Present and future of Photovoltaic Solar Electricity

Carlos del Cañizo Nadal Instituto de Energía Solar Universidad Politécnica de Madrid

UC Davids-Madrid Network showcase

Introduction

Crystalline silicon technology, from quartz to system

Economical and environmental issues

Alternatives to cristalline silicon technology

Conclusions

Introduction

Crystalline silicon technology, from quartz to system

Economical and environmental issues

Alternatives to cristalline silicon technology

Conclusions

The Instituto de Energía Solar (IES-UPM)

Founder: Antonio Luque

Director : Carlos del Cañizo; Vicedirector: Antonio Martí; Secretary: Ignacio Antón

Personnel: 73 full-time staff (22 professors, 10 post-doc researchers, 25 PhD students, 16 administrative and maintenance staff) plus external PhD students & master students

Mission: Contribute to the development of Photovoltaic technology through R&D

Five recognised research groups.

Research organised in 5 programs:

- Silicon Technology
- Photovoltaic Systems
- Instr. and Systems Integration
- III-V Semiconductors
- Fundamental Studies & Quantum Calculations

The photovoltaic market

In 2012, accumulated installed capacity reached 100 GW!

Today, $\sim 6\%$ of electricity demand in Italy and Germany, covered by PV. In Spain, $\sim 3\%$

PV Demand & Y/Y Growth Rates 2002 - 2012

After many years of strong growth, market stabilized in 2012

- Weaker support in European markets
- Overcapacity remains (demand in the 30-40 GWs, capacity in the 40-60 GWs)

The photovoltaic market (2)

The market is becoming «less» European...

... and Asia is consolidating its position as producer...

The photovoltaic shakeout

Many companies being pushed out of the market

A commercial dispute ongoing

PROCEDURES RELATING TO THE IMPLEMENTATION OF THE COMMON COMMERCIAL POLICY

EUROPEAN COMMISSION

Notice of initiation of an anti-dumping proceeding concerning imports of crystalline silicon photovoltaic modules and key components (i.e. cells and wafers) originating in the People's Republic of China

(2012/C 269/04)

US imposes 31% anti-dumping tariff on Chinese PV imports

The US Department of Commerce (DOC) would impose anti-dumping tariffs of just over 31% on crystalline silicon PV cells and modules from major Chinese producers, after determining that Instituto exporters sold product in the US at "less than fair value".

Evolution of technology price

PV module learning curve

IRENA 2012

Steady reduction of PV price, closing the gap to competitiveness

Evolution of technology price (2)

EPIA 2011

PV commercial system (100 kW)

Large ground-mounted PV system (range of MW)

Most major EU markets can reach competitiveness before 2020 under a mature market assumption

The grounds of the photovoltaic effect

- Photons pump electrons from valence to conduction band
- Appropriate contacts insure conduction band electrons are delivered to load and recovered by the valence band

Technological moves forward...

Already in 2013!

- ✓ mono-Si module: 22,4% (Sunpower)
- ✓ multi-Si module: 18,5% (Q-cells)
- ✓ CdTe module: 16,1% (First Solar)
- ✓ CPV module : 33,5% (Amonix)

Introduction

Crystalline silicon technology, from quartz to system

Economical and environmental issues

Alternatives to cristalline silicon technology

Conclusions

The Si value chain: from silica to systems

Metallurgical silicon production

- •Reduction of quartz with carbon in an arc furnace SiO₂+2C→Si+2CO
- •Product: metallurgica silicon, 99% pure
- •Electronics and Photovoltaics only use a small fraction (~10-15%) of the total production, which is devoted mainly to metallurgical industry

Electronic grade silicon production (polisilicon)

Ultrapure trichlorosilane

$$3HCl+Si (gm) \rightarrow HCl_3Si+H_2 \rightarrow 4HCl_3Si+H_2 \rightarrow Si (ge)+3SiCl_4+3H_2$$

- •Raw materials: metallurgical silicon and HCl
- •Product: Electronic grade silicon (99.9999999% pure)
- •High energy consumption (50-100 kWh/kg)

The revolution in the Si feedstock market

- •<2006: Market driven by Microelectronics
- •2006-2007: Silicon shortage
 - Prices rocketed
 - New entrants trying to enter
- •2009-2012: Change of scenario towards oversupply
 - Market now driven by Photovoltaics
 - Pressure due to very low prices

Centesil: research on solar silicon

Corporation formed in 2006 by two Universities and three companies

isofotón

- **✓** Flexible tool for R&D on polysilicon
- ✓50-100 t/a poly pilot plant that follows the chlorosilane route
- **✓** Value chain from feedstock to solar cell

Advances in the installation stage

Crystallisation

Multicrystalline ingot in blocks

A third way for crystallisation: Mono-cast approach

- Wafers of different "classes" in the same ingot
- © Efficiency enhancement potential +1%-1.5% absolute

Understanding Mono-cast performance at IES

•Crystalline defects at the interface seed-ingot propagate from bottom to top, difficulting impurity removal and causing material heterogeneity

Wafering

Kerf losses of around 50%

Solar cell processing (I)

Wafers 156 cm² p-type (B 10¹⁶ cm⁻³)

Cleaning and etching

Acidic texturing for multi

Cleaning

Cleaning

Solar cell processing (II)

Advanced crystalline silicon technologies

HIT:Heterojunction with Intrinsic Thin layer (Sanyo/Panasonic)

- > n-type wafers
- > a-Si layers deposited at 200°C.
- > Efficiencies at industrial level > 23%
- > Bifacial structure

Point-Contact Cell (SunPower)

- ➤ Both p+ and n+ contacts at the rear, with two alternated "comb-like" structures
- > Use of highest quality wafers
- > Efficiencies at industrial level > 23%

Module assembly (I)

Module assembly (II)

Lamination:

Pressure at 100°C + Curing at 150°C:

Cells are soaked in the flowing EVA, which becomes transparent and solidifies

Off-grid instalations

POLITÉCNICA

Grid connected instalations

Solar farms

POLITÉCNICA

BoS equipments

Batteries

Regulator

DC/AC converters

Research on Photovoltaic Systems at IES

Need to develop implementation procedures, engineering methods and quality control procedures associated to PV applications

✓ High power PV water pumping technology has been developed and a demonstrator has been installed ✓ European R&D project PVCROPS for high PV system penetration, ongoing

✓ BIPV: diagnosis of performance

✓ PV plants: prediction

Introduction

Crystalline silicon technology, from quartz to system

Economical and environmental issues

Alternatives to cristalline silicon technology

Conclusions

The crystalline Si module cost

... what puts pressure on alternative technologies to c-Si

Energy Pay Back Time

Time needed by the PV system to give back the energy invested in its fabrication EPBT =

$$EPBT = \frac{Invested \ energy}{Energy \ produced \ in \ a \ year}$$

Introduction

Crystalline silicon technology, from quartz to system

Economical and environmental issues

Alternatives to cristalline silicon technology

Conclusions

Low cost approaches: Thin films

A big portion of light is absorbed in the first few microns (depending on the material): posibility to SAVE material

Direct fabrication of the module: layers are deposited and interconnected on the substrate (the glass, for instance)

Thin films: CIS y CdTe

CIS

 $E_G \cong 1.1 \text{eV}$

Commercial module Laboratory cell

ry cell $\eta \cong 20 \%$

Advantage Disadvantage $\eta \cong 15 \%$ $\eta \cong 20 \%$ Higher efficiency
Complex, scarcity of In

CdTe

 $E_G \cong 1.5 \text{eV}$

 $\eta \cong 15 \%$

 $\eta \cong 18 \%$

Lower cost

Scarcity and toxicity of Cd

High efficiency approach: PV concentration (CPV)

Design of CPV components and instruments at IES

Module Optical Analyser for CPV submodule misalignment identification

An R&D Center to validate CPV technologies: ISFOC

According to a plan of the IES-UPM, an Institute for CPV Systems was created in Spain in 2008, to validate CPV technologies developed worldwide: Solfocus (US), Concentrix (DE), Isofotón (ES), Arima (TW), Encore (US), CSLM (ES)...

High efficiency approach: tandem solar cell

Tandem / MultiJunction solar cells

Theoretical limit: η =86,3%

Record efficiency 4J cell =44,7%

Contact

Top Cell: GalnP2

Tunnel Junction

A/R*

A/R*

High efficiency approach: tandem solar cells at IES

- ✓ Current status at IES: 3J solar cell of 39,2%
- **✓** Roadmap for efficiency improvement

Design #1:: Raise Middle Cell current to Top Cell level

Design #2: Non- absorbing Tunnel

Junction

Design #3: High-E_q GaInP for Top

Cell

Design #4: Improve Top Cell

Window/Emitter Quantum Efficiency

✓ Substitution of Ge bottom cell by Si

High efficiency approach: Intermediate Band Solar Cell

• Intermediate Band Solar Cells (IBSC)

Intermediate band materials and solar cells: an IES proposal followed worldwide

		Sub-bandgap transitions				Extra-photocurrent			Voltage Preservation
	Experimental test Material	Absorption ^a	PR	PL	EL	Sub-bandgap SR or QE	<u>Jsc</u> increase	2-photon PC	$I_{\rm L} - V_{\rm OC}$ or $J - V$
QD	In(Ga)As/Ga(N.P.Sb)As	[57-60] ^e	[65,70,71]	[57,58,60,64,65,69]	[54, 55] ^{b,e}	[17-26, 33-35]	[21-23, 25, 33, 35]	[46, 47] ^e	[51, 52] ^{b,e}
	GaSb/GaAs			[28, 29, 68]		[27-29]	[27, 29]		
	InAs/AlGaAs	[58]	[71]	[58, 64, 66]		[30, 31]			
	GaAs/AlGaAs	[61] ^e		[61,67]		[32]		[32] ^e	
НМА	ZnTe:O	[36, 62]	[36]	[37]		[36-38]	[37]	[36-38]	1
	Ga(P.Sb)As:N	[39]	[39-42,72]	[39]	[42]	[39-42]		[40, 41]	Ì
Bulk with DLI	GaN:Cr.Mn	[44, 63]				[44] ^d			
	GaAs:Ti		[43]			[43]			[43] ^e
	CuGaS2:Sn,Fe	[45, 49]				[45] ^c			
	CuInS2:Sn	[49]		[49]			[49]		
V		On IB material			On IBSC prototype				

Quantum Dot IBSC processed at IES

(10 x InAs/GaAs QDs, p-i-n GaAs solar cell grown and processed at IES-UPM)

TEM pictures by U. Cádiz

Introduction

Crystalline silicon technology, from quartz to system

Economical and environmental issues

Alternatives to cristalline silicon technology

Conclusions

Conclusions

- •Silicon technology is dominating PV industry today
- •Manufacturers choose the device structure reaching compromises between efficiency and fabrication cost
- •With current technology, the energy invested in the fabrication of a PV system can be recovered in less than two years in South of Europe
- •There are new concepts being explored which can significantly reduce the cost of the technology
- •Photovoltaic solar energy is already competitive in some areas, and will reach broader competitiveness in the short run

