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H I G H L I G H T S 

• Uncertainty in PV generation forecast is a drawback for grid integration. 
• Self-consumption of distributed PV reduces the effect of forecast uncertainty. 
• Active Demand Side Management and local storage increases self-consumption. 
• Experimental results and simulations are presented. 
• Error on electricity exchanged with the grid is reduced to 2%. 

A B S T R A C T 

The uncertainty associated to the forecast of photovoltaic generation is a major drawback for the wide­
spread introduction of this technology into electricity grids. This uncertainty is a challenge in the design 
and operation of electrical systems that include photovoltaic generation. Demand-Side Management 
(DSM) techniques are widely used to modify energy consumption. If local photovoltaic generation is 
available, DSM techniques can use generation forecast to schedule the local consumption. On the other 
hand, local storage systems can be used to separate electricity availability from instantaneous genera­
tion; therefore, the effects of forecast error in the electrical system are reduced. The effects of uncertainty 
associated to the forecast of photovoltaic generation in a residential electrical system equipped with DSM 
techniques and a local storage system are analyzed in this paper. The study has been performed in a solar 
house that is able to displace a residential user's load pattern, manage local storage and estimate 
forecasts of electricity generation. A series of real experiments and simulations have carried out on the 
house. The results of this experiments show that the use of Demand Side Management (DSM) and local 
storage reduces to 2% the uncertainty on the energy exchanged with the grid. In the case that the pho­
tovoltaic system would operate as a pure electricity generator feeding all generated electricity into grid, 
the uncertainty would raise to around 40%. 

1. Introduction self-dependence [2,3]- Photovoltaics (PV), as well as other renew­
able energies, provide safe and clean electricity and, moreover, 

Over the last years the amount of photovoltaic power installed can play an important role in the solution of the aforementioned 
worldwide has been increasing steadily [1]. This growth responds problems. The growth ratio of the PV installed capacity increases 
to various reasons, among which stand out the increasing aware- every year, so that the cumulative capacity shows an exponential 
ness of global warmth caused by greenhouse emissions, the inevi- behaviour [1 ]. It is noteworthy that this trend has been maintained 
table exhaustion of traditional energy sources in the following also in recent years when some countries, particularly in Europe, 
decades (fossil fuels) and the need for countries to assure energy started to cut down on subsidies and feed-in-tariffs. As a conse­

quence of this growth the effect of photovoltaic power connected 
to public utilities begins to be noticeable for the overall system. 
For example, in Spain and Germany the share of electricity 



produced by grid-connected PV during 2010 was 2.3% and 1.9% 
respectively [4,5]. The share of electricity produced by PV and 
other renewable energies is expected to grow in the following 
years [6-9]. 

As the share of electricity produced by PV increases, the need 
for photovoltaics to be fully integrated into electricity grids arises. 
Fully integration of a generator into the grid requires that the elec­
tricity produced by the generator is known beforehand. With this 
knowledge, the generator can be included in grid planning and it 
would be possible to dynamically adjust its output in response of 
real time demands from the grid. Traditionally, photovoltaic en­
ergy, together with other renewable energies like wind, has been 
considered to be a non-controllable, unpredictable electricity 
source. In consequence, it has not been regarded as a reliable en­
ergy source by grid operators. The unreliability of PV is due to its 
dependence on meteorological conditions: irradiance and temper­
ature. If these two meteorological variables could be forecasted 
with sufficient precision, it would be possible to estimate the elec­
tricity production of a PV system. In addition, photovoltaics will 
become a more reliable electricity source. 

The use of forecast techniques to enable grid integration of PV 
electricity [10,11] (and also other renewable energies such as wind 
[12,13]) has been previously addressed in the literature. Despite ef­
forts to improve forecast techniques, they still incur in high error 
rates. For this reason, some authors have suggested alternative 
schemes that would make possible the goal of grid integration. 
Some of these schemes are the use of local storage in combination 
with renewable energy generators in order to rectify deviations be­
tween forecasted and produced electricity [14] or the combination 
of a large amount of PV generators distant from each other so indi­
vidual errors are independent and the overall forecast error is re­
duced [6]. 

At the same time that renewable energies are being deployed 
and are expected to play a major role in the generation of electric­
ity, the traditional conception of distribution grids as passive 
drains of electricity is shifting towards a more active one with 
the inclusion of Demand-Side Management (DSM) and storage 
which allow demand to adapt dynamically to generation [15-19]. 
This new paradigm of distribution grids is based upon the smart 
grid concept [20,21]. This paper proposes a novel mechanism for 
integrating small sized PV generators in the residential sector that 
brings together the aforementioned elements: PV forecasts, DSM 
and local storage. Active Demand-Side Management (ADSM) is a 
new concept derived from the addition of automatic load control 
to DSM strategies [22]. In this situation, the concept of self-con­
sumption arises, i.e. the local consumption by loads of the electric­
ity generated by the PV system. Self-consumption also provides an 
alternative for photovoltaics exploitation on the current scenario of 
increasing electricity retail prices and decreasing feed-in-tariffs. 
Users can reduce the electricity bill by the use of their own gener­
ated electricity. In some countries, like Italy, in addition to the 
financial incentive gained by selling electricity to the retailers 
there is also an incentive for the self-consumption of PV generated 
electricity [23]. From a technical perspective, some authors have 
pointed that distributed PV generation can provide directly as 
much as 20-25% of a city demand if no additional measures are ta­
ken and 50-75% of electricity demand if Demand-Side Manage­
ment and storage are used [24-26]. 

Although this approach to PV integration in the grids has sev­
eral advantages (e.g.: mitigation of forecast error through battery 
usage, displacement of peak demand and flattening of demand 
profile, reduction of system losses associated to transport and dis­
tribution, provision of ancillary services like voltage control via 
reactive electricity feeding), there is no previous results on this 
subject apart from theoretical studies. This paper explores, as proof 
of concept, this possibility for PV integration in the residential 

sector to demonstrate that it is feasible and that the uncertainty 
in PV generation can be made negligible. 

The remainder of this paper is as follows. Section 2 presents 
Magic Box, a solar house, which combines the aforementioned ele­
ments: PV generation, local electricity storage and a control system 
which is responsible of performing the ADSM, managing the stor­
age and forecasting electricity generation. Section 3 introduces 
the methodology employed in this study to evaluate the achieved 
level of self-consumption. Section 4 presents the results of a mea­
surement campaign carried out on Magic Box. On Section 5 a com­
parison of two of the most popular forecasting techniques, numeric 
weather prediction models and time series analysis, is presented. 
Conclusions are summarized on Section 6. Finally, two annexes 
which describe the forecast models employed are appended to 
the paper. 

2. Magic Box and GEDELOS-PV system 

Fig. 1 shows a block diagram of the system composed by the 
combination of Magic Box and the GEDELOS-PV system. Black solid 
lines indicate the power/energy flows between the different ele­
ments capable of delivering electricity -PV generator, storage and 
the grid- or consume it -loads, storage and the grid-. The blue dot­
ted arrows show the information received by the ADSM system 
from the different system elements. Finally, the red dashed arrow 
shows the flow direction of the actuation commands from the 
ADSM system to the loads. The user interacts with the system 
through the loads set-up via the ADSM system. Magic Box and 
the GEDELOS-PV system are explained in detail below. 

2.1. Magic Box 

Magic Box is an energy self-sufficient solar house located in the 
grounds of the Technical University of Madrid, Spain (UPM). Magic 
Box was the first house from a European university to take part in 
the international competition Solar Decathlon [27,28], it is used 
now as a research laboratory at the UPM. This solar house has been 
used to assess the effect of the combination of PV generation fore­
casts, load management and local storage on the electric grids. The 
house is based on AC topology, where electricity is exchanged be­
tween the different elements -PV generators, storage, loads and 
grid- through an AC bus. This topology does not impose an explicit 
hierarchy to the energy elements and, therefore, it increases sys­
tem scalability. 

2.1.1. Photovoltaic system 
The PV system produces energy that can be: either used locally 

by the loads, stored in the batteries or fed into the grid. It is divided 
into five independent generators of monocrystalline silicon tech­
nology distributed in four different south-oriented surfaces whose 
tilt angles are: 12.5°, 25°, 40° and 90°. Each PV generator is con­
nected to a single string-type inverter. The combined peak power 
of the five generators is 6.2 kWP. 

The photovoltaic system also incorporates a meteorological sta­
tion and monitoring equipment. The meteorological station has the 
following sensors: four reference PV sensors for the measurement 
of irradiance [29] (one cell for each tilt angle) and a PT-100 resistor 
for the measurement of ambient temperature. The monitoring 
equipment records every five minutes values from the sensors in 
the meteorological station as well as AC and DC power, current 
and voltage from the five PV generators. Additionally, a precision 
energy meter (class 1 [30]) records the AC energy produced by 
the whole PV system every minute. 



í 
1*1 
M 
B 
Fl 

Inverter 

Loads 

PV generator 

Grid 

Battery 

Information 
— - System actuation 

Power lines 

Deferrable 

* \ AC Bus 

Pc-r 

Non Deferrable 

i± 
DSM System 

_ 1 _ 

PV generation 
forecast 

Fig. 1. Local grid configuration. 

2.1.2. Storage system 
The local storage system consists of a bank of lead-acid batter­

ies and a bidirectional inverter. The battery bank is formed by 24 
cells, the voltage of each cell is 2 V and the capacity for a ten hour 
discharge cycle is 750 Ah. Therefore, the nominal storage capacity 
of the bank is 36 kWh. The battery inverter has a nominal AC 
power of 5 kW. 

2.1.3. Loads 
The loads present in the house are typical of a highly electrified 

house: electric oven, cooker, hood, refrigerator, dishwasher, wash­
ing machine, dryer, lights, computers and entertainment applica­
tions. The loads have been classified into two categories: 
deferrable loads and non-deferrable ones. Deferrable loads can be 
displaced along the day because they do not require an instanta­
neous execution, e.g.: washing machine, dryer, dishwasher. The 
deferrable loads are connected to a home automation system that 
allows remote control of deferrable loads and monitors the state of 
the loads. A load is considered non-deferrable when its energy de­
mand cannot be moved in time: it must run at the time asked by 
the user (e.g.: TV and lighting) or it must run continuously (e.g.: 
fridge). 

The consumption of all loads, deferrable and non deferrable, is 
measured by a power meter. The scheduling of deferrable loads 
is performed by the ADSM system as explained below. 

2.2. GEDELOS-PV system 

The GEDELOS-PV system is able to displace the consumer's load 
profile and controls the local storage system; thereby it modifies 
the energy balances between the system elements according to 
user's preferences and the criterion of maximizing self-consump­
tion. Therefore, users can take an active part in the electric system. 
The system assures that all loads will always receive the electricity 
they need. This electricity will be fed, when necessary, by a combi­
nation of photovoltaics, battery and grid. The priority of the three 
sources, from most important to least, is as follows: photovoltaics 
(primary source), battery (secondary source) and grid (tertiary 
source). The GEDELOS-PV system is conceived as a distributed sys­
tem, so its function does not rely on any centralized agent [31]. 

2.2.1. ADSM system 
The ADSM system is responsible for scheduling the deferrable 

loads along the day. The user sets in the control system the execu­
tion time in which deferrable loads have to run, e.g.: execute the 
washing machine between 10:00 and 16:00. This means that the 
load has to be executed within this time interval, independently 
of energy availability. The ADSM system receives PV generation 
forecasts and schedules the deferrable loads in order to optimize 
energy criteria using the time interval constriction. The ADSM opti­
mization criterion shown in this paper is to maximize the self-con­
sumed energy. Specific technical details of the ADSM system 
operation are explained in [32,33]. 

2.2.2. Battery controller 
A high level software battery controller has been developed. 

This controller performs the following tasks: (i) it preserves battery 
lifetime by avoiding excessive charge or discharge; (ii) it assures 
that there are no energy exchanges between the battery and the 
grid; the battery is only charged with the excess of PV electricity 
and discharges to the loads, maximizing self-consumption; (iii) it 
allows to adjust the usable capacity of the battery to levels that 
are suitable to the usual consumption of an individual household. 
The battery controller operation is explained in detail in [34]. 

Although electricity exchange between grid and electrical stor­
age is beneficial for the grid, either if the storage is distributed [16] 
or centralized [18], the possibility to charge the battery from the 
grid or discharge it to the grid has not been considered for the 
GEDELOS-PV system. This decision is motivated in the fact that 
electricity exchange on the demand-side between grid and storage 
is forbidden in many European countries, including Spain. 

2.2.3. Estimation of electricity forecasts 
The GEDELOS-PV system receives hourly forecasts of irradiation 

and ambient temperature for the next day, which are provided 
externally to the system. These meteorological forecasts are esti­
mated for Madrid (40.5°N, 3.7°W), where Magic Box is located. 
From these meteorological forecasts the GEDELOS-PV system esti­
mates the usable electricity, EAQPV, of the PV system in Magic 
Box for the next day, according to the model of Eq. (1). 

CAC,PV ' CDC,MAX ( 1 - ! « , ) • (1 - It») • ( ! - I s ) 0) 



where EDCMAX is the maximum DC electricity that the PV generator 
can deliver, LSH are the losses due to shading, Lco are optical losses 
and Ls are system losses. EDC,MAX depends mainly on operation con­
ditions: irradiation and cell temperature. 

Maximum DC electricity depends on operating conditions, 
namely irradiation and cell temperature and thus incorporates 
thermal losses Lm (not explicitly included in Eq. (1)), which are 
due to the cells operating at a temperature different from 25° C: 
EDQMAX has been estimated with the model proposed by Osterwald 
[35]. Since Osterwald model requires cell temperature but only 
ambient temperature is available, the Nominal Operation Cell Tem­
perature model has been used to convert from ambient tempera­
ture to cell temperature [36]. Shading losses are caused by 
shadows casted by nearby obstacles over the PV generator. They 
have been estimated using a model developed by the authors 
[37]. Optical losses are caused by soiling over the surface of the 
PV generator and by the reflection of incident light when incidence 
angle is different than perpendicular. The model proposed by Mar­
tin has been used to estimate optical losses [38]. System losses ac­
count for the instantaneous DC-AC conversion efficiency of the 
inverter. The model proposed by Schmidt [39] has been selected 
to estimate system losses. Electrical losses, such as voltage drops 
or modules mismatch, have not been considered separately in Eq. 
(1) because their effect is included in the model for maximum 
DC electricity via the on-site characterization of the PV generators. 
The Maximum Power Point Tracking (MPPT) efficiency of the 
inverters has been disregarded (MPPT efficiency of 100%). 

3. Methodology for system analysis 

In the most generic system, apart from the loads and the PV 
generator, the grid and the storage system, usually a battery, would 
also be present. This leads to the energy balance equation shown in 
Eq. (2): 

Epv + ESat + EGrid = ELoai (2) 

where EPV is the PV generated energy; EBat is the electricity ex­
changed with the storage system, defined as positive when the stor­
age system feeds the loads; EGrid is the electricity exchanged with 
the grid, defined as positive when the grid feeds the loads; ELoad is 
the consumed electricity by the loads. 

Within this scenario, a figure of merit, first defined by the 
authors in [34], has been used in this paper to evaluate the self-
consumption level achieved by a system that combines local load 
consumption and PV generation: the self-consumption factor, t,L. 
This factor is defined in Eq. (3). 

Í L = ^ I + W M I € [ 0 > 1 ] ( 3 ) 

E-Load 

where EPV^L is the electricity directly supplied to the loads by the 
PV system and EBat,pv^L is the photovoltaic electricity supplied to 
the loads by the storage system. Notice that in a system without 
storage this second term should be omitted. 

Parameter t,L measures the fraction of local demand that is 
satisfied by local generation: t,L = 0 corresponds to the case in 
which there is no local generation and t,L = 1 corresponds to the 
case of local generation fully supplying the loads. This figure of 
merit is normalized so it allows direct comparison of systems with 
different loads or generators. 

4. Measurement campaign 

A measurement campaign on the prototype Magic Box was 
carried out in order to assess the behaviour of GEDELOS-PV system 
with regard to PV electricity forecasts and self-consumption. A 

total of 56 experiments were performed during this campaign, 
each experiment consists of one day of operation of the house. 
These experiments were not performed on consecutive days; in­
stead, they were distributed over a period of one year. Groups of 
experiments were performed in each season, in order to cover dif­
ferent weather conditions. 29 of these experiments were carried 
out without ADSM to differentiate between natural self-consump­
tion, achieved by the concurrence of distributed generation and lo­
cal consumption, and self-consumption achieved by the GEDELOS-
PV system. The remaining experiments (27 days) were carried out 
with ADSM enabled. The non-deferrable loads present in the house 
operated at fix times to simulate the typical behaviour of an aver­
age user. The deferrable loads were either operated at the times 
scheduled by the GEDELOS-PV system or at fix times for experi­
ments without ADSM. The electricity demanded by the loads var­
ied between experiments, with the daily electricity consumed in 
the range of 5-10 kWh, typical average of residential consumers 
in Spain [40]. Approximately 20% of this electricity corresponds 
to deferrable loads. The usable capacity of the battery was set to 
6 kWh for all days. Previous works have shown that this autonomy 
level is reasonable to optimize self-consumption in residential 
environments [32,33]. For all days in the measurement campaign 
hourly values of electricity generation were forecasted the previ­
ous day using as inputs meteorological forecasts generated by 
the HIRLAM model, a numerical weather prediction model 
(NWP). Additional information on the HIRLAM model is provided 
in Appendix A. 

4.1. Results 

Table 1 shows a summary of the results of the measurement 
campaign. Experiments have been grouped by season; for each 
season, the average self-consumption factor and the error in fore­
cast of daily electricity generation are given. The self-consumption 
factor t,L is higher in days with ADSM than in days without ADSM. 
Despite the small fraction of electricity demand considered defer­
rable in these experiments, the use of ADSM increases the self-con­
sumption factor. The self-consumption factor is higher for summer 
and spring, when more solar irradiation is available, than in winter 
and autumn. It must be noted that the GEDELOS-PV system does 
not know when the deferrable loads operate and how much elec­
tricity is demanded by them. In consequence, the system cannot 
take any measure to overcome this random behaviour and the con­
sumption of non-deferrable loads limits the maximum self-con­
sumption factor that can be achieved. However, the use of the 
local storage, which stores electricity during the day and provides 
it to the loads after the sunset, alleviates the effect of this random­
ness because most of the non-deferrable loads were set to operate 
in the evening to imitate the behaviour of average residential 
users. 

The daily t,L for all experiments is presented in Fig. 2; the black 
solid lines correspond to the average values of self-consumption 
factor for every season. The dispersion of values around the 

Table 1 
Results of measurement campaign: mean values of daily self-consumption factor and 
daily electricity generation forecast error. 

Season Without load management With load management 

Summer 
Autumn 
Winter 
Spring 

Year 

&(-) 
0.77 
0.68 
0.69 
0.83 

0.73 

Forecast 

17.6 
13.8 
27.8 
23.8 

26.5 

error (%) ii(%) 

0.80 
0.74 
0.64 
0.96 

0.79 

Forec; 

23.7 
131.0 
49.4 
33.2 

64.0 
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Fig. 2. Daily self-consumption for experiments without ADSM (upper figure) and 
with ADSM (lower figure). 

average is higher in winter and autumn, which is coincident with 
the fact that the self-consumption factor for these seasons is also 
lower. During spring and summer, when t,L is high, the scattering 
of values is reduced. 

Table 1 also shows that forecast errors are significantly higher 
for autumn and winter than for summer and spring. This fact cor­
responds to the characteristics of the climate at Madrid; the 
weather in autumn and winter is very unstable with sunny days 
succeeding cast days and vice versa. This instability affects nega­
tively the accuracy of electricity forecasts due to the fact that the 
accuracy in forecasting is highly dependant on the variability (as 
measured, for example, by the variance) of the forecasted variable. 
The dependence of forecast accuracy on irradiation variability has 
been previously reported in literature [41-43]. It must be noted 
that the low forecast error for the experiments without load man­
agement during autumn is a misleading result because the days se­
lected for those experiments happened to be good days in terms of 
predictability. The results of the days with ADSM show that there 
is not relationship between forecast error and self-consumption. 

5. Comparison of forecast models 

The results of the measurement campaign showed that a high 
level of self-consumption is attainable through the combination 
of electricity generation forecasts and ADSM. Based upon these re­
sults the operation of Magic Box was simulated with a twofold pur­
pose: (i) to evaluate over the course of a year whether the use of 
ADSM can mitigate the uncertainty in PV generation forecast; 
and (ii) to test and additional forecast model besides the one used 
during the measurement campaign. During the measurement cam­
paign the HIRLAM model was used because a NWP model is the 
more straightforward manner to obtain forecast of meteorological 
variables. However, an external provision of forecasts poses a 
drawback given the decentralized conception behind the GEDE-

LOS-PV system. Numeric weather prediction models require a vast 
amount of computational effort and, therefore, it is not feasible to 
execute such models locally by small sized PV systems such as 
GEDELOS-PV. Instead, they operate in a centralized manner with 
only one instance of the model providing forecasts for a wide 
region. For this reason, a distributed model that allows for the esti­
mation of forecasts locally from on-site measurements was in­
cluded in this study. There are several models that can be 
considered as distributed in the literature. Among these models, 
autoregressive integrated moving average models (ARIMA) and 
artificial neural networks provide the best results with no signifi­
cant differences between these two [41-44]. Finally, the ARIMA 
model was chosen because of its simplicity. ARIMA models are de­
scribed in Appendix B. 

In order to evaluate the effect of forecast uncertainty on the 
electricity exchanged with the grid both forecast models, ARIMA 
and HIRLAM, were benchmarked against a virtual reference model. 
This model, called the ideal predictor, forecasts meteorological 
variables without error, that is, the forecasts for the next day are 
the actual, measured values on that day. The ideal predictor would 
correspond to the case in which the photovoltaics outcome is 
known and, therefore, the closer the system behaves to the ideal 
predictor the less effect of forecast uncertainty on the electricity 
that is exchanged with the grid. It must be noted that the ideal pre­
dictor is a virtual forecast model that cannot be considered a real 
forecast model because it requires for the time period being fore­
casted to be already elapsed. 

Magic Box behaviour was simulated during one year for every 
forecast model, in order to cover all possible weather conditions. 
Two storage sizes were considered for every model: 0 days of 
autonomy - no storage - and 0.5 days of autonomy. The forecasts 
of PV electricity for the simulations have been estimated from a 
year of real meteorological data. The same year was used for all 
experiments in order to compare the models under the same mete­
orological conditions. Daily load consumption was considered the 
same throughout the year and equal to 11 kWh, of which 
2.2 kWh were deferrable. This daily consumption amounts to 
4 MWh of annual electricity consumption, which is typical for a 
Spanish household of 3-4 members and is also coincident with typ­
ical consumption of average households in other European coun­
tries [29,45]. The profile of the non-deferrable loads has been 
modelled according to the behaviour of an average consumer 
[29]. However, it must be noted that consumer behaviour in terms 
of load profile is not affected by socio-economic factors like head of 
the household's age, region, population or employment status of 
inhabitants. The average load profile used in this study can be con­
sidered as representative of the majority of Spanish households. In 
all cases, residential demand is characterized by very low con­
sumption during night and morning and most of electricity needs 
happening around 10 pm. In consequence, residential demand is 
offset with respect to PV generation. The load profile in other Euro­
pean countries resembles the Spanish profile though it is shifted 
one hour and the peak demand occurs earlier [35]. The demand 
of non-deferrable loads is never known by the GEDELOS-PV system 
neither in time of operation nor in demanded electricity. In this 
way, the non-deferrable demand is totally random for the system. 
With respect to deferrable loads, it has been considered that the 
user is involved in increasing self-consumption and follows the 
recommendations given by the GEDELOS-PV system. It must be 
stressed once again that the system always gives the highest prior­
ity to the user's preferences, provided to the system prior to sched­
uling the loads for the next day. 

The actual electricity generated by the PV system in Magic 
Box during the year used in the simulations was 7300 kWh. The 
losses specified in Eq. (1) as well as the overall performance of 
the system (performance ratio PR) are given in Table 2. The overall 



Table 2 
Losses and performance 

Parameter 

LTH 

LSH 

Leo 
Ls 
PR 

of the PV system. 

Value (%) 

7.5 
15.8 

6.7 
10.65 
65.0 

PR of the system is 65%. The major source of losses is shading, 
which is usual for building integrated PV systems. The shadows 
over the PV system, casted by surrounding trees, can be seen in 
Fig. 3. The performance ratio of the system without considering 
shadows would be 77.2%. 

5.1. Results 

Fig. 4 shows the distribution of relative errors in the forecasts of 
daily electricity generation using ARIMA and HIRLAM models. 
Although one complete year has been simulated, forecasts were 
only generated for 295 days. 65 days were excluded from the anal­
ysis because they were used to build the ARIMA model. For the 300 
remaining days an additional set of 5 days was excluded because of 
corrupt or missing data about actual electricity. Both distributions 
are centred at 12.5%, meaning that both models tend to overesti­
mate electricity generation. The ARIMA model errors are distributed 
more symmetrically than the HIRLAM model errors, showing that 
the tendency to overestimate generation is more acute for the HIR­
LAM model. This is corroborated by the error accumulated over long 
periods of time; the error on the energy accumulated over the sim­
ulated period was 6% for ARIMA while for HIRLAM the error was 
22%. The bins at the edges of both figures collect all errors higher 
than 100%, or lower than -100%. The errors for several days were 
bigger than 100% in absolute value, as shown by bins at the edges, 
for both models. These high errors are caused by sudden drops in 
daily irradiation when a fully cast day follows a sunny day. 

Table 3 summarizes the performance of the two forecast mod­
els: the mean absolute percentage error (MAPE) of daily values is 
shown. The standard deviation of these errors (aMAPE) is also pro­
vided in order to illustrate the dispersion of errors around the aver­
age value. HIRLAM performs better than ARIMA for daily values in 
terms of MAPE and standard deviation of errors. The same trends 
observed in Table 1 are also seen in Table 3. The MAPE and the 
standard deviation of errors are lower for summer time than for 
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Fig. 4. Histograms of daily forecast errors for ARIMA and HIRLAM models. 

Table 3 
Performance of forecast models: daily values of mean absolute percentage error 
(MAPE) and standard deviation of errors (aMAPE). 

Model Season MAPE (%) CTMAPE (%) 

ARIMA 

HIRLAM 

Summer 
Autumn 
Winter 
Spring 
Year 

Summer 
Autumn 
Winter 
Spring 
Year 

21.2 
70.0 
66.9 
30.9 
42.3 

26.5 
43.8 
39.3 
41.5 
37.2 

27.8 
124.3 
110.6 

31.2 
87.8 

27.2 
59.6 
35.7 
33.6 
49.4 

Fig. 3. Picture of Magic Box showing shadows casted by surrounding trees. 

the rest of seasons. The forecast errors for ARIMA increase highly 
during winter and autumn compared to the errors during summer 
and spring. For HIRLAM, although summer is still the best season, 
there is no significant difference in MAPE for the rest of seasons. 
Autumn is the worst season in terms of aMAPE while winter and 
spring shown close results. When looking at the results for the 
whole year, HIRLAM outperforms ARIMA in both MAPE and 
aMAPE, with ARIMA being more volatile than HIRLAM and almost 
doubling the standard deviation of error of the NWP model. 

When looking at the self-consumption levels achieved with the 
2 forecast methods, the previous differences disappear. In effect, 
Table 4 shows the average values and standard deviations of the 
differences between the daily self-consumption factor when ARI­
MA or HIRLAM models are used and the values achieved when 
the ideal predictor is used. Compared with the relatively high er­
rors committed in electricity forecast (Table 3) the use of ADSM re­
duces significantly self-consumption differences between the use 
of forecast models and the reference (ideal predictor). The use of 
small-scale storage reduces even further these differences to 2.2% 
for ARIMA model and 2.1% for HIRLAM model. The aMAPE is also 
reduced to values below 5% for both models, meaning the occur­
rence of days with high deviations from the ideal predictor case 
is very improbable. Regarding seasonal variations, summer is still 
the best season, with the lowest difference for both models, and 



Table 4 
Mean difference of daily self-consumption between forecast models and real 
predictor for different storage sizes. 

Table 5 
Annual self consumption factor. 

Model Season 0 days Of autonomy 0.5 days Of autonomy 

MAPE(%) CTMAPE(%) MAPE(%) CTMAPE (%) 

ARIMA 

HIRLAM 

Summer 
Autumn 
Winter 
Spring 
Year 

Summer 
Autumn 
Winter 
Spring 
Year 

4.6 
7.7 
8.8 
4.6 
7.0 

3.3 
8.5 
6.3 
8.0 
6.5 

6.6 
9.0 

11.0 
8.3 
8.6 

5.8 
10.7 
7.2 
8.2 

1.5 
2.2 
3.7 
2.6 
2.2 

1.2 
2.7 
1.8 
2.6 
2.1 

3.9 
4.5 
7.1 
5.0 
4.9 

3.4 
4.9 
3.8 
5.0 
4.6 

either winter or autumn are the worst seasons depending on mod­
el and storage size. However, the differences between seasons are 
not as acute as the differences in electricity generation forecast 
errors. 

Fig. 5 shows the self-consumption daily errors obtained with 
the 2 forecast methods, with and without storage. As shown in 
the figure, the use of small-scale storage reduces the difference 
in self-consumption to zero for many days, 49% of total number 
of days for ARIMA and 54% for HIRLAM. In these days, Magic Box, 
with the GEDELOS-PV system operating, behaves exactly the same 
that when electricity generation by the PV system is accurately 
known beforehand - ideal predictor. This implies that the combi­
nation of load management and local storage totally nullifies the 
error in electricity forecasts. 

The annual self-consumption factor without battery and with 
battery for all models can be observed in Table 5. The differences 
between both forecast models and the reference ideal predictor 
model are small. More significant is the difference between using 
or not local storage: the use of local storage not only reduces the 
impact of forecast errors, it also improves the self-consumption 
by around 40% for all models. 

Battery size (days of autonomy) 

0 
0.5 

Model 

ARIMA 

0.485 
0.851 

HIRLAM 

0.490 
0.835 

REAL 

0.519 
0.837 

Table 6 shows the excess electricity fed into the grid from the 
PV system in an annual basis for the three forecasts models and 
the two storage sizes. For comparison, the actual electricity 
produced by the PV system is also included in Table 6. For a given 
storage size, the excess electricity for HIRLAM and ARIMA is very 
close to the ideal case. For a storage capacity of 0.5 days of auton­
omy the electricity fed into the grid during a year is 46% of actual 
generation; the differences between models are smaller than 
50 kWh/year. If no battery is used, the excess electricity raises to 
71-72% (depending on model) of PV generation. The difference be­
tween ideal predictor and the other two models is smaller than 
150 kWh/year. The cumulative distribution functions (CDF) of dai­
ly excess electricity for the three models with a storage capacity of 
0.5 days of autonomy are depicted in Fig. 6. The CDF of the daily 
electricity generated by the PV system is also included. The CDF 
for HIRLAM, ARIMA and the ideal predictor are closely matched. 
The uncertainty in forecasting is irrelevant in terms of excess 
electricity when ADSM and local storage are employed to increase 
self-consumption. Another important result in Fig. 6 is that the 
maximum daily electricity fed into the grid by the system would 
be 23 kWh in comparison with 36 kWh of maximum daily genera­
tion of the PV system. The reduction in the upstream flow of PV 
electricity in the distribution circuit has been reduced by 36%, alle­
viating technical problems related to voltage rises and overloading 
the distribution line. 

Finally, an economic analysis has been carried out to complete 
the findings of this study. The main assumption for this analysis 
is that all self-consumed electricity is valued at the domestic retail 
price of electricity. Due to the impossibility of consuming all the 
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Fig. 5. Difference in self-consumption factor between the forecast models and the ideal predictor. From left to right, top to bottom: ARIMA with no storage, HIRLAM with no 
storage, ARIMA with an autonomy level of 0.5 days, HIRLAM with an autonomy level of 0.5 days. 



Table 6 
Excess electricity fed into the grid. 

Model Battery size (days of autonomy) Excess electricity (kWh) 

HIRLAM 
HIRLAM 
ARIMA 
ARIMA 
Ideal 
Ideal 
PV 

0 
0.5 
0 
0.5 
0 
0.5 

-

5280.3 
3374.6 
5298.8 
3378.2 
5157.0 
3330.5 
7303.0 

1 

0.8 

0.6 

0.4 

0.2 

0 
0 10 20 30 

Daily electricity (kWh) 

Fig. 6. Cumulative distribution functions of daily excess electricity for HIRLAM, 
ARIMA and ideal predictor. The storage capacity for all cases is 0.5 days of 
autonomy. The case of all generated electricity fed into the grid is also shown. 

generated electricity, even with the use of local storage (self-con­
sumption factor is never 1 as shown by table 5), two cases have 
been considered for the excess electricity fed into the grid: that 
it is either paid at the retail price (net-metering) or that it is paid 
at pool price. The retail price is 19 c€/kWh including taxes. This 
is the price of the last-resource tariff in Spain which is widely used 
in the residential sector and it does not depend on the hour of day. 
The pool price has been assumed to be 6 c€/kWh, which is the aver­
age of market price in Spain during 2012. Both prices are supposed 
to increase by 2.5% every year. This increase is real in the sense that 
it excludes the effects of inflation. 

Regarding system costs, it has been assumed that the only costs 
for the user are the installation of the PV system and the battery. 
Two battery sizes have been considered: no battery and a battery 
with 0.5 days of autonomy. Although remote-controlled appliances 
have been used in Magic Box, they are not mandatory to adopt 
ADSM strategies; the GEDELOS-PV system can provide the user 
the times at which the deferrable loads must run and they can 
be programmed manually (most appliances in the market today in­
clude this option). The GEDELOS-PV system, or any similar control 
software, is assumed to be distributed freely. This software can be 
run in a few seconds on any standard PC or even a smartphone, 
which are common in most households today, so it is not necessary 
to purchase additional equipment. The cost of the PV system is 2 €/ 
Wp, which is consistent with market prices in Spain for PV systems 
of few kilowatts. The cost of the battery has been assumed to be 
0.8 €/kWh. No battery systems are commercially available at Spain 
for domestic self-consumption so this price is the average price of 
the German market [46]. The life of the PV system has been fixed to 
30 years. In consequence, 30 years is the period considered for the 
analysis. It has been assumed that the inverter is changed once 
during the lifetime of the system at the 16th year and the battery 
is replaced twice at 11th and 21st year. The prices of inverter and 
battery are reduced by 2% every year. The 25% of the original value 
of the battery is recovered through recycling. The cost of the 
inverter at year 0 is assumed to be 0.2 €/kWP [47]. The size of the 
PV system is 6210 WP, its generation is the actual measured 

generation which is reduced every year by 0.5% due to aging. No 
subsidy or feeding-in-tariff have been considered. 

The economic viability of the system has been evaluated by 
comparing the income generated (consumption avoided from the 
grid at retail price plus electricity fed at either pool price or retail 
price) with earnings generated if the same amount of money spent 
in the system would have been invested at a real not-inflated inter­
est rate of 3%. Higher interest rates have not been considered be­
cause, given the small amount of money involved and the profile 
of the user, it is not likely that the user would have opted for a 
higher interest rate product with a higher financial risk. Also, it 
has been considered that the cost of the PV system is not loaned 
and, therefore, no financial costs are incurred. Fig. 7 shows the evo­
lution of the incomes generated by the system and the alternative 
of investing the money at a fix interest rate. It must be noted that 
the results shown here depend strongly on the assumptions on 
which the analysis is based and the results can be altered on either 
way by different assumptions. The sudden steps in the later are 
caused by the cost of replacing inverter and battery. When local 
storage is not included in the system (upper figure), the most prof­
itable option is net-metering which amounts a total of 58 329 € at 
the end of the 30th year. The combination of retail and pool price 
and the investment at fix interest are very close: 30 408 € and 
30 656 € respectively. If a local storage of 0.5 days of autonomy is 
used, the net metering option is still the most profitable with a to­
tal earning of 54 544 €. In this case, investing at an interest rate of 
3% is the second best option: 48 848 €. The combination of retail 
price for self-consumed energy and pool price for excess energy 
is lower than the other two cases, generating 37 866 € at the end 
of the period. This later case does not means that the system is 
unprofitable, indeed the profit provided by the system in real 
terms is higher than its cost at the 30th year. 
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Fig. 7. Profit accumulated over 30 years for net-metering and mix of retail and pool 
prices compared to profit at an interest rate of 3%. Upper figure correspond to a 
system with no storage and lower figure corresponds to a system with storage. 



The Levelized Cost of Electricity (LCOE) for both storage sizes 
have been also estimated. The LCOE allows to compare different 
technologies and represents the cost of the energy generated in 
real terms discounting the effects of inflation. LCOE is defined in 
Eq. (4). 

£L,C (/(l+r)' 
LCOE = '-. (4) 

where N is the lifetime of the generating plant; Q is the cost at the 
year i associated to the plant, including installation, operation, 
maintenance, fuels (if needed), etc.; q, is the electricity generated 
at the year i and r is the discount rate. 

The values of generated electricity and costs are the same that 
were used in the analysis of economic viability. N is also 30 years. 
The discount rate, which includes the effect of inflation, is 5%. The 
resulting LCOE for the system is 11 c€/kWh if no battery is used 
and 14c€/kWh when local storage is included in the system. In 
both cases, the system can compete in price with retail electricity 
but it is still more expensive than the pool price. However, in this 
calculation the effect of time and place of generation, identified by 
Borenstein, have not been taken into account [48,49]. These effects 
would have lowered the LCOE because a distributed PV system can 
generate electricity at congested nodes of the electric grid and this 
generation happens during peak demand, when the market value 
of electricity is higher. Furthermore, these effects are enhanced 
by the use of ADSM and local storage. 

6. Conclusions 

The variability of the solar resource makes electricity genera­
tion by PV systems difficult to control, which limits its integration 
in the grid. Additional measures to mitigate the impact of the high 
level of uncertainty in forecasting generation are needed. The 
GEDELOS-PV system has been presented in this paper, which aims 
at the integration of distributed PV generation in the residential 
sector together with ADSM and local storage. 

The use of ADSM reduces the impact of uncertainty in PV elec­
tricity forecast, and the addition of a small amount of local storage 
further reduces the effect of forecast uncertainty, which is the ma­
jor drawback for large-scale deployment of renewable energy 
sources. Mean daily forecast errors around 40% would happen 
when the PV system presented in this paper operates as a pure 
generator feeding all the electricity generated into the grid. On 
the contrary, mean daily forecast errors would be reduced to 2% 
when the PV system is coupled to a residential load and the energy 
exchanged with the electricity grid, measured through the self-
consumption factor, is forecasted. 

Furthermore, a non-centralized forecast model allows for a 
complete distributed system. The ARIMA model is a non-central­
ized forecast model relatively easy to implement due to its low 
computational effort. This forecast model, in combination with 
ADSM techniques, allows users to increase self-consumed PV elec­
tricity without dependence on external services for the provision of 
generation forecasts. Therefore, the development of distributed PV 
generation on a scenario of smart grids, where users take an active 
role optimizing their own electricity consumption and generation, 
is facilitated. 

The LCOE of the system, ll-14c€/kWh, is lower than the retail 
price of electricity and, therefore, its implantation in the residential 
sector is economically viable. If net-metering is adopted, the 
profitability of the system is high (better than 3%). If net-metering 
is not adopted and the excess electricity is sold to the grid at pool 
price, the profitability is still attractive for the case of a system 

without battery. The profitability is reduced if local storage is in­
cluded due to the increase of cost caused by the battery. 
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Appendix A. HIRLAM model 

HIRLAM stands for High Resolution Limited Area Model and is a 
numerical short-range weather forecasting system developed by a 
cooperative scientific program between nine European meteoro­
logical institutes from the following countries: Denmark, Estonia, 
Finland, Iceland, Ireland, Netherlands, Norway, Spain and Sweden. 
The use of a numeric weather prediction model is the more 
straightforward way to obtain meteorological forecasts since they 
are provided externally from meteorological agencies or private 
companies. 

HIRLAM forecasts directly a number of variables, i.e. prognostic 
variables, which are ambient temperature, horizontal and vertical 
wind components, humidity, cloud water, pressure and geopoten-
tial height. The initial condition for the model is derived from di­
rect observations and extrapolation of these variables. The rest of 
variables, like irradiation, are derived from these prognostic vari­
ables. Since HIRLAM is a regional model, it needs a global model 
to act as host model and to provide lateral boundary conditions. 
The global ECMWF model is used as host model for HIRLAM. A gen­
eral description of the HIRLAM system as well as specific informa­
tion about its radiation scheme can be found in [50,51]. In the 
system presented in this paper, irradiance and ambient tempera­
ture forecasts based on HIRLAM were provided by the Spanish 
Meteorological Agency (AEMET1). 

Appendix B. ARIMA model 

A time series is a sequence of values, measured successively at 
uniform intervals. The values are indexed by their position within 
the series - although called time series, this index must not be nec­
essarily related to time measurements. Time series analysis can be 
used to understand the behaviour of some observed data or to fore­
cast future values of this data. In this sense, autoregressive inte­
grated moving average models (ARIMA) are a common tool used 
in time series analysis for forecasting future values of the series 
[52]. 

ARIMA represents the influence of past values of the time series, 
the so called "history" of the series, in future values by a combina­
tion of autoregressive (AR) and moving average (MA) models. The 
T in ARIMA stands for integrated, meaning that a time series may 
need an initial differencing step to remove non-stationary behav­
iour. In an autoregressive process, the value of an element of the 
time series associated to the process only depends on previous 
values. In a moving average process the current state is combina­
tion of random factors, independent to each other, which are 

1 www.aemet.es 

http://www.aemet.es


modelled as white noise. The expression of a regular ARIMA pro­
cess is given in Eq. (5): 

Vdzt - ¿ > ¡ V V ¡ = at - ¿0(at_( (5) 

measurements from the 65 previous days are extracted from 
the original set of data. These values, 1560 hourly values in 
total, initialize the ARIMA model in order to forecast the 
24 hourly values of the next day through the use of Eq. (6). 

where zt is the time series, at are random variables added to the 
model to prevent it from being deterministic, V is the first back­
ward difference operator (Vzt = zt - zt.,), d is the number of differ­
ences applied to the time series, cp¡ are the coefficients of the 
autoregressive part, 0,- are the coefficients of the moving averages 
part, p and q are the orders of the regular autoregressive and mov­
ing averages processes respectively. The above ARIMA model is de­
noted as ARIMA(p,d,q). 

Besides the regular behaviour that Eq. (5) describes, some series 
exhibit seasonal behaviour, repeating the same pattern every fix 
number of terms. The behaviour of the time series can then be split 
into two components: a regular trend and a seasonal trend. The 
general expression of an ARIMA process is then: 
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where L is the seasonality of the series, D is the number of seasonal 
differences applied, <Pt are the coefficients of the seasonal autore­
gressive part, 0i are the coefficients of the seasonal moving aver­
ages part and P and Q are the orders of the seasonal processes. 
The structure of the above ARIMA model is ARIMA(p,d,q) x (P,D,Q)L. 

The orders of the processes in an ARIMA model (p, q, P, Q), the 
seasonality (L) and the differences needed (d, D) are identified 
through the autocorrelation function (ACF) and partial autocorrela­
tion function (PACF) of the time series zt. The ACF provides infor­
mation of the moving average part of the model, if any, and the 
PACF provides information of the autoregressive part. 

The forecasts of meteorological variables with ARIMA in this 
study have been performed following the Box-Jenkins methodol­
ogy. This methodology is summarized below, although detailed 
information can be found in [52]. 

(1) Non-stationarity removal. ARIMA modeling must be applied 
only to time series that are stationary. A time series is 
non-stationary when its mean and variance are not constant 
along the series. Mean is stationarized by differencing the 
time series. Variance is stationarized by applying a trans­
form to the series. In this study the irradiance series was sta­
tionarized by replacing it with clearness index values. The 
use of the clearness index was chosen instead of applying 
the log transform, which is commonly used for stationariz-
ing an ARIMA process, because it as more natural transform 
for irradiation. 

(2) Model identification. On this study, the ACF and PACF from 
the initial 65 days of the original set of data, whose full 
length is 365 days, have been estimated. From these correla­
tion functions the structures of the ARIMA models explain­
ing the irradiation and ambient temperature series have 
been determined. 

(3) Coefficients estimation. After determining the structures of 
the models, the coefficients associated to the autoregressive 
and moving average processes (<p„ <Pi} 0„ 0¡) have been fit 
with the least squares method. The set of data of the previ­
ous step, 65 initial days, has been used to fit the models. 

(4) Forecasts estimation. Forecasts for the remaining 300 days of 
the original set of data were estimated using the ARIMA 
models built in the previous steps. For every day, the actual 
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