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September 2014

http://www.upm.es/institucional
http://www.etsist.upm.es/
http://www.etsist.upm.es/
https://www.linkedin.com/pub/alvaro-bustos-benayas/82/a17/148/
http://www.researcherid.com/rid/H-3309-2011
http://www.etsist.upm.es/departamentos/SEC




UNIVERSIDAD POLITÉCNICA DE MADRID

Abstract

Escuela Técnica Superior de Ingenieŕıa y Sistemas de Telecomunicación

Departamento de Ingenieŕıa Telemática y Electrónica

Grado en Ingenieŕıa Electrónica de Comunicaciones

Integration of a Data Acquisition System Based On FlexRIO Technology

With EPICS

by Álvaro Bustos Benayas

EPICS (Experimental Physics and Industrial Control System) lies in a set of software

tools and applications which provide a software infrastructure for building distributed

data acquisition and control systems. Currently there is an increase in use of such

systems in large Physics experiments like ITER, ESS, and FREIA. In these experiments,

advanced data acquisition systems using FPGA-based technology like FlexRIO are more

frequently been used.

The particular case of ITER (International Thermonuclear Experimental Reactor), the

instrumentation and control system is supported by CCS (CODAC Core System), based

on RHEL (Red Hat Enterprise Linux) operating system, and by the plant design speci-

fications in which every CCS element is defined either hardware, firmware or software.

In this degree final project the methodology proposed in Implementation of Intelligent

Data Acquisition Systems for Fusion Experiments using EPICS and FlexRIO Technology

Sanz et al. [1] is used. The final objective is to provide a document describing the fulfilled

process and the source code of the data acquisition system accomplished.

The use of the proposed methodology leads to have two different stages. The first one

consists of the hardware modelling with graphic design tools like LabVIEW FPGA which

later will be implemented in the FlexRIO device. In the next stage the design cycle is

completed creating an EPICS controller that manages the device using a generic device

support layer named NDS (Nominal Device Support). This layer integrates the data

acquisition system developed into CCS (Control, data access and communication Core

System) as an EPICS interface to the system. The use of FlexRIO technology drives

the use of LabVIEW and LabVIEW FPGA respectively.
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Resumen
Escuela Técnica Superior de Ingenieŕıa y Sistemas de Telecomunicación

Departamento de Ingenieŕıa Telemática y Electrónica

Grado en Ingenieŕıa Electrónica de Comunicaciones

Integration of a Data Acquisition System Based On FlexRIO Technology

With EPICS

by Álvaro Bustos Benayas

EPICS (Experimental Physics and Industrial Control System) es un conjunto de her-

ramientas software utilizadas para el desarrollo e implementación de sistemas de adquisición

de datos y control distribuidos. Cada vez es más utilizado para entornos de experi-

mentación f́ısica a gran escala como ITER, ESS y FREIA entre otros. En estos exper-

imentos se están empezando a utilizar sistemas de adquisición de datos avanzados que

usan tecnoloǵıa basada en FPGA como FlexRIO.

En el caso particular de ITER, el sistema de instrumentación y control adoptado se

basa en el uso de la herramienta CCS (CODAC Core System) basado en el sistema

operativo RHEL (Red Hat) y en las especificaciones del diseño del sistema de planta, en

la cual define todos los elementos integrantes del CCS, tanto software como firmware y

hardware.

En este proyecto utiliza la metodoloǵıa propuesta para la implementación de sistemas

de adquisición de datos inteligente basada en EPICS y FlexRIO. Se desea generar una

serie de ejemplos que cubran dicho ciclo de diseño completo y que serán propuestos como

casos de uso de dichas tecnoloǵıas. Se proporcionará un documento en el que se describa

el trabajo realizado aśı como el código fuente del sistema de adquisición.

La metodoloǵıa adoptada consta de dos etapas diferenciadas. En la primera de ellas

se modela el hardware y se sintetiza en el dispositivo FlexRIO utilizando LabVIEW

FPGA. Posteriormente se completa el ciclo de diseño creando un controlador EPICS

que maneja cada dispositivo creado utilizando una capa software genérica de manejo

de dispositivos que se denomina NDS (Nominal Device Support). Esta capa integra

la solución en CCS realizando la interfaz con la capa EPICS del sistema. El uso de la

tecnoloǵıa FlexRIO conlleva el uso del lenguaje de programación y descripción hardware

LabVIEW y LabVIEW FPGA respectivamente.

http://www.upm.es/institucional
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I would like to thank Dr. Mariano Rúız González, Full professor at Technical University

of Madrid, colleague and friend. His aptitude and experience are inspiring for the rest.

Prof.Dr. Alberto Mart́ın, Dr. Eduardo Barrera Full professor at Technical University of

Madrid; PH.D’s, colleagues and friends Jesús Alonso, Diego Sanz and Sergio Esquembri;
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Chapter 1

ITER, the experiment

1.1 The Organization and the project

Internationa Thermonuclear Experimental Reactor (ITER) is an international research

and engineering international project with the intention to proof the viability of fusion

as commercial energy source. The scientific goal of the ITER project is to deliver ten

times the power it consumes. The consortium, formed by China, the European Union,

India, Japan, Korea, Russia and the United States, is officially signed on 21th November

2006 and assuming the cost the theoretical ten-year construction stage and twenty-year

operational stage.

The members are organized locally in Domestic Agencies, in the case of Europe the

agency in charge is Fusion for Energy (F4E), to act as a nexus between their governments

and the ITER Organization, located adjacent to CEA Cadarache research center in Saint

Paul-lez-Durance, France.

1.2 The Science

As said previously ITER’s final objective is to provide the mankind a cleaner, safer

and unlimited source of energy. In fusion reactions lighter atomic nuclei fuse to form a

heavier nucleus releasing a large amount of energy.

The most efficient fusion reaction to produce in a laboratory is the reaction between

two hydrogen isotopes, deuterium and tritium producing the highest gain of energy at

the lowest temperatures compared with other elements, requiring 150 Million degrees

Celsius to produce.

1
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In ITER, the fusion reaction will be achieved in a tokamak device that uses magnetic

fields to contain and control the plasma. The helium nucleus carries an electric charge

which will respond to the magnetic fields of the tokamak and remain confined within

the plasma. However, some 80 percent of the energy produced is carried away from

the plasma by the neutron which has no electrical charge and is therefore unaffected by

magnetic fields. The neutrons will be absorbed by the surrounding walls of the tokamak,

transferring their energy to the walls as heat, the heat will be used to produce steam

and electricity by way of turbines and alternators.

1.3 The Machine

The plasma will be confined by magnets in a torus hermetically-sealed steel container,

named vacuum vessel, holds the fusion reaction. In order for the gas to reach the plasma

state three external heating sources. The ITER magnets will be cooled at 4 K in order

to create the magnetic fields necessary for the plasma confinement, that temperature

will be created by an external cryogenic system, after the Large Hadron Collider (LHC)

at Conseil Européen pour la Recherche Nucléaire (CERN) -french acronym of European

Council for Nuclear Research- it will be the largest cryogenic system ever built.

An extensive diagnostic system will be installed on the ITER machine to provide the

measurements necessary to control, evaluate and optimize the performance of the exper-

iment and to further the understanding of plasma physics. This include measurements

of temperature, density, impurity concentration, and particle and energy confinement

times. The diagnostic system will comprise modern techniques including lasers, X-rays,

neutron cameras, impurity monitors, particle spectrometers, radiation bolometers, pres-

sure and gas analysis, and optical fibres. Because of the harsh environment inside the

vacuum vessel, these systems will have to cope with a range of phenomena with great

accuracy and precision.

Control, Data Access and Communication (CODAC) is the central control system re-

sponsible for operating the ITER device. CODAC interfaces to more than 30 ITER plant

systems containing actuators, sensors and local Instrumentation and Control (I&C). For

the machine protection, interlock system and safety (personnel and environment) sys-

tems, are explicitly decoupled from CODAC and act fully independently. Control System

Division, incharge of aforementioned tasks, is also responsible for the central interlock

system and central safety system. CODAC Core System (CCS) is the operating system

for ITER and is based on Experimental, Physics and Industrial Control System (EPICS)

and Control System Studio (CSS). Users who contribute to the development of ITER
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I&C System, such as ITER Domestic Agencies or industries working for ITER through

contracts, uses CODAC and dedicated software distribution.

1.4 Document Outline

What the reader is going to find in the next sections is an example of an EPICS driver

for reconfigurable hardware based on FlexRIO technology.

This driver is created following given LabVIEW FPGA design rules and using an EPICS

driver able to find itself the resources and functionalities found in the FPGA at runtime

as proposed by Sanz et al. [1]. To create the EPICS Device Support the Nominal

Device Support common interface is used and documented as use case for later and

more complex developments. As an interface to the driver an EPICS client BOY panel

is provided.

The hardware architecture is composed by FlexRIO devices in PXIe chassis and a host

computer connected to the chassis by a PCIe expansion link detailed afterwards.

1.4.1 Content

• Chapter 1: Global framework and introduction to the thesis topic

• Chapter 2: EPICS, the basis

• Chapter 3: ITER’s Control, Data Access and Communication

• Chapter 4: National Instrument’s FPGA-based FlexRIO devices

• Chapter 5: Integration of NI-6581 and NI PXIe-7965R in CODAC Core System

• Chapter 6: Results Obtained





Chapter 2

EPICS

2.1 Introduction to EPICS

EPICS is an open-source distributed control system toolkit that consists of a set of soft-

ware tools and applications which provide a software infrastructure that application

developers can use for building distributed control systems to operate devices such as

Particle Accelerators, Large Experiments and major Telescopes. Such distributed con-

trol systems typically comprise a large amount of computers, networked together to allow

communication among them and to provide control and feedback of the various parts of

the device from a central control room, or even remotely over the internet EPICS uses

a network-based client/server model. Large scale scientific applications often require

hundreds of devices to communicate over a single network to form large distributed con-

trol systems. EPICS provides the standards and tools necessary to make this kind of

communication possible.

Figure 2.1: Experimental Physics and Industrial Control System Logo

The EPICS logo, figure 2.1, represents the main idea of EPICS, each coloured box

represents a client or a server connected through a network. For EPICS, the Channel

5
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Access (CA) role can be Channel Access Client (CAC) or Channel Access Server (CAS),

CACs are programs that require access to the Process Variables to carry out their

purpose and the service provided by Channel Access Servers is the access to Process

Variables.

This chapter describes the main components: the variables exchanged between clients

and servers (Process Variables 2.2), the element that manipulates this variables (Input

Output Controllers 2.3), backbone of the control network (CA protocol 2.4) and some

tools used to monitor archive and edit these exchanged variables (2.6).

2.2 Process Variable

Process Variables (PVs), in the CODAC context often used in a narrower sense of EPICS

PV, are EPICS variables that are exchanged between servers and clients and are defined

by EPICS records in the EPICS Database. A process variable can give a computerised

representation of a plant signal.

EPICS database is a process database running on a CAS, also known as the Input

Output Controller (IOC), this database consists of records which represent data points

of control system. Records consists of number of attributes (fields) and code that defines

the records’ behaviour when active.

Most EPICS applications require only basic record types such as:

• ai, ao: Analog input/output

• bi, bo: Binary input/output

• longin, longout: Long integer value input/output

• mbbi, mbbo: Multi-bit binary input/output

• stringin, stringout: String input/output

• calc: Record that performs algebraic, relational and logical operation

• waveform: Data in arrays.

Records can be connected among each other to exchange information and can be con-

nected to hardware devices. Records can define database links to:

• Exchange data among each other (records connected among each other).
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• Implement closed loop control.

• Records can connect to hardware devices and/or other records.

The IOC database manages Records. A Record has Fields, for instance a particular an

analog input record can have fields such as

• VAL (value)

• EGU (Engineering Units)

• TIME (Timestamp)

• HOPR (High Operator Range)

• LOPR (Low Operator Range)

• STAT (Alarm Status)

• SEVR (Alarm Severity)

The database (.db) file can be used to get and set the contents of the fields of a record.

These values and attributes of Process Variables are defined by the CA Servers. The

Channel Access network protocol gives access to Channels. A particular Channel has

properties such as: value, time stamp, units, upper control limit, lower control limit,

status, and severity.

Main element’s definition:

• A Process Variable: Typed structure according to a record type and the in-

puts, data manipulation and outputs are defined by EPICS records in the EPICS

Database. These EPICS variables are exchanged between servers and clients.

a PV is a typed structure according to a record type (like binary input, binary

output, analog input, analog output, calculation ...) and the inputs, data manip-

ulation and outputs are defined by configuring each record

• A Record Type: Predefined building block with a unique structure of fields and a

unique processing routine to accomplish a specific function.

• Record support: Refers to a processing routine and the definition of the structure

(i.e. an analog input record is used to monitor an analog signal, convert it to engi-

neering units, check the value against alarm limits, and notify interested channel

access clients of any significant change).
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• Record: A particular instance of a Record Type with appropriate values entered

into the relevant fields.

• Database: A collection of records.

• Scanned (processed): Executing the record processing routine (unique to a record

type) for a particular record

2.3 The Input Output Controller

The EPICS software processes are called IOCs. The main responsibility of the EPICS

Input/Output Controller (IOC) is to input data from the local process (and/or the

operator), manipulate/convert/compute it, update the PV value time-stamp and alarm

status/severity and optionally output data to the local control process.

EPICS PVs become part of an IOC’s database. The IOC scans the database, deciding

when and how to process a predefined record. IOCs can run in the same environment as

which it was compiled or can run in a different environment that where compiled using

cross software development tools.

An IOC contains the following software components

• The IOC Database: The main element of an IOC is a database together with some

structures that describe the contents of the database (the first field of a database

record contains the record name).

• Database access routines via channel or database access routines.

• Mechanisms for deciding when to process a record (Scanners):

– Periodic: To process a record periodically, standard scan rates are: 10, 5, 2,

1, 0.5, 0.2 and 0.1 seconds and custom scan rates can be configured up to

speeds allowed by operating system and hardware

– Event driven: Events request from another record via links, EPICS Events

and Channel Access Puts.

– I/O Event: processing records based on external interrupts.

– Passive: records are processed as a result of linked records being processed

or as a result of external changes such as Channel Access puts.

– Scan Once: Makes a record to be processed one time.
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• Record support routines, device support routines and device drivers for accessing

to external devices for each record. Record types not associated with hardware do

not have device support or device drivers.

• The interface between the external world and the IOC via Channel Access.

• Database monitors provide a callback mechanism for database value changes. This

allows the caller to be notified when database values change without constantly

polling the database.

• Tools to implement state machines (Sequencer)

The IOC Core consists of the core software of EPICS that EPICS would not run without,

that are: Channel Access, IOC Database, Scanners, Monitors, Database Definition Tools

and Source/Release folders containing the raw code and the compiled code respectively.

2.4 The Channel Access

The Channel Access Protocol is a client-server TCP/IP-based communication protocol of

EPICS. The protocol defines how Process Variable data is transferred between a server

and client in any IOC database and also ensures an interface between the CODAC

central control system and the local control systems. Each IOC provides a Channel

Access Server which is prepared to establish communication with an arbitrary number

of Channel Access Clients.

The main benefits of the CA are:

- Provides transparency from the Operating System

- Network transparency (equal access to remote and local channels)

- CPU architecture independence, isolation from software changes

The software architecture paradigm is based on a publish/subscribe messaging through-

out the control network. The requests are based on the PV name and that requests

include Search, Get, Put and Add Event methods.

2.5 Device Support

Device support is the interface between record and the hardware, it hides hardware

specific details from record processing routines. Device support routines are the interface
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between hardware specific fields in a database record and device drivers or the hardware

itself.

Device support modules can be divided into two basic classes: synchronous and asyn-

chronous. Synchronous device support is used for hardware that can be accessed without

delays for I/O. Many register based devices are synchronous devices. Other devices, for

example all General-Purpose Instrumentation Bus (GPIB) devices, can only be accessed

via I/O requests that may take large amounts of time to complete. Such devices must

have associated asynchronous device support. Asynchronous device support makes it

more difficult to create databases that have linked records.

2.6 Tools, alarms, archiver and EPICS Clients

EPICS version 3.14 provides a number of Operator Interface (OPI) based tools that can

be divided into two groups based on whether or not they use Channel Access. (Channel

Access tools are real time tools, i.e. they are used to monitor and control IOCs.)

• Channel Access Tools

Display Managers like EDM/MEDM read one or more display list files created by

the Display Editor, establishes communication with all necessary IOCs, establishes

monitors on process variables, accepts operator control requests, and updates the

display to reflect all changes. Alarm handlers, archivers and probes allows the user

to monitor and/or change a single process variable specified at run time.

• Other OPI tools

– Database configuration tools like VDCT/JDCT/GDCT

– Display editor EDD used to create a display list file for the Display Manager.

– State Notation Compiler that generates a C program representing the states

for the IOC Sequencer tool.

The graphic 2.2 depict the environment of the Channel Access network with some ele-

ments suscribed as CACs and CASs. Exemplifying five generic elements in the network

(coloured boxes) and a the description of the elements within a generic IOC (gray box).

MEDM (yellow box) is a display manager/editor for EPICS, LabView (red box) acts

as Process Variable publisher/subscriber, My Data Collection Program (blue box) is

Channel Access Client implementing a program, iocCore (green box) is an IOC without

any connection to hardware, Simulator Code (dark yellow box) acts as a Process Variable

Server in the network and the IOC (gray box) showing its internal structure.
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Figure 2.2: Generic IOC Exploited View in the Channel Access Network
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ITER’s CODAC

3.1 Control, Data Access and Communication

As introduced in section 1.3 CODAC designates the central control system that operates

in ITER. The CODAC Core System is a software package that is distributed by CODAC

Section of ITER Organization for the development of the Plant System I&C. It includes

the software for Mini-CODAC, Plant System Host (PSH) and Plant Controllers Fast

(PCF) and it provides the plant system I&C developers the environment required to

develop and test the software satisfying the ITER requirements.

The operating system for Mini-CODAC, PSH and PCF is an officially supported version

of Red Hat Enterprise Linux (RHEL). The EPICS base is included in the distribution

and is required for Mini-CODAC, PSH and PCF. The EPICS framework is the base for

the Fast Controllers and PSH, and the EPICS CA protocol for access to plant system

I&C over the Plant Operation Network (PON).

The ITER project is broken down into plant systems, known as the Plant Breakdown

Structure (PBS). The plants have specific functional requirements, each requirement has

to be treated separately with its own I&C System called Plant System I&C. In order

to facilitate integration and control, CODAC has a functional categorization named

Control Breakdown Structure. Plant System I&Cs are grouped into hierarchical control

groups. Each of these control groups can have a number of servers dedicated to runtime

activities such as archiving, control group management and configuration management

for the control group.

Figure 3.1 illustrates the physical architecture of the ITER I&C system. A plant system

includes a set of controllers with a PSH implementing a set of functions. A control group

is an assembly of plan system I&Cs and central coordination.

13
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Figure 3.1: Physical Architecture of ITER I&C System.

In the following sections the most capital pieces of CODAC and the important parts for

the document scope are described giving an outline for the subsequent chapters.

3.2 Plant System I&C Design

ITER I&C System wrap all hardware and software required to operate the ITER ma-

chine, it comprises plant systems I&C, Central I&C Systems and I&C Networks. Some

entities have to be defined to understand the Instrumentation and Control architecture

seen in figure 3.1.

• A Plant System I&C can be defined as all hardware and software required

to control a plant system including local protection and safety functions. Plant

System I&C encloses Plant Control System, Plant Interlock System and Plant

Safety Systems. It has one plant system host and an arbitrary number of controllers

called control units. Controllers are divided into slow and fast depending on the

process’ characteristics determining different technologies used for implementation,

PLCs for slow processes and Linux based-computers running EPICS with PCI/PXI

I/O for fast processes. Slow controllers are programmed with Siemens SIMATIC

STEP 7 and PCF and PSH are configured using EPICS tools under RHEL.
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Each plant system I&C implements one or many functions. For each function

the variables and commands have to be declared to operate in CODAC. Each

functional variable is instantiated by one control unit and maps directly to one

EPICS Process Variable; if the control unit is a PLC, to one program variable in

a PLC.

• Central I&C Systems All hardware and software required to coordinate all

plant systems I&C, including protection and safety functions and to provide the

human-machine interface (HMI). It comprises the CODAC System, Central Inter-

lock System and Central Safety Systems.

– Central Interlock System (CIS) Provides protection functions from ma-

terial damage which would result insignificant cost or schedule implications.

Communicates with Plant Interlock Systems using Central Interlock Network.

Provides status to CODAC System.

– Central Safety Systems (CSS) Provide plant-wide nuclear and occupa-

tional safety functions. Communicate with Plant Safety Systems using Cen-

tral Safety Network. Provide status to Central Interlock System and CODAC

System.

• I&C Networks Provide physical interface between Central I&C Systems and

plant systems I&C. Comprises CODAC Networks, Central Interlock Network and

Central Safety Networks.

• I&C Plant Control System Provides local data acquisition, control, monitor-

ing, alarm handling, logging, event handling and data communication functions.

Communicates with CODAC System using CODAC Networks. Comprises Plant

System Host and plant system controller(s).

– Plant System Host Provides asynchronous communication from CODAC

System to Plant Control System and vice versa. Provides command dispatch-

ing, state monitoring, data flow and configuration functions.

– Plant System Controller Provides plant system specific data acquisition,

control, monitoring, alarm handling, logging and event handling functions.

Interfaces the Central I&C systems through I&C networks and plant system

equipment through signals and fieldbuses.

– Plant Interlock System (PIS) Provides Investment Protection functions

for plant system. Interfaces to Central Interlock System.

– Plant Safety Systems (PSS) Provide Safety functions for plant system.

Interfaces to Central Safety Systems.
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3.3 Hardware Components

3.3.1 Slow Controllers

The term Slow Control is used for controllers that their reactivity is extremely slow in

comparison to acquisition systems dedicated to the observation of the experiment. They

are in charge of the industrial services of the experiment that are not expected to change

fast, like vacuums, cooling and control loops, providing a control loop performance of

100 Hz or less. Via a network connection to the controller, they are programmed with

STEP-7 engineering software from a Windows development system. The PLCs will

communicate with CODAC through the PSH,it’s configuration will be generated for

each Plant System I&C. The communication with STEP-7 PLCs will be done through

TCP/IP Socket communication.

3.3.2 Fast Controllers

A fast controller is a control system component defined as a plant system controller

used to implement control loops or data acquisition in Plant System Instrumentation &

Control at a rate faster than 100 Hz. In the current design it is implemented using PXI

Express, ATCA or uTCA based solutions, the first ones to carry the I/O boards and

the last one proposed for diagnostics. Figure 3.2 maps the fast controller in the ITER

Plant System I&C .

Figure 3.2: Fast Controller in the ITER I&C System for PCIe technology.

The intended capabilities for a PCF are:
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• Data acquisition with accurate time stamping

• Actuation with precise timing

• Real-time exchange of data with other systems

• Locally closed control loops in hard real-time

In the specific case of the PXIe, the chassis is separated from the CPU standard industrial

computer and interconnected using a PCIe link. As depicted in figure 3.3 the fast

contolled is composed by an industrial PC with two separated Network Interface Cards

(NIC) one for Data Archive Network (DAN) and Synchronous Databus Network (SDN)

and the other for the Plant Operation Network (PON). All the hardware metioned for

the PCF is integrated in a single I/C Cubicle. The link to the PXIe chassis is with a

PCIe-PXIe bridge. The PXIe chassis will be covered in detail in chapter 4 and 5 since

the Fast Controller is the target hardware for the DAQ system designed.
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Figure 3.3: Fast Controller Physical Architecture Scheme.
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3.3.3 Plant System Host

The plant System Host is a system that is part of a plant system I&C and is supplied

and maintained by CODAC. In the I& C integration kits, the PSH is configured in

a computer that will be installed in one of the I&C cubicles. Each PSH belongs to

one plant system I&C, it is connected to the PON network and belongs to the same

sub-network as the other controllers of the same I&C.

The PSH has no I/O board and cannot interface to any hardware. It provides command

dispatching, state monitoring, overall coordination, health monitoring, and, optionally,

communication with slow controllers. Each plant system I&C can only have one PSH.

3.3.4 CODAC Terminal

A CODAC terminal is an operation station providing I/O to/from an operator through

the human machine interface (HMI). CODAC terminals are close to local plant sys-

tem equipment for integration, commissioning, troubleshooting and maintenance of that

equipment. Control Room CODAC terminals use software deployed and configured us-

ing the CODAC Core System.

3.3.5 CODAC Server

A central CODAC server is a standard server-class computer running either CODAC

run-time applications or CODAC support services. Run-time server applications include

common EPICS applications such as archiving and alarm handling and common site-

specific applications, including plant wide supervision, monitoring and control, global

operational state management and interfaces to the CIS and CSS. In addition, CODAC

servers run special applications such as pulse scheduling and scientific data archiving.

CODAC support services include directory services, software download to plant systems

and software configuration management.

3.3.6 Storage Systems

There are several storage categories attending to different functionalities such as the

reliability, high availability and high degree of integration with the servers; other used

for the CODAC System database services like alarms and error logs; and other accom-

plishing requirements to evacuate data in quasi-real-time for visualisation and for long

term archiving.
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3.3.7 I/O Boards

I/O boards are important components for CODAC. A controller supervises one or many

I/O boards. Each I/O board has a set of channels that can be associated with plant sys-

tem signals, and can be used to generate the I/O configuration data for fast controllers.

There are a limited number of I/O boards in the ITER Catalogue For Fast Controllers

[10]. The ITER standard Fast Controller catalogue describes the hardware accepted to

be part of the experiment.

3.4 CODAC software tools

3.4.1 Self-Description Data toolkit

Self-Description Data (SDD) is an ITER concept designating the static data that de-

scribes the plant system characteristics in a unified way in order to facilitate configu-

ration of the Central I&C systems’ software for operation with the given plant system.

The SDD tool-kit has been developed by ITER Organization in order to allow the user

to configure the plant system I&C and is a set of tools to support top-down configuration

and the programming of I&C components.

SDD is part of the CODAC Core System. The data created is then used to configure

and program underlying Plant System I&C hardware and software.This includes:

• The SDD Editor to define the plant system interface, the I&C components, the

interfaced signals and to configure variables, alarms, archiving, etc. The editor is

an Eclipse Rich Client Platform (RCP) application.

• The SDD translator to convert the SDD into the required EPICS configuration

data for Mini-CODAC, PSH and fast controllers and into the required STEP-7

files for PLCs.

• The SDD sync tool to save and loading SDD data to/from XML files and to

synchronize local SDD databases with IO databases as well as local files with the

IO source repository.

• The SDD parser to parse user provided or user modified EPICS configuration files

(EPICS record definition) and retrofit changes into the SDD database.

The SDD tools provide the user with creation, editing and saving features for:
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• The list of signals interfaced by the plant system I&C, list of functions and vari-

ables implemented by the plant system I&C and the list of control units (PSH,

controllers) that belongs to the plant system I&C

• The communication between PSH and PLC.

• The configuration for alarms, archiving, HMIs, for the supported I/O boards and

the cubicles that shall be monitored (from 4.0).

• The mapping of Common Operating State variables into plant-system specific ones

(from 4.0)

3.4.2 Control System Studio

Control System Studio (CSS) is part of CODAC Core System and is a collection of

software built on Eclipse that provide an application framework for control systems.

Operator interface, data archiving and monitoring, alarm handling and data plots can

be configured. The CSS applications connect themselves to the IOC processes using

EPICS Channel Access protocol.

CCS comes with an integrated tool to support the CODAC I&C development life cycle:

create, compile, run and package I& C applications.

3.4.3 Maven Editor

The CODAC build tool is an ITER’s proprietary version of Apache Maven, a software

build automation framework.

All the EPICS development tools described in EPICS Application Developer’s Guide [11]

are valid but all of them are included in CODAC encapsulated within specific commands.

I&C projects are developed using an ITER specific work flow that is supported by the

SDD tools and by commands implemented using Maven.

The CODAC development work flow comprises:

1. Creation of the I&C project with the SDD Editor or SDD web application.

2. Generation of the EPICS/CSS/STEP-7 configuration files with the SDD transla-

tor.

3. Creation/update of the software unit with dedicated commands. The sequence of

calls is produced by the SDD translator, according to the I&C project definition.
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4. Edition of user-defined files with test editor or specific editors, such as the CSS

SNL editor and VDCT.

5. Compilation of the EPICS IOC processes and of the real-time programs with the

Maven compile command.

6. Test of the project with the start, stop, status and test commands.

7. Creation of the software packages for distribution with the package command.

As described in CODAC Plant Control Design Handbook [12]. The graphical tool,

maven-editor, provides the user a graphical HMI for executing the commands. This is

also integrated in SDD tools so user can build/test/package the applications from the

SDD editor or the SDD web application.





Chapter 4

National Instruments’ FlexRIO

Technology

4.1 Brief FPGA basis

Field Programmable Gate Arrays (FPGAs) are programmable semiconductor devices

that are based around a matrix of Configurable Logic Blocks (CLBs) connected through

programmable interconnections. As opposed to Application Specific Integrated Circuits

(ASICs), where the device is custom built for the particular design, FPGAs can be

programmed to the desired application or functionality requirements. Although One-

Time Programmable (OTP) FPGAs are available. The common type of FPGAs are

SRAM-based which the modelled hardware hosted can be changed as the design evolves.

Figure 4.1 depicts the main elements which the FPGA is composed by.

Figure 4.1: Scheme of the elements of a FPGA [2]
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The configurable logic blocks (CLBs), slices or logic cells, -depicted in figure 4.2- are the

basic logic unit of an FPGA. They are made up of: a configurable switch matrix with

4 or 6 inputs, some selection circuitry, like multiplexers, and flip-flops. Various FPGA

families differ in the way flip-flops and LUTs are packaged together.The switch matrix

is highly flexible and can be configured to handle combinatorial logic, shift registers or

RAM.

Figure 4.2: Configurable Logic Block Structural Scheme [3]

The flexible interconnection of the FPGA routes the signals between CLBs and I/Os.

There are different types of routing, from the interconnection between CLBs to fast

horizontal and vertical lines crossing the device to global low-skew routing for clocking

and other global signals. The design software makes the interconnect routing task hidden

to the user, unless necessity, significantly reducing design complexity. I/Os in FPGAs are

grouped in banks with each bank independently able to support different I/O standards.

Today’s FPGAs provide over a dozen I/O banks, thus allowing flexibility in I/O support.

Embedded Block RAM memory is available in most FPGAs, which allows for on-chip

memory in your design. Digital clock management is provided by most FPGAs in the

industry and also phase-looped locking that provide precision clock synthesis combined

with jitter reduction and filtering.

Memory resources are another key specification to consider when selecting FPGAs. De-

pending on the FPGA family the on-board RAM can be configured in different block

sizes. Digital signal processing algorithms often need to keep track of an entire block

of data, or the coefficients of a complex equation, and without on-board memory, many

processing functions do not fit within the configurable logic of a FPGA chip.

4.2 FPGA Design Tools

The way to build the logic that will be placed in the FPGA is modelling the behaviour of

the system using development tools and then compile them down to a configuration file
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or bitstream that contains information on how the components should be wired together.

Hardware description languages (HDLs) such as VHDL and Verilog are textual lan-

guages for architecting a circuit.The syntax requires signals to be mapped or connected

from external I/O ports to internal signals, which ultimately are wired to the modelled

hardware entities. However, the modelled hardware behaviour is hard to be visualized

in a sequential line-by-line flow textual language.

To then verify the logic created, it is common practice to write test benches in HDL to

wrap around and exercise the FPGA design by asserting inputs and verifying outputs.

The test bench and FPGA code are run in a simulation environment that models the

hardware timing behaviour of the FPGA chip and displays all of the input and output

signals to the designer for test validation. The process of creating the HDL test bench

and executing the simulation requires at least four times more than creating the original

FPGA HDL design itself.

Once verified the text-based model of the hardware through several steps, synthesizes

the HDL down into a configuration file or bitstream that contains information on how

the components should be wired together. As part of this multi-step process, a mapping

of signal names to the pins on the FPGA chip have to be done.

The rise of high-level synthesis (HLS) design tools, such as NI LabVIEW system de-

sign software, changes the rules of FPGA modelling and delivers new technologies that

convert graphical block diagrams into digital hardware circuitry. The LabVIEW pro-

gramming environment is suited for FPGA modelling being easier for the designer to

recognize parallelism and data flow. Also VHDL can be integrated into LabVIEW FPGA

designs.

To simulate and verify the behavior of your FPGA logic, LabVIEW offers features

directly in the development environment. LabVIEW FPGA compilation tools automate

the compilation process highlighting errors if occur and critical paths if timing errors

occur to debug the design.

4.3 RIO Platform Architecture

The reconfigurable I/O architecture combines the graphical programming environment

with Processor + a reconfigurable FPGA + I /O Modules for measurement and/or

acquisition, see figure 4.3. The advantages of FPGAs for creating highly customizable

and reconfigurable platforms implementing processing and control tasks with hardware

circuitry and the capacity to perform multiple parallel operations within a single clock
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cycle. Orchestrate with a processor offloaded by the FPGA and used to configure the

FPGA, interface with other peripherals, log data, run aplications, etc. and I /O Modules

directly connected to the FPGA for interfacing with other devices.

The reconfigurable FPGA is the core of the RIO hardware system architecture, it is

directly connected to the I/O modules for high-performance access to the I/O circuitry of

each module and unlimited timing, triggering, and synchronization flexibility. Because

each module is connected directly to the FPGA rather than through a bus, there is

almost no control latency for system response compared to other industrial controllers.

Figure 4.3: NI FlexRIO Architecture Diagram [4]

4.3.1 RIO for PXIe and a PC

PXI (PCI eXtensions for Instrumentation) is a rugged, modular instrumentation plat-

form designed for high-performance applications. It combines PCI and PCI Express bus

technologies with a specialized synchronization bus.

PXI Express takes advantage of the PCI Express bus to offer a point-to-point bus topol-

ogy that gives each device its own direct access to the bus with up to 4 GB/s of through-

put. The integrated timing and synchronization lines are used to route synchronization

clocks and triggers internally. A PXI chassis incorporates a dedicated 10 MHz system

reference clock, PXI trigger bus, star trigger bus, and slot-to-slot local bus, while a

PXI Express chassis adds a 100 MHz differential system clock, differential signaling, and

differential star triggers for advanced timing and synchronization.

4.3.1.1 FlexRIO

FlexRIO devices consist of a large FPGA, as well as adapter modules that provide

high-performance analog and digital I/O. The adapter modules are interchangeable and
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Model Bus FPGA FPGA FPGA FPGA Memory Onboard
Slices DSP Slices (Block RAM) Memory

PXIe-7975R PXIe Kintex-7 XC7K410T 63,550 1,540 28,620 kbits 512 MB
PXIe-7966R PXIe Virtex-5 SX95T -2 14,720 640 8,784 kbits 512 MB
PXIe-7965R PXIe Virtex-5 SX95T 14,720 640 8,784 kbits 512 MB
PXIe-7962R PXIe Virtex-5 SX50T 8,160 288 4,752 kbits 512 MB
PXIe-7961R PXIe Virtex-5 SX50T 8,160 288 4,752 kbits 0 MB
PXI-7954R PXI Virtex-5 LX110 17,280 64 4,608 kbits 128 MB
PXI-7953R PXI Virtex-5 LX85 12,960 48 3,456 kbits 128 MB
PXI-7952R PXI Virtex-5 LX50 7,200 48 1,728 kbits 128 MB
PXI-7951R PXI Virtex-5 LX30 4,800 32 1,152 kbits 0 MB

Table 4.1: NI FlexRIO Cards [8]

define the I/O in the LabVIEW FPGA programming environment.

NI FlexRIO FPGA modules feature, as seen in table 4.1, Xilinx Virtex-5 and Kintex-

7 FPGAs, onboard dynamic RAM (DRAM), and an interface to NI FlexRIO adapter

modules that provide I/O to the FPGA. The adapter module interface consists of 132

lines of general-purpose digital I/O directly connected to FPGA pins, in addition to the

power, clocking, and supplementary circuitry necessary to define the interface.

Adapter modules are instantiated as a part of the LabVIEW project in a Component-

Level Intelectual Property (CLIP)and the I/O interaction is provided by LabVIEW

interfaces. Table 4.2 shows the full range of adapter modules provided.

4.3.1.2 R Series

Multifunction DAQ boards can measure and generate a wide variety of signals at dif-

ferent sampling rates. R Series multifunction RIO devices integrates FPGA technology

with analog inputs, analog outputs, and digital I/O lines into a single device. This

devices support the PCI, PCI Express, PXI, and USB buses, with enclosed and board-

only options available. Also feature a dedicated ADC per channel, providing multirate

sampling and individual channel triggering.

4.3.2 RIO for Compact Embedded Aplications

4.3.2.1 Compact RIO

CompactRIO is a small, rugged RIO system for embedded and prototyping applications.

Configurable with four- and eight-slot backplanes. It contains three components: a
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NI 5791 100 MHz Bandwidth RF Transceiver
NI 5792 200 MHz Bandwidth RF Receiver
NI 5793 200 MHz Bandwidth RF Transmitter
NI 5781 100 MS/s Baseband Transceiver
NI 5782 250 MS/s IF Transceiver
NI 5731 12-Bit, 40 MS/s, 2 Channel Digitizer
NI 5732 14-Bit, 80 MS/s, 2 Channel Digitizer
NI 5733 16-Bit, 120 MS/s, 2 Channel Digitizer
NI 5734 16-Bit, 120 MS/s, 4 Channel Digitizer
NI 5751 14-Bit, 50 MS/s,16 Channel Digitizer
NI 5752 12-Bit, 50 MS/s, 32 Channel Digitizer
NI 5761 14-bit, 250 MS/s, 4 Channel Digitizer
NI 5762 16-Bit, 250 MS/s, 2 Channel Digitizer
NI 5771 8-Bit, 3GS/s, 2 Channel Digitizer
NI 5772 12-Bit, 1.6GS/s, 2-Channel Digitizer
AT-1120 14-Bit, 2GS/s, 1-Channel Signal Generator
AT-1212 14-Bit, 1.2GS/s, 2-Channel Signal Generator
NI 6581 200 Mbit/s, 54 Channel, Single Ended Digital I/O
NI 6583 300 Mbit/s, 32 SE and 16 LVDS Channel Digital I/O
NI 6584 16 Mbit/s, 16 Ch, RS-422/RS-485 Digital I/O
NI 6585 200 Mbit/s, 32 Channel, LVDS Digital I/O
NI 6587 1 Gbit/s, 20 Channel, LVDS Digital I/O
NI 1483 Full Configuration Camera Link

Table 4.2: NI FlexRIO Adapter Modules [9]

processor running a real-time operating system (RTOS), a reconfigurable FPGA, and

interchangeable industrial I/O modules.

The CompactRIO system includes an embedded controller and reconfigurable chassis.

The embedded controller can host LabVIEW Real-Time applications and can accomplish

floating-point math and analysis. The embedded chassis contains the reconfigurable I/O

FPGA core directly connected to I/O modules that deliver diverse high-performance I/O

capabilities.

4.4 LabVIEW for FPGA

As mentioned in section 4.2 the use of a HLS design tool like NI LabVIEW leverages

the complexity of the hardware modelled and makes easier the abstraction of following

the dataflow of the modelled hardware. To achieve high performance applications some

specific techniques have to be followed understanding the performance as four different

dimensions interrelated among each other, these are throughput, timing control, FPGA

resource use, and numerical precision as proposed in the NI LabVIEW High-Performance

FPGA Developer’s Guide[5].
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Most of the issues related to high-performance LabVIEW FPGA modelling involve the

effective use of the Single-Cycle Timed Loop (SCTL). The SCTL is a key LabVIEW

FPGA structure that reduces resource use and allows for higher throughput and more

precise timing control. The SCTL provides a different paradigm compared with a Lab-

VIEW While loop or For loop.

The traditional execution model followed by LabVIEW is called Structured data flow,

where a function must have all of its input parameters before it executes and the caller

blocks until the function returns. The way that LabVIEW FPGA accomplish that, when

translated to hardware, is adding circuitry needed to make sure that the components only

outputs valid data when they have valid data at all of their inputs. This is materialised

connecting every block output to a register.

As depicted in 4.4 red boxes with an R inside symbolises the existent registers that

LabVIEW internally adds for accomplishing its paradigm, with the system pipelined

every clock cycle Tclk the signals are only propagated from one register to the next one.

Tclk Tclk Tclk

Figure 4.4: LabVIEW FPGA While Loop with each function registered ,Tclk is the
clock period of the system. Extracted from [5]

In contrast, the SCTL is a structure unique to LabVIEW FPGA applications. The

synthesis of what is placed inside a SCTL differs from While Loop in it is guaranteed

that the signal propagation between combinational blocks - between circuitry- inside it

must not exceed one clock cycle. The one-cycle iteration latency of the SCTL is depicted

in 4.5 where in a single clock cycle Tclk the input signals are propagated to the outputs.

Once the LabVIEW data flow is understood the hardware architect shall follow the

specific techniques for throughput optimization, timing optimization, and resource op-

timization covered in [5] depending on the design requisites.
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Tclk

Figure 4.5: LabVIEW FPGA Single-Cycle Timed Loop,Tclk is the clock period of
the system. Extracted from [5]



Chapter 5

Integration of NI-6581 and NI

PXIe-7965R in CODAC Core

System

5.1 DAQ System Design methodology used

As described in Sanz et al. [1], the design cycle workflow for implementing DAQ systems

based on FlexRIO technology there are different actors, each one in charge of different

parts of the design and implementation. Once the scientist describes the diagnostics

requirements, the system designer labour focuses on adapting among the provided RI-

O/FlexRIO LabVIEW templates more suitable for the particular case and following the

rules for implementation, called CoreDAQ-rules. Based on this methodology, this DAQ

system described in this document is developed. -One of the contributions of this De-

gree final work is to provide the aforementioned methodology one of the templates for

acquiring and generating digital signals through a NI 6581 Adapter Module as a basic

template for the DAQ system designer.

The next step for the designer is to generate the LabVIEW Bitfile with the synthesized

hardware for the FlexRIO using LabVIEW compiler tools. Parsing this Bitfile, with C

API Generator [13] produce one of the output files, the C header file (.h) that contains

specific information to access to the hardware in the FPGA.

At this point the system designer labour focuses on the creation of the EPICS IOC

application relying on the Nominal Device Support as a driver to the DAQ device. The

EPICS IOC is in charge of publishing through the CA the records for managing the

DAQ device. The EPICS device support created by Sanz et al. [1] is able to adapt itself

31
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to the resources and functionalities found in the FPGA. This driver is developed as a

library and it is added to this EPICS IOC application to control the hardware of the

developed DAQ system. The main schema of the aforementioned process is depicted in

figure 5.1.

5.1.1 CoreDAQ-Rules

The minimal unit implemented having the mandatory requirements is the CoreDAQ.

The following rules have to be followed to interact to the hardware from an EPICS IOC

application.

• Nomenclature for FPGA registers and resources: The NI C API Generator gen-

erates the C header file containing the information to access to the hardware in

the FPGA with the same names of the LabVIEW FPGA controls, indicators,

and DMA FIFOs; the aforementioned driver seek these elements if they follow an

specific nomenclature.

1. Names of elements with no indexed postfix: Global elements of the DAQ

system, e.g. DAQStartStop, DeviceTemp, DMAsOverFlow, etc.

2. Names of elements with indexed postfix: When more than one elements of

the same type exist, e.g. three digital inputs: DI0, DI1, and DI2.

• Mandatory registers and resources: There are some mandatory resources to build

the CoreDAQ

1. Mandatory information Registers: Divided into two subcategories attending

at the moment that the driver seek them, ones read in the initialization

process, e.g. total number of channels for the data acquisition, and others

checked at runtime, e.g. status flags for FIFO overflow.

2. Mandatory control registers: Registers used to configure and control the

CoreDAQ in runtime, e.g. control to start and stop the acquisition.

3. Mandatory resources: These consist on FIFO DMAs, used to transfer the

acquired data from the FPGA to the host.

• Extra functionalities of the CoreDAQ : Extra functionalities can be implemented

depending on the requirements of the scientist, e.g. data preprocessing in the

CoreDAQ

For more information about this see [1].
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Figure 5.1: Main schema of the design cycle workflow. Adapted from Sanz et al. [1]
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5.2 Hardware Description

Two hardware configurations are used for the fulfilment of the DAQ system as depicted

in figure 5.3 and figure 5.4. One for local test and debug of the hardware deployed on

the FPGA and the other one is the final hardware architecture of the system with an

ITER Cubicle in the role of Fast Controller.

5.2.1 NI 6581 I/O Adapter Module

The NI 6581 is a 100 MHz digital I/O adapter module for NI FlexRIO. This adapter

module features 54 single-ended digital I/O lines with software-selectable voltages of

1.8, 2.5, and 3.3 (5 V tolerant). An external voltage can be referenced (ranging from

1.8V to 5.5V independently for each of the two connectors), combining it with an NI

FlexRIO FPGA module creates an NI FlexRIO digital instrument (NI PXI-6581R) for

a wide variety of applications from high-speed communication with a device under test

to custom protocol emulation.

Figure 5.2: NI 6581 Adapter Module Specifications table, extracted from [6]

NI 6581 Adapter Module has two Digital Data Connectors (DDC) with three 8-channel

bidirectional ports and three Programmable Function Interface (PFI) lines per connec-

tor. These PFI lines serve as connections to timing signals, you can connect a trigger,

connect or output a reference clock, or output various signals.



Chapter 5. Integration of NI-6581+NI PXIe-7965R in CODAC Core System 35

5.2.2 Development and Test Platform

The hardware architecture used to implement the hardware deployed in the FPGA-based

NI PXIe-7965R device consist of: a NI PXIe-1062Q Chassis [14] with a NI PXIe-7965R

connected to its backplane and a NI 6581 Adapter Module. Also connected to the

backplane, a PCI Express extension NI PXIe-8370 and linked with a MXI-Express x4

copper cable. The other extreme of the cable is connected to a NI PCIe 8371 PCI Express

expansor hosted in the local workstation. As depicted in the figure 5.3. The operating

system of the workstation is Windows 7 and hosts LabVIEW 2013 and LabVIEW-FPGA

2013.

Local WorkStationNI PXIe-1062Q

Backplane

NI PCIe 8371
NI PXIe-8370

NI 6581 + NI PXIe-7965R 

74546-0407 Molex Cable

Backplane

LabVIEW 

FPGA

Figure 5.3: Local tests’ architecture

5.2.3 Final DAQ Architecture for ITER

The hardware architecture used by ITER for fast controllers, where the DAQ system is

placed is specified on ITER Catalog of I& C products - Fast Controllers [10]. In this

case, the NI PXIe-7965R plus the NI 6581 Adapter Module is placed in a NI PXIe-1065

18-slot chassis, designed for a wide range of test and measurement applications providing

up to 1 GB/s per-slot dedicated bandwidth with nine PXI peripheral slots on the chassis.

A PCI Express extension NI PXIe-8370 linked with a MXI-Express x4 copper cable to

the NI PCIe-8371 Remote PCI Express x4 Control of PXI Express expansor, see 5.4.

The CPU is PICMG industrial computer.

5.3 Software description

The EPICS device support for this device is implemented using a software layer, that

generalizes the EPICS device support for DAQ and Timing devices, called Nominal

Device Support (NDS) [7] [15]. The motivation of having a common interface for all
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NI PXIe-8370 PICMG

IOC

NI PXIe-1065 Chassis

Backplane

NI 6581 + NI PXIe-7965R 

Backplane 74546-0407 Molex Cable

NI PCIe 8371

Figure 5.4: Final architecture

those devices eases the labour of engineers to handle them. This generalization is based

on names of functions provided by the device and also in terms of behaviour and usage

of such device.

The DAQ system implemented is different from non FPGA-based devices where hard-

ware functionalities are fixed by the manufacturer. Being conscious of the input/output

ports of the NI 6581 Digital Adapter Module and with the benefit of being an instrument

fully reconfigurable, hardware and software, it is decided to create an EPICS device sup-

port, following NDS methodology, for a device with two channel groups, one for input

channels -acquisition- and other for output channels -test patterns generation-. The

input channel group consist of 8 1-Bit channels.

FlexRIO devices are the bus master of the data transfer from the FPGA to the host

therefore is equivalent to a Direct Memory Access engine mechanism (DMA). This is

an unidirectional transfer mechanism. A DMA channel consists of two FIFO buffers,

one on the host computer, and one on the FPGA target. Each side operates on its

respective buffer and the DMA engine transfers data from one to the other once any of

the following conditions are met:

• The FPGA-side buffer is one quarter full

• The FPGA-side buffer has at least 512 bytes (a full PCI Express packet)

• The timeout of the DMA controller fires. This timer has a period of approximately

one microsecond.

Once the transfer has started, the host reads from the host-side buffer by calling the

Read method. If the host-side buffer fills up, the DMA engine stops transferring data

and the FPGA-side FIFO reports the overflow as a timeout condition.
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Figure 5.5: DMA engine mechansim in RIO technology. Extracted from [5]

Depicted in figure 5.5 this mechanism work like a producer-consumer mechanism. NI

recommends the host-side buffer to be greater of 10,000 elements and twice the FPGA-

side buffer size. That recommendations comes from the point that the consumption of

the elements of the buffer are slower than the generation of them.

Figure 5.6 outline the data flow through the FlexRIO 7965R and NI 6581 adapter module

to the host computer for local test where a simple LabVIEW Virtual Instrument manages

the hardware and plots the acquired data.
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Figure 5.6: Local Architecture With flux

The final software architecture, figure 5.7, differs from the other in the use of a Linux-

based platform where an EPICS IOC is created to control the instrument, the EPICS
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IOC will be detailed in section 5.9. In short, the acquisition from EPICS is materialized

with an EPICS thread in the Digital Input Channel Group, then the Digital Input

Channel Group transfers the acquired data to each Digital Input Channel. Every Digital

Input Channel has its own buffer of acquired data corresponding to each line of the digital

input port of the NI 6581 adapter module.

NI PXIe-1062Q

Backplane

NI PCIe 8371
NI PXIe-8370

NI 6581 + NI PXIe-7965R 

74546-0407 Molex Cable

Backplane

NI 6581
Adapter Module FPGA

NI 6581 CLIP

D
M

A
 to

 
H

os
t

C
ha

nn
el

 1

Digital Inputs

64 bit word P C I e

Data Acquisition
Module

P
C

Ie

Raw data

Digital Outputs

Configuration

Parameters

&

Indicators

P
C

Ie

PICMG

EPICS Device Driver

Configure Acquisition 
parameters

Write on FPGA 
registersPCIe

Data
Acquisition

DMA From 
FPGA PCIe NiFlexRIO & 

NiFPGA

NiFlexRIO & 

NiFPGA

IOC

Figure 5.7: Final Architecture With Data Flux

5.4 LabVIEW project

The LabVIEW project consist in two main elements, the host and the target, see 5.8.

The LabVIEW host is only used for local development tests. Each FPGA target holds

the same structure and elements, then depending on the FlexRIO board, one of the

hardware pieces is selected to be the target for the synthesis. In this case, the target is

FlexRIO 7965R device.

Figure 5.8 depicts the multi-FPGA target solution for the DAQ system with the NI 6581

adapter module.
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Figure 5.8: LabVIEW Multi-target FPGA Project

The device behaviour acts as the automata depicted in figure 5.9, the transition among

states is achieved with input signals of the FPGA. Figure 5.10 shows the main Single-

Cycle Timed Loop (SCTL) for test pattern generation through connector B port 0 and

the continuous acquisition state materialized in labVIEW code, data is acquired through

connector A port 0. As explained in section 5.1, the name of the controls and indicators

with the exception of the mandatory ones, is preceded by aux- and the type of data

followed by a number.

The device has two working modes, one mode acquires data continuously - Continuous

Acquisition - and the other only acquires the number of samples commanded by the user

- Finite Acquisition -. The acquisition can be fired by software or by the PXI trigger

line 1, useful if the acquisition wants to be started by other device. The test pattern

generator can be bypassed to the acquiring section of the hardware, useful if the user

wants to perform acquisition tests with known patterns.

Operationally the hardware works as explained below. Every FPGA clock cycle, 8 bits

of data are acquired and stored in a 64-bit word by the iterative process of shifting the

64-bit word and inserting the new 8 bits acquired in the less significant byte. Each clock

cycle this process is repeated until the 64-bit word is filled, then the data is written

in the DMAToHost FIFO. The aforementioned process is analogue in the two working

modes, the main difference of the finite acquisition state is that every 64-bit word is



Chapter 5. Integration of NI-6581+NI PXIe-7965R in CODAC Core System 40

counted down and compared with the input control implementing the value of number

of data per trigger to acquire.

Figure 5.9: Automata of the hardware behaviour implemented in the PXIe7965R
FPGA

Figure 5.10: Hardware implemented in the PXIe7965R FPGA
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5.5 Software Layers

Figure 5.11 show the different user-space and kernel-space software layers involved in the

operation of the EPICS driver developed. The next sections will describe the different

pieces of this driver; departing from the hardware implemented in the RIO device to

the Channel Access client created to interface with the driver. The developed driver

interfaces with the hardware through the NIRIO user library.

Figure 5.11: Software layers of the EPICS driver developed. Yellow coloured boxes
correpond to parts of the ndsRIO driver. Figure based on [7].
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5.6 C API

The FPGA C API Interface is a C API for communication between processor and FPGA

within NI reconfigurable I/O (RIO) hardware such as NI CompactRIO, NI Single-Board

RIO, NI FlexRIO, NI R Series multifunction RIO, and NI MXI-Express RIO for embed-

ded control and acquisition applications.

With the FPGA Interface C API, developers can use LabVIEW graphical tools to con-

figure the field-programmable gate array (FPGA) within NI hardware and choose either

LabVIEW or C/C++ tools to program the processor within the system.

The generated FPGA Interface C API of the FPGA application consists of the following

files: *.h file, *.lvbitx file, NiFpga.h, and NiFpga.c. Unless you specify a custom prefix,

the FPGA Interface C API Generator names the .h file, the .lvbitx file, and the constants

in the .h file based on the name of the FPGA VI from which the application bitfile was

compiled.

• Generated *.h File:

It is a C header file that contains all the constants required by function calls in the

application. The LabVIEW controls, indicators, and FIFOs present in the FPGA

are represented by register offsets.

• Generated *.lvbitx Bitfile:

This is a version of the original bitfile created by LabVIEW, renamed to match

the prefix of the constants in the .h header file. This file has all the information

of the digital circuit to configure the FPGA.

• NiFpga.h file and NiFpga.c

The first one is a C header file. It is identical for all generated C APIs. It declares

all the errors, types, constants, and functions needed to write an application. Most

of these functions are defined in NiFpga.c which defines all the functions that the

application can call. NiFpga.c loads and unloads the NiFpga library at runtime,

and forwards function calls to that library.

NiFpga.h and NiFpga.c files are not used with the open source NI-RIO driver hosted in

the ITER CCS, for more information go to [16].

1 /∗
∗ Generated with the FPGA In t e r f a c e C API Generator 1 3 . 0 . 0

3 ∗ f o r NI−RIO 13 . 0 . 0 or l a t e r .

∗/
5 #i f n d e f NiFpga FPGA6581PXIe7965R h

#de f i n e NiFpga FPGA6581PXIe7965R h

7

#i f n d e f NiFpga Version
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9 #de f i n e NiFpga Version 1300

#end i f

11

#inc lude ”NiFpga . h”

13

/∗∗
15 ∗ The f i l ename o f the FPGA b i t f i l e .

∗
17 ∗ This i s a #de f i n e to a l low f o r s t r i n g l i t e r a l concatenat ion . For example :

∗
19 ∗ s t a t i c const char∗ const B i t f i l e = ”C:\\” NiFpga FPGA6581PXIe7965R Bitfile ;

∗/
21 #de f i n e NiFpga FPGA6581PXIe7965R Bitfile ”NiFpga FPGA6581PXIe7965R . l vb i t x ”

23 /∗∗
∗ The s i gna tu r e o f the FPGA b i t f i l e .

25 ∗/
s t a t i c const char∗ const NiFpga FPGA6581PXIe7965R Signature = ”918

E43A425432733E2C0410D9D7714B5” ;

27

typede f enum

29 {
NiFpga FPGA6581PXIe7965R IndicatorBool InitDone = 0x2E ,

31 NiFpga FPGA6581PXIe7965R IndicatorBool RIOAdapterCorrect = 0x12 ,

NiFpga FPGA6581PXIe7965R IndicatorBool auxDI0 = 0x4E ,

33 NiFpga FPGA6581PXIe7965R IndicatorBool debug = 0x1E ,

} NiFpga FPGA6581PXIe7965R IndicatorBool ;

35 typede f enum

{
37 NiFpga FPGA6581PXIe7965R IndicatorU8 DeviceType = 0x26 ,

NiFpga FPGA6581PXIe7965R IndicatorU8 NoOfWFGen = 0xE ,

39 } NiFpga FPGA6581PXIe7965R IndicatorU8 ;

typede f enum

41 {
NiFpga FPGA6581PXIe7965R IndicatorI16 DeviceTemp = 0x36 ,

43 } NiFpga FPGA6581PXIe7965R IndicatorI16 ;

typede f enum

45 {
NiFpga FPGA6581PXIe7965R IndicatorU32 ExpectedIOModuleID = 0x18 ,

47 NiFpga FPGA6581PXIe7965R IndicatorU32 Fref = 0x28 ,

NiFpga FPGA6581PXIe7965R IndicatorU32 InsertedIOModuleID = 0x14 ,

49 NiFpga FPGA6581PXIe7965R IndicatorU32 auxAI0 = 0x40 ,

} NiFpga FPGA6581PXIe7965R IndicatorU32 ;

51 typede f enum

{
53 NiFpga FPGA6581PXIe7965R ControlBool DAQStartStop = 0x32 ,

NiFpga FPGA6581PXIe7965R ControlBool auxDO0 = 0x52 ,

55 } NiFpga FPGA6581PXIe7965R ControlBool ;

typede f enum

57 {
NiFpga FPGA6581PXIe7965R ControlU16 SamplingRate0 = 0x6 ,

59 } NiFpga FPGA6581PXIe7965R ControlU16 ;

typede f enum

61 {
NiFpga FPGA6581PXIe7965R ControlU32 auxAO0 = 0x54 ,

63 NiFpga FPGA6581PXIe7965R ControlU32 auxAO1 = 0x48 ,

NiFpga FPGA6581PXIe7965R ControlU32 auxAO2 = 0x0 ,

65 NiFpga FPGA6581PXIe7965R ControlU32 auxAO3 = 0x44 ,

NiFpga FPGA6581PXIe7965R ControlU32 auxAO4 = 0x38 ,

67 NiFpga FPGA6581PXIe7965R ControlU32 auxAO5 = 0x3C ,

} NiFpga FPGA6581PXIe7965R ControlU32 ;

69 typede f enum

{
71 NiFpga FPGA6581PXIe7965R IndicatorArrayU8 FPGAVIversion = 0x22 ,

} NiFpga FPGA6581PXIe7965R IndicatorArrayU8 ;

73 typede f enum

{
75 NiFpga FPGA6581PXIe7965R IndicatorArrayU8Size FPGAVIversion = 2 ,

} NiFpga FPGA6581PXIe7965R IndicatorArrayU8Size ;

77 typede f enum

{
79 NiFpga FPGA6581PXIe7965R IndicatorArrayI16 NCHperDMATtoHOST = 0xA,

} NiFpga FPGA6581PXIe7965R IndicatorArrayI16 ;

81 typede f enum

{
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83 NiFpga FPGA6581PXIe7965R IndicatorArrayI16Size NCHperDMATtoHOST = 1 ,

} NiFpga FPGA6581PXIe7965R IndicatorArrayI16Size ;

85 typede f enum

{
87 NiFpga FPGA6581PXIe7965R TargetToHostFifoU64 DMATtoHOST0 = 0 ,

} NiFpga FPGA6581PXIe7965R TargetToHostFifoU64 ;

89 #end i f

Listing 5.1: C header file example generated from an FPGA VI by C API Generator

As shown in listing 5.1, the indicators and controls are arranged in different C enumer-

ated data types depending on the type of data, each one has its own offset value to be

accessed. This *.h file and *.lvbitx file will be part of the driver source files once created

by the Maven linux shell commands.

5.7 ITER CODAC Maven

Maven is a software management and build automation tool. The core of Maven is a

framework for plugins. With plugins, any task can be performed to automate the build-

ing of a project, as well as analyze the source code, generate documentation or deploy

the finished product to a repository. ITER CODAC Maven framework documentation

[17].

Projects created by a Maven plugin are called Maven projects. The basic configuration

file of each Maven project is named the pom.xml. Although the name of the file may be

changed if needed, it’s required that each project have one of these configuration files.

With a combination of internal and external plugins, the ITER Plugin was able to:

• Enable quick configuration of software projects at ITER CODAC

• Create empty projects

• Manipulate project files

• Start and stopping IOCs

• Manage CODAC servers (such as beast and beauty)

• Handle dependencies

• Check the environment sanity

• And finally, to deploy the project to a repository.
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The make-base-app plugin is used for creating EPICS applications from a template. It is

invoked as a command from the console and the result will be a new directory containing

a Maven project set up to build EPICS applications:

• pom.xml was generated specifically for the new project

• Directory src/main/epics contains the source code

• Directory src/test/epics contains the skeleton of automated test

• Directory target will contain the compiled code and the generated RPMs

1 $ mvn i t e r : newunit −Dunit=m−nds−6581acqgen

$ cd m−nds6581acqgen/

3 $ mvn i t e r : newapp −Dapp=nds6581acqgen −Dtype=nds

$ mvn i t e r : newioc −Dioc=nds6581acqgen

Listing 5.2: Creation of the main skeleton of the EPICS driver

To create a new directory structure for the EPICS driver Maven plugin is invoked from

a Linux shell, after entering the commands listed in 5.2 if the tree bash command is

performed the file structure generated can be seen in listing 5.3.

.

2 ‘−− m−nds−6581acqgen

|−− pom. xml

4 ‘−− s r c

|−− main

6 | ‘−− ep i c s

| |−− con f i gu r e

8 | | |−− CONFIG

| | |−− CONFIG SITE

10 | | |−− Makef i l e

| | |−− RULES

12 | | |−− RULES DIRS

| | |−− RULES. i o c

14 | | ‘−− RULES TOP

| |−− iocBoot

16 | | |−− iocnds6581acqgen

| | | |−− envSystem

18 | | | |−− Makef i l e

| | | |−− README

20 | | | ‘−− s t . cmd

| | ‘−− Makef i l e

22 | |−− Makef i l e

| ‘−− nds6581acqgenApp

24 | |−− Db

| | |−− Makef i l e

26 | | |−− nds6581acqgenAnalogChannelEx . template

| | |−− nds6581acqgenAnalogChannel . template

28 | | |−− nds6581acqgenAnalogInputChannel . template

| | |−− nds6581acqgenAnalogOutputChannel . template

30 | | |−− nds6581acqgenChannelGroup . template

| | |−− nds6581acqgenChannel . template

32 | | |−− nds6581acqgenDevice . template

| | |−− nds6581acqgenDigita lChannel . template

34 | | |−− nds6581acqgenDigita l InputChannel . template

| | |−− nds6581acqgenDigitalInputOutputChannel . template

36 | | |−− nds6581acqgenDigitalOutputChannel−noparent . template

| | |−− nds6581acqgenDigitalOutputChannel . template

38 | | |−− nds6581acqgenFFT . template

| | |−− nds6581acqgenImageChannelRBV . template

40 | | |−− nds6581acqgenImageChannel . template
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| | |−− nds6581acqgenNDArrayChannel . template

42 | | ‘−− nds6581acqgen . s ub s t i t u t i o n s

| |−− Makef i l e

44 | ‘−− s r c

| |−− Makef i l e

46 | |−− nds6581acqgenADIOChannel . cpp

| |−− nds6581acqgenADIOChannel . h

48 | |−− nds6581acqgenChannelGroup . cpp

| |−− nds6581acqgenChannelGroup . h

50 | |−− nds6581acqgenDevice . cpp

| |−− nds6581acqgenDevice . h

52 | |−− nds6581acqgenDIChannel . cpp

| |−− nds6581acqgenDIChannel . h

54 | |−− nds6581acqgen . h

| |−− nds6581acqgenImageChannel . cpp

56 | |−− nds6581acqgenImageChannel . h

| |−− nds6581acqgenMain . cpp

58 | |−− nds6581acqgenNDArrayChannel . cpp

| ‘−− nds6581acqgenNDArrayChannel . h

60 ‘−− t e s t

‘−− ep i c s

62 |−− t e s t . sh

|−− t e s t t emp l a t e . p l

64 |−− t e s t t emp l a t e . sh

‘−− u t i l . sh

Listing 5.3: EPICS driver tree before compilation

5.8 Nominal Device Support

As introduced in section 5.3, the Nominal Device Support (NDS) provides core for device

integration to EPICS control system. It defines EPICS database interfaces which intend

to be common for the all devices of similar type.

To ease the developing labour, NDS provides sets of EPICS templates and empty ap-

plication templates for EPICS device support module.The output of these templates is

a system library. The templates include the skeleton for a full driver, the developer

must then edit the database template files and the C code of the driver to match the

functionalities of the particular device. Listing 5.3 shows the file structure of a NDS

generic DAQ.

Once the fuctionalities of the device have been created the compilation is performed

using the command:

1 $ mvn compile

Listing 5.4: Compilation Maven command

The compilation creates a copy of all the directories of the project from src/ to target/

and compiles the application creating the EPICS database, and the libraries of the

application *.a and *.so. Listing 5.5 shows the target/ subdirectory structure. To

abbreviate the contents of src/ are not displayed because they suffer no modification

once compilation is performed.
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1 .

‘−− m−nds6581acqgen

3 |−− pom. xml

|−− s r c

5 | . . .

|
7 ‘−− t a r g e t

|−− main

9 | |−− ep i c s

| | |−− bin

11 | | | ‘−− l inux−x86 64

| | | ‘−− nds6581acqgen

13 | | |−− con f i gu r e

| | | |−− CONFIG

15 | | | |−− CONFIG SITE

| | | |−− Makef i l e

17 | | | |−− O.Common

| | | |−− O. l inux−x86 64

19 | | | | ‘−− Makef i l e

| | | |−− RELEASE

21 | | | |−− RULES

| | | |−− RULES DIRS

23 | | | |−− RULES. i o c

| | | ‘−− RULES TOP

25 | | |−− db

| | | |−− nds6581acqgenAnalogChannel . template

27 | | | |−− nds6581acqgenAnalogInputChannel . template

| | | |−− nds6581acqgenAnalogOutputChannel . template

29 | | | |−− nds6581acqgenChannelGroup . template

| | | |−− nds6581acqgenChannel . template

31 | | | |−− nds6581acqgen . db

| | | |−− nds6581acqgenDevice . template

33 | | | |−− nds6581acqgenDigita lChannel . template

| | | |−− nds6581acqgenDigita l InputChannel . template

35 | | | |−− nds6581acqgenDigitalInputOutputChannel . template

| | | |−− nds6581acqgenDigitalOutputChannel−noparent . template

37 | | | |−− nds6581acqgenDigitalOutputChannel . template

| | | ‘−− nds6581acqgenImageChannel . template

39 | | |−− dbd

| | | ‘−− nds6581acqgen . dbd

41 | | |−− iocBoot

| | | |−− iocnds6581acqgen

43 | | | | |−− envPaths

| | | | |−− envSystem

45 | | | | |−− Makef i l e

| | | | |−− README

47 | | | | ‘−− s t . cmd

| | | ‘−− Makef i l e

49 | | |−− l i b

| | | ‘−− l inux−x86 64

51 | | | |−− l ibnds6581acqgen . a

| | | ‘−− l ibnds6581acqgen . so

53 | | |−− Makef i l e

| | ‘−− nds6581acqgenApp

55 | | |−− Db

| | | |−− Makef i l e

57 | | | |−− nds6581acqgenAnalogChannelEx . template

| | | |−− nds6581acqgenAnalogChannel . template

59 | | | |−− nds6581acqgenAnalogInputChannel . template

| | | |−− nds6581acqgenAnalogOutputChannel . template

61 | | | |−− nds6581acqgenChannelGroup . template

| | | |−− nds6581acqgenChannel . template

63 | | | |−− nds6581acqgenDevice . template

| | | |−− nds6581acqgenDigita lChannel . template

65 | | | |−− nds6581acqgenDigita l InputChannel . template

| | | |−− nds6581acqgenDigitalInputOutputChannel . template

67 | | | |−− nds6581acqgenDigitalOutputChannel−noparent . template

| | | |−− nds6581acqgenDigitalOutputChannel . template

69 | | | |−− nds6581acqgenFFT . template

| | | |−− nds6581acqgenImageChannelRBV . template

71 | | | |−− nds6581acqgenImageChannel . template

| | | |−− nds6581acqgenNDArrayChannel . template

73 | | | |−− nds6581acqgen . s ub s t i t u t i o n s

| | | |−− O.Common
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75 | | | | ‘−− nds6581acqgen . db

| | | ‘−− O. l inux−x86 64

77 | | | |−− Makef i l e

| | | ‘−− nds6581acqgen . db . d

79 | | |−− Makef i l e

| | ‘−− s r c

81 | | |−− Makef i l e

| | |−− nds6581acqgenADIOChannel . cpp

83 | | |−− nds6581acqgenADIOChannel . h

| | |−− nds6581acqgenChannelGroup . cpp

85 | | |−− nds6581acqgenChannelGroup . h

| | |−− nds6581acqgenDevice . cpp

87 | | |−− nds6581acqgenDevice . h

| | |−− nds6581acqgenDIChannel . cpp

89 | | |−− nds6581acqgenDIChannel . h

| | |−− nds6581acqgen . h

91 | | |−− nds6581acqgenImageChannel . cpp

| | |−− nds6581acqgenImageChannel . h

93 | | |−− nds6581acqgenMain . cpp

| | |−− nds6581acqgenNDArrayChannel . cpp

95 | | |−− nds6581acqgenNDArrayChannel . h

| | |−− O.Common

97 | | | |−− nds6581acqgen . dbd

| | | ‘−− nds6581acqgenInclude . dbd

99 | | ‘−− O. l inux−x86 64

| | |−− l ibnds6581acqgen . a

101 | | |−− l ibnds6581acqgen . so

| | |−− Makef i l e

103 | | |−− nds6581acqgen

| | |−− nds6581acqgenADIOChannel . d

105 | | |−− nds6581acqgenADIOChannel . o

| | |−− nds6581acqgenChannelGroup . d

107 | | |−− nds6581acqgenChannelGroup . o

| | |−− nds6581acqgen . dbd . d

109 | | |−− nds6581acqgenDevice . d

| | |−− nds6581acqgenDevice . o

111 | | |−− nds6581acqgenDIChannel . d

| | |−− nds6581acqgenDIChannel . o

113 | | |−− nds6581acqgenImageChannel . d

| | |−− nds6581acqgenImageChannel . o

115 | | |−− nds6581acqgenMain . d

| | |−− nds6581acqgenMain . o

117 | | |−− nds6581acqgen reg i s te rRecordDev iceDr iver . cpp

| | |−− nds6581acqgen reg i s te rRecordDev iceDr iver . d

119 | | ‘−− nds6581acqgen reg i s te rRecordDev iceDr iver . o

| ‘−− s c r i p t s

121 | |−− nds6581acqgen−i o c

| ‘−− unitenv

123 ‘−− t e s t

‘−− ep i c s

125 |−− t e s t . sh

|−− t e s t t emp l a t e . p l

127 |−− t e s t t emp l a t e . sh

‘−− u t i l . sh

Listing 5.5: EPICS driver tree after compilation

Now the labour of the designer is to configure the templates to create the EPICS driver

fitting the requirements. The files that have to be modified are contained in the following

directories

• /m-nds-6581acqgen/src/main/epics/iocBoot/iocnds6581acqgen

This directory contains the startup file st.cmd to run de IOC

• /m-nds-6581acqgen/src/main/epics/nds6581acqgenApp/Db

This directory contains the database of all records of the device
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• /m-nds-6581acqgen/src/main/epics/nds6581acqgenApp/src

This directory contains the IOC sources where the DAQ functionality have to be

implemented.

The next section covers in detail the creation of the EPICS device support for the DAQ

system.

5.9 EPICS IOC

Doing an abstraction exercise and imaging the device as a black box with the EPICS

IOC element in charge of the interface with the user through a Channel Access Client,

the DAQ system has to be seen as a device with a digital input channel group with

eight channels inside and a digital output channel group with a channel inside, although

the configuration and the control lines of the device have to be taken also into account.

To implement such interfaces to the device and from the device to EPICS CA, several

EPICS records have to be created at device level, the NDS proposed method for Process

Variable handling through getters, setters and callback functions is used respectively to

get some parameters from the implemented hardware, to change some controls of the

implemented hardware, or to write data to an EPICS record. To accomplish that, the

designer has to register new records in the device template and create the aforementioned

getters and setters to manage them. The next sections get down to this processes.

5.9.1 IOC Startup File

The IOC startup file, st.cmd, contains the IOC shell command in charge of defining the

structure of the device. With this command the device constructor is called which is in

charge of creating the channel groups and channels.

ndsCreateDevice ”nds6581acqgen” , ”$ (PORT)” , ”FILE=/tmp/q , N AI=0,N AO=0,N DI=8,N DO=1,N DIO=0,

N IMAGE=0, RIOSERIAL=1666c59 ,RIOVI=FPGA6581PXIe7965R ,RIOMODEL=PXIe−7965R”

Listing 5.6: Creation of the device and its channels

Listing 5.6 shows the st.cmd line corresponding to the NDS call for the creation of the

device, each parameter corresponds to:

• nds6581acqgen is the name of the created device

• N AI=0,N AO=0,N DI=8,N DO=1,N DIO=0,N IMAGE=0 are the declarations

of the device channels, in this case eight digital input channels inside a channel

group and one digital output channel inside a channel group are going to be created.
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– N AI=0: Number of Analog Input channels for the device

– N AO=0: Number of Analog Output channels for the device

– N DI=8: Number of Digital Input channels for the device

– N DO=1: Number of Digital Output channels for the device

– N DIO=0: Number of Digital Input/Output channels for the device

– N IMAGE=0: Number of Image channels for the device

• RIOSERIAL=1666c59 corresponds to the serial number of the FlexRIO device

used

• RIOVI=FPGA6581PXIe7965R is the name of the LabVIEW bitfile (lvbitx) that

has to be downloaded to the FPGA

• RIOMODEL=PXIe-7965R is the NiFlexRIO card model

The *.h and the *.lvbitx, in this case NiFpga FPGA6581PXIe7965R.h and NiFpga

FPGA6581PXIe7965R.lvbitx files have to be copied manually inside the EPICS IOC

source code directory /m-nds-6581acqgen/src/main/epics/nds6581acqgenApp/src.

5.9.2 EPICS database

The IOC database folder, named in this case /m-nds-6581acqgen/src/main/epics/

nds6581acqgenApp/Db, hosts the NDS templates for the device records, the channel

groups and the channels as seen in listing 5.7. It is automatically generated when the

application is created with the commands explained above 5.2. The developer only has

to edit the files to add the records required not being specified by default and delete the

records that will not be used in the device.

1 .

‘−− Db

3 |−− Makef i l e

|−− nds6581acqgenAnalogChannelEx . template

5 |−− nds6581acqgenAnalogChannel . template

|−− nds6581acqgenAnalogInputChannel . template

7 |−− nds6581acqgenAnalogOutputChannel . template

|−− nds6581acqgenChannelGroup . template

9 |−− nds6581acqgenChannel . template

|−− nds6581acqgenDevice . template

11 |−− nds6581acqgenDIChannelGroup . template

|−− nds6581acqgenDigita lChannel . template

13 |−− nds6581acqgenDigita l InputChannel . template

|−− nds6581acqgenDigitalInputOutputChannel . template

15 |−− nds6581acqgenDigitalOutputChannel−noparent . template

|−− nds6581acqgenDigitalOutputChannel . template

17 |−− nds6581acqgenDOChannelGroup . template

|−− nds6581acqgenFFT . template

19 |−− nds6581acqgenImageChannelRBV . template

|−− nds6581acqgenImageChannel . template

21 |−− nds6581acqgenNDArrayChannel . template

‘−− nds6581acqgen . s ub s t i t u t i o n s
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Listing 5.7: EPICS Database directory

For instance, listing 5.8 is an extract of the record database file for the device. The

first record depicted is the one in charge of publishing the state of the device, its name

depends on the variable $(PREFIX) set in the st.cmd file. NDS provides a way to

connect EPICS record to C++ call-back functions called record’s handlers. For each

record NDS provides two functions, a getter and a setter. Getter and setter are used for

record processing [7].

2 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− [ Device ] −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Template f i l e : nds6581acqgenDevice . template

4 #

6 record (mbbi , ”$ (PREFIX) ” ) {
f i e l d (DESC, ”The s t a t e o f the dev i ce . ” )

8 f i e l d (DTYP, ” asynInt32 ” )

f i e l d (INP , ”@asyn ( $ (ASYN PORT) , $ (ASYN ADDR) ) State ” )

10 f i e l d (ZRVL, ”0” )

f i e l d (ZRST, ”UNKNOWN”)

12 f i e l d (ONVL, ”1” )

f i e l d (ONST, ”IOCINIT” )

14 f i e l d (TWVL, ”2” )

f i e l d (TWST, ”OFF” )

16 f i e l d (THVL, ”3” )

f i e l d (THST, ”INIT” )

18 f i e l d (FRVL, ”4” )

f i e l d (FRST, ”ON” )

20 f i e l d (FVVL, ”5” )

f i e l d (FVST, ”ERROR” )

22 f i e l d (SXVL, ”6” )

f i e l d (SXST, ”FAULT” )

24 f i e l d (SVVL, ”7” )

f i e l d (SVST, ”RESETTING” )

26 f i e l d (SCAN, ” I /O In t r ” )

}
28 record (waveform , ”$ (PREFIX)−MSGS” ) {

f i e l d (DESC, ”Send message to dev i ce d r i v e r . ” )

30 f i e l d (DTYP, ”asynOctetWrite ” )

f i e l d (INP , ”@asyn ( $ (ASYN PORT) , $ (ASYN ADDR) )Command” )

32 f i e l d (FTVL, ”UCHAR” )

f i e l d (NELM, ”255” )

34 }

36 record (waveform , ”$ (PREFIX)−MSGR” ) {
f i e l d (DESC, ”Receive message from dev ice d r i v e r . ” )

38 f i e l d (DTYP, ”asynOctetRead” )

f i e l d (INP , ”@asyn ( $ (ASYN PORT) , $ (ASYN ADDR) )Command” )

40 f i e l d (SCAN, ” I /O In t r ” )

f i e l d (FTVL, ”UCHAR” )

42 f i e l d (NELM, ”255” )

}

Listing 5.8: EPICS Database directory

5.9.3 Device and Channels of the IOC

The Input Output Controller have to manage the hardware of the device implemented

in the FexRIO-7965R. Figure 5.12 depicts the acquisition software state machine. This
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acquisition state machine is materialized in the digital input channel group using the

mechanisms explained in section 5.3. After that, every digital input channel buffer is

filled with the acquired data.

Figure 5.12: Data Acquisition Software State Machine.
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Listing 5.9 is an extract of the device creation process where the parameters from the

ndsCreateDevice command are evaluated to create channel groups and channels.

1 f o r ( channelType = 0 ; channelType < 6 ; ++channelType )

{
3 //Getting i n t parameter

nChannels = getIntParam (CHANNEL TYPE PARAM NAME[ channelType ] , 0) ;

5 i f ( nChannels > 0 )

{
7 nds : : Channel∗ channel ;

// Creat ing Channel Group ob j e c t .

9 // NDS C++ requ i r e s Channel Group ob j e c t .

// For t h i s o j e c t AsynPort w i l l be c reated to support new

11 // NDS asyn addres s ing . ( s ee documentation f o r d e t a i l s )

13 //From base / templates /makeBaseApp/top/ndsApp/ s r c / APPNAME . h

// #de f i n e CHANNEL TYPE AI 0

15 // #de f i n e CHANNEL TYPE AO 1

// #de f i n e CHANNEL TYPE DI 2

17 // #de f i n e CHANNEL TYPE DO 3

// #de f i n e CHANNEL TYPE DIO 4

19 // #de f i n e CHANNEL TYPE IMAGE 5

// #de f i n e CHANNEL TYPE COUNT (CHANNEL TYPE IMAGE + 1)

21

i f ( channelType == CHANNEL TYPE DI)

23 {

25 nds : : ChannelGroup ∗channelGroupDI = new acqgenExChannelGroupDI (CHANNEL TYPE SUFFIX[

channelType ] , 0 , nChannels , bufS ize ,&RIOdevicedata ) ;

reg isterChannelGroup ( channelGroupDI ) ;

27 f o r ( i n t i =0; i<nChannels ; ++i )

{
29 // Creat ing input channel

channel = new acqgenExDIChannel ( channelType , f i l e ,CHANNEL TYPE SUFFIX[ channelType ] , i

, bufS ize ,&RIOdevicedata ) ;

31 channelGroupDI−>r eg i s t e rChanne l ( channel ) ;

}
33

}
35

e l s e i f ( channelType == CHANNEL TYPE DO)

37 {
nds : : ChannelGroup ∗channelGroupDO = new acqgenExChannelGroupDO(CHANNEL TYPE SUFFIX[

channelType ] , 0 , nChannels ) ;

39 registerChannelGroup ( channelGroupDO ) ;

f o r ( i n t i =0; i<nChannels ; ++i )

41 {
channel = new acqgenExDOChannel ( channelType , f i l e ,CHANNEL TYPE SUFFIX[ channelType ] , i

, bufS ize ,&RIOdevicedata ) ;

43 channelGroupDO−>r eg i s t e rChanne l ( channel ) ;

}
45

}

Listing 5.9: Extract of Device Code Digital Input Channel Group and Channels

creation

Listing 5.10 shows the part of the acquisition handle, implemented in the digital input

channel group, in charge of reading from the DMA the acquired data by the FlexRIO

7965R device. NDS defines some basic states for managing internally channels, channel

groups and devices, CHANNEL STATE PROCESSING is the functional state of every

channel, channel group and device. The ring buffers for the digital input channels are

created and the elements acquired are inserted in aforementioned ring buffers in the

startCONTINUOUSAcquisition()

case nds : : CHANNEL STATE PROCESSING:
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2 do{
switch ( RIOdevicedata−>DMAs [ 0 ] . acqu i s i t i onType ) // acqu i s i t i onType i nd i c a t e s the type

o f a cqu i s i t i on , cont inuous or f i n i t e

4 {
case cont inuousacq : // Streaming to EPICS

6 //!< Parameters Conf igurat ion .

RIOdevicedata−>DMAs [ 0 ] . NwordU64=4096; //Number o f 64 b i t s words to read .

8 RIOdevicedata−>DMAs [ 0 ] . pdata=(u in t64 t ∗) mal loc ( RIOdevicedata−>DMAs [ 0 ] . NwordU64∗
s i z e o f ( u in t 64 t ) ) ;

//!<Creat ion o f one r i n gbu f f e r f o r each channel .

10 f o r ( j =0; j< RIOdevicedata−>NCHperDMAarray [ 0 ] ; j++)

{
12 RIOdevicedata−>DMAs [ 0 ] . IdRing [ j ]= epicsRingBytesCreate ( RIOdevicedata−>DMAs [ 0 ] .

NwordU64∗100) ; //!<Ring bu f f e r to s t o r e raw data .

NDS INF( ”\n( In fo acqgen :%s ) I t has been created an EPICS Ring bu f f e r f o r channel

%d o f DMA0\n” , RIOdevicedata−>RIOident i f i e r , j ) ;

14 }
NDS INF( ”\nContinuous Acqu i s i t i on \n” ) ;

16 //!< The DMA FIFO Conf igurat ion

configDMAFifo ( ) ;

18 //!< The Star t DMA FIFO

startDMAFifo ( ) ;

20 //!< Cleaning DMA FIFO

cleanDMAFifo ( ) ;

22 //!< DAQStartStop −>>>Star t

DaqStartStop (1) ;

24 //!< START ACQUIsition DATA ( Continuous Mode)

startCONTINUOUSAcquisition ( ) ; //!< Acquir ing loop

26 //!< STOP Data Acqu i s i t i on .

DaqStartStop (0) ;

28 //!< Cleaning DMA FIFO

cleanDMAFifo ( ) ;

30 //!< Stop DMA FIFO

stopDMAFifo ( ) ;

32 //Free po in t e r s

f r e e ( RIOdevicedata−>DMAs [ 0 ] . pdata ) ;

34 f r e e ( paux8 ) ;

36 break ;

38 case f i n i t e a c q :

//!< Parameters Conf igurat ion .

40 RIOdevicedata−>DMAs [ 0 ] . NwordU64= RIOdevicedata−>DMAs [ 0 ] . s amp l e s p e r t r i g g e r ; //

Number o f 64 b i t s words to read .

RIOdevicedata−>DMAs [ 0 ] . pdata=(u in t64 t ∗) mal loc ( ( RIOdevicedata−>DMAs [ 0 ] . NwordU64

)∗ s i z e o f ( u in t 64 t ) ) ;

42 RIOdevicedata .DMAs [ 0 ] . DownFactor=1; //TODO: by now th i s i s not used .

RIOdevicedata .DMAs[ i ] . BlockDF=200; //!< I n i t i a l i z a t i o n o f Block data decimation :

Every 200 data blocks , only 1 i s publ i shed

44 //!<Creat ion o f one r i n gbu f f e r f o r each channel .

f o r ( j =0; j< RIOdevicedata−>NCHperDMAarray [ 0 ] ; j++)

46 {
RIOdevicedata−>DMAs [ 0 ] . IdRing [ j ]= epicsRingBytesCreate ( RIOdevicedata−>DMAs [ 0 ] .

NwordU64∗100) ; //!<Ring bu f f e r to s t o r e raw data .

48 NDS INF( ”\n( In fo acqgen :%s ) I t has been created an EPICS Ring bu f f e r f o r channel

%d o f DMA0\n” , RIOdevicedata−>RIOident i f i e r , j ) ;

}
50 NDS INF( ”\ nFin i t e Acqu i s i t i on \n” ) ;

//!< The DMA FIFO Conf igurat ion

52 configDMAFifo ( ) ;

//!< The Star t DMA FIFO

54 startDMAFifo ( ) ;

//!< Cleaning DMA FIFO

56 cleanDMAFifo ( ) ;

//!< DAQStartStop −>>>>>Stop

58 DaqStartStop (1) ;

//!< START ACQUIRING DATA(FINITE CASE)

60 startFINITEAcquis i t ion ( ) ;

//!< STOP Data Acqu i s i t i on .

62 DaqStartStop (0) ;

//Cleaning DMA FIFO .

64 cleanDMAFifo ( ) ;

//Stop DMA FIFO

66 stopDMAFifo ( ) ;

//Free po in t e r s
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68 f r e e ( RIOdevicedata−>DMAs [ 0 ] . pdata ) ;

f r e e ( paux8 ) ;

70

break ;

72 }

74 }whi le ( nds : : CHANNEL STATE PROCESSING==getCurrentState ( ) ) ;

Listing 5.10: Acquisition Handle Implemented in Digital Input Channel Group

5.10 The Channel Access Operator Interface Client

To manage the DAQ device through CA, the Control System Studio provides a tool

for Operator Interface (OPI) development and runtime environment called Best OPI,

Yet (BOY). This is graphical user interface that displays live control system data to

operators and data can be written to the controls.

The BOY interface created has all the functionalities to interface with the DAQ system

as a final product, its features are:

• Access to channels, channel groups, and device through messages.

• Indicators for the status of the channels, channel groups, and device.

• Control the type of acquisition: Continuous or Finite.

• Control to perform a software trigger to start the acquisition.

• Control to the number of samples per trigger at finite acquisition.

• Internal loopback to acquire test patterns generated by the digital output channel.

The test patterns implemented are an static value from 0 to 255, a toggle of every

line of the acquisition port and a 8-bit counter incremented every FPGA clock

cycle from 0 to 255.

Figure 5.13 shows the OPI panel developed to interface to the device performing a

continuous acquisition with the output channel configured with the count up test pattern

bypassed to the input channel. Therefore the digital input channel is acquiring data

containing values of a counter from 0 to 255. The chart displayed in the figure 5.13

contains the integer value representing the 8-bit acquired. Considering that the FPGA

frequency is 100MHz, each 10ns the FPGA is acquiring a sample, therefore each 80ns

the system has acquired a 64-bit word. Trying to publish every single data acquired

through the Channel Access will collapse the network. Consequently some decimation

has to be done to the acquired data to publish it through CA. The OPI panel graph



Chapter 5. Integration of NI-6581+NI PXIe-7965R in CODAC Core System 56

Figure 5.13: Operator Interface of the system.

of figure 5.13 is plotting 1 of each 32 samples acquired, for this reason every slope is

composed only by 8 samples.



Chapter 6

Results

6.1 Conclusions

• A hardware for FlexRIO devices have been designed and synthesized with Lab-

VIEW FPGA. The subsequent tables 6.1, 6.2, 6.3, 6.4, and 6.5, extracted from

Xilinx compilation chain-tool, specifies the resources and the maximum clock fre-

quency for PXIe-7965R FPGA.

Device Utilization Used Total Percent

Slice Registers 5699 58880 9.7

Slice LUTs 4799 58880 8.2

Table 6.1: Report of the estimated device utilization at pre-synthesis

Device Utilization Used Total Percent

Slice Registers 6105 58880 10.4

Slice LUTs 5802 58880 9.9

Table 6.2: Report of the estimated device utilization at synthesis

Device Utilization Used Total Percent

Total Slices 3107 14720 21.1

Slice Registers 5630 58880 9.6

Slice LUTs 5542 58880 9.4

DSP48s 0 640 0.0

Block RAMs 130 244 53.3

Table 6.3: Report of the estimated device utilization at mapping

57



Chapter 7. Results 58

Clocks Requested (MHz) Maximum (MHz)

40 MHz Onboard Clock 40.00 55.49

100 MHz 100.00 113.06

Table 6.4: Report of the estimated timing performance at mapping

Clocks Requested (MHz) Maximum (MHz)

40 MHz Onboard Clock 40.00 54.82

100 MHz 100.00 101.32

Table 6.5: Report of the estimated timing performance at place and route

• The EPICS device support developed using the Nominal Device Support abstrac-

tion layer is made of the files shown in listing 6.1, the number of lines of each file

is displayed afterwards the name.

.

2 ‘−− m−nds−6581acqgen

|−− pom. xml [73 l i n e s ]

4 ‘−− s r c

|−− main

6 | |−− beast

| |−− beauty

8 | |−− boy

| | |−− 6581 acqgen . opi

10 | | |−− p i c t u r e s

| | | ‘−− t op l ogo . png

12 | | ‘−− s c r i p t s

| |−− c++

14 | |−− databrowser

| |−− ep i c s

16 | | |−− con f i gu r e

| | | |−− CONFIG [29 l i n e s ]

18 | | | |−− CONFIG SITE [31 l i n e s ]

| | | |−− Makef i l e [ 8 l i n e s ]

20 | | | |−− RULES [6 l i n e s ]

| | | |−− RULES DIRS [2 l i n e s ]

22 | | | |−− RULES. i o c [ 2 l i n e s ]

| | | ‘−− RULES TOP [3 l i n e s ]

24 | | |−− iocBoot

| | | |−− iocnds6581acqgen

26 | | | | |−− envSystem [5 l i n e s ]

| | | | |−− Makef i l e [ 5 l i n e s ]

28 | | | | |−− README

| | | | ‘−− s t . cmd [68 l i n e s ]

30 | | | ‘−− Makef i l e [ 6 l i n e s ]

| | |−− Makef i l e [ 18 l i n e s ]

32 | | ‘−− nds6581acqgenApp

| | |−− Db

34 | | | |−− Makef i l e

| | | |−− nds6581acqgenChannelGroup . template [664 l i n e s ]

36 | | | |−− nds6581acqgenChannel . template [261 l i n e s ]

| | | |−− nds6581acqgenDevice . template [255 l i n e s ]

38 | | | |−− nds6581acqgenDIChannelGroup . template [ 6 l i n e s ]

| | | |−− nds6581acqgenDigita lChannel . template [26 l i n e a s ]

40 | | | |−− nds6581acqgenDigita l InputChannel . template [71 l i n e s ]

| | | |−− nds6581acqgenDigitalInputOutputChannel . template [ 6 l i n e s ]

42 | | | |−− nds6581acqgenDigitalOutputChannel−noparent . template [52

l i n e s ]

| | | |−− nds6581acqgenDigitalOutputChannel . template [16 l i n e s ]

44 | | | |−− nds6581acqgenDOChannelGroup . template [667 l i n e s ]

| | | ‘−− nds6581acqgen . s ub s t i t u t i o n s [47 l i n e s ]

46 | | |−− Makef i l e [ 8 l i n e s ]

| | ‘−− s r c

48 | | |−− f i n d e r . c [1309 l i n e s ]

| | |−− f i n d e r . h [62 l i n e s ]

50 | | |−− Makef i l e [153 l i n e s ]
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| | |−− nds6581acqgenChannelGroupDI . cpp [271 l i n e s ]

52 | | |−− nds6581acqgenChannelGroupDI . h [73 l i n e s ]

| | |−− nds6581acqgenChannelGroupDO . cpp [284 l i n e s ]

54 | | |−− nds6581acqgenChannelGroupDO . h [69 l i n e s ]

| | |−− nds6581acqgenChannelGroup . h [47 l i n e s ]

56 | | |−− nds6581acqgenDevice . cpp [1037 l i n e s ]

| | |−− nds6581acqgenDevice . h [141 l i n e s ]

58 | | |−− nds6581acqgenDIChannel . cpp [880 l i n e s ]

| | |−− nds6581acqgenDIChannel . h [ 1 3 3 ]

60 | | |−− nds6581acqgenDOChannel . cpp [281 l i n e s ]

| | |−− nds6581acqgenDOChannel . h [81 l i n e s ]

62 | | |−− nds6581acqgen . h [22 l i n e s ]

| | |−− nds6581acqgenMain . cpp [23 l i n e s ]

64 | | |−− NiFpga FPGA6581PXIe7965R . h [420 l i n e s ]

| | |−− NiFpga FPGA6581PXIe7965R . l vb i t x [79134 l i n e s ]

66 | | ‘−− n i r i oda ta type s . h [420 l i n e s ]

| |−− r e s ou r c e s

68 | ‘−− s c r i p t s

‘−− t e s t

70 ‘−− ep i c s

Listing 6.1: Resumed tree of the directories for the DAQ system device support

• NI 6581 Adapter Module and NI PXIe-7965R are part of ITER’s catalogue for

fast controllers [10]. This work contributes to being the first case of use of the

integration methodology proposed involving NI 6581 adapter module, NI PXIe-

7965R, Nominal Device Support and EPICS.

This development is accepted to be in the 28th. Symposium On Fusion

Technology (SOFT) materialised as a poster presentation with the tittle:

Integration of advanced data acquisition applications using FPGA-based

FlexRIO devices in ITER’s CODAC Core System and presented in the

Book of Abstracts of the Symposium on Fusion Technology with the reference

number P4.057 [18].

6.2 Future Work

• To ease the labour of the system designer, one of the future lines to work with

is developing more LabVIEW templates for FlexRIO devices, thus the designer

will only have to focus on adapting the right template to the requirements of the

experiment.

• From the Operator Interface point, some improvements have to be done specially

in the plotter of the data acquired since BOY does not provide any suitable chart

for digital signals.

• To extend the idea of test pattern generation that can be used to emulate several

devices connected to the system, an interface to the user can be accomplished to

configure user-defined test patterns and load them into the hardware.
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