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DEGREE OF STRATA OF SINGULAR CUBIC SURFACES 

RAFAEL HERNANDEZ AND MARIA J. VAZQUEZ-GALLO 

ABSTRACT. We determine the degree of some strata of singular cubic surfaces 
in the projective space P3. These strata are subvarieties of the P19 parametriz- 
ing all cubic surfaces in P3. It is known what their dimension is and that they 
are irreducible. In 1986, D. F. Coray and I. Vainsencher computed the de- 
gree of the 4 strata consisting on cubic surfaces with a double line. To work 
out the case of isolated singularities we relate the problem with (stationary) 
multiple-point theory. 

1. INTRODUCTION 

The purpose of this work is to determine the degree of certain strata of singular 
cubic surfaces in P(. In the nineteenth century L. Schlifli [26] and A. Cayley 
[6] classified the cubic surfaces in P3 according to the type of their singularities. 
We consider this classification with the point of view given by J. W. Bruce and 
C. T. C. Wall [5] 100 years later, based on the modern theory of singularities [2], 
[3]. 

Let us suppose that the cubic surfaces are irreducible and have only isolated 
singularities. Fixed a singular point P of a cubic surface C, there are 4 types of 
surfaces, according to the rank of a quadratic form associated to each one of them: 
surfaces with a conic node, a binode, a uninode and a triple point at P. 

Inside each one of these classes, the different singularities presented by a surface 
C are determined by the possible coincidences of the 6 lines passing through the 
fixed singular point P and contained in C. 

Besides of these, there are 4 strata of irreducible surfaces with non isolated 
singularities (that are, in fact, ruled surfaces with a double line) and 9 of reducible 
cubic surfaces. 

The strata resulting from this classification is the closure of quasi-projective 
subvarieties of the p19 parametrizing all cubic surfaces in P3. Regarding geometric 
properties of strata, it is known what their dimension is [5] and that the strata are 
irreducible [4]. Our aim here is to determine their degree. 

First of all, the degree of strata parametrizing reducible surfaces is easy to com- 
pute [30]. In the case of the 4 big strata given by the rank of a quadratic form, the 
degree can be obtained at least in two ways [30], [28]. On the other hand, in 1986, 
D. F. Coray and I. Vainsencher calculated the degree of the 4 strata of ruled cubic 
surfaces having a double line [8]. Their work motivates ours. 

Received by the editors March 15, 1999. 
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In this paper, we determine the degree of 7 of the 11 strata of cubic surfaces 
with a conic node, using a method that must work, essentially in the same way, 
with some strata of cubics with a binode or a uninode. 

Our approach to the problem is to relate it with stationary multiple-point theory, 
whose main goal is the enumeration of k-tuples of points of a scheme Z with the 
same image under a morphism of schemes f: Z -+ S and such that the points have 
collapsed in accordance with a given partition of k. 

We construct first some suitable parameter spaces and then we consider the lines 
whose coincidences determine the strata in our case, as stationary multiple points 
of a morphism between two of these parameter spaces. 

One of the first examples of multiple-point formulas related with our problem 
is that of De Jonquieres (1866), allowing us to consider coincidences of points in 
the zero scheme of sections of a line bundle on a given curve. One century later, 
I. Vainsencher [29] (1981) proved a generalized De Jonquieres' formula, valid for a 
general line bundle. Some years after, S. J. Colley [7] obtained more formulas for 
stationary multiple points using the iteration method by S. L. Kleiman [16], [17], 
[18], who had already given some multiple-point formulas for the non-stationary 
cases. 

We cannot apply Vainsencher's results in order to compute the strata's degree 
because we are dealing with coincidences of points in the plane. On the other 
hand, in Colley's work there are no formulas for the cases we need (stationary 
6-tuple points). 

We use then the more general multiple-point formula by Z. Ran [24] (1984), 
based on the residual intersection formulas of W. Fulton and D. Laksov [10], that 
allows us to treat coincidences of points in the zero scheme, let's say X, of sections 
of a vector bundle with rank equal to codim(X). This turns out to be our case 
with a rank 2 vector bundle while in [24] all the examples worked out deal with line 
bundles. 

Then, in ?5 we prove results justifying the computation of the degree of strata 
of cubic surfaces with a conic node, as a product of cycles in the intersection ring 
of a suitable space of 6-tuples. 

The cases not covered here are the strata given by a collapse with less than 3 
different lines. Those correspond in our construction to 6-tuples of points that are 
not curvilinear (i.e. that don't live in a smooth curve) and, in general, the parameter 
space Zk used to enumerate them only parametrizes ordered and curvilinear k- 
tuples of a scheme Z over another one S [17], [24]. 

Regarding to the effective computation of these degrees, the method employed 
here leads to calculate in A*(Zk) (the intersection ring of Zk) the degree of a zero- 
dimensional cycle, obtained by taking up cycles in A*(Z/), with I < k, through the 
inductive construction of Zk. 

Given a morphism from Z to S, if A*(S) is known and A*(Z) is a finitely 
generated A*(S)-module, we are able to give an inductive method to compute 
the degree of zero-dimensional cycles of A*(Zk) in the previous conditions (see 
Proposition 6.1). 

We note that, whenever Z is a projective bundle over S, we can explicitly describe 
the intersection ring of the space Zk (see ?6). In our case A*(Z6) is a polynomial 
ring over Z with 23 generators modulo 38 relations and effective computations in 
this ring, using Gr6bner basis' method, is much more costly that our inductive 
method. 
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DEGREE OF STRATA OF SINGULAR CUBIC SURFACES 

We implement this method in a computer program written in Maple [20]. This 
program could be useful each time that one uses the parameter spaces Zk in order 
to study enumerative questions depending on what is happenning on the fibers of 
Z over S. 

This paper is organized as follows: ?2 is devoted to the classification of singular 
cubic surfaces in P3. In ?3, we construct some parameter spaces appropriated for 
the problem. We deal in ?4 with the spaces of k-tuples and the secant bundles 
of Ran's work [24]. In ?5 we state and prove our main result giving the degree 
of some strata of cubic surfaces with a conic node. Finally, in ?6 we work with 
the intersection ring of spaces of k-tuples and the effective computation of strata's 
degree. 

This work is part of the second author's Ph.D. Thesis. We would like to thank 
E. Arrondo and I. Vainsencher for suggestions and comments. 

Notation 1.1. We shall tacitly assume that all schemes are defined over an alge- 
braically closed field of characteristic 0. Our notation follows the book of W. Fulton 
[9], in particular we will write P(E) for the projectivization of a vector bundle E 
over a scheme Z, defined as P(E) = Proj(SymE*). If Z is a non-singular scheme, 
the intersection ring we shall use is the Chow ring of classes of rational equivalence 
of cycles, graduated by codimension and denoted by A*(Z). We will denote by Gr 
the grassmannian of lines of P3. 

2. CLASSIFICATION OF SINGULAR CUBIC SURFACES 

The classification of singular cubic surfaces in P3 given by J. W. Bruce and 
C. T. C. Wall [5] corresponds to another one in accordance with the incidence 
relations of the lines contained in a cubic surface, studied by several authors [6], 
[25]. A cubic surface is non-singular if and only if it contains 27 different lines. 
When it is singular, some of the lines collapse. The surface given by a general point 
of each stratum presents a certain type of coincidence between these lines. 

We recall here the main points of Bruce's and Wall's work. If P is a singular 
point of a cubic surface C and (xo : xi : x2 : x3) are homogeneous coordinates in 
P3, one can assume, doing a change of coordinates if necessary, that P is the point 
(0 : 0: 0:1) and then, the equation of the surface takes the form 

(2.1) x3f2(xo0, 1, 2) + f3(o, x1,x2) = 0 

where fi is homogeneous of degree i. The classification depends, first on the rank of 
the quadratic form f2, and second, on the coincidences between the collection of 6 
lines common to the two cones given by f2 = 0 and f3 = 0. These are lines through 
P, contained in C and they are equivalent to the intersection points of the two 
plane curves, let's say V2 and V3, given by f2(xo, X1,2) = 0 and f3(x0, 1,x2) = 0 
respectively. 

Let us suppose that the surface is irreducible and has only isolated singularities. 
According to the rank of f2 there are 4 types of singularity at the fixed point P: 
conic node, binode, uninode and triple point. 

When the rank of f2 is maximum, the singular point is a conic node. There 
are 11 strata in accordance with the partition of 6 given by the coincidences of the 
intersection points (lines) of V2 and V3, namely 
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16 214 313 2212 412 321 23 

Sing. A1 2A1 A1A2 3A1 A1A3 2A1A2 4A1 
Param. 3 2 1 1 0 0 0 

51 42 33 6 
Sing. A1A4 2A1A3 A12A2 A1A5 

Param. 0 0 0 0 

In this table, the partition called, for example, 2212 corresponds to a collection 
of 6 points with 2 of them being double points. At a singular point of type Ak, 
the normal form of the surface's equation is xk+l + E3- X2 = 0. The third row 
indicates the number of parameters on which each type of surface depends, up to 
projective transformations. 

A binode corresponds to rank(f2) = 2, in this case, P is a singularity of type 
Ak with k > 2. There are 13 possible configurations of common points to the cubic 
and the line pair and 6 of them correspond to new strata. 

13.13 13.21 13.3 21.21 21.3 3.3 12.12 
Sing. A2 A2A1 2A2 A22A1 2A2A1 3A2 A3 

Param. 2 1 1 0 0 0 1 

12.2 2.2 12.1 2.1 12.0 2.0 
Sing. A3A1 A32A1 A4 A4A1 A5 A5A1 

Param. 0 0 0 0 0 0 

When rank(f2) = 1, P is a uninode and one gets three more strata called D4, D5 
and E6 corresponding to the cases in which the points in V2 n V3 are three distinct 
points, two and one, respectively. 

Finally, in the case of f2 = 0, P is a triple point. It must happen that f3 = 0 
defines a non-singular cubic in order to have an isolated singularity at P. The 
surface is then a cone over this plane cubic. 

Until now the singular point P is fixed on the cubic surface. When P moves 
in P3, one gets strata in P19 x P3 of cubic surfaces with a distinguished singular 
point. Its projection onto the first factor gives the strata of singular cubic surfaces, 
living in P19, that we are interested in. 

3. PARAMETER SPACES 

We first construct a subscheme of P19 x P3, that we will call S, parametrizing 
cubic surfaces in P3 with a distinguished singular point. 

In this way, strata of cubic surfaces with a singular point can be seen as sub- 
schemes of S and the degree of corresponding strata of singular cubic surfaces in 
p19, obtained by projection onto the first factor, could be computed, using the 
projection formula (see 3.2.(c) of [9]), as a product in the Chow ring A*(S). 

3.1. Cubics with a distinguished singular point. The construction of the 
parameter space S for cubic surfaces with a distinguished singular point is analogous 
to others appearing in the literature for plane curves (see, for instance, [22] and 
[23]). 

To fix notation, let V be a vector space of dim 4 over C and P3 = P(V) the 
projective space of lines of V. We set 

0 > L -V Ip3-> Q >0 
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for the tautological exact sequence with rank(L) = 1 and rank(Q) - 3 and we 
denote by h = cl(L*) the first Chern class of L* = Op3(1) (h is the hyperplane 
class of P3) and by S3V* the third symmetric power of V*. 

Definition 3.1. Let F be the subbundle of S3V* IP3 whose fiber over a point of 
P3 is the linear subspace of S3V* of cubic forms that have multiplicity at least 2 
at such point. Denote by S the projective bundle associated to F. 

With this definition S = P(F) C P(S3V* p3) 
- P19 x P3 is the incidence 

subvariety whose points consist in couples (f, P), where P is at least a double point 
for the cubic surface given by f = O. Since rank(F) = 16, then dim(S) = 18. In 
order to determine the intersection ring of S = P(F), we start with a preliminary 
lemma. 

Lemma 3.2. With the previous notation, the sequence of vector bundles over P3 

(3.2) 0 S2Q* 0 Q* 
u 

S2Q* 0 V* SP3 QS3Q* v-F F -- 0 

where u(a 0 /3) = (a 0 /, -a/) and v(a 0 w, p) = aw + /, is exact. Therefore 
c(F) = 1 - 8h + 40h2 - 160h3. 

Proof. The first part is similar to the analogous result for plane curves (see [22]). 
The second one is a straightforward computation applying Whitney's formula (see 
3.2.(e) of [9]) to this resolution and to the tautological exact sequence over P3 above 
(3.1). D 

Proposition 3.3. Let 7r be the projection from S to P3. The intersection ring of 
S = P(F) is 

A*(P(F)) 
Z[b, 

(b4 , I16 - 8b[15 _ + 40b2/14 _ 160b3A13) 

where b = r*h and L = c1(OP(F) (1))- Moreover, the following relations hold: 

b315 = 1, b216 = 8, b/ 17 24 and /ls = 32. 

Proof. The description of A*(S) as a polynomial ring is a direct consequence of the 
result giving the Chow ring of a projective bundle P(E) in terms of the total Chern 
class of E and the intersection ring of the base space (see 3.3.(b) and Ex. 8.3.4. of 
[9]). In order to verify the relations in A* (S) we take down the products in this ring 
to A*(P3), using the projection formula and standard results about Chern classes 
(see Ex. 3.2.1. of [9]). E] 

3.2. More parameter spaces. We build now a space, say X, that fixes a singular 
point P for each cubic surface C, and parametrizes the lines contained in C and 
passing through P. The coincidences between these lines determine the stratum 
where the surface lives. 

To get X, we first construct another space Z in pl9 x P3 x Gr. This Z turns 
out to be a projective bundle over S and we will define X as a subscheme of Z. 
If we write f for the restriction to X of the projection from Z to S, it is natural 
to consider the stationary multiple points of f to solve our problem concerning the 
strata of singular cubic surfaces, because the condition defining the strata of cubics 
is the collapse produced between the points in the fiber of X over S. 
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Remark 3.4. One has to take care of three pairs of strata such that both strata 
on each pair have the same codimension in the P19 of cubic surfaces and they 
correspond to the same type of coincidence between points of X over S. These 
pairs are (4A1, D4), (2A1A3, D5) and (A1A5, E6). In this paper, we don't compute 
the degree of the strata of surfaces having singularities of the types appearing on 
the two last pairs but, in order to compute the degree of surfaces with four conic 
nodes (4A1) one must substract the contribution given by surfaces with a uninode 
(D4) (see Theorem 5.1). 

3.2.1. Construction of Z. We consider the incidence of points and lines of P3, I C 
P3 x Gr, consisting of pairs (P, 1), P E L, where I is the point of Gr corresponding 
to the line L C P3. 

Definition 3.5. If P1 (resp. P2) is the projection from I to P3 (resp. Gr), Z is 
defined as the scheme I Xp3 S (see B.2.3. of [9]). 

WF P2 
Z > I - Gr. 

Pi pi 

S P3. 

This Z represents collections (fc, P, 1) with fc = 0 the equation of the cubic 
surface C, P a double point of C and L a line through P. By definition, Z is a 
projective bundle over S: the projection P1 identifies the incidence I with P(Tp3), 
(Tp3 is the tangent bundle of P3), so we have also (see B.5.5. of [9]) 

I P(Tp3 (-2)) P(Q(-1)) 
and therefore Z - P(Tr*Q(-1)) and dim(Z) = 20. 

It is also easy to see that P2O1Gr (1) (Q()) (1) (1) O ) (P ( OP(U) (1) and 

P2 : I - Gr can be identified with the projective bundle P(U) over Gr, being U 
the tautological subbundle of rank 2 fitting in the tautological exact sequence over 
Gr: 

(3.3) 0 > U > V \Gr QGr 3 0. 

These facts will be useful on later computations (see 3.2.2). 

3.2.2. Construction of X. If C is a cubic surface in P3 given as the zeroes of a 
section fc of Op3 (3), the Fano scheme of lines contained in C, F(C), can be seen 
as the scheme of zeroes of the section induced by fc in p2*(p1Op3 (3)) = S3U*. 
The line bundle p*Op3 (3) over I corresponds to the divisor (pTfc)o with fiber at 
a general I E Gr the three intersection points of the cubic surface C with the line 
L of P3. 

This is a particular case of the Fano scheme of pairs (V, 1) where V is a hyper- 
surface in pn of given degree d and I parametrizes a line L contained in V, defined 
in [1]. There it is proved that, if H is the projective space of all hypersurfaces of 
degree d, G is the grassmannian of lines of pn and U is the tautological subbundle 
over G, then the Fano scheme in H x G is given by the scheme of zeroes of the 
section of SdU* ( OH (1), induced by the section of Opn (d) 0 OH (1) defining the 
universal divisor of H x pn (see Thm. 3.3. of [1]). 

To obtain a space X C Z consisting on the points (fc, P, I) of Z such that L C C, 
we adapt this result to our case for which lines must be contained in the surface C 

100 

This content downloaded from 138.4.228.213 on Thu, 25 Sep 2014 10:43:27 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


DEGREE OF STRATA OF SINGULAR CUBIC SURFACES 

and must pass through the distinguished singular point P c C (see Proposition 3.9 
below). 

X - Z - p19 x p3 x Gr 

\ I 
S r P19 x P3. 

First, we define a space T over Z which plays the role of the incidence I as 
projective bundle over Gr in the case of a concrete cubic surface: we want the fiber 
of T over a point (fc, P, 1) parametrized by Z to represent the p1 of points of the 
line L. We then consider the diagram 

pt2 Pi 3 T A Y P3 
prl 4, prl 1P2 

(3.4) Z A I 2 Gr 
pl I [pl 

S A P3 

where p' is the projection of P(U) -- Gr, Y := I XGr I' r P(p*U) C P3 x Gr x P3 
and T := Y xI Z r-P(*p*U) C P19 x P3 x Gr x P3. 

In this way, Y parametrizes collections (P, 1, P') such that P C L and P' E L and 
T collections (fc, P, 1, P') where P is a double point of the surface C and P, P' C L. 
Now, we build an invertible sheaf N over T which is the analogue of p 1(p3 (3) in 
the case of F(C). 

Lemma 3.6. Let N be the line bundle pri*p*Os(l) 0 OT(3) over T. Then N has 
an associated section SN such that D :- (SN)o parametrizes collections (fc, P, 1, P') 
with P' E C, besides P being a double point of C and P, P' E L. 

Proof. Let i7r and Tr2 be the projections from S x P3 to its factors. If q is the 
morphism from T to S x P3 given by the diagram (3.4) then, by construction, N is 
the pullback by (q of 7riO((1) 7r2Op3 (3). The section SN on the statement above 
is q* of the section of 7r*Os(1) ( 7Fr2Op3(3) vanishing on the universal surface in 
Sx P3. n 

Remark 3.7. For each point z C Z, the fiber of (SN)o C T consists of two points: 
P the double point of C and, let's say R, the remaining point in the intersection of 
a general line L through this P, and the surface C. 

Let Dp be the divisor of T given by the point P when z moves in Z. Let DR 
be the residual divisor of Dp on D (see 9.2.1. of [9]), given by the point R when z 
moves in Z. We will get X as the scheme of zeroes of a section of a rank 2-vector 
bundle over Z, defined as pr. * of the line bundle over T corresponding to the divisor 
DR. 

Definition 3.8. Let E be the sheaf pr~*.(OT(DR)), where prl is the projection 
from T to Z and DR is defined in the previous remark. 

Proposition 3.9. With the previous notation: 

1. The pairs consisting of a flat family of cubic surfaces of P3 with a distin- 
guished singular point and a flat family of lines contained in the surface and 
passing through its singular point, both parametrized by the same scheme W 
are the W-points of a closed subscheme X of Z. 
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2. The space X is the scheme of zeroes of a regular section, say sE, of the locally 
free sheaf E of rank 2 over Z. 

Proof. The proof is analogous to that of Thm. 3.3 (i), (iii) of [1] except for the 
following concerning 2: 

By definition, D = 2Dp + DR, so M := OT(DR) = N 0 OT(-2Dp) and the 
section SN of N induces another one of M, let's say sM, vanishing on DR. The 
sought section is equal to SE = prlsM. 

E is a rank 2-vector bundle because by Grauert's theorem (see III.12.9 of [12]), 
E = R?pr(*(OT(DR)) is locally free if dim H? (T, OT(DR) ITJ) is constant Vz E Z 
and in our case, h?(Tz, OT(DR) |T) = hO(Pl, Opi(1)) = 2, Vz E Z. D 

We write j for the inclusion X C Z, p for the projection from Z to S (called 
before pT) and f for the composition p o j. 

The situation we get is 

E 

X (SE)O 0 Z > p19 x P3 x Gr 

Xf IP 
S - P19 x P3 

with the space X parametrizing, for each cubic surface with a given double point, 
the lines passing through that point and contained in the surface. In this way, the 
strata of singular cubic surfaces with a conic node of given type (see ?2) depend on 
the coincidences between points on the fiber of f : X -- S, keeping in mind Remark 
3.4. We will show in ?5 that their degree can be determined using a suitable cycle of 
stationary multiple points of f and computing in the intersection ring of the space 
of 6-tuples Z6 (see ?4). 

In ?5 we will need to know c(E), the total Chern class of the vector bundle E 
and also that X is smooth. 

Lemma 3.10. With the previous notation, if ( = c(Oz(l)) is the hyperplane 
class of Z and we denote by b, p the pullback by p: Z -- S of the same classes in 
A*(S), then E = 7r*pU* ()pl*Os(1) r*Op(u/)(-2) 0r*Op(Q(_i))(2) and therefore 
c(E) = 1 + (5$ - 4b + 2a) + (6$2 + 5/t. - 9b6 + p2 - 4/Ub + 3b2). 

Proof. Since E := prl,(OT(DR)) and OT(DR) = OT(D) OT(-2Dp), we first 
determine [Dp] E A1(T). If ,T is the hyperplane class of T = P(Qr*pU)) over Z, 
then 

[Dp] = a T +pr* [D'] 

with D' E Al(Z) (see Ex. 8.3.4. of [9]). Now, by construction, [Dp] [T5] = 1 and 
this implies a = 1 (for (T [T]] = 1 and the fibers of T over Z don't intersect each 
other). 

To get D', we compute pr1*([Dp] . $T) in two ways: 
1. pri*([Dp] $T) -= prl,*() + [D'] prl*($T) = i*Pcl(QGc) + [D'], where the 

first equality is the projection formula and the second is Ex. 3.2.1 of [9], being 
QGr the tautological quotient of rank 2 over the grassmannian. 

2. Let sp be the section of T over Z such that Im(sp) = Dp. Then 

prl*([Dp] rT) = ci(SpOT(l)). 
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From 1 and 2 above, [D'] cl(sp9OT(1))- T*cl(Op(Q(_l))(l)) C A1(T), recalling 
that cl(QGr) = cl(O Gr(l)) and OP() = ((Q(_i))(1). 

To compute cl(sp(9T(1)), we use the upper part of diagram (3.4): 

T y Y Ip ' P3 
prT tsp tp T prl 

Z I -4 Gr 

where we define tp as the section of Y = I x Gr I' whose image is the diagonal of Y. 
Looking at the diagram we see that spOT(l) - r*tpOy(1) (as T = P(**p*U)). 
Now, by construction, tpcl((Oy(1)) = cl((0(1)) with I = P(U) over Gr. 

Putting all these things together [D'] = 7r*(cl(O((l)) - ci (Op(Q(_l))(1))) and: 
- OT(Dp) = OT(1) 0 prTl**Op(u)(l) prl-*T*w*Op(Q())(-1), 
- OT(DR) = OT(l) ( pr-*(p i*O(l) 7*0r p(U)(-2) 07 *Op(Q(_i))(2)). 
Finally, by the projection formula: 

E =-prl,(OT(DR))= - *p*U* ?P*1 Os(l) ?*Op(u)(-2) *Op(Q(_1))(2). 

From this expression, the computation of c(E) is straightforward. D 

We see now that X is smooth (even though X is not smooth over S). 

Proposition 3.11. With the previous notation, X is smooth. 

Proof. We are going to verify that, if P C P3, then the fiber Xp can be identified 
with the total space of a projective bundle over P2 and therefore X is smooth. 

Since X = (sE)O with SE a section of the vector bundle E over Z, then Xp C Zp 
can be identified with the scheme of zeroes of the section of E IZp induced by SE. 
Now Zp - p15 x P2 and, if 71 y T2 are the projections from p15 x P2 to its factors, 
then 

E IZ = T*Op15 (1) T72 (Op2 (2) EB Op2(3)). 

To see this we use the explicit description of E given in the previous lemma, noting 
that: 

* The fiber Ip consists on the plane in Gr of lines through the point P. 
? pU* P II,- (p2 Op2(l). This can be checked recalling that 

U* P2*(POp3 (1)), 

and so, every section p of U* is induced by a section r1 of Op3 (1) in such a 
way that p vanishes on the plane HA of Gr parametrizing the lines contained 
in the plane A which is the zero locus of r7. In this way, the restriction of the 
Koszul exact sequence (see B.3.4. of [9]): 

0 - r oG U* - 
ZA(1i ) 0, 

to Ip is 

0 -- Op2 U* p2 - Op2(1) - 0, 

for the intersection in Gr of a plane of lines through a general point of P3 and 
a plane of lines contained in a general plane of P3 is empty (see Ex. 14.7.2. 
of [9]). 

* Pi*Os(l) |zp 
- 

Op15(1) (recalling that Sp - p15). 
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* The restriction of OP(u)(-1) to Ip is trivial since I - P(U) -P Gr and 

0oP(U) (1) =- pO(p3 (1). 

* Op(Q(-_))(2) |p= (9p2(2), for I - P(Q(-1)) _P P3. 

Now, if we call R := p2(2) 0 Op2(3), then P(H((R)) pl5 and the sequence 
of vector bundles over p2: 

0 -) K -> H?((R) Op2 4 R - 0, 

given by the evaluation of sections of R, is exact. The key observation is that the 
tautological section r of rTO7pi5(1) 0 72R = E Izr is precisely the restriction to 
the fiber Zp of sjy. 

The situation is 
7T Op15 (1) () T R 
ITr 

(r)(o P(Ho(R)) x P2 

P(Ho(R)) P2 

and so Xp -- (r)o which is isomorphic to the projective bundle P(K) over P2. 
Therefore X is smooth. D 

4. SPACES FOR k-TUPLES AND SECANT BUNDLES 

In ?5, we shall use the spaces for k-tuples Zk and the secant bundles Ek, for Z 
and E defined in ?3, to compute the degree of some strata of cubic surfaces with a 
conic node. We describe them here taking as reference the work by Z. Ran [24]. 

Spaces for k-tuples. The space Zk is built inductively as a suitable blow-up of an 
ordered k-product of Z. 

* Steps 0,1. One denotes Z0 := S, Z1 := Z, pi : Z, -- Zo is the morphism p 
and one defines j : Zj -- Zj as the identity i for j = 0,1. 

* Step 2. Considering the fiber product defined by the cartesian diagram (see 
B.2.3. of [9]): 

P7'2 
Z1 XZo Z1 > Z1 

lpnl IP 
Z1\ Zo, 

one defines a diagonal A1 = (i x t1)(Z,) C-> Z1 Xz0 Z1; b2, the blow-up of 
Z1 x z( Z1 along A1 with exceptional divisor D212, 

D1,2 Z2 
1 2b2 

A1 C Z1 XZo Z1 

and new projections from Z2 to Z1; p2,l := pri o b2 y p, 2 :=pr2 o b2- 
Since p is smooth, A/l - Z1 xz, Z1 is a regular inclusion (see B.7.3. of 

[9]) and the new projections are also smooth. 
Out of the exceptional divisor, Z2 parametrizes couples (zl, z2) of different 

points of Z having the same image in S, i.e., strict double points of f. In D2 2 
live the couples of points of Z having the same image by p that are infinitely 
near (b2(D,2 2) consists on pairs (z, z) where z is a ramification point of p). 
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One notes that (tl opr2,tl oprl) is an involution of Z1 XZo Z1 reversing the 
order in (zl, z2) and fixing the diagonal Al, so it lifts to an involution of Z2 
that will be denoted by L2. 

* Induction hypothesis. One supposes that a space Zk of k-tuples and associated 
objects (D k, Pf1k-1 ,kC tk) are built as before. 

* Step k + 1. One considers the fiber product defined by 

Zk XZki Zk -z Zk 

(4.1) prl .t9=k1-?P1k- 

gOl0 =P2,k 
Zk 

p 
Zk-1 

where pk- := p1 o bk, Pk := pr2 o bk and bk : Zk -- Zk-1 XZ_2 Zk- iS 
the previous blow-up. 

Next, one defines Ak = (i x tk)(Zk), where tk is (tk- opr2,tk- oprl) lifted 
to Zk (Lk is a regular inclusion by B.7.3. of [9]) and the blow-up along Ak 

with exceptional divisor DI k+lJ bk+ : Zk+l - Zk XZk- Zk' 

In this way, the points of Zk correspond to ordered k-tuples of points of Z having 
the same image by p in S. By B.7.3. of [9], it holds 

NAkZk XZk1 Zk LT k-lOp1,k Tp 

This will be useful in ?6, in order to make computations in the intersection ring 
A*(Zk). 

Remark 4.1. Note that in [24] g is taken as pk and so Ak = (i x tk)(Zk) is not 
contained in Zk XZk_1 Zk' 

Regarding the enumeration of stationary multiple points of the morphism p, 
given a partition a = (k,k2,...,kr) of k with i ki = k, Ran defines a sub- 
scheme of Zk called V,, parametrizing k-tuples of Z/S with the first kl points 
being infinitely near to each other (i.n.), the next k2 points being also i.n., etc. 
For example, the subscheme of Z4 parametrizing pairs of points of type (2, 2) is 

V(2,2) - (P,2 pi,s)*D2 (p2,4)*D 3 for points in Z4 correspond to collections 
(Zl Z2 Z2, 23, z 3i 2, z 2 zz4) of Z/S. 

Anyway, for each partition c of k, one can define a subscheme of Zk parame- 
trizing k-tuples of type a as a suitable intersection of (pullbacks by projections of) 
exceptional divisors reflecting the coincidences given by r. 

Remark 4.2. The space Zk had already been defined by S. L. Kleiman (see p. 390 
of [16] and [17]). For the construction of Zk+1, Kleiman considers the fiber product 
Zk XZk_- Zk containing the usual diagonal (i x i)(Zk). 

For the justification of Zk as parameter spaces, see [18] and [24] where a relation 
between Zk and the relative Hilbert scheme Hilbk (Z/S) is established, showing that 
Zk is a parameter space for ordered and curvilinear k-tuples of points of Z with the 
same image in S (a collection of points is curvilinear if the points live in a smooth 
curve). Consequently, the (stationary) multiple points formulas given by Colley, 
Kleiman and Ran cannot enumerate the non-curvilinear points of a morphism. 

Secant bundles. The notion of secant bundle, introduced by R. L. E. Schwarzen- 
berger [27] in 1964, generalizes the concept of tangent bundle of a projective variety 
Y in the following sense: the secant bundle of Y is defined over a product scheme 
of Y so that its restriction to the diagonal in this product is the tangent bundle of 
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Y. The Chern classes of secant bundles are related with multiple-point cycles (see 
[21], [19] and [29]). By definition, a secant bundle is always associated to a line 
bundle over a scheme. 

In [24], given a vector bundle E of arbitrary rank over a smooth scheme Z, a 
secant bundle Ek over Zk is defined, allowing us to compute the class [Xk] in A* (Zk), 
when X is the zero subscheme of a section of E, The Ek are defined inductively 
and they fit into an exact sequence of vector bundles over Zk (analogous to the one 
given by Schwarzenberger for its secant bundles) from which one can compute its 
Chern classes. 

Regarding the definition of Ek: for k = 1, E1 := E; if k = 2, E2 is defined by 
the exact sequence over Z2: 

0 > E-* F (I 2 2 P *E (pP2 )*E P2 (ptE\2 ED, 2 > 0, 0 E2 ((1, J *E 2)*E )*2 D2 1,2 

with p2(a, b) = res(a) - res(b), and res the restriction to the exceptional divisor 
D1 2. E2 is a vector bundle over Z2 by Nakayama's lemma and from its definition 
it is easy to see that 

0- (P,2)*E L 
L-Dl-2 2 (pi,1)*E 

- 

is exact, where in general LD is the line bundle associated to the divisor D. 
When k > 3, by induction, one supposes that, Vj < k, vector bundles Ej and 

applications 

|A i: E j,p (,j-1 oPj_l)*E \ 2 : Ej - (p2 )*EJi 
' 

are defined. Then 

Definition 4.3. Let Jk+l := (tk ?o k+k )*Ek (Pk+l)*Ek and let Kk+l be the 
vector bundle given by the exact sequence over Zk+1: 

(KI 2) Pk+l k+1 0 - Kk+1 Jk+lK (pk+i )*Ek IDk > 0, 0- Jkc+1 (Ph2,k+l) Dl^,k+1 

with pk+l(a, b) := res(a) - res(b). Let Ek+ be defined by 

+l,Ak+) u+0 k k+l o0 +l Fk>1 Kk+l -- (p2,k )*Ek-1 0 L_k -- 0, 
1,k+l 

with 

Vk+1 = (((Pkl)* (A ) -(pk+ )*(A ), 
k+1 k pk+1l P2,k tk= -1 P1 k-1 - 2,k+ : +1 + Zk-1- 

A standard computation using commutative diagrams shows that with this def- 
inition the sequence of vector bundles over Zk+'1 

(4.2) 0 - (Pk+lkl)*E LDkk+l Ek+ ( k 0 ) - l,k, -Dk)+ l k+1 Pl,k 

where p k+l Pp,2 0+ * Pk ? P+1 and k+l,k+l p2,2 2 o 2,k o 2,k+l 

Dk+l,k+l D 1 + (p i)* k + .. + (P3 ? 4 
P5 O 

k+ .D2 

,k+is exact (for details see [30]).1,2 
is exact (for details see [30]). 
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Remark 4.4. Note that our definition of Ek for k > 3 is different from the one 
given in [24] for which, an easy computation, using Whitney's formula (3.2.(e) of 
[9]), shows that the total Chern class of Ek+1 is not the one given by the exact 
sequence (4.2) with which, in some examples, one recovers known results (see [30]). 

5. DEGREE OF SOME STRATA OF CUBIC SURFACES WITH A CONIC NODE 

Let a = (kl, k2, ..., k) be a partition of 6 with kj > kl, if j < 1, Co the stratum 
in p19 of cubic surfaces with a conic node of type cr, Cu the one of surfaces with a 
uninode and a, := dim(C,). 

In principle, we would get deg(CU) as #(C, n A) being A c p19 a general linear 
space of codimension a,. 

The stratum C, depends on coincidences between points on the fibers of the map 
f : X -- S, unless in the case of a coincidence of type a = (2, 2, 2) that corresponds 
to the union of C(2,2,2) and Cu (see Remark 3.4). Since X C Z is not smooth over 
S, we consider the space Z6 of 6-tuples of Z/S treated in ?4. Even though f is not 
smooth, the inclusion j : X -> Z induces, by construction, inclusions jk : Xk - Zk. 

Let q1 denote the projection from Z6 to Z assigning to each 6-tuple of Z6 its 
first element and r the projection from S to p19. Let X be the composite projection 
r opo Ol : Z6 -> p19 and V, the subscheme of Z6 corresponding to 6-tuples with a 
coincidence of type a (see ?4). A diagram of the situation is: 

X6 <-~ Z6 

X f Z 

S 
[' 
p19 

The result giving the degree of some strata of cubic surfaces with a conic node 
is the following 

Theorem 5.1. Let a = (kl,..., k) be a partition of 6 with r > 3 and let A be 
a linear space of p19 of dimension 7 - r. If II = -1(A), then the degree of the 
stratum C, of cubic surfaces with a conic node of type ao is 

deg(Ca) = n(o') [X6] [V]. [H], 

except for the case a = (2, 2, 2) where 

deg(CU) =n(1 [X6] * [VU] [] - deg(Cu) 

In both formulas, n(a) zs an integer determined by the partition a. 

Proof. We divide the proof into 4 steps. 
1. We first translate the computation of deg(C,) to A* (S) showing that, if S, C 

S is the closure of the locus of cubic surfaces with a distinguished singular 
point such that the associated collection of lines through this point have 
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collapsed in accordance with the partition ac (i.e. r(S,) = C,), then if oa 4 

(2,2,2), 

m deg(C) - [So n As], 

where m is the number of conic nodes of a cubic surface in the stratum C, 
and As = r-1(A) (see Lemma 5.2). 

When r = (2, 2, 2), T(S,) = C, U Cu and therefore 

4. deg(C,) + deg(Cu) = [Sa nAs]. 

2. We define a subscheme W C Z6 by W = XGnOVOnIH (in this way (po01i)(W) = 
S, n As) and we prove that [W] E A*(Z6) enumerates the ordered 6-tuples of 
0q (W) over S if and only if dim(As) < 3, which is equivalent to r > 3 above 
(see Lemma 5.3). For the rest of the proof we then suppose that dim(As) < 3. 

3. We show in Lemma 5.4 that the cycle [W] E A*(Z6) pushes forward to n(a) 
[SU n As] in A* (S), and we compute n(cr) according to the partition a. 

4. We verify in Lemma 5.5 that [W] = [X6 nV nIH] - X6= ] [VX ]. [V ]. In this way, 
the theorem is proved with n(c) = m i(a) depending only on the partition 
a. D 

Lemma 5.2. With the previous notation, let m be the number of conic nodes pre- 
sented by a surface belonging to the stratum C, then if a 74 (2, 2,2), 

m deg(C)= - [S n As] 

and if a = (2,2,2), 

m deg(C,) + deg(Cu) = f[S n As]. 

Proof. Suppose that oa 7 (2, 2, 2): if the type of singularities presented by a cubic 
surface corresponding to a point of S, is mA1Aq (see ?2) then deg(r Is) = m (for 
the projection T forgets the double point) and consequently T ([SA]) = m [C,]. 

By construction, L := cl(Os(l)) = *H, where H is the hyperplane class of P19. 
Applying the projection formula, we then have 

m deg(C) = m / [Co] H = j[So] . / a = f[S n As]. 
p19 

The last equality is [S(o n As] = [S] . [As]. This is true because the intersection 
S, n As consists of points and it is transversal at each one of them. (If this last 
claim were false, it would be also false for T(Sc n AS) = CG n A and we know that 
a general linear space in a projective space has a non-empty intersection with any 
subvariety of complementary dimension and one can choose it so the intersection is 
transversal by Bertini's theorem (see 11.8.18 of [12])). 

If o = (2, 2, 2), a surface corresponding to a point of S, can have 4 conic nodes 
or else a uninode, so this time r, ([S,]) = 4. [Ca] + [Cu] and the rest is as before. D 

With the notation given in ?4, if p: Z - S, a cycle [A] C Zk enumerates all the 
k-tuples of 01 (A) c Z with the same image in S if and only if p I (A) is curvilinear. 
We recall that a map p: Z -- S is called curvilinear when dim(Q2(z)) < 1, Vz E Z 
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(with Q1 the relative differentials (see B.2.7 of [9])) and that, if dim(Z) = n, 
dim(S) m and 

Si(p) :={z Z : rango(dp) < j} = {z E Z : dim(Ql(z)) > n- j}, 

where j = min(n, m) - i, is the locus of Thom-Boardman singularities of p (see 
[16]), then if n < m, p curvilinear = S2(p) - 0, and if n > m, p curvilinear implies 
that S2(p)= 0. 

Lemma 5.3. The cycle [W] = [X6 n V, ni ] enumerates all the (ordered) 6-tuples 
of 41 (W) with the same image in S if and only if dim(As) < 3. 

Proof. Taking suitable scheme-theoretic inverse images of X through the induc- 
tive construction of X6 and then going down to X by appropriated projections, 
one can define a subscheme X, C X parametrizing the points x C X such that 
3tX2 ,2,... * X5 C X with f(x) = f(x1) =-.== f(x5), and the first kI points (in- 
cluded x) are i.n., the next k2 points are i.n., and the last kr points are i.n., where 
i.n. means infinitely near points (see 2.3. of [7]). 

Recalling the previous definitions, we have 

?1 (W) - j(X n f-lAs). 

Since j is a regular inclusion and f = p o j, then p o, (w) will be curvilinear when 

f lxnf- Asl is curvilinear. Now, f curvilinear X> S2(f) = 0, for dim(X) = dim(S). 
We then study the Thom-Boardman singularities' locus of f, 

S2(f) x C X: dim(Qn}(x)) > 2} = x E X:rk(df) < dim(X)- 2}, 

with dfx TX -+ Tf(\)S, the map induced by f on the tangent spaces. 
By definition of S2(f), we have codim(S2(f), X) < 22 = 4 (see (III, 5) of [16]). 

Checking that, in fact, for our f this codimension is 4, the proof is finished because 
in that case, when dim(As) < 3, f- (As) can be chosen so that f-l(As)nS2(f) 0 
and it is easy to see that dim(As) < 3 4= r > 3. 

Let us verify that codim(S2(f), X) = 4. We recall from (2.1) that, fixed P E P3, 
a cubic surface of P3 with P singular, has equation 3f2 + f3 = 0, up to change of 
coordinates. The plane where the conic and cubic curves associated to f2 and f3, 
respectively, live is fixed and all possible surfaces correspond to all possible pairs 
of conic and cubic. 

If R = Op2(2)0Op2(3) (see Proposition 3.11), then one gets Xp -P P(H0(R)) x 
p2 " pl5 x p2 intersecting every pair of conic and cubic curves and, consequently, 
the part of TxX living in T,P2, which eventually will contribute to the locus S2(f) 
is the intersection of the Zariski tangent spaces of the two curves at the point w. In 
that way, x C S2(f) when this intersection has dimension 2 and so codim(S2(f), X) 
is the number of conditions for a pair of plane curves of degree 2 and 3 having an 
intersection of their tangent spaces at a common point of dimension 2. It is easy 
to see that this number is 4 (because that happens if and only if the two curves are 
singular at the common point). n 

Lemma 5.4. With the previous notation: 

j 
[W]= - (a). [S. nAs], 

Zf JS 
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where ii(a) is an integer determined by the partition a according to the following 
table: 

a n(c') 
(1,1,1,1,1,1) 6!= 5! 6 

(2,1,1,1,1) 24=4! 1 

(3,1,1,1) 6=3! 1 

(2,2,1,1) 4=2.2 

(4,1,1) 2=2.1 

(3,2,1) 1 

(2,2,2) 6-2 3 

Proof. By construction, p I,(w)= S, n As, so 

[W] = deg((p o 0) Iw)[Sn as], 

and the factor n(c) is deg((p o 01) w) = deg(l iw) . deg(p 1((w)). 
When p: Z -- S is curvilinear, there is a natural closed inclusion Zk C Zxk = 

Z xs ... xs Z, which is an isomorphism outside the diagonals. Each permutation 
between the factors of Zxk induces an automorphism of Zk (see 4.7.2. of [18]). In 
our case, when c = (kl, ..., kr) and r > 3, then p ?1,(w) is curvilinear; W is included 
in the intersection 

A = / A,.,kl n Akl+l . ...kl+k2 n . n Akl+...+ +1... 6 C Z6 

(see 3.3 of [7]) and, this time, the automorphisms of W are the permutations inter- 
changing diagonals of the same size. 

Since the image by q0 of a 6-tuple in W is its first element, then: 
- deg(qi [w) is the number of automorphisms of W fixing the first coordinate 

(see 3.3 of [7]), 
- if the first element on the partition a = (k, k2, ..., kr) is repeated I times, then 

deg(p I1((w)) = 1. D 

Lemma 5.5. With the previous notation, 

j [X6 n Vcy n] j [X6] [Vc] [I]. 
6 Z6 

Proof. The cycle [X6 n V, n II] is zero-dimensional (we have seen that 

j [X6 n V, I]= j n(c). [SJ n As] 
6 

and that [S, n As] is zero-dimensional). We recall from 8.1.11 of [9] that if U and 
V are two non-singular varieties, it is enough that the intersection is transversal at 
generic points in order to have [U n V] = [U] [V]. In our case, this result applies 
because: 

- II = q-1l(A) is the inverse image by the smooth morphism q of a linear space 
A c p19 and therefore H intersects every component of X6 n Va. 

- The full intersection is tranversal at each point, because their image by q in 
p19 is tranversal. 

- X6 n Va is also tranversal since, if it were not, X6 n V n II and its image in 
p19 will be non-reduced and this is not the case. O 
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Now, the proof of Theorem 5.1 is complete and the problem of getting the degree 
of a stratum Ca consists in determining [X6] and computing [X6] [Va] [II] in the 
ring A*(Z6). We are going to get [X6] using a result by Z. Ran [24] based on the 
formula of residual intersection of W. Fulton and D. Laksov [101. 

Proposition 5.6. With the previous notation, 

[X6] - 6__ ((pij)*([X]) - [Di 1 s)c( 
_j_ E 

- 
Pi { [jj) U-A; [D J< i_1+[D,i6] 

where pj = p2 o p3 ... o pJ Di6 = D6 + D6 + + D6 and D6 

(p61j)*D,j-i+ with p6j a composition of projections from Z6 to Zj-i+ onto the 
first factor if i = 1 and onto the second factor if i > 1. 

Proof. To get [X6] we can apply Theorem (4.2) from [24] because: 
- since X = (sE)0 where SE is a section of the vector bundle E over Z, then 

c(NxZ) = j*c(E). 
- the morphisms Xt -> Xt-1 induced by f: X -+ S are local complete intersec- 

tion (l.c.i.) of the same codimension, for t = 1, ..., k, so the residual intersection 
formula of [10] applies. To see this, we first note that f is l.c.i. of codimension 
0 because X -+ Z is a closed regular inclusion of codimension 2 and Z is smooth 
over S with relative dimension 2. Now, in general, if X is Cohen-Macaulay and 
f is l.c.i. of codimension n, then a necessary and sufficient condition for every 
morphism Xt -> Xt-1 with t = 1,...,k, to be l.c.i. of codimension n is that all 
of these morphisms are of the same codimension as f (see [17]). As we saw in ?3, 
X is smooth and X is also the zero scheme of a regular section SE of the vector 
bundle E over Z. In this case, by the inductive constructions of ?4, each Xt is again 
smooth and it is also the zero locus of a regular section of the secant bundle Et 
over Zt, so codim(Xt, Zt) = rank(Et) (for Zt is Cohen-Macaulay (in fact, smooth)) 
and, finally Xt -* Xt-i is l.c.i. of codimension 0 for all t. The formula of residual 
intersection ((4.2) of [24]) says that 

[Xk] = ((P , ) ([X]) [D] [DJ,] { +1 ) 

where {}r, denotes the homogeneous component of dim r and c(E) and [X] = c2(E) 
are known (see Lemma 3.10). D 

Lemma 5.7. If V, is the intersection of (the pullback of) the exceptional divisors 

E1,...,Ej, then [V] = [E] ... [Ej]. 

Proof. Using 8.1.11 of [9], as in Lemma 5.5, it is enough to note that the intersection 
of exceptional divisors V = nl=1 El is not only transversal but it is smooth. D[ 

6. EFFECTIVE COMPUTATION OF DEGREE AND 

INTERSECTION RING OF SPACES FOR k-TUPLES 

In order to determine deg(C,) we have to compute [X6]. [Vr] [TI] in A*(Z6). 
In general, if Z is a projective bundle over S and A*(S) is known, we can 

determine completely A*(Zk) for any k = 1, 2,... (see Proposition 6.2) and, in our 
case, it turns out to be a polynomial ring on 23 variables, modulo 38 relations, so 
effective computations in this ring, using Gr6bner bases' methods are very costly. 
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In spite of this fact, in order to effectively compute the product [X6] . [V] . [II] 
in A*(Z6) it is not necessary to know the whole ring, as we will see in a moment. 

In this section the notation is the same as in ?4, writing eck,l := [DkIk] for the 
class of the exceptional divisor in Zk. We will apply several times a result by S. Keel 
[15] about the intersection ring of a blown-up variety, saying that, if i : X Y is 
a regular inclusion of codimension d, i* : A*(Y) -- A*(X) is surjective and Y -- Y 
is the blow up of Y along X with exceptional divisor X, then 

(6.1) A.*m A*(Y)[T] 
(P(T), T ker(i*)) 

where P(T) E A*(Y)[T] is any polynomial with constant term equal to [X] and 
whose restriction to A*(X) is the Chern polynomial of the normal bundle NxY. 

Proposition 6.1. Let p: Z - S be a smooth morphism and suppose that A*(Z) 
is a finitely generated A*(S)-module. For k = 1, 2, ... let a E A*(Zk) be a zero- 
dimensional cycle consisting in a product of pullbacks of cycles from A*(Zj) with 
j < k and some power of the class of the exceptional divisor in Zk. Then, the degree 
of the cycle a can be computed as the degree of a zero-dimensional cycle in A*(Z). 

Proof. We prove this by induction in k. The cases k = 1,2 are easy to work out, 
so let's suppose that we can determine the degree of a zero-dimensional cycle in 
A*(Zk) going down to A*(Zk-_) and let's prove that we can do the same with 
one in A*(Zk+1). By Keel's result (6.1) described before, a = ect +, . bb+lc with 
c C A*(Zk XZk-_ Zk). We distinguish two cases: 

1. a = 0. In this case, as bk+l, b+lc = c (see 6.7.(b) of [9]), we have 

j a= + b C+ - C c prl*c. 
JZk?+1 Zk+1 k XZk1 Zk Zk 

To get prl*c, we recall the diagram 
jk+1 

Ek+-1 C- Zk+1 
9k+l 1 lbk+l 

lk pr2 A k C- Zk XZk- Zk -- Zk 
Jprl Lk-1opl1k- 1 

p2k,k 

Zk P>l- Zk-1 

Since, by hypothesis c E A*(Zk xzk_ Zk) can be written as c = prd . pr*e 
with d,e E A*(Zk) then, denoting by ql := tk-l Pi,k-l and q2 := P2 k and 

using the projection formula, we have 

/ prl*c= j d '*pr'Lpre= d q2*q*e, 
Zk Zk Zk 

where the last equality is (1.7) of [9]. 
To know the product d. q*ql,e E A*(Zk) we need to determine ql,e. Now, 

by Keel's result (6.1) again, e A*(Zk) must be e = ecc 1* bu for some 7, 
with u E A*(Zk- XZk_2 Zk- 1) Then: 

(a) If 7y > O, ql*e = lk-1* prl o bk*(eck , b.u) -= lk*(prl*( bk*(ecC ))) 
by projection formula. Writing U := prl*(u. bk*(ec 1)), we have that 
U = (-1)7-1m,_2.k_l C A*(Zk-_) - A*(Ak-l), being ml_2 the term 
of degree y - 2 en c(Nak_,)-1 (see 4.2.2. of [9]). 
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It is easy to get U such that U = L_-U, and then: ql,e = U so 

I a=j c= I d q2U, 
Jk + 1 Zk X Zk_1 Zk Zk 

which is known by induction. 
(b) If y = 0, ql,e = tk-1* ? prl* o bk,bu = k-1* o prl,u. Since u E 

A*(Z_k- xZk-2 Z-1), we have again, by hypothesis, that u = pr*f -pr*h 
with f, h E A*(Zk_1) and, consequently prlu = f . prl*pr*h. Calling 
now V := prl,u, and working as in (a), we find 

[ a= X c= f d -qyV, 

Zk+ k XZkX-lZk Zk 

which is known again by induction. 
2. If a =- ec+ll bk+c with a > 0, then the situation is similar to (a) when we 

computed U, so using 4.2.2. of [9], we conclude 

jL a= j prl* o bk+l*a J (-1 M Mma-2 1c 
Zk-+1 Zk Zk 

(where again m,-2 is the term of degree a - 2 in c(NAk)-l), and this is 
known by induction. DC 

In order to effectively apply Proposition 6.1, we need to determine c(Nxk) for 
every k. From ?4, we know that Nak is isomorphic to the relative tangent bundle 
Tk := Tpk . The total Chern class of Tk can be computed inductively, starting with 

c(Ti) the class of a relative tangent bundle (given by B.5.8. of [9]). Using standard 
results about Chern classes (see 15.4.(iv), 15.4.2. of [9]), one gets 

2 

c(Tk) = (1 + eck, 1) (1 - 
ck,)i(,k-1)*C2-i(Tk- ) 

i=O 

Implementing the inductive method given in Proposition 6.1 in Maple [20] we 
finally get the degree of the strata of singular cubic surfaces with a conic node 
mentioned in Theorem 5.1: 

ca 16 214 313 2212 412 321 23 

Singularity Al 2A1 A1A2 3A1 A1A3 2A1A2 4A1 
Parameters 3 2 1 1 0 0 0 

deg(Co) 32 280 1200 800 2200 3420 305 

Note that for a = (2,2,2), we have substracted the contribution of surfaces with 
a uninode which is ~deg(Cu), according to Theorem 5.1. The degree of the stratum 
Cu, 260, can be computed separately at least in two ways. First, as a particular 
case of some formulas for the degree of varieties parametrizing quadrics with vertex 
of specified dimension, given by I. Vainsencher [28] (1979). Secondly, as we do in 

[30], using a result by J. Harris and L. W. Tu [11] (1984) about the cohomology 
class of the degeneracy locus of a symmetric bundle map. 

For completeness, we describe here the intersection ring of the space Zk of k- 

tuples of Z with the same image in S (defined in ?4), when Z = P(E) - S is the 
projectivization of a vector bundle E over a smooth scheme S. 
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Proposition 6.2. Let Z be a projective bundle over a smooth scheme S and let Zk 
be the space of k-tuples of Z over S defined in ?J. Then 

A*(Zk) 
A*(S)[gl,...gm] 

(rl, ..., rn) 

where m = k=I j, n = =:l (2j - 1); k of the generators gj are (pullback of) the 

hyperplane class of Z; the rest are (pullback of) exceptional divisors' classes and 
the relations rj are determined by 3.3.(b), Ex. 8.3.4. of [9] and Keel's result (6.1) 
above. 

Proof. We see this by induction on k, using repeatedly 3.3.(b), Ex. 8.3.4. of [9], 
to determine the ring of a projective bundle and Keel's work (6.1) from [15], for 
the ring of a blown-up scheme. One starts with the projective bundle Z and its 
Chow ring A*(Z) written in terms of A*(S). For k = 2, by construction, the 
fiber product Z xs Z is another projective bundle, one finds that A*(Z xs Z) - 

A*(Z) A* () A*(Z), and Z2 = BlA(ZxsZ) is a blown-up projective bundle. When 
k = 3 checking that Z2 z Z2 is a projective bundle over Z2 (by 3.4. of [13]) one 
has that Z3 is a projective bundle blown-up two times. 

At the step (k - 1), one supposes that Zk-l is a projective bundle over Zk-2 
blown-up (k - 1) times and therefore its Chow ring can be written as it is said in 
the proposition. Now, again by definition, the fiber product Zk-l XZk-2 Zk-I is 
another projective bundle over Zk-l blown-up (k - 1) times and, finally, for Zk one 
adds another blow-up getting A*(Zk) as the ring described in the proposition (for 
details see [30]). D 

REFERENCES 

1. A. B. Altman and S. L. Kleiman, Foundations of the theory of Fano schemes, Compos. Math. 
34 (1977), 3-47. MR 58:27967 

2. V. I. Arnold, Normal forms of functions near degenerate critical points, the Weyl groups Ak, 
Dk and Ek and Lagrangian singularities, Func. Anal. Appl. 6 (1972), 254-272. MR 50:8595 

3. V. I. Arnold, Normal forms of functions in the neighborhood of degenerate critical points, 
Russ. Math. Surv. 29 (2) (1974), 11-49. MR 58:24324 

4. J. W. Bruce, A stratification of the space of cubic surfaces, Math. Proc. Cambridge 87 (1980), 
427-441. MR 81c:14022 

5. J. W. Bruce and C. T. C. Wall, On the clasification of cubic surfaces, J. Lond. Math. Soc. 

(2) 19 (1979), 245-256. MR 80f:14021 
6. A. Cayley, A memoir on cubic surfaces, Phil. Trans. Roy. Soc. 159 (1869), 231-236. 
7. S. J. Colley, Enumerating stationary multiple-points, Adv. Math. 66 (1987), 149-170. MR 

89g: 14042 
8. D. F. Coray and I. Vainsencher, Enumerative formulae for ruled cubic surfaces and rational 

quintic curves, Comment. Math. Helv. 61 (1986), 510-518. MR 87m:14061 
9. W. Fulton, Intersection Theory, Springer-Verlag, (1984). MR 85k:14004 

10. W. Fulton and D. Laksov, Residual intersections and the double point formula, Real and 
complex singularities, ed. P. Holm, Sijthoff & Nordhoff, (1977), 171-177. MR 58:27971 

11. J. Harris and L. W. Tu, On symmetric and skew-symmetric determinantal varieties, Topology, 
Vol. 23, No.1 (1984), 71-84. MR 85c:14032 

12. R. Hartshorne, Algebraic Geometry, Springer-Verlag, (1977). MR 57:3116 
13. S. Iitaka, Algebraic Geometry, Springer Verlag, (1982). MR 84j:14001 
14. S. Katz and S. A. Stromme, SCHUBERT: a MAPLE package for intersection theory. Available 

by anonymous ftp from ftp.math.okstate.edu or linus.mi.uib.no, cd pub/schubert. 
15. S. Keel, Intersection theory of moduli space of stable N-pointed curves of genus cero, Trans. 

Amer. Math. Soc. 330 (1992), 545-574. MR 92f:14003 
16. S. L. Kleiman, The enumerative theory of singularities, Real and complex singularities, ed. 

P. Holm, Sijthoff & Nordhoff, (1977), 297-396. MR 58:27960 

114 

This content downloaded from 138.4.228.213 on Thu, 25 Sep 2014 10:43:27 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


DEGREE OF STRATA OF SINGULAR CUBIC SURFACES 

17. S. L. Kleiman, Multiple-point formulas. I: Iteration, Acta Math. 147 (1981), 13-49. MR 
83j:14006 

18. S. L. Kleiman, Multiple-point formulas. II: the Hilbert scheme, Enumerative Geometry, (Proc. 
Conf., Sitges, 1987), ed. S. Xamb6 Descamps, LNM 1436, Springer-Verlag (1989), 101-138. 
MR 92a:14062 

19. D. Laksov, Secant bundles and Todd's formula for the double points of maps into pn, Proc. 
Lond. Math. Soc. 37 (1978), 120-142. MR 80c:14007 

20. MAPLE V, Copyright (c), 1981-1990, University of Waterloo. 
21. A. Mattuck, Secant bundles on symmetric products, Am. J. Math. 87 (1965), 779-797. MR 

33:7345 
22. J. M. Miret and S. Xamb6 Descamps, On the geometry of nodal plane cubics: the condition 

p, Enumerative Geometry: Zeuthen Symposium, ed. S. L. Kleiman y A. Thorup, Contemp. 
Math. 123, A.M.S. (1991), 169-187. MR 93e:14064 

23. J. M. Miret and S. Xamb6 Descamps, Rational equivalence on some families of plane curves, 
Ann. I. Fourier, Grenoble, 44, 2 (1994), 323-345. MR 95g:14006 

24. Z. Ran, Curvilinear enumerative geometry, Acta Math. 155 (1985), 81-101. MR 86m:14040 
25. L. G. Roberts, Lines in singular cubics, Queen's Papers in Pure and Appl. Math. 
26. L. Schlifli, On the distribution of surfaces of the third order into species, Phil. Trans. Roy. 

Soc. 153 (1864), 193-247. 
27. R. L. E. Schwarzenberger, The secant bundle of a projective variety, Proc. London. Math. 

Soc. 14 (1964), 369-384. MR 28:3042 
28. I. Vainsencher, The degrees of certain strata of the dual variety, Compos. Math. 38 (1979), 

241-252. MR 81g:14024 
29. I. Vainsencher, Counting divisors with prescribed singularities, Tran. Amer. Math. Soc., Vol. 

267, No. 2, (1981), 399-422. MR 83b:14021 
30. Maria J. Vazquez-Gallo, Grado de variedades de superficies singulares, Ph.D. thesis, Univer- 

sity Autonoma of Madrid (1997). 

DEPARTAMENTO DE MATEMATICAS, FACULTAD DE CIENCIAS, UNIVERSIDAD AUTONOMA DE 

MADRID, MADRID, 28049, SPAIN 
E-mail address: rafael.hernandez@uam. es 

DEPARTAMENTO DE MATEMATICAS, FACULTAD DE CIENCIAS, UNIVERSIDAD AUTONOMA DE 

MADRID, MADRID, 28049, SPAIN 
E-mail address: mjesus vazquezQuam. es 

115 

This content downloaded from 138.4.228.213 on Thu, 25 Sep 2014 10:43:27 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

	Article Contents
	p. 95
	p. 96
	p. 97
	p. 98
	p. 99
	p. 100
	p. 101
	p. 102
	p. 103
	p. 104
	p. 105
	p. 106
	p. 107
	p. 108
	p. 109
	p. 110
	p. 111
	p. 112
	p. 113
	p. 114
	p. 115

	Issue Table of Contents
	Transactions of the American Mathematical Society, Vol. 353, No. 1 (Jan., 2001), pp. 1-426
	Front Matter
	Standard Realizations of Crystal Lattices via Harmonic Maps [pp. 1-20]
	The Lipschitz Continuity of the Distance Function to the Cut Locus [pp. 21-40]
	Projective Sets and Ordinary Differential Equations [pp. 41-76]
	Induced Formal Deformations and the Cohen-Macaulay Property [pp. 77-93]
	Degree of Strata of Singular Cubic Surfaces [pp. 95-115]
	Connectivity at Infinity for Right Angled Artin Groups [pp. 117-132]
	Extension Theory of Separable Metrizable Spaces with Applications to Dimension Theory [pp. 133-156]
	Endofiniteness in Stable Homotopy Theory [pp. 157-173]
	(Z)-Actions Whose Fixed Data Has a Section [pp. 175-189]
	Blow up and Instability of Solitary-Wave Solutions to a Generalized Kadomtsev-Petviashvili Equation [pp. 191-208]
	On the Invariant Faces Associated with a Cone-Preserving Map [pp. 209-245]
	Spectral Theory and Hypercyclic Subspaces [pp. 247-267]
	Sharp Sobolev Inequalities with Lower Order Remainder Terms [pp. 269-289]
	The Number of Planar Central Configurations Is Finite When N-1 Mass Positions Are Fixed [pp. 291-311]
	Local Derivations on C-Algebras Are Derivations [pp. 313-325]
	Convergence of the Ruelle Operator for a Function Satisfying Bowen's Condition [pp. 327-347]
	A Product Formula for Spherical Representations of a Group of Automorphisms of a Homogeneous Tree, I [pp. 349-364]
	Dade's Invariant Conjecture for General Linear and Unitary Groups in Non-Defining Characteristics [pp. 365-390]
	On Modules of Finite Upper Rank [pp. 391-410]
	Optimal Filtrations on Representations of Finite Dimensional Algebras [pp. 411-426]
	Back Matter



