloads.

Combined Files W

Nownlonad and install instroctinns:

Fig. 9: Quartus Il download page

On the tab "Individual Files", scrolling down the page we can find all the different
software packages. Select '"Quartus II Software (includes Nios II EDS)", as seen in
Figure 10.

Quartus IT Web Edition (Free)

Quartus II Software (includes MNios II EDS)

Size: 1.5 GB MD5: 30B0588E/BC9368BoCH46BCF/337ADGE 0
ModelSim-Altera Edition (includes Starter Edition)

Size: 7/79.4 MB MD5: D0O83E6256A5BASB419FF/E/FEBEFB2DY 0

Fig. 10: Quartus Il download options

Additionally, we have to download the device support file for the Cyclone V family, the
one our FPGA belongs to. Doing so, when installing Quartus Il we must see an option to
include Cyclone V devices support (see Figure 11).

28

7. Hardware development

Devices
You must install device support for at least one device family to use the Quartus II software.

Arria II device support

Size: 467.2 MB MDS: FOEE10638F55 54

Cyclone II, Cyclone III, Cyclone IV device support (includes all variations)

Size: 568.8 MB MD5: 0C13D53053884E4071C380BAF02CESGE

Cyclone ¥V device support (includes all variations)

Size: 700.7 MB MD5: ASEB7719925306C1DBEDS12CaC09806S

©C 00O

MAX II, MAX V, MAX 3000, MAX 7000 device support

Size: 6 B MD5: AB3109D9428204990DFEFGEALABS19C2A

Fig. 11: Downloading support for Cyclone V

Before installing it, locate the downloaded Quartus II file. Right click on it and access to
Properties. On the Permissions section, select the box '"Allow executing file as a
program". If we do not select it, Ubuntu OS will try to open this file instead of executing it,
so it will not find any application to open it. After that, to begin installation we have to
execute the file with root user privileges (sudo command); otherwise, we will see a message
indicating that there were troubles with the installation (for example, the uninstaller file will
not be created correctly). Thus, despite these errors may not have a negative impact on the
tools operation, we will execute it as root to make sure that everything is installed correctly
so we will not have unexpected issues afterwards. Open a terminal in Ubuntu, navigate to
the directory where the file is (it will be stored on ''/home/<user>/Downloads" by
default) and execute the following command:

$ sudo ./QuartusSetupWeb-13.0.1.232.run

When typing this command, the prompt asks for the user password. Type the password you
set in the installation. Install Quartus II on the default directory
(home/<user>/altera/13.0sp1l). When selecting the components we want to install,
unselect the box "Quartus II Software 64-bit support" (Figure 12), because in this project
we are using a 32-bit Ubuntu OS on the virtual machine so we do not need the 64-bit
support. After that, the program starts installation.

Installing Quartus Il Web Edition (Free) 13.0.1.232

Select Components Alm
&

Select the components you want to install

T T S T, st the Quartus Il Web Edition software.
X Quartus Il Software (includes Nios | EDS) (442, | The Quartus Il Web Edition software is a free,
[[] Quartus Il Software 64-bit support (L090MB) limited-feature version of the Quartus Il

El [®] Devices Subscription Edition software that supports
selected FPGA and CPLD device families.

Fig. 12: Installing Quartus 11

The installation takes up 5.6 GB so far (see Figure 13).

29

7. Hardware development

Disk Usage Analyzer

@ santome [l [13

Total filesystem capacity: 104.5 GB (used: 10.4 GB available: 94.1 GB)

Folder Usage Size = |Contents
w thisuser I 100% 8.1GB 31items
b altera I 68.4% 5.6GB 1 item
Mmuinlaade [] 24 7 0L o I i e =] I iFamc

Fig. 13: Memory space usage

We can see some folders in the installation directory. All the Quartus Il files are in the
"quartus” folder (See Figure 14).

F® Home altera 13.0sp1 uninstall = = Search
ip logs nioszeds
quarktus uninstall

Fig. 14: Installation directory

This step is the same if we use Windows, even easier since there are no root privileges

issues. To execute the installation file, just double-click on it. The rest of the process is the
same.

30

7. Hardware development

7.3. Setting up the SoCkit

We must set up the SoCkit board in order to use it. Some jumpers need to be
configured on a specific way before proceeding.

The processor in the HPS can be boot from many sources such as the SD card or the FPGA.
The boot source can be set using the BOOTSEL jumpers (shown in Figure 15 as J17, J18 and
J19) and CLKSEL jumpers (J15 and J16 in Figure 15). Table 1 lists BOOTSEL and
CLKSEL settings. Table 2 lists the settings for selecting a suitable boot source.

Table 1: BOOTSEL and CLKSEL settings

Board Reference Signal Name _Setting .
n7 BOOTSELO Short pin 2 and 2 Logle
o BOOTSELL Short Pin 2 and 3 Logic 0
18 BOOTSEL? Short Pin 2 and 3 Logic 0
115 CLKSELO Short Pin 2 and 3 Logic 0
116 CLKSEL1 Short Pin 2 and 3 Logic 0

Table 2: BOOTSEL[2:0] Setting Values and Flash Device Selection

BOOTSEL]2:0] Setting Value Flash Device
000 Reserved
001 FPGA (HPS-to-FPGA bridge)
010 1.8V NAMD Flash memory*
011 3.0 V NAMD Flash memory*
100 1.8 V SD/MMC Flash memory*
101 3.0 V SD/MMC Flash memory
110 1.8 V SPI or quad SPI Flash memory*
111 3.0 V SPI or quad SPI Flash memory

*Not supported on SoCkit board.

31

7. Hardware development

Make sure the jumpers are correctly configured as seen on Figure 15. We choose the
3.0V SD/MMC Flash memory as the boot source (BOOTSEL[2:0] = 101). The CLKSEL
jumpers should be configured as "00" for the slowest HPS peripheral clock speed option.

Fig. 15: Jumpers configuration on SoCkit

On the bottom side of the board there is the Dipswitch SW6 that need to be configured too
(see Figure 16). It sets the MSEL pins to decide the FPGA configuration modes. Table 3
gives the MSEL pins setting for each configuration scheme of Cyclone V devices.

Table 3: MSEL pin Settings for each Scheme of Cyclone V Device

Configuration | Compression | Design security | POR Delay | Valid MSEL[4:0]
Scheme feature feature

Disabled Disabled Fast 10100
Standard 11000
FPPx8 Disabled Enabled Fast 10101
Standard 11001
Enabled Disabled Fast 10110
Standard 11010
Disabled Enabled Fast 00000
Standard 00100
FPPx16 Disabled Disabled Fast 00001
Standard 00101
Enabled Enabled Fast 00010
Standard 00110
PS Enabled/ Disabled Fast 10000
Disabled Standard 10001
AS(X1 and X4) Enabled/ Enabled Fast 10010
Disabled Standard 10011

The FPGA default works in ASX4 mode. However, in this mode the SoCKkit will be unable to
boot Linux from the SD card or other devices. Switch MSEL to another mode as shown on

7. Hardware development

Figure 16 (MSEL[4:0] = 00001; the sixth switch has no function) to enable normal
operations of Linux.

Fig. 16: Micro-switches from SoCkit back side

We need to verify the JTAG CHAIN micro-switch (SW4), also placed on the bottom side of
the SoCkit. The SoCkit allow users to access the FPGA, HPS debug, or other JTAG chain
devices via the on-board USB Blaster 1l. Users can control whether the HPS or the HSMC
connector is included in the JTAG chain via SW4. Configure the switch as shown in
Figure 17 (it is placed on the right of the audio connectors) to include the HPS connector in
the JTAG chain.

Fig. 17: JTAG CHAIN micro-switch

It is necessary to plug the SoCkit power cable, the USB-UART connection (for serial
communication with the computer), Ethernet connection (for application debugging) and
USB Blaster II connection. Observe in Figure 18 the location of all these connectors.

USB Blaster Il UART Ethernet

Power —

S0Ci: |

(ol
i =
-

Fig. 18: SoCkit connectors

On Appendix A there is an additional section required to follow in case of using the
Altera software in a Windows OS.

33

7. Hardware development

7.4. Downloading GHRD project

Now we are going to download from the Rocketboards webpage a file named
"GHRD_soc_system.gar", which contains the archived GHRD project that we can open with
Quartus 11.

Access to the Rocketboards webpage to download the GHRD file
(http://rocketboards.org/foswiki/view/Projects/SOCKITGHRD) (see Figure 19).

SoCKit GHRD

Golden Hardware Reference Design

Last modified by StevenKravatsky on 14 Aug 2013 - 15:46

Details

State: running

Full description
Building the GHRD for the Arrow SoCKit (Quartus 13.0sp1
Below are the key steps.

. Generate the QSYS system in @Il 13.0 sp1. Using ¢
. Add the _gip file to the project prior to compile in Qll
. Add the sdram sdc file to the project to pass timequest
. Do the analysis and synthesis in Quartus

. Run the pin placement TCL script — as per the SoC
. Full Quartus compile in QIl 13.0 sp1

. Generate the preloader source files using bsp-editc
. Make the preloader from the embedded command ¢

O~ M & WM =

GHRD

.

Fig. 19: Downloading GHRD

It is possible to encounter some troubles to download this file. If you click on the link
shown in Figure 19 and you just see a webpage full of strange symbols, try to right click
on the GHRD link and select ""Save Link As..."; you should be able to download the
'GHRD _soc_system.qar’ file successfully. Once the file is downloaded, open Quartus II.
If Quartus Il was installed with all options by default, a shortcut to the program should have
been created in the Ubuntu desktop, then just double click on it. If not, open a terminal in
Ubuntu and navigate to the "/home/<user>/altera/13.0spl/quartus/bin” directory, then
execute the following command:

$ sudo ./quartus

This command will execute the script that loads the program. It is better to use always this
option, because we do it with root user privileges, so we will not have permission troubles or
unexpected behavior.

34

http://rocketboards.org/foswiki/view/Projects/SoCKITGHRD

7. Hardware development

When the program is open, the menu in Figure 20 will be shown. Click on "Open existing
project" and find the directory where the "GHRD soc system.qar'" file was
downloaded (in our case, "/home/<user>/Downloads"). Select this file to import the
project from it. We will see a window to choose the directory where all files will be
extracted (we will extract it to "/home/<user>/Documents/GHRD_soc_system").

Getting Started With Quartus® Il Software

Start Designing Start Learning
E Designing with Quartus il software The audiofviden interactive fuforfal teaches
o requires a project you the basic featuras of Quartus If software
Create a New Project e :
s (News Project Wizard) Open Interactive Tutorial

R Open Existing Project |

Open Recent Project:
E Thome/marcosiDocuments/SoCKIT_Ma...oCkit HW lab 13.0/soc_system.qpf
] Thome/marcos/iDocumentsiFPGAISoCKIit Audio/SoCKit Audio.gpf
Thome/marcosiDownloads/GHRD_soc_system_restored/soc_system.qpf

FWeb vs. Subscription | | Buy Subscription’ | | Literature | | Training | | Online Demos | | Support’]
it shid it i Skttt o B e oo e B

MMRrE sV
Fig. 20: Initial Quartus Il window

We have downloaded the hardware design for our system. Once the hardware design is
completely and correctly configured, we will step into the software development (generating
Linux preloader, bootloader, etc); but so far, we are working with the hardware design of the
system.

This project contains a Verilog code file ("c5sx_soc™) and a Qsys project
("soc_system.qsys") that contains the HPS hardware configuration. The "c5sx_soc" file has
all of the I/O for the HPS instance and all I/0O of the FPGA. If you want to visualize its
content, just double click on it.

Project Mavigator N A

A cid“i i iiii'it:EDﬁFﬂcsEs

Fig. 21: c5sx_soc file

To launch Qsys, access to the Tools menu in Quartus II and select Qsys. While program
is launching, it will ask for a Qsys project file, located in the project directory and named
"soc_system.qgsys". After that (it should take less than one minute), Qsys will display all the
components of the Qsys design (see Figure 22 in next page).

35

7. Hardware development

_\mv..mwm_ﬂ Contents _\Dn_aﬂmmm Map _\ Clock Settings __Uﬂo_.mnw Settings _\ Instance Parameters _\w%wwmﬂs Inspectar _\ID_. Example _\ Generation

Connections MName Description Export Clock Base End IRQ
E hps_0 Hard Processar System multiple multiplef—s
memaory Conduit memory
hps_io Conduit hps_0_hps_io
h2f _reset Reset Output hps_0_h2f reset
— h2f_axi_clock Clock Input clk 0
h2f_axi_master AX| Master [h2f_axi_cl..
— f2h_axi_clock Clock Input clkc 0
f2h_axi_slave AX| Slave [f2h_axi_cl.. 0x0000_0000 P FEEE FEEF
*— h2f_lw_axi_clock Clock Input clk 0
h2f lw_axi_master [AXI Master [h2f_|w_ax..
B onchip_memory2_0 |On-Chip Memory (RAM or ROM)
— clkl Clock Input clk 0
5] Avalon Memory Mapped Slave [clk1] 0x0000_0000 oxoeoe_ffff
*»— resetl Reset Input [clk1]
= master_secure TAG to Avalon Master Bridge
clk Clock Input clk 0
—— clk_reset Reset Input
master Avalon Memory Mapped Master [clk]
master_reset Reset Output
B sysid_qgsys System ID Peripheral
clk Clock Input clk 0
— reset Reset Input [clk]
control_slave Avalon Memory Mapped Slave [clk] & 0x0001_0000 Ox0001_0007
B dipsw_pio PIO (Parallel 1/O)
clk Clock Input clk 0
— reset Reset Input [clk]
s1 Avalon Memory Mapped Slave [clk] & 0x0001_ G080 0x0001_0osf —{o—o]
external_connection (Conduit dipsw_pio_external_...
B jtag_uart TAG UART
clk Clock Input clk_0
*»— reset Reset Input [clk]
avalon_jtag_slave |Avalon Memoary Mapped Slave [clk] & 0Ox0002_Co00 0x0002_0007 T_M_|_M_
E master_non_sec TAG to Avalon Master Bridge
clk Clock Input clk 0
— clk_reset Reset Input
master fvalon Memory Mapped Master [clk]
master_reset Reset Output
B intr_capturer_0 Interrupt Capture Module
clock Clock Input clk 0 IRQ O IFQ =1
*— reset_sink Reset Input [clock]
avalon_slave_0 Avalon Memory Mapped Slave [clock] & 0Ox0003_ 0000 Ox0003_0007
B clk 0 Clack Source
clk_in Clock Input clk
clk_in_reset Reset Input reset
—— clk Clock Output clk_0
— clk_reset Reset Output
B led_pio PIO (Parallel 1/0)
clk Clock Input clk 0

ign

: Qsys des

Fig. 22

36

7. Hardware development

Before creating and configuring a new peripheral, we will end this section with a summary
of all the components configured on Qsys design. We are in the first step of the diagram we
mentioned before (Figure 23).

CREATION OF A NEW
PERIPHERAL

PRELOADER & BOOTLOADER
GENERATION WITH 50CEDS

APPLICATION
DEBUGGING
WITH DS-5

CREATION OF
SD CARD IMAGE

QUARTUS 11

WRITE IMAGE

ON SD CARD
DESIGN LINUX SOURCE FILES GENERATION
WITH YOCTO SOURCE PACKAGE

FPGA
Fig. 23: First step. Setting up hardware design

In Figure 24 we can see an overview of the GHRD.

Hard Processor
System
HPS-to-FPGA Lightweight FPGA-l0-HPS
HPS lo-FPGA
FPGA Fabric
System ID E—I
On-Chip RAM E_< *’5
PIO LED H-« Secure
JTAG Master
PIO Button E—< Pty
PIO DIP Swilch E_.
JTAG UART H_<
B Interrupt Capturer

Non-Secure
JTAG Master
(FPGA Only)

Fig. 24: GHRD overview

e On-Chip RAM ("onchip_memory2 0" in Qsys): This component provides the
HPS Cortex-A9 MPU (Multiple Process Unit) access to memory, high speed and low
latency. It is connected as a memory mapped slave to the Non-Secure JTAG Master
and the HPS-to-FPGA bridge, as you can see in Figure 24 above and Figure 25 below
(next page). It has a size of 64K bytes.

37

7. Hardware development

E hps_0 Hard Processor System
memaory Conduit m
hps_io Conduit h
h2f_reset Reset Qutput h
— h2f_axi_clock Clock Input
h2f_axi_master A¥l Master HPS-to-FPGA bridge
-~ f2h_axi_clock Clock Input
f2h_axi_slave AX] Slave
»— h2f_Iw_axi_clock Clock Input
h2f_Iw_axi_master |AX| Master
B onchip_memory2_0 (On-Chip Memory (RAM or ROM)
— clkl Clock Input
[+ sl Avalon Memory Mapped Slave
T T—) resetl Reset Input
O mactar carura ITAR tn fuvalan Mastar Rridna
FROM CLK_O

FROM MASTER_NON_SEC
Fig. 25: On-Chip RAM

e There are two components described as JTAG to Avalon Master Bridge: Secure
JTAG Master (master secure in Qsys’) and Non-Secure JTAG Master
(master_non_sec in Qsys). These are master components that accept encoded
streams of bytes of transaction data on the JTAG interface and initiate Avalon-MM
(Multi Master) transactions on the Avalon-MM interface. The JTAG to Avalon
Master is also used for debugging, with tools such as System Console and SignalTap.
Secure JTAG Master is for accessing secure peripherals in the HPS through the
FPGA-to-HPS interface; it is connected to the high bandwidth FPGA-to-HPS bridge
(see Figure 24 and Figure 26).

E hps 0 Hard Processor System
memory Conduit
hps_io Conduit
h2f reset Reset Output
— h2f_axi_clock Clock Input
h2f_axi_master AX| Master
— f2h_axi_clock Clock Input
f2h_axi_slave x| Slave FPGA-to-HPS bridge
— haf lw_axi_clock Clock Input
h2f lw_axi_master [AXl Master
B onchip_memory2_0 (On-Chip Memory (RAM ar ROM)
p— clkl Clock Input
* =1 Avalon Memory Mapped Slave
- resetl Reset Input
El master_secure TAG to Avalon Master Bridge
clk Clock Input
— clk_reset Reset Input
master Avalon Memory Mapped Master
master_reset Reset Output
FROM CLE_0

Fig. 26: Secure JTAG Master

Non-Secure JTAG Master is for accessing non-secure peripherals in the FPGA fabric;
it is connected to the lightweight HPS-to-FPGA bridge, the On-Chip RAM and the
Interrupt Capturer (see Figure 24 and Figure 27).

® We use the 13.0sp1 version of the Altera software. In newer versions, the Secure JTAG Master is named
hps_only_master, and the Non-Secure JTAG Master is named fpga_only_master

38

7. Hardware development

TO ON-CHIP RAM, PIO DIP SWITCH,
JTAG UART AND SYSTEM ID

|

E master non sec JTAG to Avalon Master Eridge
clk Clock Input
— clk_reset Reset Input
master Avalon Memory Mapped Master
[master_reset Reset Qutput

[Mo

TO INTERRUPT CAPTURER,
BUTTON_PIO AND LED_PIO

Fig. 27: Non-Secure JTAG Master

System ID (sysid_qsys in Qsys): This is a very important peripheral to include on the
system. Allows the software development tools to validate an application is being
developed for the appropriate hardware. Basically, it will not permit to execute
software in an incompatible hardware configuration. It is connected as a memory
mapped slave to the low bandwidth HPS-to-FPGA bridge and the Non-Secure JTAG
Master (see Figure 24 and Figure 28).

FROM HP5_0 (HPS-TO-FPGA BRIDGE)

= sysid_q;ys

Systemn ID Peripheral
Clock Input
Reset Input

z
| HeE

control_slave

[.
FROM CLK_D
FROM NON-SECURE JTAG MASTER

fvalon Memory Mapped Slave

(eI e | PN]

Fig. 28: System ID

PIO DIP Switch (dipsw_pio in Qsys): SoCkit board has four switches connected to
FPGA. This component is a PIO (Peripheral Input/Output) input peripheral, used to
read the state of these switches. It has the same connections than the System ID
component, with an additional conduit signal since it is connected to an external
peripheral, the switches (they do not belong to the HPS system).

JTAG UART (jtag_uart in Qsys): Software developers need to have access to a
debug serial port from the target for debugging, input control commands, log state
information, etc. This component connects to the debug console and provides an
interface for it. It has the same connections than the System ID component.

39

7. Hardware development

e Interrupt capturer (interrupt capturer in Qsys): This component is a memory
mapped Avalon module (written in Verilog language) used to capture system
interrupts and pass them to the HPS Cortex-A9 MPU. It is connected to the Non-
Secure JTAG Master (see Figure 24 and Figure 29).

E master non sec TAG to Avalon Master Bridge
clk Clock Input
— clk_reset Reset Input
- master Avalon Memory Mapped Master
master_reset Reset Output
B intr_capturer_0 Interrupt Capture Module
clock Clock Input
- reset_sink Reset Input
avalon_slave_0 Avalon Memory Mapped Slave

Fig. 29: Interrupt capturer

e PIO Button (button_pio in Qsys): SoCkit board has four buttons connected to
FPGA. Just as "dipsw_pio", this is a PIO input peripheral used for reading the status
of these buttons. It has the same connections than the PIO DIP Switch component.

e PIO LED (led_pio in Qsys): SoCkit board has four LEDs connected to FPGA. This
component is an output PIO peripheral to set LEDs configuration. It has the same
connections than the PIO DIP Switch component and the PIO Button component.

® Clock (clk_0 in Qsys): There is not much to say about this component; it is the
system clock.
You can see the configuration of every component by double clicking on its name.

To this point, we have the hardware design of the SoC system, configured and ready to be
compiled so that we can generate files for the Linux distribution. Before that, in the next
section we are going to create and add a new custom component to our hardware design.

40

7. Hardware development

7.5. Creation and configuration of a new custom component. Adding the
new component to the system and checking its correct operation.

We go to the next step in this project, as shown in Figure 30.

REATION OF A NE
PERIPHERAL
r—1 m | APPLICATION
CRFATEON OF, [WR!TE \MAGE o \ DEBUGGING
5D CARD IMAGE | ONSDCARD L WITH DS-5

PRELOADER & BOOTLOADER
GENERATION WITH SoC EDS

HARDWARE i
DESIGN LINUX SOURCF FILFS GENFRATION
: WITH YOCTO SOURCE PACKAGE

Fig. 30: Second step. Creating a new peripheral

7.5.1. Implementing/coding the component

In the Qsys tool, there are library components available for using them. These
components available as libraries are actually hardware subcircuits, divided into two parts:
the internal hardware modules, that implement the functionality of the component; and the
external Avalon interfaces, used by the component to communicate with the external
hardware modules.

In this section, we are going to create a new component from scratch. It is a really simple
component: a 16-bit register. It just store data written to its memory address by us and it
modifies its value; it modifies the data so that we have a better insurance that our component
works correctly because, when we read the data again from it, we will not read the value we
wrote, but that value with the corresponding changes applied (we will see how it works
exactly in the next pages).

There are several Avalon interfaces. These interfaces help to design a system easier by
allowing to connect components in an Altera FPGA, they are designed into the components
available in Qsys. They can be used also in custom components; in fact, we will use one of
them in our new component. We will not explain all the different Avalon interfaces; if you
want to go further, please refer to Altera's "Avalon Interface Specifications™ in bibliography.

We will use the Avalon-Multi Master interface, used for master and slave components in a
memory-mapped system that have master and slave interfaces connected by an interconnect
fabric (see Figure 31).

41

7. Hardware development

HAvalon-MM Syslem

Etharnal MAC Custom Logic

SHAM RAM Custom
Conlroller Contraller Logic

Fig. 31: Avalon-MM interface

Avalon-MM components normally include only the required for the component logic. In
Figure 32 is shown a 16-bit general purpose 1/O peripheral that only responds to write
requests, so it has only the slave signals required for write operations.

Avalon-MM Peripheral

writedata[15..0] ol oy L S

Specific
Interface
Avalon-M
Interface
(Avalon-MM
Stave porf) | e CLK_EN
clk

Fig. 32: Example slave component

To see all signals that constitute the Avalon-MM interface, please refer to Altera's "Avalon
Interface Specifications" in bibliography. The signals we use for our component are:

e clock

e resetn

e readdata: 16-bit data read from the register.

e writedata: 16-bit data written on the register.

e read: A bit active when a reading is occurring.
e write: A bit active when a writing is occurring.

42

7. Hardware development

We will also use the Avalon Conduit Interface, an interface that accommodates signals that
do not fit into any other interface types. A conduit signal can be any type of signal. A conduit
signal can be used to connect to external devices and to FPGA logic defined outside the Qsys
system.

Awvalon-MM Systemn

Conduit
Interface

SDRAM
Mernory

Chip

Fig. 33: Conduit interface

Our component has two parts, the internal modules and the Avalon interface, so we need two
different files to implement the functionality of each part. VHDL or Verilog can be used as
source code. We will use VHDL given that it is more familiar to us, but we will illustrate the
Verilog source code of our component. Firstly, the file implementing the register contains
the following code:

43

7. Hardware development

LIBRARY ieee;
USE ieee.std logic 1164.all;
ENTITY regl6 IS
PORT (clock, resetn: IN STD LOGIC;
D: IN STD LOGIC VECTOR (15 DOWNTO O0);
Q: OUT STD LOGIC VECTOR(15 DOWNTO 0)) ;
END regl6;
ARCHITECTURE Behaviour OF regl6 IS

BEGIN
PROCESS
BEGIN
WAIT UNTIL clock'EVENT AND clock = '1';
IF resetn = '0O' THEN
Q <= "0000000000000000";
ELSE
Q (15 DOWNTO 0) <= D(15 DOWNTO 0) OR "1000000000000001";
END IF;

END PROCESS;

END Behaviour;

This file is named "regl6"”. Let D be the 16-bit input data and Q the 16-bit output data of the
register.

The modification of the data can be viewed in the code above. The read data is modified with
an OR operation with value 0x8001, so that if a 0x0002 is written, then it would be read the
value 0x8003. Hence, we would know our component is responding and correctly working.

In the Avalon-MM interface, one of the components that exchange data implements a master
interface that allows it to request and send data to slave components. A slave component can
only receive and process petitions, either getting data from the master or sending requested
data. Each slave component includes at least one register accessible for reading or writing by
a master component. All transactions are synchronized with the rising edge of the Avalon
clock signal.

There is a signal named "Q_export". This signal is used by the Avalon Conduit Interface, so
it is exported outside of the Qsys system. The purpose of using this conduit is to be capable
of displaying the data values of the register on external components such as LEDs.

44

7. Hardware development

The VHDL code for the Avalon interface is the following (the file name is
"regl6_avalon_interface"):

LIBRARY ieece;
USE ieee.std logic 1164.all;
ENTITY regl6t avalon interface IS
PORT (clock, resetn: IN STD LOGIC;
read,write: IN STD LOGIC;
writedata: IN STD LOGIC VECTOR(15 DOWNTO O0);
readdata: OUT STD_ LOGIC VECTOR (15 DOWNTO O) ;
Q export: OUT STD LOGIC VECTOR (15 DOWNTO 0));
END regl6 avalon interface;
ARCHITECTURE Structure OF regl6 avalon interface IS
SIGNAL to reg, from reg: STD LOGIC VECTOR(15 DOWNTO O0);
COMPONENT regl6
PORT (clock, resetn: IN STD LOGIC;
D: IN STD LOGIC VECTOR(15 DOWNTO O0);
Q: OUT STD LOGIC VECTOR (15 DOWNTO 0)) ;
END COMPONENT;
BEGIN
to_reg <= writedata;
reg instance: regl6t PORT MAP(clock, resetn, to reg, from req);
readdata <= from reg;
Q export <= from reg;

END Structure;

In the Appendix B there is information about the VHDL code to explain why the
component is implemented in this way.

On the next page is the Verilog code for the register and the Avalon interface, respectively.
We will not explain the code since, as we said, we have chose VHDL as the preferred HDL.

module regl6 (clock, resetn, D, Q);
input clock, resetn;
input [15:0] D;
output reg [15:0] Q;
always@ (posedge clock)
if (!resetn)

Q <= 16'b0;
else
begin

Q [15:0] <= D [15:0];
end

endmodule

45

7. Hardware development

module regl6 avalon interface (clock,

read, Q export);

input clock, resetn, read, write;

input [15:0] writedata;
output [15:0] readdata;
output [15:0] Q export;
wire [15:0] to _reg, from reg;

assign to reg = writedata;

writedata, readdata, write,

regl6 Ul (.clock(clock), .resetn(resetn), .D(to reg), .Q(from req));

assign readdata = from reg;
assign Q export = from reg;
endmodule

7.5.2. Adding the new component in Qsys

In this subsection we will learn how to create a new Qsys component for our new 16-
bit register. In Qsys, click on "New component..." button in the component library area.
Fill in the fields of the window that appears just as in Figure 34. Click Next.

™ Component Editor - reg16_hw.tcl*

File Templates

l/ComponentType | Files | Parameters | Signals | Interfaces |

b About Component Type

Mame: |reglﬁ

Display name: [reglf component

o

Version: |1.0

Group: Other |v|
Description: 16-bit Registerl

Created by: [ThisUser

lcon: |

Documentation: Title URL

L7 To Do: Add HOL files on the Files tab, or add signals on the Signals tab.

| Help | | Prev || Mext | | | Finish. .. |

Fig. 34: Configuring the new component in Qsys

46

7. Hardware development

The next step is to add the files that describe the component. In the Synthesis Files area
(see Figure 35), click in the + button and add the "regl6 avalon_interface.vhdl" file.
Add also the "regl6.vhdl" file. If we were going to make a simulation to check if our
components works well, we would copy these two files to the Verilog Simulation Files or
VHDL Simulation Files area (according to the source code used). We are not going to check
our component by simulation, instead we will do a real test so we don't need to copy the files
there.

@ Component Editor - reg16_hw.tcl*

File Templates

(ComponentType |/Files rParameters rSignaIs rlnterfaces |

b About Files

Synthesis Files
These files describe this component's implementation, and will be created when a Quartus Il synthesis model is generated.

The parameters and signals found in the top-level module will be used for this component's parameters and signals.

Output Path Source File Type Attributes
regl6_avalon_interface.vhdl |regl6_avalon_interface vhdl WVHDL Top-level File
regl6.vhdl regle.vhdl VHDL no attributes

I:' | Analyze Synthesis Files | | Create Synthesis File from Signals

Top-level Module: | | |

Verilog Simulation Files
These files will be produced when a verilog simulation model is generated.

Output Path | Source File | Tvpe Attributes

|:|| Copy from Synthesis Files |

VHDL Simulation Files

These files will be produced when a VHDL simulation model is generated.

Output Path | Source File | Tvpe Attributes

|:|| Copy from Synthesis Files |

CJ To Do: The top-level module is not specified:; did vou analyze the synthesis files and set the top-level module?
i Warning: reglé: The QUARTUS_SYNTH fileset must specify the top-level module name.

Fig. 35: Synthesis Files

Click on the button Analyze Synthesis Files. Qsys starts analyzing the code of the top level
entity, "regl6_avalon_interface"; if everything goes well, all the signals read from this file
are added after several seconds (see Figure 36).

47

7. Hardware development

& Analyzing Synthesis Files Completed

@ info: programming logic devices manufactured by Altera and sold by

@ info: Altera or its authorized distributors. Please refer to the

@l Info: applicable agreement for further details.

@ Info: Processing started: Wed Mar 19 12:02:04 2014

@ Info: Command: quartus_map not_a_project --generate_hdl_interface=/home/thisuser/Do
@ Info: Quartus I 32-bit Generate HOL Interface was successful 0 errors, 0 warnings

@l Info: Peak virtual memory: 350 megabytes

@ Info: Processing ended: Wed Mar 19 12:02:06 2014

@ Info: Elapsed time: 00:00:02

@l Info: Total CPU time fon all processors): 00:00:01

1] Il |]

@ Analyzing Synthesis Files Completed. 0 Errors, 0 Warnings

Fig. 36: Analyzing synthesis files completed without errors

s

[4]

If we try to type a wrong code line in the VHDL file, the analysis will not end successfully.
For example, if we modify the entity of "reg16_avalon_interface" just as below

read,write: INN STD LOGIC; (instead of "IN")

We will see the following error messages in the analysis window, as shown in Figure 37.

@ Analyzing Synthesis Files Completed

Lailad

@ Info: Processing started: Wed Mar 19 11:58:41 2014 sl
@ Info: Command: quartus_map not_a_project --generate_hd_interface=/home/thisuser/Do
e Error: VHODL error at reglé_avalon_interface.vhdl(5): can't determine object and tvpe ass
&3 Error: VHODL error at regl6_avalon_interface vhdl(5): object "INN" is used but not declare

&, Warning: Quartus Il 32-bit Generate HDL Interface was unsuccessful. 2 errors, 0 warning
&) Error: Peak virtual memory: 350 megabytes L
) Error: Processing ended: Wed Mar 15 11:55:43 2014
) Error: Elapsed time: 00:00:02 =
&) Error: Total CPU time ion all processors): 00:00:01
E3 Error: No modules found when analyzing null. -
q] Il | [*]

e Analyzing Synthesis Files Completed. 7 Errors, 1 Warning

Close

Fig. 37: Errors in the synthesis files

If the VHDL files are modified after adding them and analyzing them, it is necessary to
remove and add them again to re-analyze them.

You can see in Figure 35 an info message and a warning message telling us that the module
is not specified, and asking if we analyzed the synthesis files. These messages disappear
when we analyze the synthesis files. Some errors will appear after that (see Figure 38), but
they will be removed as we keep configuring our component.

48

7. Hardware development

3 Error: clock reset: Synchronous edges DEASSERT requires associated clock

v, Warning: avalon_slave_0: Signal readdata appears 2 times (only once is allowed)
€3 Error: avalon_slave 0: Interface must have an associated clock

€3 Error: avalon_slave 0: Intsrface must have an associated reset

e Error: avalon_slawve_0: write response requires all signals (response, writeresponserequest, writeresponsevalid).

3 Error: avalon_slave 0: Intsrface must have an associated clock.

| 1 L. s .1 =

Fig. 38: Some temporal errors in the configuration of the component

Click Next twice; we will ignore the Parameters tab because our component has no
configurable elements, its flexibility is not important (parameters would be useful in the case
of, for example, a component with a variable memory size or data length).

Now we will step into the Signals tab, where we will specify the purpose of each interface
port in the top level entity (regl6_avalon_interface™). The interface type by default of all
signals is "avalon_slave_0". We have to change the interface for the clock signal, the reset
signal and the conduit. To do that, click on the interface of the corresponding signal. In the
drop-down list, select "new Clock Input..." for the clock signal, "new Reset Input..." for the
reset signal and "new Conduit..." for the conduit. Check if the final configuration of the
signals matches the configuration in Figure 39. Click Next.

o Component Editor - reg16_hw.tcl*

File Templates

(ComponentType rFiIes rParameterS ﬁgnals I’Inter‘faces |

¢ About Signals

Name Interface Signal Tvpe Width Direction
write avalon_slave_0 write al input
writedata avalon_slave_0 writedata 16 input
readdata avalon_slave_0 readdata 16 output
read avalon_slave_0 read T input
resetn reset_sink reset_n T input
Q_export conduit_end export 15 output
clock clock sink clk T input

warnings.

| Help | | 4 Prev || Mext [| | Finish... |

Fig. 39: Signals of the new component

49

7. Hardware development

Lastly, in the Interfaces tab, we can see all the interfaces of the component. Qsys
components can include various types of interfaces:

e Clocks

e Resets

e Interrupts

e Conduits (for signals that do not fit into any other type. Conduit signals can be
exported from the Qsys system)

e Streaming: For unidirectional traffic.

e Memory-Mapped: For traffic between master and slaves.

Our component contains four interfaces: clock, reset, conduit and memory mapped interface
(the latter because it is a slave component).

We have to associate the clock signal to the reset (see Figure 40). We also have to make
sure that both signals, "clock sink" and 'reset _sink", are associated to our slave
component, "avalon_slave 0", and the external signal "conduit_end".

* "reset sink" (Reset Input)

I : T
Name: ;l:eset sink | | Documentation
Type: EReset Input |v!
Associated Clock: |C|0Ck_5ink |v
Assignments: | Edit. |

|~ Block Diagram [~ Parameters |

Associated clock: [clock_sink |
reset_sink Synchronous edges: .Dea;;ert =

reset_sink|
esetn

freset_n

null

Fig. 40: Clock associated to the reset of the component

Note that an error message still remains because Qsys assumes that there must be some
interface named "clock_reset"; hence, Qsys creates it. Even though, we chose a different
interface for the clock, getting as a result a new interface named "clock_sink™. Click on the
"Remove Interfaces With No Signals" button, so "clock reset" will be removed. Click
"Finish" to save the configuration of our new component.

As we said before, if the VHDL source code of the new component is modified after
adding it to Qsys, it is necessary to update it in Qsys so that any change can be reflected in
the system. To do that, expand the "Other" item in the components library area. Our
component "regl6_component” will be displayed. Right click on it and select Edit. In the
Files tab, click on the Analyze Synthesis Files button as we did when we created the
component, and the Qsys component will be modified according to the VHDL files.

50

7. Hardware development

7.5.3. Instantiating the new component

Expand the "Other" item in the components library area. Double click on the
"regl6_component" and aw indow will appear. Click on "Finish" to add the
component. A new component will be displayed in the main Qsys window. As seen in
Figure 41, make all the required connections to the component: clock, reset and
connection to the master component that communicates with our component using the
Avalon-MM interface. Finally, click on "Click to export..." to specify the name of the
external conduit signal.

B hps_0 Hard Processor System multiple multiplef—y
memory Conduit memory
hps_io Conduit hps_0_hps_io
h2f_reset Reset Output hps_0_h2f reset
h2f_axi_clock Clock Input clk 0
S h2f_axi_master |AXI Master [h2f_axi_cl..
f2h_axi_clock Clock Input clk 0
f2h_axi_slave A Slave [f2h_axi_cl.. 0x0000_0000 OxfFff_ffff
h2f_lw_axi_clock Clock Input clk 0
h2f_lw_axi_master [AX| Master [h2f_lw_ax..
E onchip_memery2_0 (On-Chip Memory (RAM or ROM)
clikl Clock Input clk_0
sl \Avalon Memory Mapped Slave [clkl] 0x0000_0000 Ox0000_ffff
— resetl Reset Input [clkl]
E master_secure ITAG to Avalon Master Bridge
clic Clock Input clk 0
= clk_reset Reset Input
master \Avalon Memory Mapped Master [clk]
master_reset Reset Output
B sysid_gsys System ID Peripheral
cl Clock Input clkc 0
— reset Reset Input [clk]
control_slave \Avalon Memory Mapped Slave [clk] @ 0x0001_0000 Ox0001_0007
B dipsw_pio PIO (Parallel 1/0)
clk Clock Input clk 0
s reset Reset Input [elk]
sl lAvalon Memory Mapped Slave [clk] & 0Ox0001_0080 0x0001_06BF —o1o]
external_connection [Conduit dipsw_pio_external ...
B jtag_uart ITAG UART
clk Clock Input clk 0
> reset Reset Input [elk]
avalon_jtag_slave [Avalon Memory Mapped Slave [elk] & 0x0002_00e0 0x0002_0007 >—[2]—[2]
E master non_sec ITAG to Avalon Master Bridge
clk Clock Input clk 0
—— clk_reset Reset Input
master \Avalon Memory Mapped Master [elk]
—— master_reset Reset Output
B intr_capturer_0 Interrupt Capture Module
clock Clock Input clk 0 IRQ O IRQ 31
b reset_sink Reset Input [clock]
avalon_slave_0 \Avalon Memory Mapped Slave [clock] & 0x0003_00e0 0x0003_0007
H clk 0 Clock Source
clk_in Clock Input clk
clk_in_reset Reset Input reset
o B clk Clock Qutput clk_0
b clk_reset Reset Output
B led_pio PIO (Parallel 1O}
clk Clock Input clk_0
b reset Reset Input [clk]
s1 \Avalon Memory Mapped Slave [clk] @ 0x0001_0e40 Ox0001_oo4f
external_connection [Conduit fpga_led_pio
E button_pio PIO (Parallel 1¥O)
clk Clock Input clk 0
reset Reset Input [clk]
sl \Avalon Memory Mapped Slave [clk] 4 0x0001_9eco 0x0001_ooct —=]
external connection |Conduit fpga button pio
B reglé_0 regl6_component
avalon_slave_0 \Avalon Memory Mapped Slave [clock_sink] |& Ox0001_0050 Ox0001_0a851
b reset_sink Reset Input [clock_sink]
conduit_end Conduit reglé_0_conduit_end |[clock_sink]
clock_sink Clock Input clk 0

Fig. 41: Connections of the new component in Qsys

Next, we have to modify the base address of our new component. In our case, we will
assign the address 0x10050 to it, just above the memory address range of the LEDs
(0x10040-0x1004f). Figure 42 shows the memory address of our component modified.

51

7. Hardware development

—_ et —— ———— ———————— r

|[clock sink] (& OxO001_ G050 Ox0001_0051
i[u:lcu:k_sink]

1 i[u:lcu:k_sink]
|clk_0

Fig. 42: Memory address of the new component

The complete address will be 0xff210050.What is the reason?

There are three bridges connecting the HPS and FPGA portion of the SoC. Two of them are
meant for high bandwidth data transactions, HPS2FPGA and FPGA2HPS. The third bridge,
LWHPS2FPGA, is used as a control/status path for the HPS into the FPGA. The HPS can
separately control low bandwidth FPGA peripherals and the high bandwidth flow of data.
Some peripherals (“dipsw_pio", "sysid _gsys", "led_pio", "button_pio" and our new
component) are connected to this low bandwidth bridge. This bridge is mapped within the
HPS peripherals span starting at Oxff200000 (see Figure 43). In the "SoCKkit lab materials"
documents there is more info about the SoC memory management.

HPS Address Space Relationships

Hand Processor HSPFPGA LWHPSIFPGA FPGAZHPS o 4GB
o [[[%] Lightweight | Peripheral Region
Frsa e - T FPGA—
i L | _— Slawes FPGA
[

Onchip RAM El.r oD [Sla _____,.mst" Slaves

; P10 Button [3] v Region
PIO DIPSW 5] T §cB
———— 2GB

| SDRAM

oy Sl Wincou
b 1GB

MPU

Fig. 43: The LWHPS2FPGA bridge

Since 0xff200000 is the base address of the LWHPS2FPGA bridge, our component has
O0xff200000 as offset address. When we modify its address in Qsys to 0x0001_ 0050, its
actual address is 0xff21_0050.

52

7. Hardware development

Finally, we have to complete the Quartus Il project. Save the Qsys project. In the Generate
tab, click on the Generate button. This will make Qsys generating HDL code that
describes the system contents, including our new component and the Avalon
interconnections. These files are used by the synthesis tool in Quartus Il. They need to be
added to the Quartus Il project in order to be compiled.

Close the Qsys window. Go to "Assignments — Settings — Files" in Quartus II and
click on the ".." browse button (see Figure 44). Search for a file named
"soc_system.qip" included in the "../GHRD_soc_system /soc_system/synthesis'" folder.
Select "Open", then add it to the project clicking on ""Add". Follow the same process to
add the "soc_system_timing.dsc" file included in the GHRD Quartus II project folder
(if you cannot see the file when browsing, change "Files of type:" to "All files").

" Settings - soc_system EI@
Category: Device...
General Files

Files
Libraries
4 Operating Settings and Conditions

Select the design files you want to indude in the project. Click Add All to add all design files in the project directory to the project.

Voltage File name: [add
Temperature

4 Compilation Process Settings File Mame Type Library Design Entry/Synthesis Tool HDL Version
Early Timing Estimate soc_system_timing.sdc Synopsys De <Mane >
Incremental Compilation soc_system/synthesis/soc_system.qip IP Variation ... <Mane > Remove
Physical Synthesis Optimizations top/fcosx_soc.v Verilog HOL File <Mane > Default

4 EDA Tool Settings topfconfig_soc.v Verilog HDL File <None> Default Up

Design Entry/Synthesis

Simulation

Formal Verification

Board-Level RS
4 Analysis & Synthesis Settings

Fig. 44: Adding files to the Quartus Il project

Next, in the same Settings window, go to the "Libraries' category. We are going to add
the synthesis directories to the project, used by Quartus Il to compile the design. In the
"Project Libraries' section, click on the "..." button, select the ".../.GHRD soc_system
/soc_system/synthesis/" folder and add it to the project. Do the same with the
".../soc_system/synthesis/submodules" and the ".../soc_system/synthesis/submodules/
sequencer'' directories. Select Apply and OK to finish.

Project libraries

Project library name: = Add

Libraries: =T
soc_system/synthesis/
soc_system/synthesis/submodules/ Up
isoc_system/synthesis/submodules/sequencer/ i

| OK. [cancet | acol | Helo

Fig. 45: Adding libraries to the Quartus Il project

53

7. Hardware development

The next step is to perform the analysis and synthesis in the Quartus Il project. This stage
analyzes and synthesizes the design files and creates a net-list within a project database.
These nets can be assigned to actual device pins. Select the icon of the purple arrow with
the blue checkmark (Figure 46) in the Quartus II window to start analysis and
synthesis. This step might take a couple of minutes, depending on the computer. Once it is
completed, select OK.

LA X A
[Start Anslyss & Synthess |

Fig. 46: Start Analysis & Synthesis

The HPS pin assignments are automatically specified when the HPS was instantiated in
Qsys, but the HPS memory pins need to be assigned, since there are External Memory
Interface variations that can occur. To assign them, there is a TCL (Tool Command
Language) script created by Qsys for this purpose. To run it, select "TCL script" in the
Tools menu. Select the file "hps_sdram_p0_pin_assignments.tcl" and click on Run.
This step will take a couple of minutes as well.

€4 TCL Scripts ExT
Libraries:
4 iFip e Open File

4 [intr_capturer
intr_capturer_hw. tc
4 |7 soc_system
4 [synthesis
4 |5 submodules
hps_sdram_p0_parameters. td

m

|hps_sdramj0jin_assignments.td

hps_sdram_p0_pin_map. td
hps_sdram_p0O_repart_timing. tcl

hps_sdram_p0_report_timing_core. td 2

Preview:

(C) 2001-2013 Altera Corporation. Al rights reserved. &
Your use of Altera Corporation's design tools, logic functions and other [
software and tools, and its AMPP partner logic functions, and any output

files any of the foregoing (induding device programming or simulation

files), and any assodiated documentation or information are expressly subject
to the terms and conditions of the Altera Program License Subscription

Agreement, Altera MegaCore Function License Agreement, or other applicable
license agreement, induding, without limitation, that your use is for the

sole purpose of programming logic devices manufactured by Altera and sold by
Altera or its authorized distributors. Please refer to the applicable

agreement for further details.

4%
4
4%

THIS IS AN AUTO-GENERATED FILE! -

[Run] [Close] [Help

Fig. 47: Running the TCL script for pin assignment

54

7. Hardware development

Finally, to perform the complete compilation, select '"Start Compilation" in the
Processing menu. Be patient this time, this step will take longer than the previous ones (it
may take about twenty or thirty minutes, it depends on the system). There should be no
errors in the compile®; when it is finished, a dialog window will inform about the successful
compilation. There will be some warnings, but we do not care about them because they do
not affect the functionality of our system.

7.5.3. Checking the new component operation

In the previous section we have implemented our new component and integrated it
into our project. In this section we are going to check that this component performs its
function correctly.

To do this, we must use a tool included in Altera software: the System Console. This tool
facilitates the visibility of our system for quick debugging. The hardware modules
instantiated in the FPGA can be easily accessed. We will use one of its utilities that consist in
reading and writing data on Avalon memory mapped slaves like our component through
master components.

In order to test our component with System Console, we have to write a TCL script. There is
a script named "test_one.tcl" in the Quartus "GHRD_soc_system ™ project directory; this
script reads the value of the four FPGA buttons situated right to the eight switches of the
board, and writes that value on the four FPGA LEDs (the SoCkit board has eight LEDs; the
FPGA LEDs correspond to the right four ones).

We will write a new script. This script writes a value in the memory address where our
component is mapped. It will read from the same address the written value modified by our
component, and it will write it in the memory address where the FPGA LEDs are mapped.

Now we will explain the System Console operation flow and some commands we use to
write our new TCL script. A high level flow comprises the following steps:

1. Add the required component to Qsys.

2. Connect the board and program the FPGA.

3. Launch System Console (to open it, access from Qsys to the Tools menu and select
System Console).

4. Locate and open the service path.

5. Perform the desired operations with the service.

6. Close the service path.

When executing System Console, it automatically searches and detects all service instances
based on JTAG and USB and recovers its services paths.

® If compilation is not successful and the following error appears: "out of memory in module quartus_fit", the
system needs more RAM memory (in our case, the virtual machine had an initial RAM of 1 GB; we increased
to 2 GB and the compilation was successful)

55

7. Hardware development

To open a service path, first we need to locate the available services. System Console uses a
virtual file system to organize these services. There is the command "get_service_paths
<service_type>" to obtain the service paths for a particular service. For example, with the
following command:

set jtag master [lindex [get service paths master] 0]

With "get_service_paths™ we obtain all services of "master” type, that access to the mapped
memory slaves. With "lindex" we get one element from the services list, and we choose the
first element, with index 0. This element is assigned as a value to the variable "jtag_master"
using the "set" command. This command is used in the "test one.tcl” script. In System
Console, the service paths might be different on every execution of the tool or on every
version. Because of this, it is recommended to use this command to get them.

To use a particular service instance, there exists the "open_service" command. To open the
master service we got before, the command would be the following:

open service master $jtag master

Next, do the desired operations. The only operations we will do are readings and writings on
the components, and message sending to the console of System Console. We need three
different commands.

To write data to a memory address, where X' can be 8, 16 or 32, depending on the number of
bytes we want to access to, use the following command:

master write X <ruta-de-servicio> <direccidén> <valor>

To read data from a memory address. The last parameter consist of the number of bytes we
want to read:

master read X <ruta-de-servicio> <direccidn> <tamafio—en-bytes>

To send messages to the console (we will use only "info" level messages):

send message <nivel> <mensaje>

56

7. Hardware development

After having clear the TCL scripts for System Console, observe how to implement the

necessary operations for testing our component:

set jtag master [lindex [get service paths master] 0] #Locate the service path

open_service master $jtag master #Open the path

master write 16 $jtag master Oxl 0050 2 #Write '2' (0x0002, 16 bits) to the
#memory address of our component

set valor [master read 16 S$jtag master Oxl 0050 0x2] #Read the content from
#the new component address (we read 2
#bytes) and assign its value to the
#variable 'valor'

send message info $valor#Send an info message to the console

#with the value read from the component

master write 8 $jtag master Oxl 0040 Svalor #Write to the LEDs memory address
#(LEDs just take up 1 byte,
#so the highest byte of the
#component value will be truncated

close service master S$Sjtag master #Close the path

Before executing System Console, we must ensure the SoCkit board is turned on, connected
to the host and the FPGA has been programmed. As the peripheral to be used such as LEDs
are peripherals of the FPGA, they should be configured. To program the FPGA, follow the
steps of "Appendix C: Programming the FPGA"'.

Now, we get ready to run the System Console. Select "System Console" from the Tools
menu in Qsys. In Figure 48 it is shown the initial screen of System Console. In the
Messages window we should view the connection with the SoCkit established, a JTAG
connection (message "Auto linking... SoCkit to soc_system.qsf").

% System Console

File Tools Help

System Explorer il
3/ -
d—ﬁ connections
o] devices

o[designs

o =] design_instances

&7 scripts

Messages i

@ Finished initialization

@ Finished discovering JTAG connections

@ Auto linking 5CS(EBAGES XFC6C6ES)|.. @1#1-2#CV SoCKit to soc_system.qsf
@ Finished discovering USB connections

@ Executing startup script /home/marcos/altera/13.0spl/quartus/sopc_builder...

Tcl Console o

* To start, stop, or step a Nios IT processor -

* To read or write Avalon Memory-Mapped (Avalon-MM) slaves using ||
special

masters

* To sample the SOPC system clock as well as system reset signal

To run JTAG loopback tests to analyze board noise problems

* To shift arbitrary instruction register and data register
values to

instantiated system level debug (SLD) nodes

In addition, the directory <QuartusII

W

Fig. 48: Initial screen of System Console

Once the program is ready, we are prepared to execute the script that we created. In the
File tab, select "Execute Script...". A window will appear to create a scripts folder.

Select "Don't create".

7. Hardware development

Another window will appear. Search for our script, which we named "script_test.tcl" and
was saved in the "GHRD_soc_system " folder. Select this script to execute it.

Taking into account that we coded the script to write a '0x0002' to the memory address of our
component, which value we should get returned when we read from the same address after
writing? In the VHDL code of our component, we take the written value and apply the
binary OR operation with 0x8001. Hence, we should read then:

0x0002 OR 0x8001 - 0x8003

If we take a look to the messages windows in System Console, where the read value from the
address of our component will be shown, we see it after executing the script, as in Figure 49.

Messages

|@ Finished initialization

@ Finished discovering JTAG connections

@ Auto linking SCS(EBAGES [XFCBCHES)|.. @1#1-2#CV SoCKit to soc system.qsf
@ Finished discovering USB connections

@ Executing startup script fhome/marcos/altera/13.0spl/quartus/sopc_builder/
@ /home/marcos/system_console/scripts is missing.

@ Executing /home/marcos/GHRD soc system restored/script test.tcl

@ ox2003

Fig. 49: Read value from the address of the new component

Our new component works correctly! In fact, we will check twice if it works because, as we
said, the read value from our component is written to the four FPGA LEDs address. The four
LEDs must display in binary the number we view in the messages window in System
Console. Anyway, as they are only four LEDs they will show just the four least significant
bits of the written value (if we write OxOF all LEDs will be lighted; if we write 0x10 no
LEDs will be lighted).

Note that if we do a simple test, which consist of changing the memory address where we
write data (for example, 0x1_0060, instead of our component address, 0x1_0050), we can
observe when reading from the address that the value has not been modified.

We have just achieved one of the main objectives of this project: a new peripheral developed
from scratch added to the system and prepared to be used.

58

8. Software development

8. Software development

Now that we configured the hardware system of the SoCkit board, compiled the
project and generated all the files needed to create the components of the Linux distribution,
we are ready to confront our next aim: generate a Linux distribution for the SoCkit board.

8.1. Downloading and installing SoC EDS

First of all, we need to install the Altera tool set SoC EDS, as it provides some
useful tools like "mkpimage"”, which we will use to generate the SD card image from the
image files generated by Yocto Source Package.

Just as at the beginning of the section "7. Hardware Development™ it was facilitated the link
of the webpage for downloading Quartus Il tool, now we have to access again for
downloading SoC EDS. The webpage should look as in Figure 9; we show it here again for
the reader to be comfortable.

Quartus Il Web Edition

Home = Support » Downloads =

Release date: June, 2013

Quartus 11 Web Edition v13.0sp1 \\(:

Select a previous version of Quartus 11 | 13.0sp1 Izl

A

- i
Operating System) Windows @ S |Linux
Select the operating system on which you will run the Quartus II software.

Download Method ©) Akamai DLM3 Download Manager @ Direct Download
Select whether you will use the download manager (Windows only) or directly download the files.
The downfoad manager alfows yvo nause the download and can help v rer from interrupted downloads.

ag w30 anager you [0 pause e ac o3d and ¢4 Eip you recaver irg errupre

| T ndividual Files

Nownload and install instrnctinns:

Fig. 9: Quartus Il download page

In the "Individual Files" tab, go to the "Additional Software" section, then download
the file for '""SoC Embedded Design Suite (EDS)", as seen in Figure 50.

59

8. Software development

Additional Software

f.ﬁua.rtus. Il Progr&.mmelr and SignalTap Il
guanus Il Help .

SoC Embedded Dés.':gn '_S.u'rte [FDS}
Linux Support Package Binary File

Linux Support Package Source File

©C0 00O

Fig. 50: Downloading SoC EDS

When the download completes, in the same way we did with Quartus I, right click on the
installation file and go to Properties. In Permissions, select the box "Allow executing
file as a program". Otherwise, the Ubuntu OS will try to open the file instead of executing
it, so it will not find any application to open it. After that, to begin the installation, we have
to run the file as root; if not, a message will appear indicating that there were troubles on
installation (for example, the uninstaller file was not be correctly created). Thus, though
these errors may not have a negative impact on all tools utilization, we will execute it as root
to make sure that everything is installed correctly. Open a terminal on Ubuntu, navigate to
the directory where the file is (it will be on '/home/<user>/Downloads" by default) and
execute the following command:

$ sudo ./SoCEDSSetup-13.0.1.232.run

When the installation windows appears, accept the license agreement and set as
installation folder the one by default, '/home/<user>/altera/13.0sp1". Software will be
installed so we can now use its tools.

60

8. Software development

8.2. Generation of a preloader and a bootloader with the Altera software

The first step of the software development (and the third of this project) is to create,
using the Altera software, the necessary files for the first phases of the system boot flow: the
preloader and the bootloader.

PRELOADER & BOOTLOADER
GENERATION WITHSoCEDS | /7

| LINUX SOURCE FILES GENERATION
WITH YOCTO SOURCE PACKAGE

CREATION OF A NEW
PERIPHERAL

(l

]

CREATION OF
5D CARD IMAGL

|
o APPLICATION
WRIIE IMAGE DEBUGGING
ONSDCARD | LINUX WITH D5-5

HARDWARE
DESIGN

PROGRAMMING
FPGA

Fig. 51: Third step. Creating a preloader and a bootloader

We will use a tool named BSP’ Editor, that sets up the configuration to create the
preloader and the bootloader from the handoff files generated by the Altera tools responsible
for configuring the system hardware (FPGA and HPS), Quartus Il and Qsys. To execute the
program, we have to access from an Ubuntu terminal to the '"Altera Embedded
Command Shell", as shown in Figure 52.

M S root@ubuntu: ~falteraf13.0sp1f/embedded

thisusergubuntu:~$% cd altera/13.8spl/embedded/
thisuserg@ubuntu:~/altera/13.0spl/embedded$ sudo ./embedded_command_shell.sh
[sudo] password for thisuser:

Command Shell

Fig. 52: Embedded Command Shell

Type the command "bsp-editor" on the prompt. The initial screen of BSP Editor will
appear. Select ""New BSP..." in the File tab to create a new configuration. In a smaller
window that will pop up, click the button to the right of '"Preloader settings directory"
to browse the file system. Select the '/home/<user>/GHRD_soc system
/hps_isw_handoff/soc_system_hps 0" folder. The window should look as in Figure 53.

" BSP is the acronym for Binary Space Partitioning

61

8. Software development

- MNew BSP

Hardware

Preloader settings directory: |Documents!GHRD_soc_systemfhps_isw_handnfffsnc_system_hps_0| | |

Software

Operating system: |Pre|oader |V| Version: |default n

Use default locations

ESP target directory: fhomejthisuser/Documents/GHRD_soc_system/software/spl_bsp I:I
ESP Settings File name: suser/Documents/GHRD_soc_system/software/spl_bsp/settings.bsp I:I

Enable Settings File relative paths

[| Enable Additional Tcl script

I OK || Cancel |

Fig. 53: BSP editor new configuration

Click OK, then the "settings.bsp"” file will be created in the directory set in the New BSP
window (Figure 42) as "BSP target directory”. Next, click on Generate so it will create all
files needed to compile and generate the preloader and bootloader (Figure 54).

¥ Home Documents GHRD_soc system software spl_bsp

e

FHEE] gaasa

F £ : f #
Alt # Cop ! & Cop
All £ A1l

generated Makefile preloader.ds settings.bsp ubook.ds

Fig. 54: Files needed to generate preloader and bootloader

To this point, everything is ready to generate the preloader and the bootloader. The last
thing to do is typing '""make" on the Embedded Command Shell prompt (being situated
in the "../GHRD soc_system /software/spl_bsp'" directory) to generate the preloader,
and ""make uboot" to generate the bootloader. The compilation may take several minutes.

When compilation is finished, note that the binary file of preloader has been created in the
"spl_bsp™" directory, named as "preloader-mkpimage.bin". A new folder has also been
created, "uboot-socfpga”, which contains a lot of files including the image file of U-boot
(Figure 55 and Figure 56).

® Home Documents GHRD_soc_system software spl_bsp

Pree #2i8

- & § :'- |,.l
Alt # Cop o 2
1# a1 S

generated ubootsocfpga Makefile preloader.ds preloader- settings.bsg
mkpimage.bin

Fig. 55: Generated preloader file

62

8. Software development

[F* Home Documents

GHRD_soc_system

software spl bsp uboot-socfpga

-

api

L

dts

-

posk

many
detai
terms

COPYING
#
(C)
Wol
£ |
rules.mk

Archi

/home

u-boot.map

-

arch

L

examples

-

spl

£ 7

2 =

& s
CREDITS

¢Farm

snapshot.commit

SEEER
53138
53158
53138

u-boot.srec

-

board

L

fs

test

2zss

##
Reg
#

MAINTAINERS

81008

01668

91864

ala68
System.map

Fig. 56: Generated bootloader file

-

common

-

include
tools

MAKEALL

u-boot

disk
il

lib

; Lis

&
Swn

boards.cFg

2
#(C)
Wol
¥

Makef.ile

ufboot.bin

wd

doc

]
nand_spl

WARNT
#581:
+DEBU

checked.bxt
mkconfig

u-boot.img

In order to generate the DTB we need to download "sopc2dts", a java tool programmed to
generate the DTS (Device Tree Source) from the "soc_system.sopcinfo” file generated with
Qsys. This tool also needs two XML (eXtensible Markup Language) files that contain

information about the board and the clock tree.

To download this tool, go to the developers web RocketBoards. In the download page

[d5]

H

click on "snapshot" as seen in Figure 57. This will download all files in a compressed file.

63

8. Software development

> RocketBoards.org

“ projects / sopc-tools git / tree

commit ¥ |= search: re

summary | shortlog | log | commit | commitdiff | tree
history | HEAD | snapshot
sopc2dts: Malke sure clock names are unique

[sopc-tools. git] / sopc2dts

drwsr-xr-x .

-rw-r--r-- 21 .gitignore blob | historv | raw
-rw-r--r-- 25283 COPYING blob | history | raw
-rw-r--r-- 74273 Doxvile blob | history | raw
-rw-r--1-- 4361 Makefile blob | listorv | raw
-tw-r--t-- 135495 Sopc2DTS java blob | history | raw
-rw-r--1-- 734 boardinfo_neek xml blob | historv | raw
-rw-r--r-- 22 manifest blob | history | raw
drwmr-xr-x - sopcdts tree | history

-rw-r--r-- 11323 sopc_components_altera xml blob | history | raw

-rw-r--r-- 240 sopc_components fpsxml blob | history | raw

-rwar-xr-x 316 sopc_components labx xml blob | history | raw
-rw-r--r-- 489 sopc_components nxp xml blob | history | raw

-rw-r--r-- 1014 sopc components others xml blob | history | raw

sopc2dts development repository

RSS Atom
Fig. 57: Downloading sopc2dts tool

Extract the files from the downloaded compressed file. Within a terminal, navigate to
the "sopc2dts' folder (in our case, ''/home/<user>/Downloads/sopc-tools-733dcf5") and
type "make"; this way, the java files contained in this directory will be compiled and a file
named "sopc2dts.jar" will be generated. This file is used to generate the DTS.

If "make" command fails and the message '"'make: javac: command not found" is
displayed in the command prompt, just download the Java Development Kit since
Ubuntu does not include it by default. To download and install it, just type the
following command:

~$ sudo apt-get install openjdk-6-jdk

Next, we have to download two XML files needed to generate the DTS together with the
sopcinfo file. In the RocketBoards webpage!® scroll down to the bottom of the
webpage. There are two links, "clock file" and ""board info file". If you click on any link,
you will view the XML code of it. To download them, right click on them and select "Save
link as..". Save both files in the 'sopc-tools-733dcfS" folder, named as
"hps_clock_info.xml" and "soc_system_board_info.xml".

Moreover, copy the .sopcinfo file from the Quartus II project directory
(""/home/<user>/GHRD_soc_system ") to the " sopc-tools-733dcf5" folder. To generate

64

8. Software development

the DTS, navigate to the "sopc2dts” directory within a terminal and use the following
command:

~$ java —-jar sopc2dts.jar -i soc system.sopcinfo -b

hps clock info.xml -b soc system board info.xml -o socfpga.dts

Do not worry if a "component regl6 0 of class regl6 is unknown™ warning message is
displayed, it is just our new custom component, the program do not recognize it since we
tagged its type as "Other" in Qsys.

Now that we have created the DTS file, we need to convert it to the DTB binary file. To
do that, access to an Altera Embedded Command Shell from an Ubuntu terminal (as in
Figure 52), then execute the following command:

~$ dtc -I dts -0 dtb -o socfpga.dtb socfpga.dts

"dtc" is a command which uses the Altera Device Tree Compiler. The command options are:

e -I: Input format.
e -O: Output format.
e -0: Name of the output file (followed by the DTS input file).

So far, we have generated the preloader, the bootloader and the DTB. We will generate the
rest of files in the next sections.

8.3. Installing Yocto software and creating the SD card image file

The Yocto Source Package is an installation file recommended by Altera that contains
the necessary dependencies to compile the files that compose the Linux distribution. We will
use it to get the rest of Linux parts that we could not generate with Altera tools.

CREATION OF A NEW
PERIPHERAL

PRELOADER & BOOTLOADER
GENERATION WITH 5oC EDS

 —
INUX SOURCE FILES GENFRATION
WITH YOCTO SOURCE PACKAGE

HARDWARE
DESIGN

Gamreiiaaee | m | APPLICATION
CREATION OF | WRITE IMAGE . DEBUGGING
SD CARD IMAGE ON 5D CARD LINUX WITH DS-5

PROGRAMMING
FPGA

Fig. 58: Fourth step. Generating Linux files with YSP

65

8. Software development

We have to install some required packages before proceeding:

$ sudo apt-get update

$ sudo apt-get upgrade

$ sudo apt -get install sed wget cvs subversion git -core coreutils
unzip texi2html t exinfo 1libsdll.2-dev docbook-utils gawk python -
pysglite2 diffstat helpZ2man make gcc build-essential g++ desktop -
file-utils chrpath libgll -mesa-dev libglul-mesa-dev mercurial
autoconf automake groff libtool xterm

8.3.1. Downloading and installing YSP

The YSP can be downloaded from the Altera website. Type the following
commands to download it (first command) and mark it as executable (second
command):

$ wget
http://download.altera.com/akdlm/software/acdsinst/13.0/156/ib inst
allers/linux-socfpga-13.02-RC10-src.bsx

$ chmod +x linux-socfpga-13.02-RC10-src.bsx

The installation progress will be made in "/opt/altera-linux" directory by default. We
will install it there, but it can be installed on a different location. To use this directory, root
access is needed (that is why the following command to install it is executed using "sudo™).

$ sudo ./linux-socfpga-13.02-RC10-src.bsx

The next step is to set a directory for all Yocto files. The default directory can be created
within the "home'" user directory. Use the following command to set the Yocto
directory as '/home/<user>/yocto":

$ /opt/altera-linux/bin/install altera socfpga src.sh ~/yocto

The last step is to create a "build" directory; in a subfolder of it there are the generated
image files used to create the SD card image.

$ source ~/yocto/altera-init ~/yocto/build

In order to see the entire process, please refer to the Rocketboards.org page "Linux
Getting Started on Altera SoC Development Board - Using Yocto Source Package" in
the bibliography.

66

http://rocketboards.org/foswiki/Documentation/AlteraSoCDevelopmentBoardYoctoGettingStarted
http://rocketboards.org/foswiki/Documentation/AlteraSoCDevelopmentBoardYoctoGettingStarted

8. Software development

8.3.2. Compiling u-boot, kernel and file system

Before compiling and generating the image file of U-boot, the Linux kernel and
the file system from the build directory, we need to execute the following command:

$ sudo chmod -R 777 ~/yocto

To compile and generate the images, we need write permissions in all folders within the
Yocto directory. We change the permissions with the command above (the -R is for
changing permissions of all subfolders of Yocto directory).

To compile and generate the image file of U-boot, execute the following command:

S bitbake virtual/bootloader

Or the equivalent:

$ bitbake u-boot

To generate the Linux kernel:
$ bitbake virtual/kernel

Or the equivalent:

S bitbake linux-altera

To generate the file system:

S bitbake altera-image

There is a command to generate a much smaller file system for reduced boot mediums.
Anyway, in this project we will use the complete file system because we may use some
resources that the minimal file system does not include.

The first time the YSP is generated it can take few hours, depending on the power of the
computer used. Once finished, all image files should have been generated in the
"/home/<user>/yocto/build/tmp/deploy/images™ directory. Among all generated files, the
following in Table 4 will be used to create the SD card image file.

67

8. Software development

Table 4: Files used to create the SD card image

u-boot-spl-socfpga_cyclone5.bin Preloader image
u-boot-socfpga_cyclone5.img U-boot image
socfpga_cyclone5.dtb DTB

ulmage Kernel image
altera-image-socfpga_cyclone5.tar.gz | Compressed file system

8.3.3. Generating SD card image. Writing image on SD card

We have everything that we need to install the Linux distribution for the SoCkit
board. The first step from now on is to create the image file that we will write to the SD card.

CREATION OF
SD CARD IMAGE

Fig. 59: Fifth step. Creating the SD card image file

CREATION OF A NEW
PERIPHERAL

APPLICATION
DEBUGGING
WITH Ds-5

PRELOADER & BOOTLOADER
GENERATION WITH SoC EDS

[LINUX SOURCE FILES GENERATION

L)

QUARTUS'II

~uQsys

WRITE IMAGE
ON SD CARD

HARDWARE
DESIGN

WITH YOCTO SOURCE PACKAGE

PROGRAMMING
FPGA

We will use the Yocto files, including preloader, bootloader and DTB, to see what happen
when we boot Linux. The following commands are used to create the SD-card image :

$ cp -f socfpga cyclone5.dtb socfpga.dtb

$ mkdir rootfs

$ cd rootfs

$ sudo tar xzf ../altera-image-socfpga cycloneb5.tar.gz
$ cd ..

$

sudo /opt/altera-linux/bin/make sdimage.sh \

-k uImage, socfpga.dtb\

-rp u-boot-spl-socfpga cyclone5.bin \

-t /home/<user>/altera/13.0spl/embedded/host tools/altera/mkpimage/mkpimage \
-b u-boot-socfpga cyclone5.img \

-r rootfs/ \

-o sd_image yocto.bin

68

8. Software development

Of course, within the Ubuntu terminal we have to be situated in the
"/home/<user>/yocto/build/tmp/deploy/images” directory, where all these files are. These
commands:

e Copy the DTB "socfpga_cyclone5.dtb™ and rename it as "socfpga.dtb™ since that is
the name U-boot knows.

o Extract the file system to the "rootfs" folder.

e Invokes the "make_sdimage.sh” script to create the SD card image, named as
"sd_image_yocto.bin". "sudo™ is used because some system utilities are being used.

Before writing the image file to the SD card, we have to find out which device is assigned
to the card on the host (for example, "/dev/sdb"). This can be done with the following
command:

$ cat /proc/partitions

A list will be displayed as in Figure 60. "sdb" is the name of the device assigned to the SD
card. As we use a formatted SD card, we can view in the list just one partition of it, named as
"sdb1" (you can see in Figure 60 that "sdb™ and "sdb1" have the same capacity).

10

thisuser@ubuntu: ~

cthisuser@ubuntu:~% cat /proc/partitions
major minor #blocks name

0 104857600 sda
1 103809024 sdal

2 1 sda2
5 1045504 sdas
16 3878912 sdb
8 17 3871633 sdbl
11 6] 1048575 sr@
11 1 1048575 sr1l
thisuser@ubuntu:~$ I

Fig. 60: Display of the SD partitions in the terminal

After writing the Linux image into the SD card, we should view three partitions of the "sdb"
device: "sdbl", "sdb2" and "sdb3". The first partition contains the Linux kernel image file,
the FPGA configuration file, the U-boot script for configuring the FPGA and the DTB file.
The second partition contains the file system. The last partition contains the preloader and
the u-boot images. See the layout of the SD card in Figure 61 (next page).

69

8. Software development

Unused

Partition 3
Type=A2 (raw)

Partition 2
Type=83 (EXT Linux)

Partition 1
Type=B (FAT32 Windows)

U-boot Environment Settings

Master Boot Record
(MBR)

address

Fig. 61: Partitions of the SD card

Now that we have the image file created and we know the name of the device assigned to the
SD card, we will write the image file to the SD card.

CREATION OF A NEW
PERIPHERAL

PRELOADER & BOOTLOADER
GENERATION WITH SoC EDS

APPLICATION
DEBUGGING
WITH Ds-5

CREATION OF
5D CARD IMAGE

QUARTUS"11

BOOT
LINUX

HARDWARE
DESIGN

LINUX SOURCE FILES GENERATION
WITH YOCTO SOURCE PACKAGE

FPGA
Fig. 62: Sixth step. Writing image file to SD card

There is the command "dd" for writing the image file to the SD card. Provided that the
device assigned to the card is "/dev/sdb', the command would be:

S sudo dd if= ~/yocto/build/tmp/deploy/images/sd image yocto.bin
of=/dev/sdb bs=512

This operation will take a while depending on the performance of the computer where
executed (in our case, about twenty minutes). Do not worry if nothing is displayed in the
command prompt, it will do when operation is finished. Finally, process the changes made

in the card with the following command:

$ sudo sync

70

8. Software development

After these operations, our image is written on the SD card, ready to be inserted into the
SoCkit slot in order to boot the Linux OS. We will do it in the next section, "8.4. Booting
Linux on the SoCkit board".

CREATION OF A NEW
PERIPHERAL

&
%Q:

HARDWARE
DESIGN

PRELOADER &BDOTLDADER
GENERATION WITH SoC ED APPLICATION
CREATION OF . WRITE IMAGE | ' BOOT DEBUGGING
5D CARD IMAGE UN 5D CARD | LINUX ' | WITH DS-5
INUX SOURCF FILFS GENFRATION

1
L WITH YOCTO SOURCE PACKAGE

Fig. 63: Seventh step. Booting Linux on the SoCkit board

8.4. Booting Linux on the SoCKkit board

8.4.1. Troubles with Yocto files and solution

After installing the software, generating necessary files to create the SD card image
file, making an image out of these files and writing it to the SD card, we have to run Linux
on the SoCkit board. To do that, insert the SD card into the SoCKkit slot and follow the
steps of Appendix D.

Press the "warm reset" to reboot the system and note that the screen of the PUTTY
terminal remains black; the Linux OS does not boot. What is happening? Did we do some
step incorrectly?

The explanation of this problem and its solution is simple; the cause is that the generated
images are adapted by Yocto bitbake scripts for another development kit: the "SoC
Development Board” made by Altera (remember that the SoCkit board was developed by
Arrow).

The preloader generated by YSP needs to take into account the hardware features of the
board, such as pins, to perform its configuration function; it is prepared and coded for the
hardware configuration of this board. Therefore, when trying to boot Linux on the SoCkit,
this preloader is not able to work because both boards are different in so many aspects.

71

8. Software development

ol 1,

Fig. 64: Altera's SoC Development Board

The solution to this problem is easy: we should use a preloader generated specifically for the
SoCkit board. Where can we get it? The answer is the section "7.6. Generation of a preloader
and a bootloader with the Altera software for Linux"; we already got it. We have an own
preloader generated with Altera tools.

We have to substitute the Yocto preloader written to the SD card with the preloader
generated by Altera tools. To do that, it is not necessary to generate a whole SD card image
and write it again, which would take a while. There are some commands to update
individual parts of the image in the card. Supposing the device assigned to the card is
"/dev/sdb", the command to change the preloader would be the following:

$ sudo dd if=preloader-mkpimage.bin of=/dev/sdb3 bs=64k seek=0

After doing this, insert again the card into the SD slot of the SoCkit, establish again a
connection through a PUTTY terminal and press the warm reset button to reboot Linux. Just
after pressing the warm reset button, we can observe on the console the preloader and
then U-boot loading, as seen in Figure 65.

72

8. Software development

M@ [dev/ttyUSBO - PuTTY

I [ia (Fa i i _'_',I':
aj=teers

Fig. 65: Preloader and U-boot loading

Next, the system loads the kernel image. The kernel is given the information of the DTB so
that it can register the system devices. Once DTB is loaded, the kernel begins to run the
OS, just as in Figure 66.

MBS & /dev/ttyUSBO - PuTTY

Warning - bad CRC, uzing default enwironment

Hit any key to = i 0
reading ulmage

“Biok
fdt blob at 0

: vee O

Losding Device Tree to OFFF

Starting kernel L.,

Fig. 66: Loading the kernel and DTB

After the message ""Starting Kernel..." the console will display hundreds of lines as the
whole system is being loaded. When it finishes, the system will be waiting us to type our
user name. Type "root".

73

8. Software development

v file o dir

MIT: Ent

1

i

=]

=
ing

family 10
1+ ethi: link iz not ready

lighttpd,
g,

‘erence Distro) 1,3

socfpga_cucloneS login:
Fig. 67: Linux OS loaded

We made it; we achieved the main objective of this project: to generate an own Linux
distribution able to load correctly.

We can change the bootloader in the SD, which is the one generated with the YSP, for the
bootloader generated with the Altera software. To do that®, use the following command:

$ sudo dd if=u-boot.img of=/dev/sdb3 bs=64k seek=4

After reinserting the SD into the SoCkit board and booting Linux, we checked that the
system still boots correctly.

Then we may change the DTB in the SD for the DTB generated with the "sopc2dts™ tool,
using the following commands:

$ sudo mkdir sdcard

$ sudo mount /dev/sdbl sdcard/

$ sudo cp socfpga.dtb sdcard/socfpga.dtb (being situated in the
folder where our DTB is contained)

$ sudo umount sdcard/

We tried to boot Linux one more time, but after the kernel is loaded into memory, the system
is not able to go on with the boot flow; it hangs after the message "Starting kernel..." is
displayed in the terminal. The possible cause of this problem is that the XML files we used
are configured for the SoC Development Board, the same board which the YSP preloader
was configured for. We searched the same files for the SoCkit board, with no successful
results. We looked for a solution to this obstacle, but we could not make it on time.

& You have to shut down the SoCkit to make any changes to the SD card. To do it correctly, please follow steps
in page 82.

74

8. Software development

Accordingly, we decided to keep using the DTB generated with the YSP. As an alternative,
we can use an existent DTB contained in a subdirectory of the Altera folder,
""/home/<user>/ altera/13.0sp1l/embedded/embeddedsw/socfpga/sources/linux-altera-
3.7/arch/arm/boot/dts". The DTS file is named 'socfpga_cycloneS.dts". Use the
following command to generate the DTB from this DTS (you have to be in an Altera
Embedded Command Shell and situate in its folder):

$ dtc -I dts -0 dtb -o socfpga.dtb socfpga cyclone5.dts

When we changed the DTB in the SD for this already configured DTB, system booted
correctly.

8.4.2. Possible problem with the SD file system

After updating individual parts on some partition of the SD card or doing any
changes, it is possible that when trying to boot Linux, it loads the kernel image but the
system hangs, as seen in Figure 68.

Jdev/fttyUSBO
1 {panic+ :

g
1 funwind_backtrac g biz:] (handle_IPI+0
cr] (handle_IPI+0w 0T from [€ cx] (gic_handle_irg+i:x

fram [<

Fig. 68: Linux does not load correctly

If that happens, move the SD card out from the SoCkit board and insert it again into the
computer. Observe in Ubuntu a popup window like the one in Figure 69.

75

8. Software development

e Unable to mount 1.1 GB Filesystem

Error mounting: mount: wrong fs type, bad option, bad superblock on /dev/sdb2,
missing codepage or helper program, or other error
In some cases useful info is Found in syslog- try
dmesg | tail or so

Fig. 69: Message of problems with file system

So it appears that there are some errors in the SD partitions where the Linux file system is
contained. Just as in Figure 69, the problem is not specified but we can figure it out by typing
the command "dmesg | tail” in an Ubuntu terminal. As it seems, the cause is that some file
descriptors that are corrupted.

Trying to repair damaged memory blocks requires an advanced OS knowledge, so we chose
a simple and quick solution: writing again the file system to the SD card. To do this, type the
following command:

$ sudo dd if=altera-image-socfpga cyclone5.ext3 of=/dev/sdb2

To execute this command it is required to be situated on the terminal in the directory where
the compressed file system is, in our case "/home/<user>/yocto/build/tmp/deploy/images".
Depending on how powerful is the computer where it is executed, it will take a while (in our
case, 15-20 minutes). When reinserting the SD card into the SoCkit board slot and rebooting
Linux, observe that it loads correctly this time, so the problem is solved.

76

8. Software development

8.5. ARM DS-5 Environment for developing and debugging applications.
"Hello World" example

We are approaching to the end of this project. As mentioned before, the last objective
was to develop a Linux application in order to use the SoCkit board resources and access to
its peripherals. Unfortunately, we had not time enough to do so. We decided to give an
overview of how to configure the environment offered by Altera for developing software
applications (C, Java, C++...), ARM DS-5 (Development Studio). We will not get deep into
it, but we will learn at least how to prepare it for debugging applications.

CREATION OF A NEW
F'ER\PHEF[AL

“PRELOADER & BOOTLOACER. | —
1 GENERATION WITH SoC EDS APPLICATION
CREATION OF WR\TF IMAGE BOOT oesucsinG |
wwowmzs SD CARD IMAGE | ONSDCARD: | | LINUX WITH DS-5
DES‘GN qux SOURCE FILES GENERATION /)

WITH YOCTO SOURCE PACKAGE

s ~
[PROGRAMMING
FPGA J

Fig. 70: Last step. Application debugging with DS-5

We will execute the most classic and simplest example in the programming field: the
program Hello World. We will use an example project available in the Altera folder.

First, we have to open the environment by executing the Embedded Command Shell
from a terminal and typing "eclipse''. Choose '/home/<user>/DS-5-Workspace'" as the
default workspace.

Once DS-5 is loaded, close the welcome window and select "Import..." from the File
tab. In the window that will appear, select "General — Existing projects into
workspace". Click Next. In the next step choose the option "Select archive file", since
what we have is a compressed file with the project (in case of having it in a non compressed
folder, select the option "Select root directory”). Click on the "Browse..." button and
navigate to the directory where the project file is (in our case, in
""/home/<user>/altera/13.0sp1l/embedded/examples/software"), named "Altera-
SoCFPGA-HelloWorld-Linux-GNU.tar.gz". The window should look as the one in
Figure 71.

77

8. Software development

Import Projects

D
Select a directory to search for existing Eclipse projects. ‘C_Z
1 Select root directory:
@ select archive file: J."homse,."marcos,."altsera,."?3.0_sp1,."ember:ldrec!_,."e Browse...
Projects:
Altera-SoCFPGA-Helloworld-Linux-GNU (Altera-SoCFPGA-Hellowc | selectall
| DeselectAll |

Refresh

Working sets

"] Add project to working sets

@) < Back

Cancel | I Finish |

Fig. 71: Import project in DS-5

Click Finish to import the project. Observe at the left of the DS-5 screen the new project
imported including all its files (Figure 72).

File Edit Source

Refactor
i a

BB | @&y &y 6

Mavigate Search

[Project Ex £2 > [Streamlin| = 8

g

¥ = Altera-SoCFPGA-Helloworld-Linux-GH
* gl Includes

* [g hello.c
[& Makefile

Fig. 72: Project Hello World imported on DS-5

The next step is to compile the project. Right click on the project and select '"Build

project'. A set of compilation messages are displayed in the Console screen at the bottom of
the DS-5 window, as in Figure 73.

78

8. Software development

{2 Problems | ¥ Tasks | & Console & E Properties

CDT Build Console [Altera-SoCFPGA-Helloworld-Linux-GNU]

#*%% Build of configuration Default for project Altera-SoCFPGA-HelloWorld-Linux-GNU ###*
make all

arm-Llinux-gnueabihf-gcc -g -0 -Werror -Wall -c hello.c -o hello.o
arm-linux-gnueabihf-gcc -g -08 -Werror -Wall hello.o -o hello

arm-linux-gnueabihf-nm hello > hello.map

*#%% Build Finished *#%#

Fig. 73: Compilating the project in DS-5

After finishing compilation, observe that a set of files that did not exist before compilation
have been generated. Among all them, there is the executable file of the application (hello -
[arm/le]). All project files are in Figure 74.

File Edit Source Refactor Mavigate Searc
s w | BY | @~ &5 [~

|4 Project Ex 53 0. [Streamlin| =0

kil Includes

B [g hello.c
» 35 hello - [arm/le]
» & hello.o - [arm/le]
[E hello.map
L& Makefile

Fig. 74: Compiled project in DS-5

Before continuing, we have to add a license for this software, since we need it to debug
applications. Go to the SoC EDS download webpage’; scroll down and click on the
"Licensing'" tab (see Figure 75). We are using the free Web Edition of the Altera
software, so click on the "activation code" link of the Web Edition, as seen in Figure 76.

% http://dl.altera.com/soceds/?edition=subscription
79

8. Software development

T
5]
m
W
1]
[=
o
o
=]
+
W
(=]
=]
=
3
=]
w
o
n
W
m
=]
(g
m
]
=)
i
[
[
m
[
[w]
m
n
Irs]
1
LI}
5
i

Relesse date: November, 2013

g i
SoC Embedded Design Suite v13.1 fﬁ;xﬁ?’ o §)

=
Select a previous version of SoC EDS;

b
Operating System ® ™7 windows © %8 Linux
Select the operating system on which you will run the SoC Embedded Design Suite. - -

Download Method '® Akamai DLM3 Download Manager ' Direct Download
Select whether you will use the download manager (Windows only) or directly download the files.
The download manager allows you to pause the download and can help you recover from interrupted downloads.

Download and install instructions:
1. Download SoC EDS =software into a temporary directory.
2. Runthe SoCEDSSetup-13.1.0.162.exe file.

Flease refer to the Software Resources page for more information such as Community Support and
Ecosystem.

SoC Embedded Design Suite (EDS)
Size: 1.2 GB MD5: 7ECSEEBB81E330022F3330D75AEER484A

} Svstemn Reouirements

Fig. 75: SoC EDS download page

| Licensing

After you have installed the So0C Embedded Design Suite (EDS), start the ARME® Development Studio 5 (D5-
5™ Altera Edition software. If this is yvour first time using the DS-5, a popup dialog will automatically ask if
yvou wish to open the license manager. Otherwize you can open the license manager from the Help menu.
Choose 'Add Licen=se' and =elect the 'Enter a =erial number or activation code to obtain a license' default
option. You are prompted for an ARM license serial number or activation code entry. Depending an which
edition you have acquired, one of the following options applies:

Subscription Edition

If vou have purchased the So0C EDS Subscription Edition , vou would have received an ARM license serial
number. This i= a 15-character alphanumeric string with two dashes in between. Please enter this sernial
number into the input field to get full capabilities for the 0S-5 Altera Edition software.

Web Edition
For the free SoC EDS Web Edition, you will be able to use 05-5 perpetually to debuag Linux applications over
an Ethernet connection. Flease get yvour ARM license activation code and enter it into the input field.

30-Day Evaluation

Tf wnn wrant tn svaliate the Sn FRS Sohecrintinn Fditinn wnn ran aet 3 2N-Naw Fualnatinn activatinn cnde

Fig. 76: Link to the DS-5 activation code

80

8. Software development

In the next webpage, scroll down and copy the activation code from the orange box (see
Figure 77).

2. LICENSE WITH ACTIVATION CODE Actvation Code
Start ARM Development Studio 5 and open the license manager. If this is your first time

using Development Studio, then a popup dialog will automatically ask you if you wish to open

the license manager, otherwise it can be opened from the "Help" menu. Use fhis activation code fo license fhe
DS-5 Altera Community Edition:

Choose "Add License...", and enter your Activation Code displayed on this page to obtain a v

license.

ACHEE—

Waork through the wizard to select the Host 1D to lock your license to, and enter or create your
ARM account details.

Once complete, the license manager can be closed as the product is ready to use.
Fig. 77: Activation code for DS-5

In DS-5, go to "ARM License Manager..." in the Help tab. Click on ""Add License...".
In the next window, paste the code copied from the webpage before. Click Next. You
have to own an ARM account, register is free. Enter your account details and click
Finish. The ARM License Manager window should look like in Figure 78. Close the
window. You will be asked to restart Eclipse so the license changes will be processed.
Restart Eclipse.

- ARM License Manager

View and edit licenses

Add or delete licenses below. Select a license to view more information about
it.

¥ DS-5 Altera Community Edition.lic Add License...

| Delete License |

This license is stored in:
/home/thisuser/.flexlmrc File -

Select the toolkit that youintend to use:

| DS-5 Communiky Edition = |

@ | Close |

Fig. 78: ARM License Manager

Now we have to create a new connection between the host computer and the SoCKkit
board. First, open the Window tab in DS-5 and select "Open Perspective — Other...",
whereupon a small window will appear. Select the "Remote System Explorer" (RSE)
option.

81

8. Software development

Wait to the perspective to change to RSE, then right click on "Local" (left section of the
DS-5 screen) and select ""New — Connection..." as seen in Figure 79.

File Edit Navigate Search Project YoctoProjectTools Run Window Help

Ciw i) I:_.j #;}:v ‘)V %V ﬂ);'v [P t‘ﬁ
48 Remote Systems 2 - %= Team i)
&£ 2 (|
» %2, Local Files = .
3 Local Shells G Into
GoTo 8

Open in New Window
Show in Table
Moniktor

Refresh

Rename...
Delete... Delete
copy...

Fig. 79: New connection in DS-5

In the pop-up window select connection type as '""SSH Only" (Secure SHell), then click
Next. In the next step (Figure 80) fill the "Host name" field with the IP (Internet
Protocol) address that we will assign to the SoCkit board, "192.168.2.12". Fill the
"Connection name" field with the desired name (for example, ""SoCkit"). Click Finish.
We have created the connection to communicate with the SoCkit board. We can do this
before assigning an IP to the SoCkit board; we are not connecting it to our computer yet.

@@ New Connection

Remote SSH Only System Connection

Define connection information
Parent profile: ubuntu =

Host name: 192.168.2.12 v
Connection name: |SocCkit

Description:

& Verify host name

Fig. 80: Configuring a new connection in DS-5

We are creating an Ethernet network with two terminals: the host computer and the SoCkit
board. We will assign two IP address within the private addresses range 192.168.0.0 -
192.168.255.255; we assigned the 192.168.2.12 address to the SoCkit board and the
192.168.2.13 address to the host computer. Assign an IP address to the SoCkit board
typing the following command in the PuTTY terminal:

ifconfig eth0 192.168.2.12 up

82

8. Software development

To change the IP address of our computer go to ""Start — Control Panel — Network
and Internet — Network and Sharing Center'. On the left side of the window click on
"Change adapter settings''.

%= » Control Panel » Metwork and Inter

SO~

Control Panel Home

View your t
Manage wireless networks L_!
Ch. dapter setti
ange adapter settings DIt
Change advanced sharing (This ¢
settings

Wiew your activ

| e
Fig. 81: Change adapter settings in Windows OS

In the new window, right click on "Local area connection' and select "Properties'. The
left window seen in Figure 82 will appear; select "Internet Protocol Version 4
(TCP/IPv4)" (Transmission Control Protocol) and click on "Properties". The right
window seen in the same figure will appear now. Select "Use the following IP address";
fill "IP address" as 192.168.2.13 and '"Subnet mask" as 255.255.255.0. Click OK in
both windows.

L Local Area Connection Properties

Networking | | General | alternate Configuration |

Connect using:
KF UL M52EX Ethemet Controller

You can get IP settings assigned automatically if your network supports
this capabiiity, Otherwise, you need 1o ask your network administrator
for the appropriate IP settings.

@ Dbtain an IP address automatically

This chion the following items:
i = ’ Uzse the following IP address:

|) % Cliant for Microsgft Netwaorkcs
] Jo1 el Machine MNetwork Servicas
| J=0os Packet Scheduler
| J%| e and Printer Sharing for Microsoft Networks
¥ i intemet Protocol Viersion & (TCP/PvE)

W] -+ intemat Protocol Viersicn 4 (TCP/1Pv4)

W] i Link-Layer Topalogy Discovery Mapper L/0 Driver @) Obtain DNS server address automatically
| B .. Link-Layer Topology Discovery Responder Use the folowing DS server addresses:

Descrption

Transmissgion Control Protocol/infemet Protocol. The default
wide anea nefwork protocol that provides communication
acoss diverse imerconnected networks

Fig. 82: Setting IP address of host computer

83

8. Software development

To check if the network is connecting computer and board properly, use the "ping"
command. Observe the execution of this command in Figure 83; both devices are correctly
connected (of course, they have to be connected physically with an Ethernet cable). If the
ping fails, try to disable your Windows firewall for public networks (we are not taking
any risk since we are just connected to the SoCkit board, there is no danger).

Fig. 83: Checking connection between SoCkit and computer

Within the RSE perspective in DS-5, we can see now the new connection that we
configured and named "SoCkit" (Figure 84). To establish connection we have to deploy the
"SFTP Files" (SSH File Transfer Protocol) instance and then '"Root", after which DS-5
will try to connect with the SoCkit board.

44 Remote Systems 2 - % Team

£ @
v Ef Local
» ", Local Files
% Local shells
v % sockit

B
% Ssh shells
8 5sh Terminals

Fig. 84: New connection configured in DS-5

The first time we establish a connection, a pop-up window will ask us for a Linux user name
and a password. To add a password in the SoCkit Linux before entering it in the DS-5
window, just type "passwd" in the PuTTY terminal. It will ask for a new password
twice, then the password is changed.

If connection was established correctly, we will observe the Linux root directory in the left
section of DS-5 screen (symbolized as a slash, /), as seen in Figure 84. When deploying it, all
the file system and its folders will be displayed.

84

8. Software development

It is possible that, when connecting, a window as in Figure 85 emerges. This message seems
to be caused because the RSA key of the host computer changed and does not match the one
that the Linux OS of the SoCkit board knows. It could be, as in the message tells, a man-in-
the-middle attack, but that is impossible since this network consist of our computer
connected to the SoCkit, without internet. Click Yes to overwrite the key in the file where it
Is saved, so that we can establish the connection.

«

The next step is to configure the application debugging. Select

WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED!
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!

Someone could be eavesdropping on you right now (man-in-the-middle attack)!

Itis also possible that the RSA host key has just been changed.
The fingerprint for the RSA key sent by the remote host is
d8:c9:18:3c:50:61:87:42:c2:ae:d6:23:47:3F:b1:fb.

Please contact your system administrator.

Add correct host key in froot/.ssh/known_hosts to get rid of this message.

Do you want to delete the old key and insert the new key?

No

Yes

Fig. 85: Warning message in DS-5 when connecting to the SoCkit board

"Debug

Configurations..." in the Run tab; in the emerging window, s elect on the left menu
"DS-5 Debugger" and click on the icon highlighted in Figure 86 to create a new

configuration.

o Debug Configurations

| Create, manage, and run configurations

Create, edit or choose a configuration to launch a D5-5 debugging session.

v Configure launch settings from this dialog:

[E] ¢/c++ Application
C/C++ Attach to Appli

5

¢' [¥ - Press the "New’ button to create a configurat
=) - Press the 'Duplicate’ button to copy the sele

- Press the 'Delete’ button to remove the selec

[T] c/C++ Postmortem D % - Press the 'Filter’ button to configure filtering

ugger

1

& Iron Python unittest
& Java Applet
3] Java Apblication

Fig. 86: Debug configurations

C/C++Remote Applic: - Edit or view an existing configuration by selei

Iron Python Run Configure launch perspective settings from the 'P

In the new window, name the configuration as desired. Select the Connections tab. In
the "Select target'" section, choose the debugging type as "Generic — gdbserver —
Linux Application Debug — Download and debug application". In the lower part of the
window, we will see the connection we previously created in the RSE perspective, named
"SoCkit". Observe all this in Figure 87.

85

8. Software development

Name: |sockit

%z Connection), Bi Files| % Debugger| @ RTOS Awareness| - Arguments| B8 Environment| ¥ Event Viewer|
Select target
Select the manufacturer, board, project type and debug operation to use. Currently selected: Generic - gdbserver

» Android
¥ Generic
¥ gdbserver
¥ Linux Application Debug

Connect to already running gdbserver
Dpownload and debug application

start gdbserver and debug target resident application

DS-5 Debugger will download your application to the target system and then start a new gdbserver session to debug the application.

Connections
RSE connection | SocCkit

Address: B Use RSEHost

gdbserver (TCP) | port: | 5000

& use Extended Mode

Fig. 87: Configuring the debugging. Connection

Now select the Files tab. To choose an "Application on host to download", click on
"Workspace..." and search for the executable file of the Hello World application,
named "hello" with no extension. Fill the "Target download directory" and "Target
working directory" fields writing '/home/root" to copy the application files to that
directory in the SoCKkit Linux file system.

Name: |sockit
|#= Connection ;',Filésl _#& Debugger i RTOS Awareness | ®: Arguments | B§ Environmenlfl; E3 Event Viewer-:

Target Configuration
Application on host to download:

[S{workspa(e_loc:jAltera-SoCFPGA—HelloWorld-Linux-GNUfhello}

| File System... | | Workspace... | & Load symbols

Target download directory:

/home/root

Target working directory:

_fhomefroot

Fig. 88: Configuring the debugging. Files

Click on Apply to save all the changes in the configuration (button situated in the lower
right corner of the window). Click on Debug to launch the debugging. Once everything is
ready to execute and debug the application, the DS-5 screen will look as the window in
Figure 89 (next page).

86

8. Software development

p B B | o B = MR

Commands 5 =Histcry &% Scripts b bw G P & % variabl 8 . % Breakp | # Regist | %" Expres | f1) Functi

% Linked: sockit~

Project Ex| 8 Remote S | i Streamlin

set del;ug-fﬂm main =

start % Linked: sockit~

wait Hame Value Type |Count Size| Loc
Execution stopped at breakpoint 1: Sx698883CC = & Locals 2variables

In hello.c

¥ . Active Threads
* & Thread 643 #1stopped on breakpoint:

& . @ arge 8 int 32 Ox7El

= main BxB008B3ICC 30,8 int main{int arge, char®® argv) { % argy GxOEBREARE char 1 32 0xTE
Deleted temporary breakpoint: 1

. 2 # (& File Statics (current)

® sockit connected 1 # = Globals

No OS Support ommand:

i Disassembly & Memory| £ Modules| & Events o=
. Linked: sockit =

v <Next Instruction> 100
Address | Opcode | Disassembly
Bx898683C8 oco Bx80060008
main
= | Bx800883CC PUSH {r7,1lr}

| BxBOOBBICE suB 5p,5p, 88

Bx80868300 ADD r7.5p, &0

| exg08EE3I02 5TR e, [r7,#4] 5
| 0x00668304 ST r1,[r7,00] y
r.App(un'.u!r 2 . Target Console ¥ Error Log TIEEAE

% Linked: sockit *
Preparing the debug session

cd */home/root”

export LD _LIBRARY PATH=".:/home/root:SLD_LIBRARY PATH®
gdbserver ;5000 "/home/root/hello”

Process /home/root/hello created; pid = 643

Listening on port 5800

Debug session has been started, conmecting to gdbserver
Resote debugging from host 192.168.2.13

28 #include <stdio.h> h w

30 int main(int arge, hart* argv) { 4
1 printf("Hello SoC FPGAI\N");

0 w,

Fig. 89: DS-5 environment ready for debugging

The DS-5 window divides now into six sections; we will briefly describe them:

1. In this section we can connect to and disconnect from the SoCkit board, execute the
application or debug it going step by step through the code.

2. In this section we can add and execute scripts, type debugging commands or view
output messages from the debugger.

3. Here we can enable, disable or delete breakpoints, view or modify the application
variables or memory registers, etc.

4. Source code in C or C++ language of the application which is going to be executed or
debugged.

5. In this section we can view the assembly code of the application.
Here we can observe errors of the application or the program and the SoCKkit console.

Observe in Figure 90 the button to execute the application highlighted. Click on it to
check if our application runs.

DebugCo %2 [Project Ex| £ Remote S | Wi Streamlin| = 5|/ cc

=l % B oy 3 B R S G
set
e star
¥ (= Active Threads Ealt
¥ & Thread 643 #1 stopped on breakpoint IEe:
= main ox0¢

Dele
W sockit connected .
Com

No 0S support

[d] hello.c &

Fig. 90: Execute application

87

8. Software development

If everything goes well, we can see in the SoCkit console (section 6 in Figure 89) the
message written by the application. This means our application was executed correctly and
the DS-5 environment is properly configured and prepared for develop, debugging and
executing applications in the SoCkit board.

B App Console 22 M Target Console| €] Error Log

T Linked: sockit ~
Preparing the debug session

cd "/home/root"

export LD LIBRARY PATH=".:/home/root:$LD LIBRARY PATH"
gdbserver :5808 "/home/root/hello"

Process /home/root/hello created; pid = 643

Listening on port 5808

Debug session has been started, connecting to gdbserver
Remote debugging from host 192.168.2.13
Hello SoC FPGA!

Child exited with status ©

Fig. 91: Hello World runs correctly

Lastly, before turning off the SoCkit, we have to close the connection clicking on the
button highlighted in Figure 92.

#5 DebugCo 2 - [Project Ex| 48 Remote S Streamlin| T 0|

= t}& & v iy
“» '

¥ (= Active Threads
¥ < Application terminated #2

& Mo Stack

P E DO @M

Fig. 92: Close connection with SoCkit board

Shut down the Linux OS in the SoCkit board by typing "poweroff", so all Linux
processes will be made to stop its execution. After typing the command, a set of messages
will be displayed in the console. Do not turn off the SoCkit until the message "System
Halted" is displayed. Now close the PuTTY terminal and turn off the SoCKkit board.

=ztopped fu i hd pid E15)

gd (pid G133

interface eth) not configured

' lighttpd (pid G26)

Fig. 93: Shutting down Linux

88

9. Summary and conclusions

9. Summary and conclusions

To conclude this project, we will recapitulate all the important ideas: we have an
embedded system where we have to install a Linux distribution, a free Unix based OS which
offers some advantages over other embedded OSs. To build our Linux distribution we need
to generate a set of files:

e Preloader: It performs some configurations and pass boot flow control to the
bootloader.

e Bootloader: Prepares everything the OS needs to work; it loads the kernel and the
DTB into memory, boots kernel and passes the DTB contents to it. We used an open
source bootloader, U-boot.

o DTB: Binary file representing a data structure that describes the system hardware and
"translates" it to the OS.

o Kernel

e File system

Our development kit, the SoCkit board, has a SoC system. A SoC system contains all the
necessary components to power a computer, everything in one chip. The SoC solution within
the SoCkit board unifies a FPGA made by Altera and a HPS made by ARM, composed by a
double core Cortex-A9, a set of peripherals and a series of interfaces with the FPGA.

As main objective of this project we attempted to generate an own Linux distribution adapted
to the SoCkit board, without depending on pre-made content facilitated by the manufacturer
or developer communities. To do that, we used the Altera tools and a software package from
Yocto, a custom Linux distributions project recommended by Altera. Thus, we have a
complete and functional system to develop applications. Another objective consist of, as we
already have a hardware design project configured, adding a totally new custom peripheral to
it and checking whether it works correctly. The last proposed objective was to develop a
Linux application in C language which use some of the resources in the SoCkit board.

We used a computer with Windows OS. However, some tools or programs need to be
installed and executed in a Linux-based OS host. Therefore, we used a virtual machine and
installed Ubuntu Linux 12.04 LTS on it, the most popular Linux distribution.

To configure the SoCkit hardware, we downloaded a project from the developers web
RocketBoards.org. It is a reference design that contains all configurations and connections of
the components needed to use the SoCKkit resources. Nevertheless, it was necessary to change
a couple of configuration details which may pass unperceived and may seem insignificant,
but they must not be disregarded because the generated files for the Linux distribution do not
work correctly if we do not change them.

Being the system hardware prepared, we got ready to create an own peripheral. We chose a
very simple peripheral: a 16-bit register mapped in memory, that receives a value written to
its memory address, it does some modification to that value so that we read the written value
modified (we change it to make sure that we are really interacting with our peripheral). We
used VHDL code to implement this peripheral and some interfaces (as a Qsys component is
composed of two parts: internal hardware modules and external Avalon interfaces), though

89

9. Summary and conclusions

Verilog can be used as well. We integrated the component in Qsys, adding it to the system,
giving it a memory address and connecting it with the necessary components.

To check the correct operation of our component, we used an Altera tool that executes TCL
scripts, System Console. We learnt how to develop a simple script which does some
operations to check if our component works: we write a value to its memory address and we
read the stored value. We verified twice if it works correctly: on the one hand, a message
was sent to the console of System Console with the read value; on the other hand, the read
value was written to the memory address where the FPGA LEDs are mapped so they light
and show the value in binary. In both cases, the value should be the written value modified
as coded in the VHDL file. After executing the script, we checked the value written to our
component was modified just as expected. Thus, our component works correctly so we
achieved one of the objectives: creating a new custom peripheral and adding it to the system,
leaving it prepared to be used.

The next step was to generate the necessary files to build the Linux distribution for the
SoCkit board. First of all, the Altera software that configures the hardware system generates
a set of files that other tools use in order to create some of the components of the Linux
distribution; particularly, a preloader, a bootloader and a DTB. The preloader and the
bootloader were created with no troubles. To generate the DTB we encounter some
difficulties: using the "sopc2dts” tool previously downloaded, we generated correctly the
DTB, but when booting Linux OS in the SoCkit using this DTB, the system was not able to
load the kernel, it hanged. Despite of looking for a solution to this problem, it could not be
solved on time so we decided to use the DTB created with the YSP. There exists another
DTB contained in a subdirectory of the Altera folder; using this DTB the system boots
correctly as well.

After that, we downloaded and installed the YSP to generate the rest of the files needed for
the Linux distribution (at least, we need the kernel and the file system). We compiled
everything and all the files were created.

The last step before booting Linux in the SoCkit board is to build an image file containing all
the Linux distribution and write it to the SD card. We used a tool from the Altera software
with which we just have to type a set of commands. At the first time, we used all the files
(preloader, bootloader, DTB, kernel and file system) from Yocto. The image was created
without any problem.

Once we had the image file to write it to the SD, we only needed to type another command to
write it. This took a while, but after several minutes, the image finished writing. A problem
was encountered: Linux did not boot. The cause was looked into, and it turned out that the
Yocto files were configured for another similar development kit made by Altera. The
preloader needs to take into account some hardware aspects to perform its configurations, so
this preloader was not able to run in the SoCkit. Hence, the solution was simple: changing
the preloader in the SD for the one generated by the Altera software, which is for the SoCkit.
After rebooting Linux with the new preloader, voila! It works. We achieved the main
objective: generating a custom Linux distribution for the SoCkit which boots correctly so in
this way we can interact with the board through the Linux OS.

90

9. Summary and conclusions

We also changed the bootloader in the SD for the one generated with the Altera software; the
Linux OS booted correctly that time too. The DTB in the SD was also changed by the
existing DTB from the Altera folder (not the one generated by the "sopc2dts™ tool) and the
system kept booting well.

The last objective, developing a Linux application in C which uses the resources of the
SoCkit board, could not be achieved due to lack of time. Instead, we tried to see how to
configure the development environment and to prepare it to execute and debugging
applications. The typical "Hello World" application was executed as an example to check if
the environment is configured properly.

As it has not been possible to achieve all the proposed objectives, we take advantage of it to
propose future lines of work to continue with this project and complete all the initial
objectives:

e Use the DTB generated with the "sopc2dts™ tool and make the Linux OS booting in
the SoCkit correctly using this DTB.

e Download and use a newer version of the GHRD project, released after this project
was ended.

e Develop a software application in C or C++, simple or as complex as desired, which
uses some resources of the SoCkit board through Linux.

e Instead of YSP, use some alternative way to generate the Linux distribution files,
such as BuildRoot. This tool is easy to install, easy to use, flexible, with a lot of
configuration options, simple structure and which supports hundreds of packages and
different types of file systems.

In this project, saying it in one sentence, we installed a Linux distribution in a development
kit which unifies a FPGA and a HPS in a SoC system. As possible uses of this integration of
software (Linux) and hardware (SoCkit) we propose the didactic use, to learn how to
configure and personalize the SoC system HPS, creating custom peripherals to integrate it
into the system. In addition, it is conceived as a help for the software developers, since we
prepared an environment to program Linux applications from which we can access to the
peripherals of the SoCkit board. Thus, it could be used as an autonomous system, using the
Linux OS advantages to use the SoCkit resources, with a wide range of possibilities:
communication through Ethernet network, serial communication, audio or video coding and
decoding, data collection (with the temperature sensor, infrared sensor...) for controlling or
storage... It is a versatile and very flexible system with all the advantages of programmable
logic, that we can use from now.

91

9. Summary and conclusions

92

10. Bibliography

10. Bibliography

WIKIPEDIA. Embedded System [online]. September 2006 [cited December 2013]. Available
from Web: <http://en.wikipedia.org/wiki/Embedded system>

SETIA, Priyansh. Linux - A Memorable Milestione. Ocean of Webs [online]. May 2013
[cited December 2013]. Available from Web: <http://oceanofwebs.com/linux-a-memorable-
milestone/>

JONES, M. Tim. Anatomy of the Linux kernel: History and architectural decomposition.
IBM developerWorks [online]. 06 June 2007 [cited December 2013]. Available from Web:
<http://www.ibm.com/developerworks/library/l-linux-kernel/>

ROCKET BOARDS. GSRD - Boot Flow [online]. 10 October 2013, Updated 27 November
2013 [cited December 2013]. Available from Web:
<http://rocketboards.org/foswiki/Documentation/GSRDBootFlow>

ALTERA. Booting and Configuration Introduction [online]. January 2012, updated 30
December 2013 [cited December 2013] . Available from Web:
<http://www.altera.com/literature/hb/cyclone-v/cv_5400A.pdf>

SHARMA, Shashank. System on a Chip: what you need to know about SoCs [online]. 5 May
2013 [cited December 2013]. Available from Web:
<http://www.techradar.com/news/computing/pc/system-on-a-chip-what-you-need-to-know-
about-socs-1147235>

ALTERA. Altera's User-Customizable ARM-based SoC [online]. April 2013 [cited
December 2013]. Available from: <http://www.altera.com/literature/br/br-soc-fpga.pdf>

ROCKET BOARDS. Linux Getting Started on Altera SoC Development Board - Using
Yocto Source Package [online]. Updated 28 November 2013 [cited October 2013]. Available
from:<http://rocketboards.org/foswiki/Documentation/AlteraSoCDevelopmentBoardYoctoG

ettingStarted>

ROCKET BOARDS. GSRD - Generating the Device Tree [online]. Updated 26 November
2013 [cited November 2013]. Available from Web:
<http://rocketboards.org/foswiki/Documentation/GSRDDeviceTreeGenerator<

ALTERA. Analyzing and Debugging Designs with the System Console [online]. 04
November 2013 [cited December 2013]. Available from Web:
<http://www.altera.com/literature/hb/qts/gts_qii53028.pdf>

ALTERA FORUM. Problems with Yocto/Poky Linux on the Arrow SoCkit [online]. 19 July
2013, updated 23 September 2013 [cited October 2013]. Available from Web:
<http://www.alteraforum.com/forum/archive/index.php/t-41541.htm|>

93

http://en.wikipedia.org/wiki/Embedded_system
http://oceanofwebs.com/linux-a-memorable-milestone/
http://oceanofwebs.com/linux-a-memorable-milestone/
http://www.ibm.com/developerworks/library/l-linux-kernel/
http://rocketboards.org/foswiki/Documentation/GSRDBootFlow
http://www.altera.com/literature/hb/cyclone-v/cv_5400A.pdf
http://www.techradar.com/news/computing/pc/system-on-a-chip-what-you-need-to-know-about-socs-1147235
http://www.techradar.com/news/computing/pc/system-on-a-chip-what-you-need-to-know-about-socs-1147235
http://www.altera.com/literature/br/br-soc-fpga.pdf
http://rocketboards.org/foswiki/Documentation/AlteraSoCDevelopmentBoardYoctoGettingStarted
http://rocketboards.org/foswiki/Documentation/AlteraSoCDevelopmentBoardYoctoGettingStarted
http://rocketboards.org/foswiki/Documentation/AlteraSoCDevelopmentBoardYoctoGettingStarted
http://rocketboards.org/foswiki/Documentation/AlteraSoCDevelopmentBoardYoctoGettingStarted
http://rocketboards.org/foswiki/Documentation/GSRDDeviceTreeGenerator
http://www.altera.com/literature/hb/qts/qts_qii53028.pdf
http://www.alteraforum.com/forum/showthread.php?t=41541
http://www.alteraforum.com/forum/archive/index.php/t-41541.html

10. Bibliography

ROCKET BOARDS. Arrow SoCKIT Evaluation Board - How to Boot Linux [online]. 01
May 2013, updated 31 January 2014 [cited October 2013]. Available from Web:
<http://rocketboards.org/foswiki/Documentation/ArrowSoCKITEvaluationBoardL inuxGettin

gStarted>

ALTERA. Altera SoC Embedded Design Suite: User Guide [online]. 08 November 2013
[cited November 2013]. Available from Web:
<http://www.altera.com/literature/ug/ug_soc_eds.pdf>

ALTERA. Making Qsys components [online]. Updated August 2012 [cited November 2013].
Available via FTP from:
<ftp://ftp.altera.com/up/pub/Altera Material/12.0/Tutorials/making agsys components.pdf >

ALTERA. Creating Qsys components [online]. December 2010, updated 04 November 2013
[cited November 2013]. Available from Web:
<http://www.altera.com/literature/hb/qts/qsys_components.pdf>

ARM. ARM DS-5 Getting Started with DS-5 (Version 5.2) [online]. 2010 [cited November
2013]. Available from Web:
<http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0478b/cacihagg.htmi>

WIKIBOOKS. Programmable Logic/VHDL [online]. 3 November 2007, updated 2 February
2009 [cited December 2013]. Available from Web:
<http://en.wikibooks.org/wiki/Programmable_Logic/VHDL>

ROCKET BOARDS. GSRD - GHRD Overview [online]. 09 October 2013, updated 27
November 2013 [cited November 2013]. Available from Web:
<http://rocketboards.org/foswiki/Documentation/GSRDGhrd>

ARROW. SoC Hardware Lab Instructions, version 13.0. 16 May 2013 [cited September
2013]. Available for download from:
<http://www.arrownac.com/solutions/sockit/files/SoCKIT Materials.zip>

ARROW. SoC Software Lab Instructions, version 13.0. 16 May 2013 [cited September
2013]. Available for download from:
<http://www.arrownac.com/solutions/sockit/files/SoCKIT Materials.zip>

PURDIE, Richard. Yocto Project Reference Manual [online]. 24 November 2010, updated
April 2013 [cited January 2014]. "1.3.1. Supported Linux Distros". Available from Web:
<http://www.yoctoproject.org/docs/1.4/ref-manual/ref-manual.html#detailed-supported-
distros>

ALTERA. Avalon Interface Specifications [online]. May 2013 [cited December 2013].
Available on Web: <http://www.altera.com/literature/manual/mnl avalon spec.pdf>

94

http://rocketboards.org/foswiki/Documentation/ArrowSoCKITEvaluationBoardLinuxGettingStarted
http://rocketboards.org/foswiki/Documentation/ArrowSoCKITEvaluationBoardLinuxGettingStarted
http://rocketboards.org/foswiki/Documentation/ArrowSoCKITEvaluationBoardLinuxGettingStarted
http://www.altera.com/literature/ug/ug_soc_eds.pdf
ftp://ftp.altera.com/up/pub/Altera_Material/12.0/Tutorials/making_qsys_components.pdf
http://www.altera.com/literature/hb/qts/qsys_components.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0478b/CACJHAGG.html
http://en.wikibooks.org/wiki/Programmable_Logic/VHDL
http://rocketboards.org/foswiki/Documentation/GSRDGhrd
http://www.arrownac.com/solutions/sockit/files/SoCKIT_Materials.zip
http://www.arrownac.com/solutions/sockit/files/SoCKIT_Materials.zip
http://www.yoctoproject.org/docs/1.4/ref-manual/ref-manual.html%23detailed-supported-distros
http://www.yoctoproject.org/docs/1.4/ref-manual/ref-manual.html%23detailed-supported-distros
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Appendix A: Installing USB Blaster Il device driver in Windows OS

Appendix A: Installing USB Blaster II device driver in Windows OS

If we connect our SoCkit board to the Windows OS, it will not be recognized by the
computer. For that reason, we have to install the device driver manually. In the case of
Linux, this step is not necessary because Ubuntu incorporates drivers for the USB-serial
converter chip embedded in the SoCkit board, letting the computer to see the board as a
virtual serial port, usually called "/dev/ttyUSBO".

First, open the Windows device manager by going through "Start — Control Panel —
System and Security — System'" and clicking on "Device Manager" at the left column.
Go to "Other devices" and right click on "Unknown device". Select "Update Driver
Software...".

4 -5 Other devices

[Processors Update Driver Software..,

&1 5D host adapters Disable
¥ Security Devices Uninstall

& Sound, video anu

Bl Svstem devices Scan for hardware changes

iches the Update Driver
Properties L

Fig. 94: Devices manager

Two options will be available: "Search automatically for updated driver software™ and
"Browse my computer for driver software'; select the second option. Specify the
location of the software controller (“<altera-folder>/13.0spl/quartus/drivers/usb-blaster-
ii" by default). Click on Next and proceed to the installation of the controller software.

Finally, we have to configure the controller software. Go to the '"C:/.../<altera-
folder>/13.0sp1/embedded" folder and open a NIOS II Embedded Command Shell.
Type "jtagconfig" on the prompt. If configuration was performed correctly, the device will
be displayed in the command shell as in Figure 95.

7 | /eygdrive/c/altera/13.0 = =R <"

Altera Nios2 Command Shell [GCC 41

5 jtagconfig
1> CU SoCKit [USB-11
BA2DAZ2BDD S5CSC(EBAGES | XFC6CBES> /. .

4BABB47?Y SOCUHPS

Fig. 95: Embedded Command Shell in Windows OS

95

Appendix A: Installing USB Blaster Il device driver in Windows OS

96

Appendix B: VHDL overview

Appendix B: VHDL overview

In this appendix we will give a very brief overview of the VHDL code, just the
necessary to understand the implementation of our component and its interfaces.

In VHDL code, we have two main unities: the entity and the architecture. The entity lists all
the inputs and outputs of the circuit. Its syntax is simple, as seen below:

ENTITY ent name IS
PORT (inputl: IN STD LOGIC;
input2: IN STD LOGIC_VECTOR (7 DOWNTO O0);
outputl, output2: OUT STD LOGIC;
output3: OUT STD LOGIC VECTOR (15 DOWNTO 0)) ;

END ent name;

In the code above, "inputl"” is described as an input (IN), one bit (STD_LOGIC) signal;
"output3" is described as an output (OUT), 16 bits (STD_LOGIC_VECTOR(15 DOWNTO
0)) signal. If there are two or more signals with the same direction (input or output) and the
same length (one bit, 8 bits, 16 bits...), they can be declared in one line just separated by a
comma, as in the case of "outputl” and "output2”. Be careful with the last signal, because its
line does not end with a semicolon.

The architecture is the unity that describes how the circuit behaves, its function. Its syntax is
as seen below:

ARCHITECTURE arch name OF ent name IS
(declarations)

BEGIN
(concurrent sentences)

END arch name;

There may be more than one task in one architecture. Each task has a set of operations that
are executed sequentially, but every task are executed in a concurrent way. An architecture
with one task is seen in the code example below:

ARCHITETURE arch name OF ent name IS
BEGIN
PROCESS
(declaration of variables)
BEGIN
(operations)
END PROCESS;

END arch name;

97

Appendix B: VHDL overview

We can see the architecture of the "regl6.vhdl" file below, that implements the internal
function of our component:

ARCHITETURE Behaviour OF regl6 IS

BEGIN
PROCESS
BEGIN
WAIT UNTIL clock'EVENT AND clock = '1';
IF resetn = '0' THEN
Q <= "0000000000000000";
ELSE
Q (15 DOWNTO 0) <= D(15 DOWNTO 0) OR "1000000000000001";
END IF;

END PROCESS;

END Behaviour;

The structure is quite simple to learn for anyone that has a basic programming knowledge;
the only difference is the syntax. The only line we will explain is the following one:

WAIT UNTIL clock'EVENT AND clock = '1"';

The circuit waits until a clock event occurs; this means, when a change in the clock signal
occurs (a falling or a rising edge). By adding "AND clock ='1";" we make the circuit to wait
a rising edge to continue, because we take into account the value of the clock signal right
after the event occurs. Then, when a clock event occurs, the output signal Q is assigned a
value as seen in the code.

Let's see now the architecture of the "regl6_avalon_interface.vhdl" file, that implements the
external interfaces of our component:

ARCHITECTURE Structure OF regl6 avalon interface IS
SIGNAL to reg, from reg: STD LOGIC VECTOR (15 DOWNTO O0) ;
COMPONENT regl6
PORT (clock, resetn: IN STD LOGIC;
D: IN STD LOGIC VECTOR (15 DOWNTO O0);
Q: OUT STD LOGIC VECTOR(15 DOWNTO 0));
END COMPONENT;
BEGIN
to_reg <= writedata;
reg instance: regl6 PORT MAP (clock, resetn, to reg, from reg);
readdata <= from reg;
Q export <= from reg;

END Structure;

In this architecture there are declared two SIGNALs. A SIGNAL is like a variable (as it is
not an external port of the component, it is not declared as an input or an output) declared
before the BEGIN line of an architecture. If a PROCESS modifies it, the SIGNAL becomes

98

Appendix B: VHDL overview

updated when the PROCESS executes all its operations and ends. There is also the type
VARIABLE; the difference between a VARIABLE and a SIGNAL is that the first one
becomes updated in the moment it is modified by a PROCESS, and a VARIABLE is
declared within the PROCESS.

There is also a COMPONENT declared, corresponding to our register. A COMPONENT is
another entity declared in a different module. A COMPONENT has a very similar syntax to
the ENTITY of the module. The entity of the "reg16.vhdl" module is the following:

ENTITY regl6 IS
PORT (clock, resetn: IN STD LOGIC;
D: IN STD LOGIC VECTOR (15 DOWNTO O0) ;
Q: OUT STD LOGIC VECTOR(15 DOWNTO 0)) ;
END regl6;

In the architecture of "regl6_avalon_interface™ we reference our regl6é component and we
assign some signals to its ports: we assign "to_reg" to the "D" input, and "from_reg" to the
"Q" output. The signal "to_reg™ is used to pass to the register the data that we write to it, and
"from_reg" is used to get from the register the data we read from it (they are like
intermediates between the "reg16" ports and the "regl6_avalon_interface" ports).

The rest of the architecture code has no secrets to us, only some assignations to the signals
and ports of the "regl6_avalon_interface” module. Just one last tip: in order to use the
STD_LOGIC and STD_LOGIC_VECTOR type of signals, the following two lines must be
added before the entity code to import the corresponding library:

LIBRARY ieee;
USE ieee.std logic 1164.all;

99

Appendix B: VHDL overview

100

Appendix C: Programming the FPGA

Appendix C: Programming the FPGA

To program the FPGA there is an Altera tool, Quartus Programmer. If not installed,
access to the Quartus II Web Edition download page[d3], in the "Individual Files" tab
choose the "Quartus II Programmer and SignalTap II'" from the '"Additional
Software" section. Install it with the options by default. Execute the following
commands from a terminal to execute this tool in Ubuntu:

$ cd ~/altera/13.0spl/quartus/bin
$ sudo ./quartus_pgmw

By using these commands, we go to the folder that contains the script which loads Quartus
Programmer, and we execute it. Another option to open it is from Quartus Il, selecting
"Programmer” from the Tools menu.

Once the program is open, if the SoCkit board is connected there must be selected "CV

SoCKkit [1-2]" as hardware in the higher part of the Quartus Programmer screen
(Figure 96).

File Edit View Processing Tools Window Help &/

2 Hardware Setup... | | €V SoCkit [1-2]

[Enable real-time ISP to allow background programming (for M,

S Start | File Device Checksu

Fig. 96: Hardware connection from Quartus Programmer

On the contrary, click on "Hardware Setup...". In the new opened window, select
"Currently selected hardware: CV SoCKkit [1-2]" (Figure 97). Close the window.

@ Hardware Setup

5| JTAG settings |

Select a programming hardware setup to use when programming devices. This programming
hardware setup applies only to the current programmer window.

Currently selected hardware: |CV SaCKit [1-2] |

Available hardware items

Hardware |Seruer |Port | Add Hardware... I
CV SoCKit Local 1-2
Remove Hardwarel

Fig. 97: Hardware Setup in Quartus Programmer

101

Appendix C: Programming the FPGA

Being the hardware selected, click on the "Auto Detect" button in the left column of the
Quartus Programmer screen. In the emerging window (Figure 98), select the option
"SCSXFC6D6ES", corresponding to the FPGA of the SoCkit board, "Cyclone V SX SoC
FPGA". Click OK to choose it.

@ select Device

Encounter devices with shared JTAG ID for device 1. Please select your device.
" 5CSEBAG

~ SCSEBABES

~ 5CSXFC6CH

{~ S5CSXFCBCBES

7 S5CSXFC6D6

Fig. 98: Select device in Quartus Programmer

We will see the Quartus Programmer as in Figure 99. There are two different devices, related
to the FPGA and the HPS of the Cyclone V SoC.

File Device Chedksum Usercode Program,/ Verify Blal
| Configure Cht
| <rone > SCSMFCADBE 00000000 <MONE >
| <Inone > (SD[VHPS 00000000 <none

HPS FPGA
AR RN

| ol]

SCSXFCEDEES SOCVHPS

L3

Fig. 99: SoCkit devices in Quartus Programmer

Select the FPGA device (SCSXFC6D6ES). In the left column, click on "Add file..." and
search for the "soc_system.sof" file, located in "../GHRD_ soc _system /output files".
This is the configuration file of Quartus Il which programs the FPGA. After selecting this
file, the list of devices should look as in Figure 100.

102

Appendix C: Programming the FPGA

File Device Checksum Usercode Program/
Configure
output_files/soc_system.... SCSXFC6D6F31CBES 026EDSD4 026EDSD4 z
<none > SOCVHPS 00000000 <none:>

Fig. 100: FPGA in Quartus Programmer ready to be programmed

As we can see, the first device in the list is the complete reference number of the Cyclone V
SoC, 5CSXFC6D6F31C8ES. It is printed on the Cyclone V SoC package (Figure 101). If
three devices are displayed, delete the extra 5SCSXFC6D6ES device (click on the device to
select it and then click Delete in the left column).

Fig. 101: Reference number of the Cyclone V SoC

Finally, make sure to mark the box "Program/Configure" of the SCSXFC6D6F31C8ES
device. Click on the "Start" button in the left column to program the FPGA. If
everything goes well, we will observe at the higher right corner of the screen the
programming progress and if it was successful or not.

Progress: 100% (Successful) j

Fig. 102: The FPGA was successfully programmed

103

Appendix C: Programming the FPGA

104

Appendix D: Connection to the SoCkit and booting Linux

Appendix D: Connection to the SoCkit and booting Linux

To establish communication with the SoCkit board, we have to use PuTTY. If

not installed previously in the Ubuntu virtual machine, download it with the following
command:

$ sudo apt-get install putty

Once installed, use the following command to execute it (always add 'sudo’ at the
beginning to avoid permission problems that may cause unexpected behavior):

$ sudo putty

Ubuntu incorporates drivers for a USB-serial converter chip included in the SoCkit board,
allowing the computer to see the board as a virtual serial port, usually named
"/dev/ttyUSB*", being * a 0, 1, etc (in our case, the device is /dev/ttyUSB0). To check
which USB serial device is installed, use the following command:

$ 1s /dev/ttyUSB*

Next, configure the PuTTY terminal:

e Connection type: serial
e Speed: 57600
o Serial line: /dev/ttyUSBO

@™ @ PuTTY Configuration

Category: Basic options for your PUTTY session

¥ Session | specify the destination you want to connect to
Logging Serial line Speed

¥ Terminal /dev/ttyUsBo 57600
Keyboard Connection type:
Bell ") Raw) Telnet) Rlogin () SSH @ serial
Features [Load, save or delete a stored session

¥ Window Saved Sessions
Appearance sockit
Behaviour Default Settings Load
Translation 7 L

sockit

Selection Save
Colours Delete
Fonts

¥ Connection
Data
Proxy | close window on exit:
Telnet @ Always I Never) Only on clean exit
Rlogin |

> SSH

About Open || Cancel

Fig. 103: Configuring PUTTY terminal to connect to the SoCkit board

105

Appendix D: Connection to the SoCkit and booting Linux

A window like in Figure 104 may be shown; it tells that the serial port cannot be accessed.

@@ PuTTY Fatal Error

Unable to open connection to COM3:
Unable to open serial port

OK

Fig. 104: Failed connection to the SoCkit

The cause of this message is the lack of permissions the user has over the serial port. To
change the permissions, use the following command:

$ sudo chmod 777 /dev/ttyUSBO

This way, the serial port can be accessed to view the console, so the problem is solved.

To reboot the Linux OS, press the warm reset button situated on the lower left corner of
the SoCkit board, as in Figure 105.

WARM RESET

Fig. 105: Warm reset in SoCkit board

106

	ACKNOWLEDGEMENTS
	ABSTRACT
	RESUMEN
	1. Acronyms
	2. Figures and tables list
	3. Download links
	4. Introduction
	4.1. Antecedents and background
	4.2. Linux components to generate. Boot flow
	4.3. SoC solutions

	5. Objectives
	6. General description of software and hardware tools
	6.1. SoCkit development kit
	6.2. Altera software
	6.3. Yocto Source Package
	6.4. More tools

	7. Hardware development
	7.1. Installing the virtual machine
	7.2. Download and install Quartus II
	7.3. Setting up the SoCkit
	7.4. Downloading GHRD project
	7.5. Creation and configuration of a new custom component. Adding the new component to the system and checking its correct operation.

	8. Software development
	8.1. Downloading and installing SoC EDS
	8.2. Generation of a preloader and a bootloader with the Altera software
	8.3. Installing Yocto software and creating the SD card image file
	8.4. Booting Linux on the SoCkit board
	The solution to this problem is easy: we should use a preloader generated specifically for the SoCkit board. Where can we get it? The answer is the section "7.6. Generation of a preloader and a bootloader with the Altera software for Linux"; we alread...
	8.5. ARM DS-5 Environment for developing and debugging applications. "Hello World" example

	9. Summary and conclusions
	10. Bibliography
	Appendix A: Installing USB Blaster II device driver in Windows OS
	Appendix B: VHDL overview
	Appendix C: Programming the FPGA
	Appendix D: Connection to the SoCkit and booting Linux

