
Research Article
Fractal Analysis of Laplacian Pyramidal Filters Applied to
Segmentation of Soil Images

J. de Castro,1 F. Ballesteros,1 A. Méndez,2 and A. M. Tarquis3
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'e laplacian pyramid is a well-known technique for image processing in which local operators of many scales, but identical shape,
serve as the basis functions.'e required properties to the pyramidal (lter produce a family of (lters, which is unipara metrical in
the case of the classical problem, when the length of the (lter is 5. We pay attention to gaussian and fractal behaviour of these basis
functions (or (lters), and we determine the gaussian and fractal ranges in the case of single parameter !.'ese fractal (lters loose
less energy in every step of the laplacian pyramid, and we apply this property to get threshold values for segmenting soil images,
and then evaluate their porosity. Also, we evaluate our results by comparing them with the Otsu algorithm threshold values, and
conclude that our algorithm produce reliable test results.

1. Introduction

Image analysis involves many di)erent tasks, such as identi-
fying objects into images (segmentation), assigning labels to
individual pixels by taking into account relevant information
(classi(cation), or extracting some meaning from the image
as a whole (interpretation).'e segmentation of soil images
appears into Soil Science as a tool for the measurement of
properties as well as for detecting and recognizing objects in
soil [1–3].

Di)erent methods have been used to segment soil images
such as a simple binary threshold method [4] or multiple
threshold method [5] and thresholds for typical and critical
regions. Wang et al. [6] did a wide review of di)erent seg-
mentation methods applied in Geoscience. Other methods
that appear to be most promising for soil applications are
clustering methods and entropy-based methods [7–9].

Soil is not a continuous medium because soil is sus-
ceptible to changes from many in-uences: wetting, drying,

compaction, plant growth, and so forth. So, the continuous
soil models lead to approximate results only, and anomalous
phenomena cannot be easily handled. It is known that pores
in porous material are highly complex [10]. 'eir study and
analysis have been usually avoided because of their di.culty.

Soil is formed from many constituents, and to represent
it as a two-phase material, solid and pore, is o/en an over-
simpli(cation. 'e behaviour of water, gas, and organisms
can a)ect it. A classi(cation of pore models could be [11] (i)
nonspatial, (ii) schematic, (iii) random set, (iv) fractal, and (v)
other stochastic models.'e fractal group has more models
proposed and publications about.

Models of soil physical structure have been developed
since the 1950s. Childs and Collisgeorge [12] introduced the
cut-and-rejoin models of soil capillaries, which were modi-
(ed by Marshall [13]. While many models of soil structure
have been developed since then, most relate the structure
to physical processes, generally ignoring heterogeneity, or
assume simple pore-size distribution models.
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More sophisticated approaches are [14] using a one-
dimensional Markov chain model for horizontal soil, [15]
proposing a two-dimensional fuzzy random model of soil
pore structure, and [16] describing a network model to
predict physical properties from topological parameters and
fractal-based approaches like [17].

Our goal is to calculate the porosity of soil images. 'e
proposed procedure for segmentation of soil micromorpho-
logical images is based on Laplacian pyramid algorithm
[18], from which we compute a threshold that will binarize
the original image, resulting with an image composed of
continuous regions of pores (shown in black) and soil (shown
in white). From this binarized soil image we compute an
estimation to its porosity.

Another objective of this study is also to compare the
results with those provided by the commonly used Otsu’s
algorithm [19] that is widely accepted as a good method to
get an appropriate threshold.

2. Materials and Methods

2.1. Laplacian Pyramid. A multiresolution model consists of
generating di)erent versions of a given image by decreasing
the initial resolution, which also means decreasing the initial
size. 'is is achieved by a downsampling operator which
must be associated with an appropriate (ltering to avoid
aliasing phenomena (downsampling theorem). Multiresolu-
tion approaches have been investigated for di)erent purposes
such as image segmentation and image compression [18]. In
terms of image analysis, low resolution representations are
convenient for global detection and recognition of image
features while minute details can only be seen on high
resolution images.

One usual property of images is that neighboring pixels
are highly correlated. 'is property is ine.cient to rep-
resent the complete image directly in terms of its pixel
values, because most of the encoded information would
be redundant. Burt and Adelson designed a technique,
named Laplacian pyramid, for removing image correlation
which combines characteristics of predictive and transform
methods [18].'is technique is noncausal, and computations
are relatively simple and local. 'e predicted value for each
new pixel is computed as a local weighted average, using a
unimodal weighting function centered on the pixel itself.

'is pyramidal representation is useful for two important
classes of computer graphics problems. 'e (rst class is
composed of those tasks that involve analysis of existing
images, such as merging images or interpolating to (ll in
missing data smoothly, become much more intuitive when
we canmanipulate easily visible local image features at several
spatial resolutions. And the second, whenwe are synthesizing
images, the pyramid becomes a multiresolution sketch pad.
We can (ll in the local spatial information at increasingly (ne
detail by specifying successive levels of a pyramid.

'e (rst time that pyramidal structures were applied to
multiresolution decompositions was at [18]. Later, the rela-
tionship to wavelets was realized shortly therea/er, because
both decompositions are based on the idea of successive
re(nement: the image is obtained as a sum of an initial coarse

version plus detail signals. One interesting thing to note
about the pyramidal approach is that perfect reconstruction
is possible; therefore it is a lossless data algorithm.

Pyramidal methods for multiresolution image analysis
have been used since the 1970s. Early work inmultiresolution
image description was primarily motivated by a desire to
reduce the computational cost of methods for image descrip-
tion and image matching. Later, multiresolution processing
was generalized to computing multiple copies of an image
by repeatedly summing nonoverlapping blocks of pixels and
resampling until the image is reduced to a small number of
pixels. Such a structure became known as a multiresolution
pyramid [20].

Interest in multiresolution techniques for signal process-
ing and analysis is increasing steadily [21]. An important
instance of such a technique is the so-called pyramidal
decomposition scheme. Our work uses a general axiomatic
pyramidal decomposition scheme for soil image analysis.
'is scheme comprises the following ingredients.

(i) 'e pyramid consists of a (nite number of levels
such that the information content decreases towards
higher levels.

(ii) Each step towards a higher level is constituted by
an information-reducing analysis operator, whereas
each step towards a lower level is modeled by an
information-preserving synthesis operator. One basic
assumption is necessary: synthesis followed by anal-
ysis yields the identity operator, meaning that no
information is lost by these two consecutive steps.

2.2. Fractal Dimension. 'e techniques based on fractals
show promising results in the (eld of image understanding
and visualization of high complexity data.

'e high complexity of some images demands new
techniques for understanding and analyzing them.'e sim-
ilarity of fractals and real world objects has been observed
and studied from the very beginning. 'e fractal geometry
became a tool for computer graphics and data visualization
in the simulation of the real world. In order to perform visual
analysis and comparisons between natural and synthetic
scenes several techniques have been developed. A/er a period
of qualitative experiments, fractal geometry began to be
used for objective and accurate purposes: modeling images,
evaluating their characteristics, analyzing their textures, and
so forth.

Nowadays, there are a lot of (elds where fractals appear
[22]. First of all, we present some of the elementary ideas
necessary to understand applications of fractal geometry in
geo-information processing [23].

Fractal geometry theory deals with the behaviors of sets of
points ", in the #-dimensional spaceR!. Images, particularly
soil images, are sets of points in R2.

Mandelbrot de(ned a fractal as a shape made of parts
similar to the whole in some way [24]. 'at de(nition is
qualitative but not ambiguous, as it looks at the (rst glance.
'e main behavior of a fractal is its self-similarity. A set is
called self-similar if it can be expressed as a union of sets, each
of which is a reduced copy of the full set. More generally a set
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is said to be self-a.ne if it can be decomposed into subsets
that can be linearly mapped into the full set. If the linear
mapping is a rotation, translation, or isotropic dilatation the
set is self-similar.'e self-similar objects are particular cases
of self-a.ne ones.

A fractal object is self-similar or self-a.ne at any scale. If
the similarity is not described by deterministic laws stochastic
resemblance criteria can be found. Such an object is said
to be statistical self-similar. 'e natural fractal objects are
statistically self-similar. A statistically self-similar fractal is
by de(nition isotropic. To have a more precise, quantitative
description of the fractal behavior of a set, a measure and
a dimension are introduced. 'e rigorous mathematical
description is done by Hausdor) ’s measure and dimension
[25].

Let " ⊂ R! and % > 0, and a &-cover of " is a collection of
sets {'" : ( ∈ *} with diameter which is smaller than &, such
that " ⊂ ⋃"∈$'" ⊂ R! with 0 < ,,,,'",,,, < &, (1)

where * is a (nite or countable index set and | ⋅ | represents
the diameter of the #-dimension set, de(ned as|'| = sup {,,,,/ − 1,,,, : /,1 ∈ '} . (2)

Also, let R%(") be the collection of all &-covers of "; we can
de(ne 3&% (") = inf

R∈R! {∑"∈$,,,,'",,,,& :R =⋃"∈$'"} . (3)

Now, if in (3) we let & decrease to zero, we get the
Hausdor)measure of the set ",3&("):3& (") = lim%→ 03&% (") . (4)

'e Hausdor) measure generalizes the de(nition of length,
area, volume, and so on.3&%(") gives the volume of a set " as
measured with a ruler of & units.

'ere is an interesting property of theHausdor)measure:
If the Hausdor) dimension of the set " is 7, then3( (") = {∞ if : < 70 if : > 7. (5)

So, the Hausdor) dimension of the set " ⊂ R! could be
de(ned as

dim)" = sup {% : 3& (") =∞} = inf {% : 3& (") = 0} (6)

as we can see in Figure 1.
'en, the value of the parameter % for which the %-

dimensional Hausdor) measure of the set jumps from zero
to in(nite is said to be the Hausdor) dimension, dim), of the
set ".

A set is said to be fractal if itsHausdor)dimension strictly
exceeds its topological dimension, dim)" > #.

Numerical evaluation of Hausdor) dimension is di.cult
because of the necessity to evaluate the in(mum of the

∞
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Figure 1: Hausdor) dimension of the set ".
measure over all the coverings belongings to the set of
interest.'at is the reason to look for another de(nition for
the dimension of a set. 'e box counting dimension allows
the evaluation of the dimension of sets of points spread in
an #-dimensional space and also gives possibilities for easy
algorithmic implementation.

Given a set of points ", in a #-dimensional space R!, and;% is the least number of sets of diameter at most & that cover", the box counting dimension, dim*, is de(ned as

dim*" = lim%→ 0 log;%log 1/& . (7)

Depending on the geometry of the box and the modality
to cover the set, several box counting dimensions can be
de(ned using closed balls, cubes, and so on [25].

'e equivalence of these de(nitions was proved. Also it
was proved that these dimensions are inferior bounded by the
Hausdor) dimension [26].

Fractal geometry provides a mathematical model for
many complex objects found in nature, such as coastlines,
mountains, and clouds [22, 24]. 'ese objects are too com-
plex to possess characteristic sizes and to be described by
traditional Euclidean geometry. Fractal dimension has been
applied in texture analysis and segmentation [27, 28]. 'ere
are di)erentmethods that have been proposed to estimate the
fractal dimension. 'e three major categories are the box-
counting methods, the variance methods, and the spectral
methods.'e box-counting dimension is themost frequently
used for measurements in various application (elds. 'e
reason for its dominance lies in its simplicity and automatic
computability.

2.3. Segmentation of Soil Images. Image segmentation is the
process of partitioning an image into several regions, in order
to be easier to analyze and work with.

In image segmentation the level to which the subdivision
of an image into its constituent regions or objects is carried
depending on the problem being solved. In other words,
when the object of focus is separated, image segmentation
should stop [29].'e main goal of segmentation is to divide
an image into parts having strong correlation with areas of
interest in the image.

We study the simplest problem, dividing the image into
just only two parts, foreground and background, or object
pixels and background pixels.'e intensity values, continuity
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or discontinuity, color, texture, and other image character-
istics are the origin of the di)erent image segmentation
techniques. Reference [9] is an exhaustive performance com-
parison of 40 selected methods put into groups according to
histogram shape information,measurement space clustering,
histogram entropy information, image attribute information,
spatial information, and local characteristics.

So, some of the most important groups in image segmen-
tation techniques are the threshold-based, the histogram-
based, the edge-based, and the region based.

'e threshold-based methods are based on pixels inten-
sity values.'e main goal here is to decide a threshold value< to apply the rule:="+1 (/,1) = {0 if =" (/,1) < <255 if =" (/,1) ≥ <, (8)

where ="+1(/,1) is the new pixel value and ="(/,1) is the
old pixel value. In other words, a/er choosing a threshold,
then every pixel in the image is compared with this threshold,
and if the pixel lies above the threshold it will be marked as
foreground, and if it is below the threshold it will bemarked as
background.'e histogram-basedmethods are also based on
pixels’ intensity values. Here, histogram bars help to (nd the
clusters of pixels values. One of the most famous threshold-
based methods is Otsu’s method [19].

'e edge-based methods show boundaries in the image,
determining di)erent regions where we have to decide if they
are foreground or background.'e boundaries are calculated
analyzing high contrasts in intensity, color, or texture. On the
other hand, an opposed point of view are the region-based
methods divide the image into regions, searching for same
textures, colors, or intensity values.

In soil science the porosity of a porousmedium is de(ned
by the ratio of the void area and the total bulk area.'erefore,
porosity is a fraction whose numerical value is between 0 and
1, typically ranging from 0.005 to 0.015 for solid granite to 0.2
to 0.35 for sand. It may also be represented in percent terms
bymultiplying the number by 100. Porosity is a dimensionless
quantity and can be reported either as a decimal fraction or
as a percentage.

'e total porosity of a porous medium is the ratio of the
pore volume to the total volume of a representative sample
of the medium. Assuming that the soil system is composed
of three phases—solid, liquid (water), and gas (air)—whereA+ is the volume of the solid phase, A, is the volume of the
liquid phase,A- is the volume of the gaseous phase,A( = A, +A- is the volume of the pores, and A. = A+ + A, + A- is the
total volume of the sample, then the total porosity of the soil
sample, :., is de(ned as follows::. = A(A. = A, + A-A+ + A, + A- . (9)

Table 1 lists representative porosity ranges for various
geologicmaterials [30]. In general, porosity values for uncon-
solidated materials lie in the range of 0.25–0.7 (i.e., 25%–
70%). Coarse-textured soil materials (such as gravel and
sand) tend to have a lower total porosity than (ne-textured

Table 1: Range of porosity values.

Unconsolidated
deposits Porosity Rocks Porosity

Gravel 0.25–0.40 Fractured basalt 0.05–0.50
Sand 0.25–0.50 Karst limestone 0.05–0.50
Silt 0.35–0.50 Sandstone 0.05–0.30
Clay 0.40–0.70 Limestone, dolomite 0.00–0.20

Shale 0.00–0.10
Fractured crystalline
rock 0.00–0.10

Dense crystalline rock 0.00–0.05

soils (such as silts and clays). Porosity values in soils are not
a constant quantity because the soil, particularly clayey soil,
alternately swells, shrinks, compacts, and cracks.'e porosity
of our test image, shown in Figure 10(a), is 0.284.

Our work applies image segmentation techniques to
calculate the porosity of soil images. Also, we have compared
our results with the Otsu image segmentation algorithm.

3. Methodology

3.1. Laplacian Pyramid. 'e Laplacian pyramid representa-
tion expresses the original image as a sum of spatially band-
passed images, while retaining local spatial information in
each band. 'e Gaussian pyramid is created by low-pass-
(ltering an image B0 with a two-dimensional compact (lter.
'e (ltered image is then subsampled by removing every
other pixel and every other row to obtain a reduced imageB1. Graphical representations of these processes in one and
two dimensions are given in Figures 2 and 3.

'is process is repeated to form a Gaussian pyramidB0,B1,B2, . . . ,B/:B0 ((, C) =∑1∑! B0−1 (2( +D, 2C + #) E = 1, . . . ,;. (10)

Expanding B1 to the same size as B0 and subtracting
yields the band-passed image F0, a Laplacian pyramidF0, F1, . . . , F!−1 can be built containing band-passed images
of decreasing size and spatial frequency:F0 = B0 − B0+1 E = 0, . . . ,; − 1, (11)

where the expanded image B0 is given byB0 ((, C) = 4∑1∑! G (D, #)B0−1 (2( +D2 , 2C + #2 ) . (12)

'e original image can be reconstructed from the expanded
bandpass images:B0 = F0 + B1= F0 + F1 + B2

...= F0 + F1 + F2 + ⋅ ⋅ ⋅ + F/−1 + B/.
(13)
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Figure 2: Representation of the one-dimensional Gaussian pyramid
process.

G1

G0

Figure 3: Representation of the two-dimensional Gaussian pyramid
process.

'e Gaussian pyramid contains low-passed versions of the
original B0 at progressively lower spatial frequencies, while
the Laplacian pyramid consists of band-passed copies of the
original image B0. Each Laplacian level contains the edges of
a certain size and spans approximately an octave in spatial
frequency.

3.2. Fractal Dimension: Box-Counting Dimension. Fractal
dimension is a useful feature for texture segmentation, shape
classi(cation, and graphic analysis in many (elds. 'e box-
counting approach is one of the frequently used techniques
to estimate the fractal dimension of an image.

'ere are several methods available to estimate the
dimension of fractal sets. 'e Hausdor) dimension is the
principal de(nition of fractal dimension. However, there are
other de(nitions, like box-counting or box dimension, that
is popular due to its relative ease of mathematical calculation
and empirical estimation.'e main idea to most de(nitions
of fractal dimension is the idea ofmeasurement at scale &. For
each &, we measure a set ignoring irregularities of size less
than &, and then we see how these measurements behave as& → 0. For example, if K is a plane curve (one of our (lters),
then ;%(K) might be the number of steps required by a pair
of dividers set at length & to traverse K.'en, the dimension
of K is determined by the power law, if any exists, obeyed by;%(K) as & → 0. So, we might say that K has dimension 7 if
a constant 7 exists so that&+ ⋅ ;% (K) ≃ 1, (14)

where taking logarithms and limits when & tends to 0; we get
(7).

'ese formulae are appealing for computational or exper-
imental purposes, since 7 can be estimated as the gradient of
a log-log graph plotted over a suitable range of &.
3.3. Kolmogorov-Smirnov Normality Test. In order to deter-
mine the normality interval we use the Kolmogorov-Smirnov
normality test [31, 32], which is the most usual empirical
distribution function test for normality.

For a data setM of #wemake the contrast of a distribution
function K! from a theoretical distribution function K, using
the statisticN!N! = N! (K!,K) = max3∈4 {,,,,K! (/) − K (/),,,,} (15)

that represents the distance between K! and K.
For # large enough, the statistical distribution of N! is

close to the Kolmogorov-Smirnov distribution, K, which is
tabulated for some signi(cant values. Obviously, the assump-
tion of normality is rejected with signi(cance level 1 − O, ifN! > N!,5, with P(K ≤ N!,5) = O.

Let N!,5 be the K-S distribution percentiles. We reject at
level 1 − O because if # is big enough, N! = K and O = 0.01.
'en, we reject small values ofN!, so if |K!−K| is smaller than
the percentile O, we accept the hypothesis.
3.4. Otsu’s (resholding Method. 'e most common image
segmentationmethods are the histogram thresholding based,
since thresholding is easy, fast, and economical in compu-
tation. For performing the image segmentation we need to
calculate a threshold which will separate the objects and the
background in our image. Since soil images are relatively
simple when we just pay attention to void and bulk, so we are
going to apply the global threshold technique, instead ofmore
advanced variations (band thresholding, local thresholding,
and multithresholding). 'e global thresholding technique
consists of selecting one threshold value and applying it to
the whole image.

'e resultant image is a binary image where pixels that
correspond to objects and background have values of 255
and 0, respectively. Quick and simple calculation is the main
advantage of global thresholding.

Otsu’s method searches for the threshold that minimizes
the intraclass variance (or within class variance) R26(S)
de(ned as the weighted sum of variances of the two classes:R27 (S) = T0 (S)R20 (S) + T1 (S)R21 (S) , (16)

where T" are the probabilities of the two classes (foreground
and background) separated by a threshold S and R2" are the
variances of these both classes.

Otsu [19] proofed that minimizing the intraclass variance
is the same as maximizing the interclass variance R28(S)
de(ned as follows:R2* (S) = R2 − R26 (S) = T0 (S)T1 (S) [V0 (S) − V1 (S)]2, (17)

where T" are the class probabilities and V" the class means.
'e class probabilities T0(S) and T1(S), and the class

means V0(S) and V1(S), are computed asT0 (S) = .∑0 : (() T1 (S) =∑">.: (()V0 (S) = .∑0 : (() / (() V1 (S) =∑">.: (()/ (() , (18)

where /(() is the centered value of the (th histogram bin.
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'e class probabilities and class means can be computed
iteratively.'is idea yields an e)ective algorithm.

Otsu’s algorithm assumes just only two sets of pixel
intensities, the foreground and the background, or void and
bulk for soil images.'e main idea of the Otsu’s method is to
minimize the weighted sum of within-class variances of the
foreground and background pixels to establish an optimum
threshold. It can be formulated as<Otsu = arg min {T0 (<)R20 (<) + T1 (<)R21 (<)} , (19)

where theweightsT"(<) are the probabilities of the two classes
separated by the threshold < and R2" (<) are the corresponding
variances of these classes. Otsu’s method gives satisfactory
results when the values of pixels in each class are close to each
other, as in soil images.

Let the pixels of a given picture be represented in 256 gray
levels: 0, 1, 2, . . . , 255. Let the number of pixels at level ( be
denoted by #" and the total number of pixels by;. If we de(ne:" as :" = #"/;, then :" ≥ 0 and ∑:" = 1. So, we have a
probability distribution point of view.

'e threshold at level E de(nes two classes: the fore-
ground ([0) and the background ([1).'en, the probabilities
of these classes and their means are

T0 = Pr ([0) = 0∑"=0:" = T (E) ,T1 = Pr ([1) = 255∑"=0+1:" = 1 − T (E) ,V0 = 0∑"=0(Pr (( | [0) = 0∑"=0 (:"T0 = V (E)T (E) ,V1 = 255∑"=0+1(Pr (( | [1) = 255∑"=0+1 (:"T1 = V9 − V (E)1 − T (E) ,
(20)

where

T (E) = 0∑"=0:" V (E) = 0∑"=0(:", V9 = 255∑0 (:". (21)

We can easily verify that, for any E, T0 + T1 = 1 and T0V0 +T1V1 = V9. Now, we de(ne the class variances as
R20 = 0∑"=0(( − V0)2Pr (( | [0) = 0∑"=0 (( − V0)2:"T0 ,R21 = 255∑"=0+1(( − V1)2Pr (( | [1) = 255∑"=0+1 (( − V1)2:"T1 . (22)

Now, we are going to apply the discriminant analysis to
evaluate and quantify the threshold at level E, using the

measures of class separability <, \, and ] based on the within-
class varianceR26, the between-class varianceR2*, and the total
variance R29, de(ned as< = R2*R26 \ = R29R26 ] = R2*R29 ,R26 = T0R20 + T1R21 ,R2* = T0(V0 − V9)2 + T1(V1 − V9)2 = T0T1(V1 − V0)2,R29 = 255∑"=0(( − V9)2:".

(23)

4. Results

4.1. Classi)cation of 1D Filters. Our 1D (lters are de(ned by
the weighting functionG(D) and the pyramidal construction
is equivalent to convolving repeatedly the original signal
with this weighting functions. Some of these Gaussian-like
weighting functions are shown in Figure 5.

Note that the functions double in width with each level.
'e convolution acts as a low-pass (lter with the band
limit reduced correspondingly by one octave with each
level. Because of this resemblance to the Gaussian density
function we refer to the pyramid of low-pass images as
the Gaussian pyramid. Just as the value of each node in
the Gaussian pyramid could have been obtained directly by
convolving a Gaussian-like equivalent weighting function
with the original image, each value of this bandpass pyramid
could be obtained by convolving a di)erence of twoGaussians
with the original image.'ese functions closely resemble the
Laplacian operators commonly used in image processing. For
this reason the bandpass pyramid is known as a Laplacian
pyramid. An important property of the Laplacian pyramid is
that it is a complete image representation: the steps used to
construct the pyramidmay be reversed to recover the original
image exactly.'e top pyramidal level, F/, is (rst expanded
and added to F/−1 to formB/−1.'en this array is expanded
and added to F/−2 to recover B/−2, and so on.

'e weighting function G(D) is determined by these
constraints

Symmetry: G (D) = G (−D)
Normalization:

2∑1=−2G (D) = 1
Equal contribution: ∑1 oddG (D) = ∑1 evenG (D) .

(24)

Normalization, symmetry, and equal contribution are satis-
(ed when G (0) = !,G (1) = G (−1) = 14 ,G (2) = G (−2) = 14 − !2 .

(25)
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If the size is 5, we have the (lter G(G0 [E]) = [14 − !2 , 14 , !, 14 , 14 − !2] E = 1, . . . , 5 (26)

which represents a uniparametric family of weighting func-
tions with parameter !. Observe that if the size is bigger
than 5, constraints (24) generate a multiparametric family of
weighting functions.

Convolution is a basic operation of most signal analysis
systems.When the convolution and decimation operators are
applied repeatedly # times, they generate a new equivalent
(lter G!, whose length is `0 = 5,`! = 2`!−1 + 3 # ≥ 1, (27)

where`0 is the length of the initial (lter G0.
Figure 4 shows an example of several iterations of the

(lter for ! = 0.4. We can observe that there is a quick
convergence to a stable shape. And, in this case, the shape of
the plot of the limit (lter is Gaussian.

We have tested di)erent values !, from ! = 0.1 to ! = 1.2.
'e shape of the (lter, the equivalent weighting function,
depends on the choice of parameter !. 'ere are several
di)erent shapes for di)erent values of !: Gaussian-like and
fractal-like. Figure 5 shows some examples of Gaussian and
fractal shapes.

'e (rst two (lters are Gaussian-like, and the last two are
fractal-like. It is possible to con(rm these early conclusions.
We have successfully applied normality tests to verify the
normality of the (lters obtained with the lowest ! values.
On the other hand, in fractal geometry, the box-counting
dimension is a way of determining the fractal dimension of
a set. To calculate the box-counting dimension for a set ",
we draw an evenly-spaced grid over the set and count how
many boxes are required to cover the set. 'e box-counting
dimension is calculated by applying (7).

We can see the results of fractal dimension (FD) of (lters
1D whose values are shown in Table 2 and Figure 9(a). From
these results and this(gurewe can observe a fractal behaviour
when ! < 0 and when ! > 0.6.

'e generation of bidimensional (lters G̃(D, #), also
called generating kernels or mask (lters, is based on the
condition

Separability: G̃ (D, #) = G (D)G (#) . (28)

So, a (lter G̃(D, #) is called separable if it can be broken down
into the convolution of two (lters.'is property is interesting
because if we can separate a (lter into two smaller (lters, then
usually it is computationally more e.cient and quicker to
apply both of them instead the original one. We work with
2D (lters that can be separated into horizontal and vertical
(lters. 2D (lters have been obtained by sequentially applying
the same one-dimensional (lter on rows and columns.

When we calculate the bidimensional (lters, we obtain
(lters like Figure 6. 'ese are obtained when ! = 0.4 and! = 0.8.

Table 2: Fractal dimension of (lters.! Fractal dimension−0.2 1.578−0.1 1.2400.0 1.0110.1 1.0200.2 1.0090.3 1.0090.4 1.0040.5 1.0090.6 1.0220.7 1.1420.8 1.1410.9 1.2091.0 1.2481.1 1.2761.2 1.289
4.2. Normality Interval. 'ere is a relevant result when
we study the normality of (lters: the Gaussian function is
separable if variables are independent. Burt and Adelson
show that if we choose # = 5 and ! = 0.4, then the equivalent
weight function is Gaussian [18]. Indeed, there is an interval
for the parameter ! where we can see the Gaussian behavior.

Once we have a chosen value for ! and a pyramidal depth
value E, we need to select the best normal distribution;(V̂, R̂)
that (ts our weights. We estimate V̂ by the arithmetic mean
and R̂ by the minim of all N! in an empirical con(dence
interval calculated as
CI (R̂)= (max (min (R̂1, R̂2) − 1, 0) ,max (min (R̂1, R̂2) + 1, 0))

(29)

with R̂1 and R̂2 two initial estimations of R̂.
Because the symmetry property of the (lter G, we have

that the arithmetic mean is the central point, soV̂ = :̀ + 12 = 2:+1 − 1 (30)

because the Cth level is :̀ = 2:+2 − 3, which is the solution
of the linear recurrence relation (27).

Conditions to calculate R̂1 and R̂2 are the adjust to the
histogram of the (lter G̃ and the normal distribution related
to two known percentiles; speci(cally,

Pr (; (V,R) ≤ V − c1R) = 1 − :12 ,
Pr (; (V,R) ≤ V − c2R) = 1 − :22 (31)

so we have the system of equationsR̂1 = V̂ − c1d(1 ,R̂2 = V̂ − d(2c2 , (32)



8 'e Scienti(c World Journal

1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

2 4 6 8 10 12

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

10 20 30 40 50 60

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

k

kk

w
[k
]

w
2[
k]

w
4[
k]

Figure 4: First, second, and fourth iteration of the (lter 1D (! = 0.4).
where d(1 and d(2 are the corresponding abscissas to per-
centiles :1 and :2.

Speci(cally, the numerical simulation with # = 5, :1 =0.682, and :2 = 0.95 (that correspond to the normalized
abscissas c1 = 1 and c2 = 1.96) generates the normality
intervals, which determinates the estimation for R̂ of the
normal distribution applied. Corresponding values for this
case are shown in Figure 7(a). As we can see, ! = 0.39 is the
minimal value, and so it has the best adaptation to a normal
distribution, as shown in Figure 7(b).

Figure 7(a) shows the value of the statistic N! as a
function of the parameter ! and the normal threshold for
a con(dence level of 99%. For values of ! in the interval[−0.08, 0.57] the assumption of normality is not rejected.N! attains the minimum for ! = 0.39, corresponding
to estimated Gaussian distribution, with mean 127 and
standard deviation 36.74. Figure 7(b) shows the (lter G6

and the estimated density, where we can see the adjustment
goodness.

4.3. Image Segmentation and Performance Evaluation. A/er
these results, we have generated the Gaussian and Lapla-
cian pyramids corresponding to one Gaussian value for !
and another fractal value for !, applying the methodology
previously shown, getting the corresponding Gaussian and
Laplacian pyramids, and then we have compared the results
obtained. Figure 8 shows pyramidal sets for ! = 0.4 and ! =1.2, corresponding to a Gaussian and a fractal, respectively.

When we have applied our method to segment images
with di)erent values for the parameter !, we have obtained
the threshold values shown in Figure 9(b) and results as
shown in the Figure 10. We can compare these results with
Otsu’s method threshold value 0.259.
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Figure 5: Sixth iteration of 1D Laplacian pyramid (lters, G6[E], for di)erent ! values.

'e application of our methods with di)erent values !
produces the results shown in Figure 10(b), together with
Otsu’s value.Aswe can see, ourmethodobtains similar results
for fractal threshold values.

4.4. Pore Size Distribution. We have presented threshold
values obtained from Laplacian pyramid and the comparison
with Otsu’s values. On the other hand, if we compare the
pore size frequency distribution obtained by Otsu’s method

and the threshold obtained based on Laplacian (lter structure
some di)erence is observed, as we can see in Figure 11. In the
smallest size range, between 5 to 20 pixels, the formermethod
presents higher porosity and the decrease in frequency is
much smoother than with the latest method. Even the
di)erence in porosity is not signi(cant, Otsu’s method gives
27.5% and this method estimates 31.1% the di)erence in sizes
could a)ect several percolation models. 'ese results are
showed in Figure 11. Finally, the porosity obtained is this
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Figure 6: Bidimensional (lters corresponding to ! = 0.4 (a) and ! = 0.8 (b).
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Figure 7: Gaussian (lter adjustment.

study approaches Otsu’s result when ! value increases from
the range 0 till 1.2.
5. Conclusions

'e(eld of fractals has been developed as an interdisciplinary
area between branches ofmathematics and physics and found
applications in di)erent sciences and engineering (elds. In
geo-information interpretation the applications developed
from simple veri(cations of the fractal behavior of natural
land structures, simulations of arti(cial landscapes, and
classi(cation based on the evaluation of the fractal dimension
to advanced remotely sensed image analysis, scene under-
standing, and accurate geometric and radiometric modeling
of land and land cover structures.

Referring to the computational e)ort, fractal analysis
generally asks high complexity algorithms. Both wavelets and
hierarchic representation allow now the implementation of
fast algorithms or parallel ones. As a consequence a devel-
opment of new experiments and operational applications is
expected.

We have seen that the di)erent choice of the parameter! gives two kinds of (lters, the Gaussian-like and the fractal-
like.'is is demonstrated applying normality tests (Gaussian)
and fractal dimension techniques (fractal), analytical and
graphical in both cases.

'e di)erent shape of (lters, Gaussian/fractal, has per-
ceptible e)ects when we generate new levels of the Gaussian
and Laplacian pyramids, getting blurred or accentuated new
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(a) (b)

Figure 8: Gaussian and Laplacian pyramids of the soil image ((a) ! = 0.4, (b) ! = 1.2).
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Figure 9: Fractal dimensions and threshold values.

images, at every new level. Filters generated with lowest !
values produce blurred edges and images. On the other hand,
(lters obtained from highest ! values generate new images
with higher contrasts and sharp edges.

Also, there is a di)erent behaviour of the energy of the
di)erent levels of the Laplacian pyramid if we choose di)erent! values, that is, if we choose a Gaussian or fractal (lter.'e
Gaussian-like (lters always make a lower energy image.'is
fall is slowbut there is always a fall. On the other hand, fractal-
like (lters also fall, but this happens a/er several iterations,

and then, the fall is bigger than the fall of the Gaussian-like
(lters.

'ese (lters can be applied to image segmentation of soil
images, with a simple computation and good results, quite
similar or even better to some famous techniques such as
Otsu’s method.

Moreover, results concerning porosity are similar but
there are di)erences in pore size distribution that could
improve percolation simulations.'e implementation of this
method in three dimensions is straightforward.
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(a) Original (b) Otsu (c) ; = 0.2

(d) ; = 0.4 (e) ; = 0.8 (f) ; = 1.2
Figure 10: Soil image and several segmentations.
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Future work could add other image segmentation tech-
niques and neural networks methods to select the optimal
threshold values from information and characteristics of the
image.
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