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The Empiric k·p Hamiltonian method is usually applied to nanostructured semiconductors. In this paper, it is 

applied to a homogeneous semiconductor in order to check the adequacy of the method. In this case, the solutions of 
the diagonalized Hamiltonian, as well as the envelope functions, are plane waves. The procedure is applied to the 
GaAs and the interband absorption coefficients are calculated. They result in reasonable agreement with the 
measured values, further supporting the adequacy of the Empiric k·p Hamiltonian method. 

          
1 Introduction	

The k·p method introduced by Dresselhaus 
Kip and Kittel [1] was extensively developed by  
Kane [2,3] for calculations of semiconductor  
band structures. The topic is taught in several 
books [4,5] including its application to 
nanostructured semiconductors. Even today, 
with the extensive use of modern computing 
facilities [6] the k·p methods are widely used 
and new books on the topic are still published 
[7-9]. However, they contain a background that 
is not often at the reach of device engineers. A 
book by Datta [10] (see chapter 6) bridges this 
gap.         

The Empiric k.p Hamiltonian (EKPH) has 
been proposed [11,12] to perform easy and fast 
quantum calculations associated to the light 
absorption of nanostructured semiconductor 
devices [13-15], primarily, solar cells. By 
providing a simple means of calculating energy 
levels and photon-induced-transition 
probabilities, the method has permitted realistic 
detailed balance modeling of the subbandgap 
quantum efficiency of quantum dot (QD) solar 
cells [16], yielding an unprecedented 
semiquantitative interpretation of its 
temperature dependence. 

In this paper, we further validate the model 
by presenting a calculation of the band-to-band 
absorption coefficient in GaAs based on the 
EKPH, and comparing to the well-known 
experimental results in the literature. The 
purpose is not to contribute to the understanding 
of the mechanisms involved: band-to-band 
absorption is one of the fundamental 
characteristics of semiconductors and is known 
since the first third of the 20th century (In GaAs 
it has been measured with precision at least 
since 1961[17]). Rather, we attempt to give an 

additional validation of the EKPH calculations 
with experiments, beyond what has already been 
shown for interband absorption[11,12,14,16] in 
order to further justify its use and usefulness for 
analysis of nanostructured semiconductors. 

 
2 The	EKPH	Method	

In the k·p methods, the one-electron 
Hamiltonian is developed in an orthonormal 
basis formed by the product of the Bloch 
functions calculated at the semiconductor -
point (k=0) for a certain band and a plane wave 
of arbitrary wavevector k [10].  

In these methods, the stationary 
wavefunctions  (the eigenfunctions) are 
expressed as   
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The so-called envolvents, v, are slowly 
varying functions that may be considered 
constant within a given unit cell of the 
semiconductor crystal. The so-called involutes, 
uv,0, are the Bloch functions at the  point; these 
are periodic with the translational periodicity of 
the crystal and they vary notably within each 
unit cell. 

High efficiency solar cells tend to be based 
on semiconductors with the zincblende 
structure, such as  GaAs,InP, InAs, and alloys, 
among many others. For this structure, the basis 
usually considered comprises the involutes of 
the conduction band (cb) and three valence 
bands: the light holes (lh), the heavy holes (hh) 
and the spin-orbit (so) band; all are spin-
degenerate. These are named |S for the cb, and 
|X, |Y and |Z for the three valence bands. The 
latter three are degenerate at k=0, and therefore 
cannot be associated specifically to lh, hh or so. 
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The basis using these involutes is called the 
standard basis in this paper. The Hamiltonian 
development in the mentioned basis leads to a 
four dimensional matrix Hamiltonian whose 
terms are functions of k. In zincblende 
materials, this matrix is quite easy if the spin-
orbit interaction is neglected. In this easy form 
[10] we call it the zero-order Hamiltonian 
matrix (H0).  

As explained in detail in references[11,12], 
we have defined the EKPH by its eigenvalues, 
which are the parabolic dispersion E(k) 
functions for the cb, hh, lh and so bands, 
defined by the experimental band edges and the 
effective masses. The use of these experimental 
dispersion functions takes into account the spin-
orbit interaction and any other forgotten effect 
that should have been taken into consideration. 
This is why we call it the empiric k·p 
Hamiltonian (EKPH).  This Hamiltonian is 
known in its diagonalized form in a basis that 
we don’t know how to relate to the standard 
basis. However, if we adopt the frequently used 
approximation of perturbing the energies and 
leaving the eigenvectors unperturbed, we 
assume that the new Hamiltonian (HEKP) has the 
same eigenvectors than (H0). In this case the 
diagonalizing matrix of (H0), called (T), which 
is formed with the eigenvectors of (H0) is also 
valid to transform the standard basis into the 
unknown diagonalizing basis of (HEKP). 

So far, the EKPH has been mainly applied to 
nanostructured solar cells. In QD solar cells, it 
has given reasonable agreement between 
calculated and measured sub-bandgap spectrum 
[18], and sub-bandgap quantum efficiency 
[11,12], including a good explanation of its 
temperature behavior [16].  In quantum well 
solar cells, it has given good agreement between 
the calculated and measured quantum efficiency 
[14]. With this work we want to further confirm 
the semi-quantitative adequacy of the method 
by checking the agreement for homogeneous 
materials. 

The calculation of the envelope functions 
follows the following path [11,12]: (1) 
resolution of the diagonalized Time Independent 
Schrödinger Equation (TISE); (2) calculation of 
the solution’s Fourier transform (plane wave 
development); (3) multiplication by the 
appropriate element of the transformation 
matrix (T); (4) calculation of the inverse Fourier 
transform. 

 
3 The	Envelope	Functions	

For a nanostructured semiconductor the 
diagonalized TISE is 
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The asterisk denotes that we are considering the 
effective mass of the cb or of the lh, hh, or so 
VBs. The offset energy of the band v would act 
as potential energy Vv(r) for nanostructured 
semiconductors. Bound functions are usually 
found for a discrete set of energies. The 
calculation of the envelope functions is obtained 
through the paths described above.   

For homogeneous semiconductors, as is the 
case here, potential energy Vv(r) is absent. 
Therefore the solutions are 

   ·rkr  iexp)(  (3) 

where the wavevector is the one chosen and the 
prime is to distinguish it from the k variable in 
the Fourier Transform used later.   is the 
volume of the space where the semiconductor is 
confined and is put in the wavefunction for 
normalization, The eigenenergy of an 
eigenfunction is (with respect to the band edge) 
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For VBs, the effective masses are negative 
and the equation must be written with the sign 
changed. This implies that the increasing 
energies start at the VB top and their values 
increase downwards. 

The plane-wave development coefficients of 
(r) in Eq. (3) can be directly written in terms 
of the Fourier Transform. In this case, all the 
functions are extended plane waves; we recall 
that   )(2)(·

xxx
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The elements of the transformation matrix 
(T) are presented in Figure 1. 

In this figure Eg is the semiconductor’s 
bandgap, m0 the mass of the electron in the 
vacuum and m*

cb its effective mass in the 
conduction band. The parameter  is arbitrary. It 
reflects the fact that the (H0) matrix is double 
degenerate (additionally to the spin 
degeneration affecting to all bands) for the hh 
and so bands; this constitutes a fundamental 
difference with the experimental dispersion 
curves for these bands, which are never 
degenerate (except for the spin degeneracy). 
Thus, for the (H0) matrix, there is a variety of 
possible (T) defined by . The summand 
matrices in the figure are separated for 
presentation purposes only. They have no 
physical meaning; separated, they are not 
unitary matrices, which is a necessary condition 
of the transformation matrices. (T) is a function 
of k through K=kd  where d is an arbitrary 
normalizing length, (often 1 nm). 
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Figure 1.  Summand matrices (TA) and (TB) into which the transformation matrix (T) is decomposed[12]. 
 
To calculate the envelope functions, (k) is 

to be multiplied by one of the elements Ti,j(k). 
The row of the element, from 1-4, corresponds 
to the cb, lh, hh and so bands respectively. The 
column of the element, form 1-4 corresponds to 
the X-, Y-, Z- and S-envelopes respectively[12]. 
For example, the Z-envelope function of a light 
hole eigenfunction is obtained by multiplying 
the corresponding (k) by T2,3(k), also denoted 
Tlh,Z(k). 

Then, the envelope function is obtained by 
calculating the Inverse Fourier Transform of the 
function of k resulting from this product. Thus, 
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Note that all the envelopes are plane waves 
with the same wavevector than that of the 
diagonalized EKPH. The matrix elements 
Ti,j(k’) can be considered as the factor of 
projection of any plane wave on the 
corresponding involute. The sum of the square 
of their absolutes values is unity for any k’.  

 
4 The	Dipole	Matrix	Elements	

Most nanostructures involve bound states. 
For transitions between electron states, one of 
which bound, with absorption or emission of 
one photon, we use |·r|’, where   is the 
light-polarization vector, as the dipole matrix 
element. The introduction of the radiation in the 
Hamiltonian leads to |·p|’, where p is the 
momentum operator (proportional to the 
gradient), but |·r|’ is obtained by 
application of the theorem of Ehrenfest. 

However the operator r is not Hermitical at the 
infinity and |·p|’ [19,20,14] must be used 
for purely extended wavefunctions, as is the 
case here.  

The application of p to a product of 
functions is p(u)=up+pu.  Let us consider 
  to be slowly varying plane waves; this is true 
for small wavevectors.  Due to the different 
scales associated to the k·p method, the integral 
factorization rule is considered applicable and 
u|·p|u’`’ u|u’|·p| + u|·p|u’ 
|`’ [21,22,10]. Thus 
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where we have also considered that                    
 u0v|u0v’=v,v’.  

Any polarization orientation may be 
developed into its coordinate axes [12,23] 
leading to terms containing px, py, and pz. For 
the calculation of u0v|·p|u0v’, we can use the 
symmetry properties of the us in zincblende 
crystals. The only non-null terms [10,11] are  

0PZpSYpSXpS zyx   (8) 

where the link of P0 with the experimental *
cbm  

may be found in Figure 1. Thus, for the case of 
x-polarization, Eq. (7) becomes 
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Vertical illumination involves photons with 
horizontal polarization. Let us examine, for 
example, xS for a hhcb transition. It is a 



function of the differences kx,hhkx,cv=x, 
ky,hhky,cv=y and kz,hhkz,cv=z. Thus, 
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where (Lx, Ly, Lz) are the sides of the 
parallelepiped limiting the full volume = 
LxLyLz which encloses the entire semiconductor. 
Under the usual periodic boundary conditions, 
the only permitted k components are integer 
multiples of 2/L and the same for their 
differences. The y- and z-functions are one 
when y0 and strictly zero for the permitted 
lateral differences, of 2/L, 4/L, etc. Thus, 
ky and kz are conserved. The x-function is ħkhh,x 
for x0 and zero for the permitted lateral 
values. Thus, kx is also conserved. In summary, 
by dropping the band index (now useless) from 
the k-components, 
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The same is applicable to other  terms. 
Therefore, 
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It is zero because the (T) matrix is hermitic. 
Therefore, Eq. (7) can be rewritten as 
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where we have put as a left-superindex the 
initially selected wavevector.  

A similar treatment is to be used for y- and 
z- polarization. The z-polarization is not 
possible if the illumination is purely vertical. 

 
5 The	absorption	coefficients			

The number of photon absorptions per unit 
of time [19,11] when the electron passes from 
state  to state    is 
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where 0 is the vacuum permittivity, nref is the 
refractive index of the medium and nph is the 
density of photons in all the modes of energy E. 
This density can be related to the photon flux by 
Fph =(c/nref)nph. Taking into account that the 
number of photon absorptions per unit of time is 
related to the elementary absorption coefficient 
’ in the transition under consideration by 

w’=Fph’, its expression is (for a 
hhcb transition) 
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(15) 

Since all the transitions conserve k, the 
transition energy Etr=E’E is given by 
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Note that, for holes, the energies in Eq. (4) must 
be reversed in sign and counted form the VB 
edge.  

To calculate the total absorption coefficient, 
the elementary absorption coefficients per unit 
of volume must be added, that is 
=(2)-3’dkxdkydkz. (2)-3 is the density 
of states per unit of 6D-volume in the 
(x,y,z,kx,ky,kz) space.  Thus,  
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(17) 

where, using the expression of P0 in Figure 1, 
and Eqs. (15) and (17), 
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The first factor 2 corresponds to the spin 
degeneration. 

In our calculations, the practical execution 
of the integral of Eq. (18) is done as follows: 

The function inside the integral depends on 
the array of wavevectors (kx, ky, kz). We build an 
array containing in each term
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restricted to a domain D, must be a function of 
the energy so that we must sum only those terms 
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corresponding Ekin is smaller than a given value 
of Ekin, building in this way a function of Ekin. 
This function, which is rather smooth, is 
interpolated by a polynomial and its derivative 
is then taken for use in Eq. (17). 



We present in Figure 2 the results of these 
calculations together with a classic 
measurement [24]; similar measurement results 
may be found in other classic works [17,25]. 
The calculations have been made with the data 
in Table 1. 

 

 
Figure 2. Left, calculated absorption coefficient for band to band transitions in GaAs  for =0 (red, dot-
dashed line), =2 (blue, dashed line) and =5 (black, solid line). Right, measured absorption coefficient 
from[24], © 1975 AIP, with permission.  

 
The curve to be compared is the one labeled 

“High purity”.  We can observe a reasonable 
agreement, although we must stress the semi 
quantitative nature we assign to them. The 
calculated result has been obtained in some few 
minutes with a laptop. This supports the 
adequacy of the use of the EKPH model. 

The GaAs absorption coefficient takes 
values much higher, approaching or exceeding 
106 cm-1, for higher energies (e.g. 4 eV). This is 
due to transitions between more pairs of bands, 
which are enabled by the high photon energy. 
That subject is beyond of the scope of this work. 
Our calculations are limited to the transitions 
between the VB and CB. 

 
6 Conclusions	

In summary, the EKPH method has been 
applied to the calculation of the eigenfunctions 
and the band-to-band absorption of GaAs. The 
wavefunctions are linear combinations of plane 
waves multiplied by the  point Bloch function 
(the involutes) for the four bands involved: cb, 
lh, hh and so. In this respect, they are close to 
the classical Bloch functions, in which the 
periodic part is dependent on the wavevector 
(and difficult to know), but they are not mixed 
with the other bands. The absolute value of the 
envelopes is given by the diagonalization 
element of matrix corresponding to the band of 
the state and to the concerned involute. 

The optical absorption coefficients and the 
|·p|’ matrix elements can be calculated 
using only the envelopes, without making use of 
the involutes (thanks to the symmetry properties 
of the latter at the  point); they depend only on 
the elements of the diagonalization matrix and 

their calculation is very simple. The calculations 
are very fast and the results are reasonably 
accurate.  

In all, the results give an additional proof of 
the adequacy of the EKPH model. 
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