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Abstract 

We review previously published results, and 
present new results, on the way current to a 
cylindrical probe drops below the orbital-motion-
limited (OML) value for probe cross-sections too 
large or concave. Results on size and shape effects 
arise from unrelated behavior in the near and far 
potential field, and apply to a general cross-section, 
which can be characterised by radius Req and 
perimeter peij of equivalent circles. These results are 
used to discuss collection interference among two or 
more parallel bare tethers when brought from far 
away to contact. 

Introduction 

At positive bias, the electron current / t o a 
cylindrical probe in an unmagnetized plasma with 
electron distribution function isotropic at infinity and 
no trapped-orbit population, has an upper bound, 

I^IOML (OML current). 

The probe reaches this bound if its cross-section is 
both small and convex enough. At the very high bias 
of interest for bare tethers, the OML current is 

IOML » (pin) LeN„ ^2e<PP/m,. cc p. (1) 

Here, L, 0P and p are probe length, bias, and 
perimeter of its cross-section, and N„ is the 
unperturbed electron density. We had discussed 
elsewhere magnetic and trapped-orbit effects5 and the 
anisotropy arising in the bare-tether case from its 
orbital velocity.2,3 

As we shall see, current fails to reach the OML 
value if the cross-section is either large or nonconvex, 
with either type of failure relating to a quite different 
feature in the potential field. We consider separately 
the effects of size and shape. We then use results in a 
simple discussion of interference effects among two 

or more parallel bare tethers, showing how total 
current decreases as distances among them decrease. 

Size Effect 

Probe with circular cross-section 

The symmetry of this basic problem allows 
determining a complete solution for potential field 
and current. As shown in Ref.l, one finds 

I = hut for p/2n = R < Rmax, (2) 

Rmax = &D* * function [e0i>/kTe, T,ITt]. (2') 

Here Xoe is the electron Debye length; typically, the 
ratio Rmax lhDs_ is about unity for parametric values of 
interest (Fig. 1), 

TJTe ~ 1, e&plkTe ~ 103. (3) 

When R increases beyond Rmax (or ADlI 

decreases with growing density Nm , at fixed R), 
the current drops below the OML value, as a size 
effect related to the behavior of the potential profile 
far from the probe; for R > RWIB, collection is 
affected by potential barriers in a distant region 
between certain radii r0 and r; (Figs.2,3), 

r0 > n ~ R Ve0p/kT, » R, (4) 

where the profile gets steeper. Then, trajectories that 
would hit the probe within some range of glancing 
angles are unpopulated: the probe being attractive, 
they would had come, not from the faraway, 
background plasma, but from other points on the 
(non-emissive) probe, after having turned back inside 
that region (Fig.4). 

Preliminary, approximate (asymptotic) results 
for the ratio I/IQML beyond Rmax were advanced in 
Hef.3. We have now determined complete results (a 
sample shown in Fig. 5), that take the form 

HIOML = function [R/ADc, e®PlkTe, T./TJ. (5) 
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Fig.l. RnJXne versus e<PPtkTf and TJTt. 
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Fig,2. Potential profile for Rma < R • As Rmax 

drops below R, point 0 crosses the diagonal from 
above. No ions reach above a thin layer at point 2. 
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Fig.4. For Rmsa < R, trajectories leaving the probe 
(backward in time) at a range of glancing angles 
return to the probe, rather than reaching the 
background plasma. 
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Fig.3. Incoming electrons conserve energy E and 
angular momentum / . At given E and r, only 
orbits with f <2mer

,2[E + e&(r,)}~jAE) for all 
r' > r are populated. Straight lines in the /--family 
f = Jr

2(E) get steeper as r decreases, but «//(0) 
has a minimum at r0, with rt < r < rg lines 
determining an envelope that crosses the Jf-Hne 
for RmaI<R. 

0,8 

\ \ ' 
\ \ 
\ 

\ 

- r... I . i 

* ' ^ ' l ' 1 l —\ l "~1 

\ \ 
\ 

\ \ 
\ \ 
\ \ 

\ \ 
\ \ ', \ 
\ 

1 > l 

\ ^ 
\ \ 
\ \ \ 
\ \ \ 
\ \ 1 

p , j — 

TJT, 

_J ! _ 

\ \ '• 1 •'• -

\ 
\ 
\ 
\ 
\ 
\ 

\ 
\ 
\ " 
\ 

TO \ \ 
1 0 

0.3 

0.1 
, I , I , 

s 0 1 2 3 4 5 6 7 8 9 10 

Fig.5. Current ratio M0m. versus RIXDe and 
TilT,,, for e^plkT,, =300. 



We note here two additional points of interest. First, 
because of the high bias, the Laplace equation applies 
within some probe vicinity where the space charge 
has negligible effects, 

®«®p[\- a In(r/R)], (6) 

a ~ 1/ln (n IR) (moderately small). (7) 

With all other parameters fixed, a increases weakly 
with R. At r = 2R, say, Eqs.(4), (6) and (7) with 
e®plkTe ~ 103 give V®(r)l@p « 0.9. 

Next, note that we have 

IOML « RV&r = Vr^m/) at r = R. (8) 

If we were to compute the current using >P#(r) at 
r = 2R (rather than at r = R) we would 
overestimate it by a factor near 2. This relates to the 
fact that all trajectories reaching r ~ R from 
infinity are obviously hitting the probe, whereas 
trajectories reaching r = 2 R within some range of 
glancing angles will miss it. 

Probes with elliptical cross-sections 

A value w = wP in elliptical coordinates v, w, 

x - a cosv coshw, y = a sirtv sinhw 

(0 < v < 2TV, 0 < w < «>), 

serves to describe an elliptical cross-section of 
semiaxes ae, be, 

cc = acoshwp, bsl ae~ tanhwP. 

Because of the high bias, the Laplace equation is 
again valid within some probe vicinity that reaches 
where w ellipses are near-circles, 

w « l n ( 2 r / a ) for w > w* (say, 1,5). (9) 

It may then be argued that <£(v, w) is nearly 
independent of v everywhere, as shown in Ref.1 for 
the limit case of a vanishingly thin tape (wP= 0). 

From the Laplace equation in the probe vicinity 
we then have 

<?<X>!dw2 = 0 => <X> * <Pp [1 - a{w-wP)\ 

Using (9) and wP = In [(ae + b^la\ we have, near 
the probe but beyond w*, 

Rsq = % (ae + bL), (10) 

to be compared with Eq.(6). Beyond w , the 
potential behaves as in the case of a circle of radius 
Req. Limit ratios bjae = 1 and 0 correspond to 
circles (Re„ = p/2n) and tapes (Req = p/%) 
respectively. 

Other probe cross-sections 

For any family of similarity cross-sections 
parametrized by size, one can determine certain 
'average' half-width Req, by solving the Laplace 
equation between the contour of the cross-section and 
a much larger circle; at intermediate distances, then, 
the potential takes the form (6) with R^q standing for 
R. As an example, for a square cross-section we find 

Req * 0.58 x side of the square," (11) 

Rtq«pl6.9. (11') 

The OML law keeps valid as regards size as long as 
Req remains below Rmax. Note that shape details are 
irrelevant to the size effect. The Laplace equation, 
valid near the probe, filters out to the far field all 
information on shape, except for the average half-
width Req . 

Shape effect 

Failure of the OML law due to shape relates 
to the behavior of the potential field near the probe, 
ulthnaty dependent on the degree of probe convexity. 
In the case of a tape (wp - 0) we had found1 

0 - 7 ^ ) for R,q (=pm< R^ (12) 

with }{wP =0) ~0.1 and a [given by (4) and (7)] 
logarithmically small, and increasing with R^. A 
tape comes out to be not convex enough, but its shape 
failure is weak; for the bias of interest the current in 
(12) lies only about 1% below the OML value. 

As in the case of Fig.4, for any point on the 
tape (Fig.6), trajectories that would hit the probe 
within some (here narrow) range of glancing angles 
are unpopulated: they would had come from other 
points on the tape, here, however, remaining always 
close to it.4 This is the origin of the current reduction 
described by (12), which does not relate to size; it 
holds no matter how small Rcq or p. On the other 
hand, shape is here determinant; as wP (or bj ae) 
increases and ellipses evolve from tape to circle, the 
coefficient y(wP) in Eq.( 12) will vanish at some wP, 
the OML current law certainly holding hi the limit 
case of a circle. 
f 

We now note that the reduction of current 
below the OML value for cross-sections that are 
small can be substantial if they present definitely 



concave segments, as in the case of Fig.7, a cross-
section made of two adjoining circles. Trajectories 
that hit a point on a concave segment would be 
unpopulated over a wide range of incoming angles. 
The OML law, nonetheless, may still be used to great 
accuracy if the actual perimeter p in (1) is replaced 
by the perimeter pm of the minimum-perimeter 
convex envelope of the cross-section, made of 
segments of the actual cross-section and straight 
segments. For the case of Fig.7, we have 

Req « 54(5 + 2R) » Ptq 16.85. (13') 

Note that the value of V<^r)l0F averaged 
over the envelope would be very close to unity. Also, 
conditions for trajectories in the vicinity of the 
straight (dashed) segments would be similar to 
conditions in the tape case as far as convexity is 
concerned. Finally, all trajectories reaching the 
envelope would certainly hit the probe; note that the 
argument following Eq.(8) would apply to any 
convex envelope of larger perimeter. The 
introduction of the convex envelope of minimum 
perimeter thus allows accurate use of the OML law 
for nonconcave cross-sections, and proves helpful in 
discussing interference effects in collection. 

Interference of parallel tethers 

The interference of two or more parallel 
cylindrical probes as regards current collection may 
be now discussed on the basis of results for the 
special case of circular cross-sections, as resumed in 
Eqs.(2-6), when extended to other cross-sections by 
our introduction of equivalent radius and perimeter, 
Ru, and peq. The variety of cases show a mixture of 
shape and size interference effects. Simple results can 
be obtained for the limit of adjoining probes. 

Compare, first, total current to two thin tapes 
of perimeter p, in two extreme cases, tapes lying far 
away, and touching each other as in Fig.Sa, 
respectively. We then clearly have 

/ - = 2/QMt(p)[l-^0>)L 

Io=IoML(2p)[l-r^(2p)], 

subscripts oo and 0 standing for infinite and zero 
distance between tapes. A ratio Io/Im < 1 represents 
interference effects. Since IOMI&P)

 =
 2IOML(P), 

interfertence here arises solely from the small y-
terms inEq.(12) [a(2p) being larger than dip)], and 
is negligible, /<//<„« 1. Note that in writing /„ and 
I0 above we ignored size effects, Eq.(2), with Rmca 

given by (2'), then implying 

2/V8 = Rcq(2p)<Rmax or p< 4Rmac. 

If this condition is not satisfied there will be 
substantial interference due to size effects, which can 
be determined with results as in Fig.5. 

Consider, next, tapes lying far away, and 
touching each other as in Fig. 8b, respectively. We 
would then have, ignoring the very small y - terms 
and taking p < ZRmax, 

The decrease from I„ to I0 would start at a distance 
over twice r0, or about 5RYe0P/kT,. Note that the 
orientation in Fig.Sb, while worse from the point of 
view of shape effects, is not affected by size. 

Consider finally the case of Fig.8c, where tapes 
do not touch each other. It follows from (11) that size 
effects can be ignored if 

Rwl^0.5Sxp/2<Rmia. 

Even then, however, the current here will be less than 
loMtipci) with pcf = 2p the perimeter of the 
minimum-perimeter convex envelope of the "cross-
section": For non-adjoining probes such as these, 
there are orbits crossing between straight (dashed) 
segments, which will not contribute to the current 
collected; also, V@(ry<Pp will be sensibly less than 
unity on the dashed segments. The current drop 
below IoMi(Pcr) can be determined, nonetheless, by 
first solving the Laplace equation for the 2-tape 
arrangement as in the analysis leading to (11), and 
then following numericaily orbits that start inwards at 
one dashed segment. 

Consider now N circular wires in a straight 
row, with the distance from one to the next either 
large or vanishing (Fig.9a). We would have limit 
current values given by 

/„ = N x IOML(P) = IOMLC^P) 

h = loMiiPcr), pcr = 2xR + (N-l)4R 

with yim approaching 21K « 0.64 at large N. 
Size effects could be ignored as long as 

Req « (N+D/H2 <RmaI. 

Similarly, for N2 wires arranged in a square 
array, with next-neighbor distance either large or 
vanishing as in Fig. 9b, we would have 

L = N2 x IOML(p) = I0ML(^2P), 

h = k W , P« = 2xR + (K-1)8*, 

p, , = 2 ( ^ + 2 ) * , (13) / o * W p ) , V/ ro«'/z. 



with Io/Ia, approaching 4/mS at large N. It follows 
from (11) that size effects could be ignored as Song as 

JLa « O.S8xNx2R <Rmax. 
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Fig.8a, b, c. Interference between tapes. 

Fig.6. Grazing trajectories connect tape points in 
the shallow, almost flat potential near the tape. 
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Fig.7. Minimam-perimeter convex envelope 
(dashed and half-circle segments) for a cross-
section made of two adjoining circles. 

Fig.9. a) Straight row and b) square array of 
adjoining circles. 


