
Energies 2014, 7, 5953-5994; doi:10.3390/en7095953

energies
ISSN 1996-1073

www.mdpi.com/journal/energies

Article

A Semantic Middleware Architecture Focused on Data and
Heterogeneity Management within the Smart Grid

Rubén de Diego*, José-Fernán Martínez, Jesús Rodríguez-Molina and Alexandra Cuerva

Research Center on Software Technologies and Multimedia Systems for Sustainability

(CITSEM—Centro de Investigación en Tecnologías Software y Sistemas Multimedia para la

Sostenibilidad), Campus Sur UPM, Ctra. Valencia, Km 7, Madrid 28031, Spain;

E-Mails: jf.martinez@upm.es (J.-F.M.); jesus.rodriguezm@upm.es (J.R.-M.);

alexandra.cuerva@upm.es (A.C.)

* Author to whom correspondence should be addressed; E-Mail: ruben.de.diego@upm.es;

Tel.: +34-91-336-7823.

Received: 3 June 2014; in revised form: 23 August 2014 / Accepted: 2 September 2014 /

Published: 10 September 2014

Abstract: There is an increasing tendency of turning the current power grid, essentially

unaware of variations in electricity demand and scattered energy sources, into something

capable of bringing a degree of intelligence by using tools strongly related to information

and communication technologies, thus turning into the so-called Smart Grid. In fact, it could

be considered that the Smart Grid is an extensive smart system that spreads throughout any

area where power is required, providing a significant optimization in energy generation,

storage and consumption. However, the information that must be treated to accomplish these

tasks is challenging both in terms of complexity (semantic features, distributed systems,

suitable hardware) and quantity (consumption data, generation data, forecasting

functionalities, service reporting), since the different energy beneficiaries are prone to be

heterogeneous, as the nature of their own activities is. This paper presents a proposal on how

to deal with these issues by using a semantic middleware architecture that integrates different

components focused on specific tasks, and how it is used to handle information at every level

and satisfy end user requests.

Keywords: middleware; smart grid; semantics; Enterprise Service Bus (ESB);

energy optimization

OPEN ACCESS

Energies 2014, 7 5954

1. Introduction

When considering the risks and opportunities that lie for humanity in the nearest future, it becomes

clear that energy is a main topic to discuss. Indeed, human beings on Earth require an ever-rising amount

of resources, due to the increase of world population which, not only has already surpassed the 7000 million

inhabitants mark [1], but also is expected to become more than 8200 million in 2030 [2] and 9300 million

by 2050 [3]. At the same time, there is a gradual shift in the way the Earth is populated, with an ongoing

trend of rural exodus and urban migration. This trend has become so noticeable that nowadays there are

more people living in cities than in the countryside, something that has never happened before [4]. This

change creates new challenges in terms of infrastructures, transport and energy management that must

be solved from a sustainability-based point of view. In the end, an optimization of energy usage must be

sought so as to guarantee that the needs of present and future population are covered.

As far as energy and electricity are concerned, one major development to take into account is the

“Smart Grid”. Although it has been defined in different manners (for example, as “sophisticated,

digitally enhanced power systems where the use of modern communications and control technologies

allows much greater robustness, efficiency and flexibility than today’s power systems” [5] or as an

electrical power infrastructure capable of making intelligent decisions about the status of electrical

power systems [6]), there are two features that are inherent to it: energy saving as a clear target—using

mechanisms that tend to regulate and incentive the reduction of energy usage at peak hours,

such as Demand Side Management [7] and an extensive use of Information and Communication

Technologies—effectively recognized by several standards, as IEEE P2030, so as to guarantee seamless

communication among electricity employment stages [8]. Demand Side Management can also be used

for long-term energy consumption planning, as it is likely to establish policies in load balance and load

usage for extended periods of time, thus resulting in the ability to forecast energy consumption and deal

with it in a less unpredictable manner. From our point of view, the Smart Grid can be defined as a

conventional power grid that becomes enhanced by the use of Information and Communication

Technologies, allowing it to perform complex and innovative functionalities bent on energy savings and

information management platform. Therefore, end users become able to consume electricity in a more

efficient manner, stretching the use of energy resources for longer periods of time.

Typically, a Smart Grid will involve different stakeholders. Among them, it is necessary to highlight

the importance of the following:

1. Transmission System Operator (TSO): it is the provider of the conventional grid equipment,

which is responsible for power transmission, especially when high voltage electricity

is transferred;

2. Distribution System Operator (DSO): it is the entity that manages medium voltage transmission.

Also, it usually behaves as the mediating actor between the TSO and the aggregator, selling the

energy to the latter;

3. Aggregator: this company purchases the electricity that is sold by the DSO, and resells it to the

end users that are going to consume it. However, they may be able to collect a share of energy

by themselves;

4. “Prosumer”: while traditional energy consumers are present in the Smart Grid as well, they are

also able to obtain energy from their own equipment (solar panels, small-sized windmills, etc.),

Energies 2014, 7 5955

thus becoming an actor able to produce and consume energy, hence the term “prosumer”

(producer + consumer).

At the same time, there are several differing technologies involved in the Smart Grid; it can be argued

that the most notorious ones are:

1. Distributed Energy Resources (DERs): they have been previously referred to as the equipment

that a prosumer employs in order to obtain energy from its local environment. Commonly, these

resources will be located at the user workplace or dwelling;

2. Advanced Metering Infrastructure (AMI): it is the equipment used for energy-related

measurements (consumption, costs, etc.); it is usually placed at the end user’s surroundings;

3. Big Data: rather than being a hardware-based technology, Big Data is about the management and

analysis of the significant amount of information that will be required within the Smart Grid,

which will be advisable if services and applications are to be implemented satisfactory.

With a grid conceptually as old as one hundred years [8], stakeholders of varying interests and

heterogeneous technologies, information interchange at the ICT systems that belong to the Smart Grid

becomes the next issue to deal with. Given the different nature of each of the actors, it is likely that

information dealing with data requests or event triggering will be transferred in many different formats.

Depending on the equipment manufacturer (for example, Siemens [9] and Schneider [10] have

independent developments in this area), information may be transferred using one kind of data format

(XML, JSON) or another; when used with equipment from other manufacturers, proprietary solutions

with a low degree of compatibility and accessibility are prone to appear as well. This interoperability

challenge is a major issue in the Smart Grid environment, ranging from what may be found in a microgrid

when using power standards (Ustun et al. [11]) to a more holistic view comprising the whole

Smart Grid [12]. It is also faced when devices from different vendors are just collecting information

from the environment [13], something not dissimilar to what AMI is expected to do. We consider that

the best way to fix this problem is designing a software layer that abstracts the heterogeneity of the

hardware devices that are present in the environment and offer a homogenous-looking appearance to the

application layer. This software layer is called “middleware”. Middleware has been defined in many

ways; its usability ranges from a bridge between a system and an operator, capable of monitoring

different pieces of equipment, to a tool employed to couple the functionalities of a Secondary Substation

Node with the utility systems of a grid [14]. In any case, the underlying idea is that it will hide the variety

of the hardware devices used as part of the Smart Grid to ease the development of the applications

handled by end users without expert knowledge of ICTs.

Information management is another major research topic that is critical for the correct performance

of the Smart Grid, for it will offer the data that is required both for end user applications and right

middleware management. Here, “data semantics” must be pinpointed; although not taking part just in

the Smart Grid, it is foreseen to become of major importance for developments in this area. Semantics

allows entities to become aware of the transferred data and consequently, knowledge can be inferred

from the transmitted information. As a use case, if a request for temperature is made, and the result is

“20 °C”, it is all the information that can be extracted in a conventional system. However, in a semantic

environment, the obtained temperature will be evaluated, and if possible, actions will be considered,

behaving as “20 °C is too hot for food refrigeration. It is suggested to check the systems” instead of the

Energies 2014, 7 5956

isolated temperature value. Commonly, ontologies will be taking great responsibility, as they are in

charge of compiling the information about the entities that are part of the system. An ontology can be

loosely described as a dictionary containing updated information about all the entities that are part of a

system, along with all their interrelations and interactions. They are often represented in RDF standard

format, which is not dissimilar to XML [15]. Web Ontology Language is often used as a language to

compose them, even when they are developed for a Smart Grid as an element of its architecture [16].

Similarly, other system features come in handy for semantic data, such as “context awareness”: if

data semantics is awareness of the information inferred from data, then context awareness can be deemed

as the information that the system obtains becoming aware of its surroundings; it can also be defined as

“the ability of computing systems to acquire and reason about the context information and adapt the

corresponding applications accordingly” [17]. In this way, context awareness turns into a facility that is

exploited to the system advantage, working closely with semantics in order to infer information from a

holistic perspective, as it has been represented in Figure 1.

Figure 1. Differences between a context-aware and a non-context-aware application.

In the end, a Smart Grid system can be organized as the way represented in Figure 2. There are two

different areas of knowledge that must be considered according to its subjacent features: one related with

power creation and transmission—consisting of all the equipment used to generate electricity, either

from regular facilities as power plants, or Distributed Energy Resources—and another one related with

Information and Communication Technologies (ICT). Additionally, a middleware layer is a useful

optimization for information management in its domains.

Energies 2014, 7 5957

Figure 2. Layered overview of the Smart Grid

Although there are a great number of developments involving information management as an

unavoidable feature of the Smart Grid, they often fall short in taking into account the three different

characteristics—in fact, non-functional requirements—that have been defined as critical in this

introduction: Smart Grid focus, prominent information management layer and semantic capabilities for

data treatment. There are several major reasons to choose these as the non-functional requirements as

the scope of the solution shown in this paper:

1. Smart Grid focus guarantees that an optimized solution has been developed for the specific needs

and services of this environment, such as Demand Side Management, Demand Response or

energy consumption forecasting. Should an ICT-based architecture be ported from any other

environment to the Smart grid, major changes are likely to be required, thus resulting in a more

constrained system and additional adaptation efforts;

2. A prominent information management layer is a must-have if information is going to be

transferred with efficiency, for it can be charged with the tasks typically related with data

(request/response transfers, context awareness, entity registration, etc.). Alas, semantic

capabilities are more easily added if they become located in a layer or component as this;

3. Semantic capabilities are a compelling addition to a Smart Grid-based architecture because they

allow the system to have smarter capabilities: registration can offer more information about the

entities involved, applications are able to implement more complex functionalities and the

information semantics allows the system to learn new concepts that will improve the future

performance of the system.

It should come as no surprise that an implemented proposal fully considering these features has been

put forward in this paper, showing how the three defined non-functional requirements have been

Energies 2014, 7 5958

modeled, implemented and tested with actual devices and applications. The contributions of this paper

can be summarized as presented below:

1. A semantic middleware architecture has been implemented from scratch for a microgrid

encased in a Smart Grid. It does not only abstract hardware heterogeneity for the upper layers,

but also has semantic features implemented which are capable of dealing with transmitted

information according to its meaning (semantic storage of information, SPAQRL requests, etc.).

Also, while tests have been done using a microgrid model, it could be installed in several of them

that altogether make a Smart Grid, provided that there is a coordination mechanism among the

different microgrids (for example, multi-agent coordination for global information discovery [18]);

2. This semantic middleware architecture has been developed using open software tools. Fuse

ESB and Java programming language have been critical for the architecture implementation. In

this way, the architecture can be modified by third party developers and further expanded, and

its services can be learnt and utilized for research purposes;

3. The semantic middleware architecture presented here is distributed. It can be deployed in

most of the devices that would be expected in a microgrid so as to have them cooperating

simultaneously in different parts of the system. AMI open enough to have Fuse ESB-like

components can have software bundles installed, as shown in section 5.

The remaining parts of the paper are organized as follows: a related works section is provided to

evaluate the most notorious developments when considering Smart Grid focus, information management

and semantics. Challenges found in these architectures, along with their evaluation, are described in

Section 3. Section 4 describes thoroughly our proposal, depicting in an accurate manner all the elements

that are important in it. Results of the testing activities that have been conducted are shown in section 5.

Conclusions and future works have been added in section 6 and, to wrap the whole paper,

acknowledgements and references have been added as the last two sections.

2. Related Works

When considering how information is managed in the Smart Grid, there are several facts that must

be acknowledged. In spite of having a majority of the solutions created in an “ad hoc” fashion, some

other information management platforms make use of a differentiated level that may or may not be

shaped as a differentiated layer. In order to accurately evaluate how the studied proposals are matching

and fulfilling the non-functional requirements (Smart Grid focus, information management prominence

and semantic capabilities) presented here, a classification system has been developed. Depending on the

maturity level of those requirements in each of the reviewed proposals, a score is given ranging

from 1 to 5. Table 1 is depicting the criteria used to grade how focused the proposals are on the idea of

developing a proposal tailored for the needs of the Smart Grid. It has to be considered that, rather than

the quality of the related works, what is being taken into account is their suitability to the

non-functional requirements defined as of major importance. Therefore, chances are that the presented

proposals are successfully matching the requirements that they were conceived with, but they struggle

to adapt to the scenario and conditions presented here.

Energies 2014, 7 5959

Table 1. Grade description for Smart Grid focus.

Smart grid focus Grade description

Grade: 5
Information management platform conceived, designed and implemented for the Smart Grid
from the beginning. Tests are provided by using a number of actual devices. Extensive
information about its features is provided.

Grade: 4
Information management platform conceived, designed and implemented for the Smart Grid
almost from scratch. Tests are provided by using simulation tools rather than actual devices.

Grade: 3
The information management platform has used a significant plethora of components prior to
its usage in the Smart Grid, although the development has been tested and modified for the
latter scenario.

Grade: 2
Information management platform ported from another kind of system alien to the Smart
Grid. Important information is missing.

Grade: 1
The information management platform is not related with the Smart Grid / very scarce
information is provided about its characteristics.

Furthermore, as depicted in Table 2, information management prominence has been graded as well.

In this case, the relevance of any kind of refined procedure used for data collection and transfer able to

cope with information of different origins has been considered, taking into account the quantity of detail

and practicality of the information management proposals.

Table 2. Grade description for Information Management Prominence.

Information
management
prominence

Grade description

Grade: 5
Specific components designed and implemented in order to treat and enrich the data
that is transferred throughout the system. Extensive information is provided about
specific characteristics of the Smart Grid.

Grade: 4
A detailed description about information management is provided, without having
specific or prominent components used for them. Information is provided about
specific characteristics of the Smart Grid

Grade: 3
Data regarding information management is offered at an acceptable level: overall
characteristics of the system (block diagrams, etc.) are provided, but there are less
data about information treatment and transfer.

Grade: 2
Provided data is a superficial description of the characteristics of information
management without profound, detailed description.

Grade: 1
No data available about management procedures or very scarce information is
provided about its characteristics.

Finally, as shown in Table 3, the implementation of semantic capabilities has been graded as well,

taking into account the information that was presented about them, as well as the depth of semantics and

ontologies usage in the proposal.

Among the available information management platforms, the most relevant and updated are described

and review in the following subsections.

Energies 2014, 7 5960

Table 3. Grade description for Semantic Capabilities.

Semantic
capabilities

Grade description

Grade: 5
Semantic capabilities have been made part as part of the proposal since the first design stages
and are used extensively as part of the proposal. Descriptions regarding used ontologies or
ontology languages provided.

Grade: 4
Semantic capabilities are added for prominent services. The amount of functionalities using
them is significant. Detailed information provided about their characteristics and usage.

Grade: 3
Semantics are used for a small set of functionalities. Information regarding semantics is
offered at an intermediate level (theoretical concepts, description of the ontology).

Grade: 2
Information regarding semantics is treated at a superficial level (theoretical concepts). Few
information is provided about semantic capabilities

Grade: 1
No semantic capabilities are provided in the proposal / very scarce information is provided
about its characteristics.

2.1. A Cloud Optimization Perspective

Xi Fang et al. put forward an information management platform strongly based on cloud computing

devoted to Smart Grid systems [19]. Their proposal covers four different domains, namely “Smart Grid

domain”, “cloud domain”, “broker domain” and “network domain”. Smart Grid domain deals with three

concepts: “Data Item” as an information object generated by some information sources, “Computational

Project” as the component that uses Data Items and output information from previously finished tasks

as inputs, and a “User” willing to access to the information related to Data Items or the outputs generated

by the Computational Projects. Additionally, cloud domain consists of one or several clouds used for

storage and computational services; different clouds may have different pricing policies depending on

their particular needs. Broker domain will be the one responsible for mediation between the Smart Grid

domain and the cloud domain whenever there are facilities that have to be interchanged. Finally, the

network domain is involved with the network infrastructure and data transmission between any two

former domains. The leading idea of this proposal is that the pricing policies of the Smart Grid,

information provisioning and information storage will be offered as transparent facilities.

As far as cloud computing is concerned, it is a way to have a distributed solution that allows to store

and execute complex and heavier operations than a standalone system would be able to perform.

However, cloud computing systems tend to be more vulnerable in terms of security than other systems

and must be equipped with extra mechanisms as Intrusion Detection Systems (IDSs) [20]. Besides, little

information is provided about how to deal with peripheral devices as AMIs or high level applications,

and semantic treatment of data takes not part in the proposal.

Smart Grid focus: 4 (detailed description, simulated results). Information Management Prominence:

4 (detailed description). Semantic capabilities: 1 (no semantic capabilities).

2.2. Stochastic Information Management in Smart Grid

Hao Liang et al. offer a different view as an information management platform in the Smart Grid,

emphasizing the stochastic procedures to deal with data [21]. Great care is put on the applications that

the Smart Grid is expected to tackle, as Demand Side Management, conceived as a way to optimize

Energies 2014, 7 5961

power consumption among prosumers, or electric vehicles that are recharged. The authors stress the

stochastic models used for energy-related activities, especially renewable ones: “wind power generation,

solar power generation, energy demand, vehicle mobility, component outage and energy storage”. They

have built a model that considers how information is managed by using a four bus power system that is

considering data in each of the buses, such as active and reactive power injections, voltage, and a phase

difference between the other generator buses. Further information is offered about “microgrid planning,

microgrid operation” and “energy storage management”, along with a thorough study on the applications

that can be used as part of the Demand Side Management facilities.

This proposal reflects a very clear view of what the services from a Smart Grid look like, but it

privileges those specific services rather than a more holistic perspective of the Smart Grid as a whole.

Furthermore, there is no information about having a prominent layer that manages all the information in

the Smart Grid, rather than scattering the functionalities related to it. Finally, complex treatment of

information has not been considered in this proposal.

Smart Grid focus: 4 (detailed description, simulated results). Information Management Prominence:

2 (little data on information management platforms). Semantic capabilities: 1 (no semantic capabilities).

2.3. Smart-Frame

Joonsang Baek et al. offer their own ideas about an information management platform for the Smart

Grid [22]. As it was done with the first proposal, the authors rely on a cloud computing infrastructure to

provide a platform for information management, especially conceived to deal with issues of the front

end elements present in the system. The authors’ proposal is described according to three different

viewpoints: “system architecture”, “logical components” and “information management”. System

architecture explains how the system is divided into different regions that are managed by separated

cloud computing centers, each of which can be set up either from a public or a private cloud. What is

more, this service architecture exposes four different kinds of cloud computing services:

Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), Data-as-a-Service (DaaS) and

Software-as-a-Service (SaaS). Logical Components depict how services are classified according to four

different clusters (information storage, general user services, control and management services and

electricity distribution services), recognizing at the same time Infrastructure-as-a-Service as the

backbone of the system. Information Management is focused on dataflow through the different entities

of the proposal; a centralized service deals with the information flow by using a schedule defining

particular sources and destinations for the information. In addition to the three different perspectives

shown by the authors, an identity-based cryptographic solution is described to have a more

trustworthy platform.

The presented proposal takes a more defined view on a platform (the authors refer to it as a

“framework”) specifically built for a Smart Grid, but focuses primarily on the security functionalities

that have been developed. Plus, semantic treatment of data is neglected, with no use of processed

information in order to infer knowledge from the transmitted data. Finally, while the cloud computing

paradigm offers a series of advantages compared to other distributed solutions, it also poses specific

risks (security, accessibility) that must be considered as well.

Energies 2014, 7 5962

Smart Grid focus: 4 (detailed description, simulated results). Information Management Prominence:

3 (proposal dealing mostly with security and cloud capabilities). Semantic capabilities:

1 (no semantic capabilities).

2.4. Semantic Information Modeling for Emerging Applications

Qunzhi Zhou et al. put forward their own research work about semantic information modeling for

Smart Grid-based applications [23]. The authors’ contributions are based on the usage of Demand

Response (DR) as an emerging application for the Smart Grid, which will make use of a Smart Grid

information model compliant with Semantic Web techniques. The authors present how Smart Grid

applications are created by using its usual knowledge space, and how a series of contents (real time

consumption, infrastructure information, customer behavior, schedule information and natural

conditions) can be leveraged as part of the operations of Demand Response optimization. What is more,

a semantic Smart Grid information model is put forward, with a model architecture that can be accessed

at different levels and makes use of OWL to represent the information model, along with a MySQL

database to store it by means of Jena API (often use for semantic data developments [24]). Additionally,

component ontologies are treated as well: Common Information Model is the expected choice, as it is

used to describe the electric components that are typical of the Smart Grid [25], along with other

ontologies used for organization, infrastructure, weather, space, and time.

Unlike the former pieces of work studied, this proposal uses many more vast semantic capabilities

than before. However, the bulk of the efforts poured onto a very specific application—as Demand

Response is—limits the information about other services and features typical of the Smart Grid. Besides,

an information management platform is not extensively studied in this piece of work.

Smart Grid focus: 3 (extensive mention to one specific application). Information Management

Prominence: 2 (mentioned as something aside). Semantic capabilities: 4 (semantic capabilities have

been added and thoroughly described for one specific application).

2.5. KT’s Smart Grid Architecture and Open Platform

Jisun Lee et al. offer an example of how to handle information involving Smart Grid applications

according to the interests of KT Corp. [26]. According to their point of view, customer needs in terms

of Energy Management System imply new functionalities (Demand Response capabilities, Distributed

Energy Resources, Electric Vehicle Integration, Energy Management Improvement, Grid Performance

Optimization) that must be solved. The authors mention that an energy management platform should be

characterized by three different facilities: interoperability of networked communications (no matter

whether they are wireless or not), interoperability and scalability for customer services (paving the way

for a distributed architecture based on Service Oriented Architecture or web service principles) and

finally, since business opportunities are presented for users (prosumers are able not only to pay for the

electricity they consume, but also to sell it) a business ecosystem should be presented for them as well.

The authors’ intention is focusing their proposal on the AMI that is used both to monitor end user

behavior and keeping the customer aware about their power usage. Another compelling feature of the

proposal is the openness of their platform: labeled as a “KT’S Smart Grid Architecture and Open

Energies 2014, 7 5963

Platform”, it offers not only communication management technologies, but also customer-oriented

services and communications, along with third party applications and energy services.

As far as the proposal is concerned, it has a decisive practical projection that guarantees its usability

and feasibility. However, it struggles to describe a broader point of view that implies the Smart Grid

beyond the end user applications. Additionally, the proposal does not consider neither a differentiated

component for information management (such as a middleware layer placed between the applications

and the hardware and communication capabilities), nor how semantics are integrated as part of the

information treatment that is done.

Smart Grid focus: 5 (detailed description, demonstration project). Information Management

Prominence: 3 (overall characteristics of the system). Semantic capabilities: 1 (no semantic capabilities).

2.6. Service-Oriented Middleware for the Smart Grid

Liang Zhou et al. put forward their own solution, providing a more middleware-oriented

implementation [27]. Here, middleware is used as a way to guarantee that the disparity of the underlying

devices will not affect the availability of services within the system. What is more, a high degree of

flexibility on the provided services is offered as well. The presented architecture is composed of three

layers with different functionalities: a “user part” (mostly concerned about Quality of Service features

that are going to be provided for the end users, as well as economy-driven applications), a “control part”

(equipped with four different functions called fault report, security guarantee, user information

management and power allocation that can be used for further developments), and a “transmission layer”

(composed by communication, generation and distribution parts; this layer’s usual functionality will be

power transmission from the generation plants to the distribution facilities through a group of substations).

This proposal is able to provide a clear layer devoted to information management for the Smart Grid

that combines the advantages of having a distributed architecture and a dedicated management of the

data flow from the applications and end user devices. Unfortunately, there is not a given way to use

semantically enriched information; ontologies or mechanisms to provide advanced services, such as

context awareness, have not been implemented either.

Smart Grid focus: 4 (detailed description, simulated results). Information Management Prominence:

5 (specific components designed and implemented). Semantic capabilities: 1 (no semantic capabilities).

2.7. Advanced Demand Side Management for the Future Smart Grid

Pedram Samadi et al. offer their own work regarding Demand Side Management by using a

mechanism design [28]. It is assumed by the authors that end users have been equipped with

“Energy Consumption Controllers (ECCs)” that are collecting information about consumer behavior. In

this way, it is possible to have a more refined pricing methodology. The idea behind is that a

“Vickrey-Clarke-Groves” mechanism can be used to improve the relation between the aggregate utility

functions of the users and the total energy cost, which is capital for the performance of Demand Side

Management within the Smart Grid. It must be highlighted that the main motivation for this piece of

work is this DSM service; thus, the contributions that are claimed by the authors (Vickrey-Clarke-Groves

usage for the Smart Grid, optimization problem formulation and its properties, especially truthfulness

and efficiency, use case for their algorithm) are conceived entirely for it. Consequently, although this

Energies 2014, 7 5964

proposal fares fine in the area of DSM one of the most compelling services associated to the Smart Grid

is not showing the overall perspective that is expected from an information management platform able

to acknowledge data transfer among the different entities of the system. Alas, there is no information

about how higher level capabilities (semantic web, context awareness, etc.) are offered in this platform.

Smart Grid focus: 3 (extensive description of a single application). Information Management Prominence:

2 (information management as an afterthought). Semantic capabilities: 1 (no semantic capabilities).

2.8. Information Framework of Smart Distribution Grid

Xuejian Shao et al. describe the research done on their Information Framework for the Smart Grid [29].

Their work involves different breakthroughs in the field of the Smart Grid, describing in a more specific

way how Information and Communication Technologies have become interweaved with standards for

electrical installations. The authors explain how IECSA (Integrated Energy and Communication

Systems Architecture) was developed in order to create a Reference Architecture Framework. The Smart

Grid is considered here as made up by five layers, that is to say, a “Business Process Layer, a Services

layer, a Service components layer, an Information service layer” and “an Application service layer”.

Additionally, it is described how two electrical appliances standards, IEC61968 and IEC61970 share

some of their features: a) both of them make use of Common Information Model; b) the concept of

integrating an application integration architecture; c) a Components Generic Interface and d) an

Information Exchange Model. While this piece of work has its value as a report on what standards and

technologies are remarkable for the smart grid, it intends to present a high level perspective of the ICT

part and the electrical part of Smart Grid, rather than putting forward a more precise proposal.

Smart Grid focus: 2 (high level, non-detailed descriptions of standards). Information Management

Prominence: 1 (little to no information about information management platforms). Semantic capabilities:

1 (no information about semantic capabilities and the Smart Grid).

3. An Evaluation on Information Management Platforms for the Smart Grid

There is a collection of proposals on how to manage information in a Smart Grid to fulfill the main

objectives it was conceived with. However, they all seem to have frequent flaws when some appealing

features are considered: despite the fact that they all were created with the Smart Grid in mind to a greater

or a smaller extent, there are some other characteristics, as having specific solutions for information

management, or the implementation of semantic features in order to improve the usability of the data for

more elaborated services as context awareness, that are either incomplete or missing.

As an example of how the proposals have been evaluated, if an hypothetic information management

subsystem was specifically made for the Smart Grid and tested with actual devices, had differentiated

parts of the whole system for information management, but used almost no semantics, it would be evaluated

as Proposal (Smart Grid focus, Information management prominence, Semantic capabilities) = [5 4 1].

Table 4 depicts how the proposals have been graded.

It could be said that although the revised proposals are quite compelling and tend to offer a

satisfactory solution for specific goals, they do not provide a solution with complete implementations of

information management systems that have semantic features as well. Therefore, the authors of this

Energies 2014, 7 5965

paper have conceived, developed and tested a proposal that fulfills the requirements that have been

identified before. Those requirements are met due to the following reasons:

1. Our proposal has been specifically conceived for a microgrid encased in a Smart Grid from the

beginning. Instead of adapting an existing solution, which in fact could end up with a poor port

of an earlier development, conceiving a new information management platform with proven

software solutions seemed as a better starting ground;

2. It is emphasized how information is managed by means of specific tools. A middleware

architecture was the software layer that best could solve issues with hardware and information

heterogeneity, rather than trying ad hoc solutions that should be changed for different devices;

3. Semantics and smarter data treatment are enabled. As part of the current efforts done in software

engineering, information is enriched by using ontologies and semantic features to offer services

under a Service-oriented Architecture (SOA) paradigm.

Table 4. Reviewed proposal grading.

Proposal regular name
Smart grid

focus

Information
management
prominence

Semantic
capabilities

Total/15
(pts.)

A cloud optimization perspective 4 4 1 9/15

Stochastic information management in
smart grid

4 2 1 7/15

Smart-frame 4 3 1 8/15

Semantic information modeling for
emerging applications

3 2 4 9/15

KT’s smart grid architecture 5 3 1 9/15

Service-oriented middleware for the
smart grid

4 5 1 10/15

Advanced demand side management
for the future smart grid

3 2 1 6/15

Information framework of smart
distribution grid

2 1 1 4/15

4. Description of the Proposal

The architecture described in this document for the middleware uses as inputs the requirements

defined in the e-GOTHAM project [30] for a microgrid, and takes into account the IEEE 2030 Guide [31]

and CEN-CENELEC-ETSI SGAM [32]. While the latter offers a holistic view of a completed microgrid,

dividing its functionalities in five different layers (business, functional, information, computation and

communication) it lacks an accurate description of what to use for data and information management,

which is the main scope of our proposal.

Rather than being deployed in one single device, the middleware architecture presented here is

distributed in several physical elements, as illustrated in Figure 3. These elements represent the ICT

components of the microgrid used as part of the Smart Grid. A “Central Controller” (a hardware device

involving functionalities that affect the whole microgrid are deployed) connected to several “Local

Energies 2014, 7 5966

Controllers” (simpler hardware devices including functionalities that involve one or several devices

locally) and full compatible devices can be viewed. Some Local Controllers may act as bridges between

legacy (already existing hardware pieces) or project proprietary (specifically developed) devices and the

middleware architecture.

Figure 3. System elements and networks

Figure 4 shows the hierarchy existing through the system elements. Usually, there is only one Central

Controller; the amount and types of Local Controllers will depend on the scenario where the middleware

is deployed. Devices will rely on Local Controllers.

Figure 4. Middleware elements hierarchy.

4.1. Architecture Presentation

When a middleware architecture had to be conceived for its usage in the Smart Grid, there were three

main aspects that had to be considered for the implementation stage:

1. It required both SOA concepts to be used and a layered model for services divided and located

in upper and lower levels;

2. It should be a distributed middleware architecture, where different hardware components may

have several middleware parts deployed;

3. Semantic characteristics should be included. This was a critical challenge, for a particular

ontology that would have the middleware architecture as its domain would be employed for

Legacy/proprietary
devices

Legacy/Prop.
Comm

Infrastructure
Local

Controllers

Central
Controller

Full compliant
device

IPv6
Comm Infrastructure

Energies 2014, 7 5967

semantic service and data registration, in order to infer knowledge from the information that is

being transferred.

After several preliminary designs, a middleware architecture fulfilling the non-functional requirements

defined in previous sections, along with its own major features, was elaborated, as depicted in Figure 5.

Figure 5. Middleware architecture.

Since a Smart Grid may be used for a plethora of different applications, related with data requests or

information storage, dividing middleware functionalities by separated blocks—in a divide-and-conquer

approach—was something to consider. In fact, it had been done before in the work presented by other

authors as Liang et al. [33] or Sucic et al. [34], which was taking into account standards bound to the

conventional power grid. Also, having components inside each of the blocks can be used as objects that

manage different middleware functionalities, as described by Jin and Sung [35].

4.1.1. High Level Services

These are the access points for applications at the upper layer that perform actions involving

middleware properties. They can be regarded as the very first kind of services that are used in the

middleware architecture from an upper point of view. Their functionalities are accessed via

Representation State Transfer (REST) interfaces. Six services have been defined:

1. Information Management. It checks whether the information that has been retrieved by the

middleware as an answer to a request matches the structure of the inner service ontology that the

architecture is using;

MiddlewareHigh Level Services

Low Level Services

Device Services

Core Services Common Services

Events

Services
Registry Harvesting

Context
Awareness LogDev1 LogDev2 LogDevN

Devices
Registry

VirtualDev1 VirtualDevN

Orchestration/
Compositition

Communications

Application1 Application2 ApplicationN

Discovery ForecastingInformation
Management

Energy
Analysis

Semantic
End Point

Comm. Component

Monitoring
and testing

Ontology
connector

Reasoning

Security

Support

Composition

HAL
(Hardware Abstraction Layer)

Energies 2014, 7 5968

2. Discovery. It is used to let the end user know what services are available, both in the middleware

architecture and related to the hardware devices that are part of the system;

3. Monitoring and testing. It is used as a way to test the current status of the services that can be

employed. Besides, it will be the most usual high level service to be executed when a pilot

interface is managed;

4. Energy analysis. When requests involving specific data about energy are done, this high level

service will come in handy to direct the data request;

5. Forecasting. Much like energy analysis, this high level service will be used whenever there is a

request related with forecasting information;

6. Support. This high level middleware service is conceived for ancillary functionalities that are

particular of the hardware device where the middleware architecture is deployed. If the

monitoring and testing component is not enough by itself, Support high level service may be

used as well.

4.1.2. Core Services

The services that are part of this block are the most critical of the ones taking part in the middleware

architecture, as they have functionalities (semantic information treatment, service registry) that

middleware cannot do without. The ones that have been identified as mandatory are as follows:

1. Events. As the middleware architecture used may use protocols that follow a publish/subscribe

paradigm (for example, Advance Message Queuing Protocol or AMQP), it is useful to have a

component to handle this sort of communications;

2. Semantic Endpoint. It offers compatibility between devices that do not use the middleware

ontology and the remaining parts of the middleware architecture;

3. Ontology connector. It is used as a way to map the information retrieved from the devices and

services into a semantic-compliant data model used within the middleware architecture;

4. Service Registry. Its main functionality is the registry of the services that, instead of being

obtained from outer devices, are part of the middleware. Besides, they will be semantically

registered by means of the operations made by the Ontology Connector.

4.1.3. Device Services

In this middleware block, all the devices (sensors and actuators) connected to the system have a

logical representation in the middleware architecture based on their most important features and

capabilities. This representation is named “Logical Device”. Logical Devices can be implemented on an

IP-connected piece of equipment as long as the device hardware can run a mandatory minimum part of

the middleware. For those devices incapable of implementing any part of the middleware (due to their

low capabilities or any other constraining reason) the associated Logical Device will be implemented

either in the Central or the Local Controller. Creation of Logical Devices allows the usage of the service

ontology to describe in a complete manner the physical devices characteristics and to registry these

elements in the device semantic database for later discovery and use. Three types of services have been

enumerated here:

Energies 2014, 7 5969

1. Devices Registry. It carries out the actions required to register a Logical Device and integrate it

as part of the whole deployment. In addition to that, it will keep a strong connection with the

deployed Logical Devices by means of heartbeat messages that will be sent to the Device

Registry service. It must be noted that since Device Registry will be used with device services

and Service Registry with middleware services, they are using different pieces of information;

2. Logical Devices. Used to represent the hardware devices that take part in the whole system. They

are also used as service containers, depending on the sensors and capabilities that physical

devices are equipped with. In addition to encapsulate hardware device features, they also provide

a way to be deployed as compressed files in Fuse ESB-friendly locations, as explained later. The

inclusion of Logical Devices in the architecture was decided after considering the Virtual Entities

and Services defined in Internet of Things Architecture (IoT-A) [36];

3. Virtual Devices. Virtual Devices result by merging two or more Logical Devices into a single

one that will offer composed services dependent on the ones provided by Logical Devices. For

example, a Logical Device offering a “temperature” service, and another one providing a

“humidity” service can be merged into a third, different one named “environmental conditions”

service that can be used to evaluate to probability of getting moss plants in one room.

4.1.4. Common Services

While designing this middleware architecture, some common functionalities required for the correct

performance of the applications used in the system would sprang up (data gathering, context awareness,

service composition, etc.) regardless of the differing characteristics of the latter. Thus, a block of services

dealing with the ones most usually employed has been created, in order to tackle the functionalities most

closely linked to the frequent data transfers and operations required. One major feature of this block is

that despite the fact that some components of the other blocks may not be deployed in a particular

scenario, all common services are likely to be needed, regardless of the middleware surrounding

environment. Five services have been defined as the ones taking part here.

1. Composition. It becomes of major importance when Virtual Devices are formed, as it will be

the one used for this task;

2. Context awareness. It will be responsible for using retrieved information about the current status

of the overall system, taking into account if there is any faulty performance so as to fix it;

3. Reasoning. When required, it will work jointly with Context Awareness to provide decision

making mechanisms;

4. Security. It is a component devoted to functionalities and extra needs involving security. It

provides features as integrity, privacy or authenticity, albeit the extra features required in this

component will have to be met at the application and/or hardware levels;

5. Harvesting. This service collects the information obtained from the Low Level services and

transfers it to the upper layers of the middleware architecture.

Energies 2014, 7 5970

4.1.5. Low Level Services

As opposed to the other services, the ones located at this block are more focused on outer parts of the

middleware architecture, such as the communications layer, that are used to either establish connections

with other devices or with other components of the distributed middleware. The two entities that have

been located here are:

1. Hardware Abstraction Layer (HAL). Its main usage point is to abstract all the hardware-specific

features that may be found as part of the hardware components of the deployment;

2. Communications component. It is the actual interface between the communications layer

protocol and the middleware architecture. Depending on the protocol used outside the

middleware, it may use interfaces adapted to the communications protocol used (Java Message

Service or JMS, AMQP, etc.).

4.2. Implementation Software Facilities

Next subsections deal with the different software tools used to implement the described middleware

architecture. Section 4.2.1 is about Enterprise Service Bus; section 4.2.2 offers information about the

interfaces that have been used for software bundle communication. Finally, section 4.2.3 describes the

messages used for data interchange within the middleware

4.2.1. Fuse Enterprise Service Bus

An Enterprise Service Bus (ESB) was selected to deploy the semantic middleware architecture. ESB

is a well-known software architecture that uses the bus as a message system to interchange information

between the application components or, in ESB terminology, “bundles”. ESB also allows the

implementation and publication of interfaces using several techniques in an affordable way in terms of

computational resources. For the deployment that has been tested with real devices, JBoss Fuse ESB has

been chosen; its inter-bundle communication capabilities can be used by the different services that are

implemented [37]. Another advantage of using Fuse ESB is that it performs its functionalities regardless

of the protocols that are used at lower levels. For example, the access to physical devices and Local

Controllers may also be driven by AMQP, an open standard application layer protocol for message

oriented exchange [38].

Thus, Fuse ESB can be regarded as the place where services are allocated and from where they can

be provided. Figure 6 depicts the general schema used for the implementation where the Central

Controller and the Local Controller can be distinguished. Each of them is using distributed components

that are being shared throughout the system. This structure comes in handy when different components

are deployed in the Central (Device registry, Service registry, Ontology Connector, etc.) and Local

(Logical Device, Virtual Devices, etc.) controllers. Applications running in the Central Controller are

called AppCC1 (after Application at Central Controller number 1), AppCC2, and so on until AppCN. In

the same way, applications belonging to the Local Controller are AppLC1 (after Application at Local

Controller number 1), AppLC2, and so on until AppLCN. Both groups of applications use the services

provided by the semantic middleware by means of RESTful interfaces.

Energies 2014, 7 5971

Figure 6. Enterprise Service Bus (ESB) extends the middleware to the Local Controller.

4.2.2. Service Interfaces Types

Figure 7 shows the interfaces offered by the middleware services. Two kinds of interfaces can be

highlighted: internal and external. External interfaces are implemented by using a RESTful solution easy

to handle with an ESB. Internal interfaces can be implemented using Open Service Gateway initiative

(OSGi) interfaces (which are the native ones for Fuse ESB), JMS ones for asynchronous

communications or AMQP bridged to the ESB using JMS capabilities. Interchanged messages are

semantics-based messages codified in application layer meta-languages and languages as eXtensive

Markup Language (XML) or JavaScript Object Notation (JSON).

Figure 7. Interfaces for a high level service bundle.

4.2.3. Operation Protocol Messages

Regardless of the interface type—OSGi, JMS or AMQP—the interchanged messages share the same

content and data fields. Two kinds of messages will be used in the operation protocol: operation request

and operation response. They have been described in XML and contain the information of the operations.

Operation messages are as follows:

1. Operation Request: by following a client-server paradigm, they will be sent from a Fuse ESB

bundle acting as the client and received by a different bundle acting as the server. This message

is made up by two fields:

a) Message type: it identifies what kind of message is being transferred;

RESTful

OSGi
JMS/AMQP

External
Interfaces

Internal
Interfaces

Service/
Bundle

Energies 2014, 7 5972

b) Operation: this field encases the operation significant characteristics, namely the operation

name and the input parameters. Furthermore, if any precondition is required for the operation

to be triggered, it will be included as well.

The message appearance has been depicted in Figure 8.

Figure 8. Operation request message.

An example of the XML-formatted message that is being transmitted looks as presented in Figure 9.

Figure 9. Operation request eXtensive markup language (XML) example.

2. Operation Response: it is the natural counterpart of the Operation Request message, the one

that is sent from the server bundle to the client one as an answer. As the former one, it is divided

in two different parameters:

a) Message type: it identifies the kind of message that is being interchanged between bundles;

b) Operation: its content resembles Operation Request message, albeit the parameters that are

contained are the output returned value instead of the inputs that were sent before.

4.3. Semantic Features

One of the project objectives has been achieving a middleware architecture with the innovative

characteristic of inferring semantic knowledge from data. In order to integrate this characteristic in the

semantic middleware architecture, a service-oriented ontology, where services from the middleware are

semantically annotated in a repository, has been developed. Although the idea of having a “gluing” layer

that uses a communication bus with semantic capabilities is not entirely new (Jeroen Famaey et al. do

indeed put it forward [39]), so far it has not been fully implemented in a middleware architecture for

Smart Grid environments. These semantic features allow easy information exchanges between different

types of computers, devices or components employing several kinds of operating systems and

application languages. Therefore, interoperability of heterogeneous information sources between

different middleware components can be enabled by means of this ontology. In addition to that, the

ontology provides a knowledge domain where the semantic data reusability becomes plausible.

Energies 2014, 7 5973

The service-oriented ontology has been designed in Web Ontology Language (OWL) with the Protégé

tool [40] and a general overview is presented in Figure 10.

Figure 10. General overview of the service-oriented ontology.

The main class—called “Service”—has, in turn, three subclasses: “ServiceFunctionality”,

“ServiceIdentification” and “ServiceType”. The first one describes the functionality that the service has

been designed for. The second subclass identifies uniquely the service inside the middleware

architecture, and the third one indicates which sort of service is taking into account the architecture

classification (high level services, device services, core services, common services, and low level

services). There are three more important classes in the ontology directly related to the “Service” class.

The first one is called “Context” which defines the interrelated conditions in which the service exists or

occurs. It is able to provide the specific location (class “Location”) and inform about the provider of the

service using the class “Provider”. The second one is the “Process” class. It represents the logic of the

service which it can be a simple process (class “ProcessSimple”) or an aggregated one (class

“ProcessAggregated”). On the one hand, a simple process is a single service that takes the requested

information directly and its functionality with the appropriated treatment provides. On the other hand,

an aggregated process supplies a new functionality composed by two or more simple process. “Process”

class is linked with “Operation” class because one process may have one or more operations associated.

Finally, the class named as “Profile” represents the public description of the service; for example, the

protocol used between the service and the application that are using it. Figure 11 shows an example of a

semantically annotated service represented in RDF; it shows a plethora of semantically annotated

information: functionality, type, identification or location are provided, as well as the methods used to

achieve the functionality (getHeatMeasurement).

This service-oriented ontology has been managed by means of a Jena API [24] that allows us to

control all its classes and relationships using Java language. It offers the possibility of storing all the

information in a semantic repository based on RDF triples, thus keeping it available to later consult these

data with a particular query language called SPARQL [41].

Energies 2014, 7 5974

Figure 11. Example of semantically annotated service.

4.4. Device Registry

One of the most important tasks a semantic middleware must implement is service registration, so

that existing services and their capabilities are known. Thus, Logical Devices require to be registered in

the middleware to know their presence and their functionality. Logical Devices can be implemented

inside the middleware architecture in two ways: Logical Device Type A and Logical Device Type B.

Figure 12 represents the scenario where the two types of existing Logical Devices are depicted:

1. Logical Device Type A. It will be implemented as part of the Local Controller. Since the Local

Controller will be effectively a device accessible enough to install the Logical Device, it can be

regarded as a full middleware-compliant device (e.g., LogDevA in Figure 12);

2. Logical Device Type B. Unlike type A, this Logical Device is implemented outside the device it

is bound to; in fact, it will be usually implemented at the Central Controller (e.g., LogDevB in

Figure 12). This option will be used, for example, when the physical device is not

computationally capable of having a functional middleware installation.

Energies 2014, 7 5975

Figure 12. Logical device types.

4.4.1. Registry Protocol

It is mandatory to elaborate a protocol to register the Logical Devices that are mapping physical

devices existing throughout the system. The two displayed kinds of Logical Devices will use this

protocol in their relations with the Device Registry, as illustrated in Figure 13.

Figure 13. Device registry protocol.

The protocol messages have been defined in the following manner:

1. Registry Request. It is the message used to integrate a Logical Device. In this message there

will be data required to send the request. These data are:

a) Message type: it has the same functionality as before: identifying the kind of message that

is being transferred;

b) Transport identifier: used to particularize a device according to lower layer parameters, such

as an IP address. It has been conceived as an optional parameter, as it is used just in case

lower layers do not provide a way to get a sender identifier;

c) Heartbeat features: used so as to confirm that once the registration has taken place, the

devices that have been registered will send messages to guarantee that they remain functional

Logical DeviceDevices
Registry

REGISTRY REQUEST

REGISTRY RESPONSE

HEARTBEAT

BYE

HEARTBEAT T

UNREGISTRY

Energies 2014, 7 5976

and can perform their assigned tasks. As related in [42], using a dynamic procedure to send

these messages that is aware of the success or failure of the device performance is advisable.

Consequently, heartbeat messages will be given the opportunity to be sent at a decreasing

rate, as long as all the previous ones have reached its destination successfully. Different

algorithms can be used as well; if the value field has zero as a value, a constant periodic

amount of time will be used between messages, otherwise some other ways of transmitting

heartbeat messages can be used;

d) Payload: among the contents of this field there will be a physical device unique identifier

(labeled as deviceTypeID in the XML representation of this message) and context sensitive

data. By means of deviceTypeID information—which is providing the device manufacturer,

model and serial number—one template will be used to complete the semantic registration

of the device, as it will be described in section 4.4.3. This template will be filled up with

information from the Logical Device and sent to the Ontology Connector so as to have the

device semantically stored.

The appearance of this message will be as represented in Figure 14.

Figure 14. Registry request message.

Additionally, the XML representation of the message resembles the ones that were depicted in

Figure 15. As it can be noted, heartbeat characteristics have been added as well.

Figure 15. Device registry request XML example.

Energies 2014, 7 5977

2. Registry Response. Used to confirm that the registration process was completed. It is sent from

the Device Registry to the Logical Device that sent a Registry request before;

3. Bye. This is a message sent when a Logical Device chooses voluntarily to be disconnected from

the system (instead of being forced out by an accident or any other malfunctioning issues);

4. Unregister. This message is quite similar to Bye with a difference in the direction it is

transferred: instead of travelling from the Logical Device to the Device Registry, it will go the

other way round, as the action of disconnecting the device from the system will be taken by the

Device Registry;

5. Heartbeat. This message will be the one that is used by the Logical Device to send a periodical

acknowledgment of the good performance of the system.

4.4.2. Registering Physical Devices

As far as logical device creation is concerned there are different procedures to launch Logical

Devices, provided that their wanted type of Logical Device (A or B) is taken into account. Logical

Devices categorized as type A either run in a Local Controller or are a Local Controller by themselves.

In any case, they will be pre-installed Logical Device pre-existing the registration process. Type B

Logical Devices must be generated by the Device Registry according to the process described in next

lines. Figure 16 shows the steps used to create a Logical Device of type B.

Figure 16. Logical Device B type creation.

This process can be explained as follows:

1. The physical device sends a Phy-Registry-Request message to the Devices Registry. This

message contains the same physical device unique identifier associated to the label

<deviceTypeId> used in the previously described Registry Request message;

2. The Devices Registry service checks if the physical device is correctly formatted and creates, if

checking was successful, the right bound Logical Device;

3. Once the logical device is created, it connects with its bound physical device using the

appropriate communication protocol that will depend on the physical devices communication

Devices Services

LogDevB

Devices
Registry

Middleware

Physical
Device

(1) PHY-REGISTRY-REQUEST

Energies 2014, 7 5978

capabilities. The Logical Device will get from the physical device all the information needed to

represent it within the middleware architecture.

4.4.3. Registry and Ontology

Up until this point, the procedures and actions related with the registry protocol carried out to register

a Logical Device have already been described. However, the semantic registration in the middleware

architecture must be explained too, as illustrated in Figure 17.

Figure 17. Semantic registry process.

The steps that must be taken for the complete process of a Type A registration device are:

1. A Request Registry for service registration will be received at the Device Registry;

2. This message will have data on its payload part that will have to be validated as any other

XML-formatted document. In order to do so, there will be several XMLSchemas that effectively

guarantee that the information received by the Device Registry is compliant with the format that

is expected from the Logical Devices;

3. Semantic registration requires a template to be filled with the information once the content of the

request has been validated. These templates will be pre-installed in the Central Controller with

the deployed middleware architecture;

4. When the template fulfilling is finished, it is sent towards the Ontology Connector using the

OSGi-based interface for internal middleware communications;

5. The Ontology Connector will collect the information sent by the Device Registry and store it for

its future usage. The process has been depicted in Figure 18.

Figure 18. Ontology Connector components.

Energies 2014, 7 5979

The role taken by the Ontology Connector will require the usage of three different inner components:

1. Parsing block: when it receives the XML-formatted information it will extract the most relevant

fields to have them processed by the next block;

2. JENA API block: it is in charge of turning the attributes that had been collected before into

RDF-formatted files that will contain the semantic information;

3. RDF files: they will contain the information related with the middleware ontology. It will usually

be dealing with information about the services and their capabilities.

4.5. Middleware Service Registry

Middleware service registry is conceived as the registration of the services that take part in the

middleware architecture rather than the devices that connect to the system. Since they are services that

do not depend on physical devices, fewer messages are required for the whole process. Specifically, only

registry request and registry response are required.

1. Registry Request. It is the message used to start the registration. It has two familiar fields:

a) Message type: it will identify what kind of message is being sent;

b) Payload: this field is containing the majority of the information required by the service. They

will too make use of templates in order to determine how the content should look like in

order to successfully complete the registration process.

2. Registry Response. This message will be sent back to the service that sent the registry request in

the first place. The data that is part of the message are:

a) Message type: it defines the kind of message that is sent from one bundle to another;

b) Payload: it contains the information related with the result of the registry process.

4.6. Context Awareness

The main concept behind our vision of context awareness is that the system must be able to carry on

performing their duties in the best possible way, even if there are malfunctions affecting the system.

Therefore, the idea of offering functionalities that guarantee resilience has to be included. This scenario

is the one that we consider as most important, since it is the one most likely to take place in an extended

deployment of the scenario. Resilience is understood in the scope of this project as the ability of the

system to carry on performing its functionalities while remaining unaffected to a great extent in case any

issue comes up. Adding context aware features to a middleware architecture has been tried before; for

example, Di Zheng et al. [43] put forward a context aware middleware architecture for Quality

Management, albeit it is conceived primarily for mobile devices.

In order to manage all the operations related to context awareness, a specific component was

developed for them (Context Awareness service). Heartbeat messages are important for resilience, as it

will be acknowledging the presence of the devices taking part in the system and, by proxy, its regular

performance as the procedure is represented in Figure 19.

Energies 2014, 7 5980

Figure 19. Logical device backing up scenario.

The Logical Device backing up process can be explained as follows:

1. A failure takes place in one of the devices integrated in the system; consequently, it affects the

Logical Device that is bound to it (Logical Device N). Therefore, it will not be able to send any

Heartbeat messages to the Device Registry;

2. In the absence of Heartbeat messages, Logical Device N will be forced to send a FAIL message,

containing the Logical Device N unique identifier, along with the last time when a successful

heartbeat message was received;
3. By using the unique identifier, a Logical Device backup will be created by the Context

Awareness component, specifically created for this task according to all the functionalities that

were previously contained by the Logical Device, thus creating Logical Device N Backup

(LogDevN Backup);

4. At this point, a lighter registry request message will be sent by LogDevN Backup to complete

the registration process.

After having the former Logical Device replaced by its new LogDevN Backup, the latter will be kept

functional until there is a new registry request from the physical device that had previously gone out of

order. In that case, the procedure that is used to acknowledge the recovery of the former Logical Device

must be foreseen as well. It should be executed following next steps displayed in Figure 20:

1. When the LogDevN gets recovered it will start running again. Since it will have to be notified

for the whole middleware architecture, the registry protocol must be initiated;

2. LogDevN will be registered. At this very moment, LogDevN Backup will no longer be necessary;

a Recover message will be sent from the Device Registry component to the Context Awareness

one so as to notify the changes in the existing Logical Devices;

3. Also, this change is notified at the Ontology Connector. It will edit the ontology contents in order

to update it to the new current situation;

4. Finally, the Logical Device that was used as a backup will be unregistered. For this purpose, a

message to unregister the backup Logical Device.

LogDevN

Devices
Registry

LogDev1Ontology Connector

Context
Awareness

LogDevN
Backup

(1)

(4) Registry
Protocol

Energies 2014, 7 5981

Figure 20. Logical Device resume.

4.7. Service-Related Functionalities

Since the information regarding the services is going to be stored by means of the Ontology

Connector, it can be accessed from upper layers that access the middleware architecture from the

application level. For instance, Discovery Service may be used with this purpose, and the information

that gets retrieved can be shown at a Graphic User Interface (GUI). Based on the results that have been

obtained during the testing procedures, and to prove the usability of the middleware architecture that is

being described here, an Android application has been developed to ease the evaluation of the

middleware performance, as well as using the most frequent use cases that appear in a system.

Figure 21 shows the appearance of the main window application. By using this application it is

possible to get registry information, collect measures from devices, execute semantic queries or perform

administrate tasks. Also, the application settings can be configured to have the device it runs on

connected to different REST interfaces.

Figure 21. Application main window.

As the operations are accessed via REST interfaces, any device with the HTTP protocol stack enabled

will access them. For example, a SPARQL query requesting a list of all the registered devices could be

answered by the Ontology Connector, i.e., with the XML information partially illustrated in Figure 22.

Note that it is showing information already included in the semantically stored description of the

resource, such as an identifier of the device, its manufacturer or its serial number.

(4)
UNREGISTRY LogDevN

(new instance)

Devices
Registry

LogDev1Ontology Connector

Context
Awareness

LogDevN
Backup

(1)

Energies 2014, 7 5982

Figure 22. XML-formatted device information.

Other example of a service functionality that can be provided is listing the available devices of the

system, as is depicted in Figure 23. It is done so by retrieving RDF-based information that will be

employed in a XSLT transformation.

Figure 23. Graphical representation of the existing devices.

There may even be some other services that can come in handy too, such as monitoring one particular

device over other ones by using filtering criteria.

5. Performance Tests and Behavior

Since our proposal has been developed to fulfill the non-functional requirements that were fixed as

mandatory, tests were carried out on it in order to determine its performance and behavior, once the

proposal was implemented and use cases were offered as functionalities. Among all the involved services

of the middleware architecture, the ones that were foreseen as having the greatest share of workload

were the ones used to test the reliability and performance of the middleware architecture. The system

that was tested was composed by:

1. Hardware level. Basically, it represents the hardware elements that make up a Logical Device

running in a Local Controller. It has a significant degree of heterogeneity, for the physical devices

that make a Logical Device can be varied and there is no direct equivalence between the Logical

Energies 2014, 7 5983

Device and the number of devices involved in this representation. Five pieces of hardware are

present here: a) a current sensor that uses Hall effect to its advantage in order to measure power

usage; b) an electrical current measurement shield called EmonTx Arduino shield, manufactured

by OpenEnergyMonitor, a company that manufactures electronic devices with a relevant degree

of openness and Do-It-Yourself procedures [44] with an appearance as shown in Figure 24;

c) two Arduino Uno boards, which provide the required amount of pins and capabilities needed

for the information transmission in the prototype, one will be used to attach the shield and receive

the data from it to send it via 802.15.4 communications to the other one, which will be gathering

the data to send it and d) a Raspberry Pi, which both transfers the gathered data and is used as

part of the PC that has installed the middleware architecture as a distributed server, where the

most resource-demanding operations will be run in order to keep the Raspberry Pi functional in

each moment;

Figure 24. EmonTx Arduino shield mounted over an Arduino Uno.

 The overall appearance of the assembly involving the different hardware devices that would be

mapped as a Logical Device can be seen in Figure 25. The different wired and wireless protocols

were integrated without showing signs of defective performance.

Figure 25. Hardware equipment used for current measurement.

Energies 2014, 7 5984

2. Communications level. There are two different kinds of communications: on the one hand,

standard IEEE 802.15.4 is used as a local, wireless one to transmit data from the shield-connected

current sensor to the Arduino Uno. On the other hand, regular Internet connections will be

enabled so as to use them to be accessed via REST interfaces. In a nutshell, the Wireless Sensor

Network-like scenario will use IEEE 802.15.4 for communications, and the remaining parts of

the deployment use the Internet Protocol;

3. Middleware level. A computer is used as the Central Controller with the middleware

components already described: a Fuse ESB with several bundles running inside, each of them

containing the services that are used, and the Logical Devices representing the hardware pieces

that belong to the system;

4. Application level. A web browser was used to obtain the information and have it readable. As

depicted before, an REST-connected Android application was also employed to monitor which

devices are registered, what services they are capable of providing, and regular service requests.

Also, the time required to register a device (that is to say, creating a logical device that will

become semantically registered) was tested.

The overall appearance of the system that has been tested is shown in Figure 26. While there are

several pieces of hardware used to build what represents the Logical Device, the remaining parts of the

system are conceptually simple.

Figure 26. Overall view of the used components.

5.1. Measures and Discussion

As soon as the scenario described above was deployed, tests were run. There are several kinds of

measures that have been collected. For example, Table 5 depicts some current measures obtained from

the current sensor linked to the EmonTx Arduino shield. These measures are taken approximately every

Energies 2014, 7 5985

2 seconds and the Logical Device adapts and buffers them, thus leaving them ready to be sent, if

previously demanded, to the client.

Table 5. Current measurement values.

Counter Value Timestamp

1 71 2014-05-30T15:19:44.029
2 67 2014-05-30T15:19:46.351
3 71 2014-05-30T15:19:48.778
4 82 2014-05-30T15:19:52.25
5 112 2014-05-30T15:19:56.211

Is it necessary to keep in mind that the Logical Device is implemented in an ESB bundle installed in

a Raspberry Pi. As the regular Fuse ESB would require too much computational resources, mainly in

terms of the amount of memory required (1 GByte is the minimum amount of RAM memory

recommended to rub Fuse ESB), the ESB version installed is Apache Servicemix Minimal 4.5.3 [45].

Thus, it can be demonstrated that it is possible to use an ESB distribution for light Logical Device

implementations. Table 6 summarizes the main characteristics of the used computers.

Table 6. Equipment characteristics.

 Equipment characteristics

Middleware-equipped
personal computer

CPU Intel® Core™ i3-3240 @3,4GHz, RAM 8Gbytes,
Ubuntu 12.04 LTS running on VMware Player 4.0.6

Raspberry Pi Model B, 512 Mbytes.

PC2 used alternatively to
Raspberry Pi to run the logical
device.

CPU Intel® Core™ 2 6400@2.14GHz, RAM 3Gbytes,
Windows 7.

In order to determine the performance that can be obtained using a Raspberry Pi to implement Logical

Devices two types of tests have been done: a) required time used to registry a Logical Device and b)

required time to collect a data measure. Each measure is repeated changing the computer where the

Logical Device is executed from the Raspberry Pi to PC2.

5.1.1 Time to Registry a Logical Service Measurement

With the Devices Registry service running in the Middleware-enabled PC and the Logical Device

running in the Raspberry Pi, forty measures of the amount of time needed to register this Logical Device

were taken. Time is measured from the instant when a Registry Request is sent to the Devices Registry

to the moment when a Registry Response is received. The results are shown in Figure 27.

Overall, measurements are quite regular, expect for the very first one, probably due to the fact that

one or more bundles at the Raspberry Pi may have not been fully deployed when the measure was taken.

The average time, excluding the first measure, is 719.7 milliseconds, the median is 743.0 milliseconds

and the standard deviation 295.1 milliseconds, a value that represents a 41.0% over the average. While

these values are valid values for the registry operation, their dispersion is significant, probably because

the Raspberry Pi is working at the edge of its possibilities. In any case, the overall results are satisfactory

Energies 2014, 7 5986

in the sense that in less than one second on average, registration of the hardware components that make

up a Local Controller are registered in the middleware architecture of a Central Controller.

On the other hand, Figure 28 illustrates the measures observed in the registration process of the

Logical Device when it runs in the PC2. In this case, statistics values are: 128.3 milliseconds as average

and 122 milliseconds for median with a standard deviation of 34.8 milliseconds. If compared with the

former ones, only a measure is notoriously higher than the majority of values, and the dispersion one is

very low. In fact, measured values are dramatically lower for the Personal Computer than for the

Raspberry Pi, at the cost of being much less portable than the latter.

Figure 27. Required time to registry a Logical Device located at a Raspberry Pi.

Figure 28. Required time to registry a Logical Device located at a Personal Computer.

0

1000

2000

3000

4000

5000

6000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

Du
ra

tio
n

(m
s)

Measure number

0

50

100

150

200

250

300

350

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

Du
ra

tio
n

(m
s)

Measure number

Energies 2014, 7 5987

5.2.2 Time to Collect One Measurement

The Support service uses the functionalities provided by the Harvesting Common services (see Figure

5) that, so as to reach the Logical Device, employ the ones provided by the Communications Component.

These services are running in the middleware-equipped PC shown before. Figure 29 describes the DATA

RESPONSE sent from the logical sensor with the electrical current value.

Figure 29. Data response message with a sensor measure.

This test aims to determine the maximum possible data collection frequency. For this purpose, one

hundred data measurements have been taken using a loop in the Support service. At the same time, the

Logical Device has been programmed to return a random current value. In this way, the obtained

measures will correspond to the time used by the messages to get transmitted throughout the Ethernet

network and cross the software layers of the middleware architecture.

Results when the Logical Device is running in a Raspberry Pi are shown in Figure 30. Statistical

values for this measure are: average 63.6 milliseconds, median 54.0 milliseconds and standard deviation

75.9 milliseconds. There are two values quite higher when compared to all the others, probably produced

by network or operating system delays. Should these values be eliminated, average is 53.06 milliseconds

and the standard deviation 15.1 milliseconds. These values provide a maximum data gathering frequency

of 15.7 measures per second. It can be inferred that the required amount of time for data to be collected

is almost negligible for an end user, thus proving that the middleware architecture is seamlessly integrated

with all the other hardware and software components of the system.

When a Logical Device is installed in PC2 as an alternative to the Raspberry Pi the obtained results

will have the appearance shown in Figure 31.

Statistical data for this test are: average 40.6 milliseconds, median: 40.0 milliseconds and standard

deviation 5.1 milliseconds. There are two ideas to be extracted from these results: to begin with, the

required amount of time to collect the information is lower for the PC than for the raspberry Pi, but not

to a great extent, so the used messages are being processed with ease by very different hardware.

Additionally, standard deviation is lower, so the required time periods are more similar among each

other; this can also be inferred from the very small difference between average and median values. It is

possible to get 24.6 measures per second by using PC2.

Energies 2014, 7 5988

Finally, in case a Logical Device is storing data that needs to be accessed, Figure 32 depicts an

experiment where the Logical Device is running in the Raspberry Pi, and gathered values must be read

from a file. This task implies an increment of 127.5 milliseconds over the average obtained when a

random data was returned. Average value is 191.1 milliseconds, median 182.5 milliseconds and standard

deviation 80 milliseconds. In this chart it is also possible to find two values out of the common band of

values that increase the standard deviation. Clearly, accessing a file is a more time consuming task that

collecting the information on the fly.

It must be noted that while the information obtained from the tests done is basically about registry

time periods and electric current measurements, judging from the obtaining amounts of time and the data

itself, it can be regarded as a proof of the viability of adding a middleware architecture to a system

deployed in a microgrid: the amount of time needed to obtain the tested functionalities is negligible for

a regular user, and the reliability of the whole architecture when requesting measurements or registering

Logical Devices is very high.

Figure 30. Data collection time in a Raspberry Pi for random values.

Figure 31. Data collection time in a Personal Computer for random values.

0

100

200

300

400

500

600

700

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

Du
ra

tio
n

(m
s)

Measure number

0

10

20

30

40

50

60

70

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99

Du
ra

tio
n

(m
s)

Measure number

Energies 2014, 7 5989

Figure 32. Data collection time for a Raspberry Pi reading data from a file.

6. Conclusions and Future Works

This paper has presented a proposal of a middleware architecture specially designed for a Smart Grid

environment compliant with IEEE P2030 guidelines and CEN-CENELEC-ETSI SGAM framework. It

provides a holistic solution in middleware architectures designed for the Smart Grid, with a high level

of semantic data treatment and context awareness able to provide some advantages over the existing

solutions, as the following major characteristics have been integrated in a harmonized way:

1. Semantic data treatment is implemented using a service-oriented ontology that is focused on

services and information management regarding devices. This ontology offers smart data

treatment specially adapted to the Smart Grid. It has been designed and implemented to describe

all the functionalities and characteristics of the existing services in the middleware;

2. A software representation of the existing devices of a system has been achieved by using Logical

Devices. This solution grants a more specific device management for operations such as

discovery or service registration;

3. A context aware solution for device failures that provides a replacement mechanism for the

Logical Device associated has been developed so as to carry on with the usual performance of

the system;

4. This middleware proposal follows the Service Oriented Architecture model, which provides

flexible design solutions offering support for several communications mechanisms and interface

creations, including external RESTful interfaces. In addition to that, the middleware components

are highly autonomous, and there is a reasonable degree of portability and scalability among systems;

5. Fuse ESB-based implementation solves service integration issues over a distributed and

heterogeneous environment;

6. The different tasks have been distributed among different elements of the layered architecture so

that the addition of new Common and High Level services to solve future microgrid challenges

will be less troublesome;

7. Logical Devices have been proven to be able to run in medium-to-low capability devices. Since

they are not dependent on the hardware that they are installed on (only a functional ESB is

required), they can be ported to other devices as BeagleBone boards, etc.

0

100

200

300

400

500

600

700

800
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

Du
ra

tio
n

(m
s)

Measure number

Energies 2014, 7 5990

Thus, it can be considered that the proposal successfully tackles the previously exposed weaknesses

of other related works with regards to the previously inferred non-functional requirements. Nevertheless,

there are several future works that will be dealt with in the near future involving this semantic, context-aware

middleware architecture for the Smart Grid environment. Portability of the presented services will be

further tested in pilots of differing nature, as the final planned target is checking middleware performance

under different scenarios to tune up different features if required. The final objective would be obtaining

fully portable bundles that require little to no human intervention at all, so as to become integrated in

any system, as long as they are running under ESB-friendly environments. Furthermore, context aware

capabilities will be expanded; a more advanced engine that will gather information from the contextual

conditions of the system and, by doing so, trigger events and actions according to the former is under

study. Also, OWL-based reasoning functionalities using the stored knowledge as an information source

could be considered. Finally, tests could be expanded to involve more devices of differing natures, such

as laptops or small capability devices wirelessly interacting with each other.

Acknowledgments

The research work presented here has been done as part of the duties and tasks of the e-GOTHAM

(“Sustainable—Smart Grid Open System for the Aggregated Control, Monitoring and Management of

Energy”) research project, an ARTEMIS initiative (ART Call 2011 295378, [46]) that has among other

objectives creating a new aggregated energy demand model that will integrate renewable energy sources,

prioritizing green energy over fossil fuels and improving management of energy demand and supply.

The research group belonging to the Technical University of Madrid (UPM) that has undertaken the

duties related to the development of this middleware architecture is called Grupo de Redes y Servicios

de próxima generación (Next Generation Networks and Services Group, GRyS), integrated as part of

the CITSEM (Research Center on Software Technologies and Multimedia Systems for Sustainability,

Centro de Investigación en Tecnologías Software y Sistemas Multimedia para la Sostenibilidad). Among

the people consulted during the development activities, Luis Aguilar and Luis Manuel Moreno must

be mentioned.

Author Contributions

Rubén de Diego has made contributions on the study of the assessed proposals and in the architecture

development. He has also been involved in the tests carried out to evaluate the performance

of the deployment.

José-Fernán Martínez has made contributions to the study made on the presented Smart Grid

proposals and their evaluation. He has also contributed to the development of the middleware

architecture described in this manuscript.

Jesús Rodríguez-Molina has contributed to the study of the proposals, their evaluation criteria and

the development of the middleware architecture. He has also taken part in the performance tests.

Alexandra Cuerva has made contributions on the semantic features present in the middleware

architecture, along with the content related to semantics throughout the whole manuscript.

Energies 2014, 7 5991

Conflicts of Interest

The authors declare no conflict of interest.

References

1. United States Census Bureau—International Database. Available online: http://www.census.gov/

population/international/data/idb/region.php?N=%20Results%20&T=13&A=aggregate&RT=2&

Y=2013&R=301&C= (accessed on 22 August 2014).

2. United States Census Bureau—International Database. Available online: http://www.census.gov/

population/international/data/idb/region.php?N=%20Results%20&T=13&A=aggregate&RT=2&

Y=2050&R=301&C= (accessed on 22 August 2014).

3. United States Census Bureau—International Database. Available online: http://www.census.gov/

population/international/data/idb/region.php?N=%20Results%20&T=13&A=aggregate&RT=2&

Y=2030&R=301&C= (accessed on 22 August 2014).

4. Global Health Observatory (GHO)—Urban population growth. Available online:

http://www.who.int/gho/urban_health/situation_trends/urban_population_growth_text/en/

(accessed on 22 August 2014).

5. Sinha, A.; Neogi, S.; Lahiri, R.N.; Chowdhury, S.; Chowdhury, S.P.; Chakraborty, N. Smart grid

initiative for power distribution utility in India. In Proceedings of the 2011 IEEE Power and Energy

Society General Meeting, San Diego, CA, USA, 24–29 July 2011; pp. 1–8.

6. Valsamma, K.M. Smart Grid as a desideratum in the energy landscape: Key aspects and challenges.

In Proceedings of the 2012 IEEE International Conference on Engineering Education: Innovative

Practices and Future Trends (AICERA), Kottayam, India, 19–21 July 2012; pp. 1–6.

7. Shafiei, S.E.; Rasmussen, H.; Stoustrup, J. Modeling supermarket refrigeration systems for

demand-side management. Energies 2013, 6, 900–920.

8. Gungor, V.C.; Sahin, D.; Kocak, T.; Ergut, S.; Buccella, C.; Cecati, C.; Hancke, G.P. Smart grid

technologies: Communication technologies and standards. Ind. Inform. IEEE Trans. 2011, 7, 529–539.

9. Wendt, A.; Faschang, M.; Leber, T.; Pollhammer, K.; Deutsch, T. Software architecture for a smart

grids test facility. In Proceedings of the 39th Annual Conference of the IEEE Industrial Electronics

Society (IECON 2013), Vienna, Austria, 10–13 November 2013; pp. 7062–7067.

10. Schneider Electric—Smart Grid solutions. Available online: http://www.schneider-electric.com/

products/ww/en/?Business=10 (accessed on 13 August 2014).

11. Ustun, T.S.; Hadbah, A.; Kalam, A. Interoperability and interchangeability considerations in

microgrids employing IEC61850 standard. In Proceedings of the 2013 IEEE International

Conference on Smart Energy Grid Engineering (SEGE), Oshawa, ON, Canada, 28–30 August 2013;

pp. 1–5.

12. NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 1.0; NIST

Special Publication 1108; National Institute of Standards and Technology (NIST): Gaithersburg,

MD, USA, January 2010. Available online: http://www.nist.gov/public_affairs/releases/upload/

smartgrid_interoperability_final.pdf (accessed on 13 August 2014).

Energies 2014, 7 5992

13. Akribopoulos, O.; Georgitzikis, V.; Protopapa, A.; Chatzigiannakis, I. Building a platform-agnostic

wireless network of interconnected smart objects. In Proceedings of the 2011 15th Panhellenic

Conference on Informatics (PCI), Kastonia, Greece, 30 September–2 October 2011; pp. 277–281.

14. Aguiar, J.; Götz, J.; Mosshammer, R.; Soriano, R.; Leménager, F.; Gouveia, P. DER and

OpenNode: Integration of DG in an open architecture for secondary nodes in the smart grid. In

Proceedings of the CIRED 2012 Workshop on Integration of Renewables into the Distribution Grid,

Lisbon, Portugal, 29–30 May 2012; pp. 1–4.

15. W3C Consortium—Resource Description Framework (RDF). Available online:

http://www.w3.org/RDF/ (accessed on 18 August 2014).

16. Penya, Y.K.; Nieves, J.C.; Espinoza, A.; Borges, C.E.; Peña, A.; Ortega, M. Distributed semantic

architecture for smart grids. Energies 2012, 5, 4824–4843.

17. Makris, P.; Skoutas, D.N.; Skianis, C. A survey on context-aware mobile and wireless

networking: On networking and computing environments’ integration. Commun. Surv. Tutor. IEEE

2013, 15, 362–386.

18. Liang, H.; Choi, B.J.; Zhuang, W.; Shen, X.; Awad, A.S.A.; Abdr, A. Multiagent coordination in

microgrids via wireless networks. Wirel. Commun. IEEE 2012, 19, 14–22.

19. Fang, X.; Yang, D.; Xue, G. Evolving smart grid information management cloudward: A cloud

optimization perspective. Smart Grid IEEE Trans. 2013, 4, 111–119.

20. Mehmood, Y.; Habiba, U.; Shibli, M.A.; Masood, R. Intrusion Detection System in Cloud

Computing: Challenges and opportunities. In Proceedings of the 2013 2nd National Conference on

Information Assurance (NCIA), Rawalpindi, Pakistan, 11–12 December 2013; pp. 59–66.

21. Liang, H.; Tamang, A.K.; Zhuang, W.; Shen, X.S. Stochastic information management in smart

grid. Commun. Surv. Tutor. IEEE 2014, 16, 1746–1770.

22. Baek, J.; Vu, Q.H.; Jones, A.; Al Mulla, S.; Yeun, C.Y. Smart-frame: A flexible, scalable, and

secure information management framework for smart grids. In Proceedings of the 2012

International Conference for Internet Technology And Secured Transactions, London, UK, 10–12

December 2012; pp. 668–673.

23. Zhou, Q.; Natarajan, S.; Simmhan, Y.; Prasanna, V. Semantic information modeling for emerging

applications in smart grid. In Proceedings of the 2012 Ninth International Conference on

Information Technology: New Generations (ITNG), Las Vegas, NV, USA, 16–18 April 2012;

pp. 775–782.

24. Jena Ontology API. Available online: http://jena.apache.org/documentation/ontology/ (accessed on

18 August 2014).

25. Common Information Model (CIM). Available online: http://www.dmtf.org/standards/cim

(accessed on 18 August 2014).

26. Lee, J.; Kim, Y.; Hahn, J.; Seo, H. Customer energy management platform in the Smart Grid. In

Proceedings of the 2012 14th Asia-Pacific Network Operations and Management Symposium

(APNOMS), Seoul, Korea, 25–27 September 2012; pp. 1–4.

27. Zhou, L.; Rodrigues, J.J.P.C. Service-oriented middleware for smart grid: Principle, infrastructure,

and application. Commun. Mag. IEEE 2013, 51, 84–89.

28. Samadi, P.; Mohsenian-Rad, H.; Schober, R.; Wong, V.W.S. Advanced demand side management

for the future smart grid using mechanism design. Smart Grid IEEE Trans. 2012, 3,1170–1180.

Energies 2014, 7 5993

29. Shao, X.; Jiang, J.; Bao, W.; Chen, J.; Wang, K. Researches on information framework of Smart

Distribution Grid. In Proceedings of the 2010 China International Conference on Electricity

Distribution (CICED),. Nanjing, China, 13–16 September 2010; pp. 1–6.

30. e-GOTHAM: Sustainable-Smart Grid Open System for the Aggregated Control, Monitoring and

Management Energy Home Page. Available online: http://www.e-gotham.eu/ (accessed on 22

August 2014).

31. IEEE Guide for Smart Grid Interoperability of Energy Technology and Information Technology

Operation with the Electric Power System (EPS), End-Use Applications and Loads; IEEE Std.

2030-2011; IEEE: New York, NY, USA, 10 September 2011; pp.1–126.

32. CEN-CENELEC-ETSI Smart Grid Coordination Group Smart Grid Reference Architecture;

European Committee for Standardization: Brussels, Belgium, November 2012; pp. 24–37.

33. Zhou, L.; Rodrigues, J.J.P.C.; Oliveira, L.M. QoE-driven power scheduling in smart grid:

Architecture, strategy, and methodology. Commun. Mag. IEEE 2012, 50,136–141.

34. Sucic, S.; Bony, B.; Guise, L. Standards-compliant event-driven SOA for semantic-enabled smart

grid automation: Evaluating IEC 61850 and DPWS integration. In Proceedings of the 2012 IEEE

International Conference on Industrial Technology (ICIT), Athens, Greece, 19–21 March 2012;

pp. 403–408.

35. Kim, J.S.; Kim, S.J. An object-based middleware for home network supporting the interoperability

among heterogeneous devices. In Proceedings of the 2011 IEEE International Conference on

Consumer Electronics (ICCE), Las Vegas, NV, USA, 9–12 January 2011; pp. 585–586.

36. Final architectural reference model for the IoT v3.0. Available online: http://www.iot-

a.eu/public/public-documents (accessed on 22 August 2014).

37. Red Hat JBoss Fuse. Available online: https://www.jboss.org/products/fuse.html (accessed on 29

May 2014).

38. Advanced Message Queuing Protocol (AMQP) Home Page. Available online:

http://www.amqp.org/ (accessed on 29 May 2014).

39. Famaey, J.; Latré, S.; Strassner, J.; De Turck, F. An ontology-driven semantic bus for autonomic

communication elements. In Modelling Autonomic Communication Environments; Brennan, R.,

Fleck, J., van der Meer, S., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, Germany, 2010;

Volume 6473, pp. 37–50.

40. Protégé Home Page. Available online: http://protege.stanford.edu/ (accessed on 18 August 2014).

41. SPARQL Query Language for RDF. Available online: http://www.w3.org/TR/rdf-sparql-query/

(accessed on 18 August 2014).

42. Butt, T.A.; Phillips, I.; Guan, L.; Oikonomou, G. Adaptive and context-aware service discovery for

the internet of things. In Internet of Things, Smart Spaces, and Next Generation Networking;

Balandin, S., Andreev, S., Koucheryavy, Y., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg,

Germany, 2013; Volume 8121, pp. 36–47.

43. Zheng, D.; Yan, H.; Wang, J. Research of the middleware based quality management for context-aware

pervasive applications. In Proceedings of the 2011 International Conference on Computer and

Management (CAMAN), Wuhan, China, 19–21 May 2011; pp. 1–4.

Energies 2014, 7 5994

44. OpenEnergyMonitor—EmonTx Arduino Shield. Available online: http://wiki.openenergy

monitor.org/index.php?title=EmonTx_Arduino_Shield#emonTx_Arduino_Shield (accessed on

29 May 2014).

45. Downloads: Apache ServiceMix 4.5.3 Available online: http://servicemix.apache.org/downloads/

servicemix-4.5.3 (accessed on 29 May 2014).

46. Artemis database. Available online: http://www.artemis-ia.eu/project/index/view?project=39

(accessed on 29 May 2014).

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).

