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1 Introduction

The goal of this paper is to show how mathematics and computational science can

help to design not only the geometry but also the operation conditions of different parts

of a pulverized coal power plant as the one shown in Figure 1.

Figure 1.— Sketch of a coal fired power plant
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In the last few years, the development of mathematical models and computational

tools, including high performance computers and commercial computational fluid dynam-

ics (CFD) packages, has allowed introducing the numerical simulation as an important

tool to analyze the phenomena occurring in some different installations of a power plant.

For example, in Figure 2 the flow of secondary air dragging pulverized coal particles

has been modelled, whereas in Figure 3 some numerical results corresponding to the

simulation of erosion in the system of transport of ashes to silos are shown.

Figure 2.— System of coal input to the boiler

Figure 3.— Simulation of erosion

The main scope of this paper is to model and numerically solve the physico-chemical
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processes occurring in the interior of the boiler, which is the part of the furnace where

combustion of pulverized coal particles takes place (it can be seen at the center of Figure

1). CFD simulations can help to achieve a better performance of the installation in order

to maximize the energetic efficiency, to minimize the NOx formation, to control soiling

phenomena or to assure a stable and sustainable ignition.

2 Mathematical modelling

In this section we present the mathematical model for a turbulent reactive two-phase

flow taking place in the interior of the boiler. The two phases correspond to the gas

mixture and to the solid coal particles. They will be described in an Eulerian-Lagrangian

framework.

The gas phase model includes the conservation equations describing a steady, com-

pressible, turbulent, radiant and reactive fluid. This fluid will be a mixture of O2, CO2,

H2O, V(g), CO, SO2, H2 and N2.

The solid phase model must include the motion equation of a single particle and

expressions for the sources from the solid phase to the gas one.

2.1 Gas phase model

We consider the standard equations for mass and momentum conservation, for the

turbulence and for the thermal radiation, namely,

∇ · (ρv) = fm, (1)

∇ · (ρv ⊗ v) +∇p−∇ · τ = ρ~g + fmvs, (2)

τ = µe

(

∇v +∇vt
)

−
2

3
µe(∇ · v)I, (3)

v · ∇k −∇ · [(µ+ µt)∇k] = Gk − ρǫ, (4)

v · ∇ǫ−∇ ·
[(

µ+
µt

1.3

)

∇ǫ
]

= 1.44
ǫ

k
Gk − 1.92

ǫ2

k
, (5)

ω · ∇xI + (a+ σs)I −
σs

4π

∫

S2

φ(ω∗, ω)I(x, ω∗)dω∗ = aIb, (6)

with µt = 0.09ρk2

ǫ
and Gk = µt‖∇v + (∇v)t‖2.

Furthermore, we assume the low Mach number approximation, that is, we impose

ρ =
p̄

RT
(7)

where p̄ denotes the average ambient pressure which is supposed to be constant in this

state equation.
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2.2 The combustion model

The combustion of coal particles, including devolatilization and char oxidation has

been treated extensively in the literature (see, for example, [1] or [7]). The BFL combus-

tion model introduced in Bermúdez et al [2] considers a simplified kinetic model consisting

of the following physico-chemical process (reactions 1 to 5 within the porous particles and

reactions 6 to 8 in the gas phase):

1 CO2 + C(s) → 2 CO + (q1)

2 1
2
O2 + C(s) → CO + (q2)

3 H2O + C(s) → CO +H2 + (q3)

4 V(s) → V(g) + (q4)

5 H2O(s) → H2O(g) + (q5)

6 CO + 1
2
O2 → CO2 + (q6)

7 V(g) + ν1 O2 → ν2 CO2 + ν3 H2O + ν4 SO2 + (q7)

8 H2 +
1
2
O2 → H2O + (q8)

where indices s (respectively g) refers to the solid phase (respectively, to the gas phase).

The qi denotes the heat released in the i-th reaction per unit of gasified mass.

Figure 4.— Scheme of the combustion of a coal particle

For simplicity, in this paper we will consider the volatiles mixture represented by one

single molecule,

V(g) = Cκ1
Hκ2

Oκ3
Sκ4

, (8)

of molecular mass Mvol, where coefficients κ1, κ2, κ3 and κ4 are deduced from the ultimate

analysis of the coal.

The stoichiometric coefficients νi are calculated in terms of the volatiles composition

using the expressions: ν1 = (2κ1 + κ2/2 + 2κ4 − κ3)/2, ν2 = κ1, ν3 = κ2/2 and ν4 = κ4.
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For char oxidation we have considered a reduced mechanism including the three overall

reactions 1, 2 and 3, of first order with respect to the local mean concentration of CO2, O2

and H2O, measured by the product of the local gas density, ρg, times the mass fractions.

We have considered the reactions to be of zero order with respect to the local char density,

ρC . Obviously these three reaction rates must be equated to zero when the carbon of the

particle is completely consumed, and therefore a Heaviside function is also included as a

factor. More precisely, the local homogenized reaction rates per unit volume within the

particle are modelled using global Arrhenius laws of the form

w1 = B1e
−E1/RTρgYCO2

H(ρC), (9)

w2 = B2e
−E2/RTρgYO2

H(ρC), (10)

w3 = B3e
−E3/RTρgYH2OH(ρC), (11)

where YCO2
, YO2

and YH2O are the local mass fractions of CO2, O2 and H2O in the gas

filling the porous interstices and ρC is the density of carbon in the form of char. For the

generation of volatiles and moisture evaporation we shall use the simple laws

w4 = B4e
−E4/RTρV , (12)

w5 = B5e
−E5/RTρH2O, (13)

where ρV and ρH2O are the local values within the coal particle of the density of volatiles

and H2O remaining in condensed form. The moisture generation is, for simplicity, here

described with a kinetic model similar to the pyrolysis model of volatiles generation. We

have chosen the rates of water vapour and volatiles generation to be of first order with

respect to ρH2O and ρV .

The fundamental assumption to obtain this model is the Burke-Schumann hypothesis.

Therefore, the gas phase reactions 6 to 8 are supposed to be frozen or to occur with

infinitely fast velocity in a gaseous thin diffusion flame that can be placed either inside the

particle, or in the gas surrounding the particle or in the gas far from the particle. The type

of combustion that will occur will depend on the temperature and local concentrations of

oxygen, carbon monoxide, volatiles and H2 in the gas environment; the model will decide

in which situation the particle is.

The combustion model that we present in this paper consists of two coupled models:

the gas phase model including the mass and energy conservation equations and the solid

phase model. On the one hand the gas phase model determines the atmosphere in which

particles are burnt and, on the other hand, the solid phase model provides mass and

energy sources to the gas.
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2.2.1 Gas phase Model

Let Lg be the differential operator defined by

Lg(u) =
∂(ρgu)

∂t
+∇ · (ρguvg)−∇ · (ρgD∇u), (14)

where D is a gas phase diffusion coefficient which, for simplicity, will be considered to be

the same for all species and equal to the thermal diffusivity (Lewis number equal to one).

Then, the conservation equations of the gaseous species are given by

∂ρg
∂t

+∇ · (ρgvg) = fm, (15)

Lg(Y
g
O2
) = fm

O2
−

4

7
w6 −

32ν1
Mvol

w7 − 8w8, (16)

Lg(Y
g
CO2

) = fm
CO2

+
11

7
w6 +

44ν2
Mvol

w7, (17)

Lg(Y
g
H2O

) = fm
H2O

+
18ν3
Mvol

w7 + 9w8, (18)

Lg(Y
g
SO2

) = fm
SO2

+
64ν4
Mvol

w7, (19)

Lg(Y
g
CO) = fm

CO − w6, (20)

Lg(Y
g
V ) = fm

V − w7, (21)

Lg(Y
g
H2
) = fm

H2
− w8, (22)

Lg(h
g
T ) = f e + q6w6 + q7w7 + q8w8 −∇ · qrg, (23)

where w6, w7 and w8 denote, respectively, the mass consumption rates per unit volume of

the volatiles, CO and H2, due to the chemical reactions 6, 7 and 8, taking place in the gas

phase; hg
T is the gas phase specific thermal enthalpy, which we shall for simplicity write

as cpT
g considering the gas phase specific heat at constant pressure, cp, to be constant,

and qrg is the radiant heat flux vector.

The local homogenized reaction rates per unit volume within the particle could be

modelled by using global Arrhenius laws of the form:

w6 = ρ2gY
1/2
O2

YCOY
1/2
H2O

B6e
−E6/RT ,

w7 = ρ1+ν1
g Y ν1

O2
YVB7e

−E7/RT ,

w8 = ρ3/2g Y
1/2
O2

YH2
B8e

−E8/RT .

Nevertheless, as we are considering the Burke-Schumann hypothesis of infinitely fast

gas phase reactions, which implies the non coexistence of CO, V and H2 with O2, we do

not need to provide expressions for the gas phase reaction rates. We can obtain equations
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without the gas phase reaction terms considering the following conserved scalars of Shvab-

Zeldovich type:

βg
1 = Y g

O2
−

4

7
Y g
CO −

32ν1
Mvol

Y g
V − 8Y g

H2
, (24)

βg
2 = Y g

CO2
+

11

7
Y g
CO +

44ν2
Mvol

Y g
V , (25)

βg
3 = Y g

H2O
+

18ν3
Mvol

Y g
V + 9Y g

H2
, (26)

βg
4 = Y g

SO2
+

64ν4
Mvol

Y g
V , (27)

Hg = hg
T + q6Y

g
CO + q7Y

g
V + q8Y

g
H2
. (28)

Then from (15)-(23) we have the equations

Lg(β
g
1) = fm

O2
−

4

7
fm
CO −

32ν1
Mvol

fm
V − 8fm

H2
, (29)

Lg(β
g
2) = fm

CO2
+

11

7
fm
CO +

44ν2
Mvol

fm
V , (30)

Lg(β
g
3) = fm

H2O +
18ν3
Mvol

fm
V + 9fm

H2
, (31)

Lg(β
g
4) = fm

SO2
+

64ν4
Mvol

fm
V , (32)

Lg(H
g) = f e + q6f

m
CO + q7f

m
V + q8f

m
H2

−∇ · qrg. (33)

Owing to the Burke-Schumann hypothesis we can determine two regions of the flow

field: one region with oxygen, ΩO, and another one without oxygen, ΩF . The gas phase

reactions 6 to 8 take place in a diffusion-controlled flame where the volatiles, CO and H2

are burning with oxygen separating ΩO from ΩF . This surface is called ΓF (see Figure 5

for details).

Figure 5.— Diffusion flame

Once we have solved (29), βg
1 will determine the regions of the domain and therefore

the way to recover the mass fractions and the enthalpy from the Shvab-Zeldovich variables:
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1. If βg
1 > 0 we are in the domain ΩO, this implies that Y g

V = Y g
H2

= YCO = 0 and using

(24)-(28) we obtain Y g
O2

= βg
1 , Y

g
CO2

= βg
2 , Y

g
H2O

= βg
3 , Y

g
SO2

= βg
4 and hg

T = Hg.

2. If βg
1 < 0 we are in the domain ΩF so Y g

O2
= 0 and w6 = w7 = w8 = 0. In this case

to determine the mass fractions and the enthalpy we need to solve two additional

equations of (21)-(23) without gas phase reaction terms.

2.2.2 Particle Gasification Model

The solid phase model is based on a Lagrangian computation of the temperature and

density of each coal particle throughout its trajectory. We assume that the particles are

spherical and its radius and its ash density remain constant during the combustion. So

the model will be valid for particles with high content of ash.

The density of a coal particle is determined by:

ρp = ρH2O + ρV + ρC + ρash. (34)

The evolution of ρH2O, ρV and ρC , with radial coordinate r and time t, will be given by

∂ρV
∂t

= −w4,
∂ρH2O

∂t
= −w5,

∂ρC
∂t

= −wC , (35)

in terms of the mass rates, per unit volume and time, of generation of volatiles w4, water

vapour w5 and char gasification wC, given by equations (9)-(13).

To write the particle temperature equation we take into account that the heat conduc-

tion time across the particle is short compared with the diffusion time so we can consider

the temperature spatially uniform. This temperature is given by the equation

4

3
πa3ρpcs

dTp

dt
= 4πa2(q′′p + q′′r ) +

∫ a

0

(

8
∑

i=1

qiwi

)

4πr2dr, (36)

where 4πa2q′′p and 4πa2q′′r are the heat flux by conduction and by radiation, respectively,

which have the following expressions

q′′p = k
dT

dr |
r=a+

, q′′r = εp

(

1

4

∫

S2

I(x, ω)dω − σT 4
p

)

, (37)

where I(x, ω) is the radiation intensity in the direction ω at the position of the particle,

denoted by x, εp is the particle emissivity and S2 is the unit sphere.

Due to the assumed uniformity of the temperature within the particle and the expres-

sions (12) and (13), the rates of generation of water vapour and volatiles are spatially

uniform and known functions of Tp and we can write the evolution with time of ρV and

ρH2O as

dρV
dt

= −B4e
−E4/RTpρV , (38)

dρH2O

dt
= −B5e

−E5/RTpρH2O, (39)
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We cannot write a similar expression for the third equation in (35) because the depen-

dence of ω1, ω2 and ω3 on YCO, YO2
and YH2O, which are not uniform within the particle.

In fact, if we want to know the evolution of ρC , the values of YCO, YO2
, YH2O have to be

calculated using mass conservation equations for the gas phase within the pores of the

particle for each given value of Tp and the mass fractions on the surface of the particle.

In order to simplify the treatment of the effects of the gasification char reactions 1, 2

and 3, Damköhler numbers have been defined for these reactions as

Dai =
a2

De
Bie

−Ei/RTp , i = 1, 2, 3. (40)

We consider that the activation energies of these heterogeneous reactions are large enough,

so that Dai are of order unity only a very short time. Damköhler numbers will determine

the stage of char gasification:

• First stage (Dai ≪ 1, i = 1, 2, 3): kinetically-controlled reactions. Char gasification

reactions can be considered frozen (ω1 = ω2 = ω3 = 0) and there is no production

of CO or H2 within the particle.

So, to determine the particle density in the first stage, we only have to solve the

equations (38) and (39). In this stage, the equation for the particle temperature

(36) which can be simplified using that the gas phase reaction 7 is assume to be

infinitely fast. Thus, if we compute the value β1 at the particle surface

βs
1 = Y s

O2
−

32ν1
Mvol

Y s
V , (41)

we have two different cases:

– If βs
1 < 0 the reaction 7 takes place in a diffusion flame outside the particle and

prevents the oxygen to reach the surface. In this case equation (36) becomes

4

3
πa3ρpcs

dTp

dt
= 4πa2(q′′p + q′′r ) +

∫ a

0

(q4w4 + q5w5) 4πr
2dr, (42)

– If βs
1 > 0 the oxygen reaches the particle and reacts with the volatiles which

cannot leave the particle. In this case the energy equation simplifies to

4

3
πa3ρpcs

dTp

dt
= 4πa2(q′′p + q′′r ) +

∫ a

0

(q4 + q7)w4 + q5w54πr
2dr, (43)

• Second stage (Dai ≫ 1, i = 1, 2, 3): diffusion-controlled reactions. Char gasification

reactions are very fast and they occur in a diffusion flame at r = rc which implies that

char and CO2, O2 and H2O cannot coexist. This limit case leads to the “shrinking

core model”.

The procedure which allows us to deduce the equations to be solved to determine

ω1, ω2 and ω3 in the second stage, as well as the expressions for the sources to the
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gas phase, has been done in [2]. There are only two cases in which ω2 6= 0, one in the

limit case in which the gasification of char reactions are kinetically controlled and

the other one when the oxygen reaches the particle core surface because of the small

particle size based Damköhler numbers. Since we consider that this two cases are not

relevant in our simulations, we will suppose, for simplicity of the implementation,

that reaction 2 never takes place. Next, they are summarized taking into account

that they are different depending on the domain in which the particle is and the

position of the diffusion flame with respect to the particle:

1. Particle in ΩF (βg
1 < 0). In this case we have to solve

11

3

λ1

λ
=

{

Y g
CO2

+
11

3

λ1

λ

}

eλ
D

De
(1−a/rc)−λ,

3

2

λ3

λ
−

λ5

λ
=

{

Y g
H2O

+
3

2

λ3

λ
−

λ5

λ

}

eλ
D

De
(1−a/rc)−λ,

(44)

where

λi =
ṁi

ρgaD
, i = 1, 3, 4, 5, (45)

and De is the diffusion coefficient of the gas mixture inside the particle pores.

The temperature equation is

4

3
πa3ρpcs

dTp

dt
= 4πa2(q′′p + q′′r ) + 4πρgaD(q1λ1 + q3λ3 + q4λ4 + q5λ5), (46)

where

q′′p =
k

acp
(hg

T − hs
T )

λ

eλ − 1
. (47)

2. Particle in ΩO (βg
1 > 0) and Y s

O2
> 0. The diffusion flame moves into the

particle (i.e. rc < rf ≤ a). The equations to solve are

eλ
D

De
(a/rf−1)+λ = ϕ+ 1,

11

3

λ1

λ
−

[

22

3

λ1

λ
+

11

3

λ3

λ
+

44ν2
Mvol

λ4

λ

]

eλ
D

De
(a/rf−a/rc)

=

{

Y g
CO2

−
11

3

(

λ1

λ
+

λ3

λ

)

−
44ν2
Mvol

λ4

λ

}

eλ
D

De
(1−a/rc)−λ,

3

2

λ3

λ
−

λ5

λ
−

(

3

2

λ3

λ
+

18ν3
Mvol

λ4

λ

)

eλ
D

De
(a/rf−a/rc)

=

{

Y g
H2O

−
λ5

λ
−

18ν3
Mvol

λ4

λ

}

eλ
D

De
(1−a/rc)−λ,

(48)

with ϕ given by

ϕ =
Y g
O2

8
3

(

λ1

λ
+ λ3

λ

)

+ 32ν1
Mvol

λ4

λ

. (49)
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The temperature equation is

4

3
πa3ρpcs

dTp

dt
= 4πa2(q′′p + q′′r ) + 4πρgaD(q1λ1 + q3λ3 + q4λ4 + q5λ5

+
14

3
q6λ1 +

7

3
q6λ3 + q7λ4 +

1

6
q8λ3) (50)

where q′′p is given by (47).

3. Particle in ΩO (βg
1 > 0) and Y s

O2
= 0. The diffusion flame is surrounding the

particle (i.e. rf > a). In this case we have to solve

11

3

λ1

λ
=

{

Y g
CO2

+
11

3

λ1

λ
+

(

22

3

λ1

λ
+

11

3

λ3

λ
+

44ν2
Mvol

λ4

λ

)

ϕ

}

eλ
D

De
(1−a/rc)−λ,

3

2

λ3

λ
−

λ5

λ
=

{

Y g
H2O

+
3

2

λ3

λ
−

λ5

λ
+

(

3

2

λ3

λ
+

18ν3
Mvol

λ4

λ

)

ϕ

}

eλ
D

De
(1−a/rc)−λ.

(51)

The temperature equation is

4

3
πa3ρpcs

dTp

dt
= 4πa2(q′′p + q′′r ) + 4πρgaD(q1λ1 + q3λ3 + q4λ4 + q5λ5

+
14

3
q6λ1 +

7

3
q6λ3 + q7λ4 +

1

6
q8λ3) (52)

where

q′′p =
k

acp

λ

eλ − 1

{

hg
T − hs

T +

[

q6

(

14

3

λ1

λ
+

7

3

λ3

λ

)

+ q7
λ4

λ
+ q8

1

6

λ3

λ

]

ϕ

}

. (53)

In all the three cases, the position of the shrinking core is given by

ρ0C
ρgaD

r2c
drc
dt

= −(λ1 + λ3). (54)

2.2.3 Sources to the gas phase

The purpose of solving the solid phase model is to obtain the sources of mass and

energy to the gas phase from coal particles gasification. Once we know this sources we

can solve equations (29)-(33) and obtain the temperature and composition of the gas

mixture.

The expressions for the sources of mass of each of the species due to one single particle

are:
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1. In ΩF (Y g
O2

= 0):

Fm
O2

= Fm
SO2

= 0, (55)

Fm
CO2

=
4πak

cp

(

−
11

3
λ1

)

, (56)

Fm
H2O

=
4πak

cp

(

λ5 −
3

2
λ3

)

, (57)

Fm
CO =

4πak

cp

(

14

3
λ1 +

7

3
λ3

)

, (58)

Fm
V =

4πak

cp
λ4, (59)

Fm
H2

=
4πak

cp

1

6
λ3. (60)

2. In ΩO (Y g
O2

> 0):

Fm
O2

=
4πak

cp

(

−
8

3
(λ1 + λ3)−

32ν1
Mvol

λ4

)

, (61)

Fm
CO2

=
4πak

cp

(

11

3
(λ1 + λ3) +

44ν2
Mvol

λ4

)

, (62)

Fm
H2O =

4πak

cp

(

λ5 +
18ν3
Mvol

λ4

)

, (63)

Fm
SO2

=
4πak

cp

64ν4
Mvol

λ4, (64)

Fm
CO = Fm

V = Fm
H2

= 0. (65)

Both in ΩO and in ΩF the total source of mass is

Fm =
4πak

cp
λ (66)

and the source of energy is

F e = 4πak

{

(
cs
cp
Tp − Tg)

λ

eλ − 1
+ (1− ϑ)

[

q6
cp

(

14

3
λ1 +

7

3
λ3

)

+
q7
cp
λ4 +

q8
cp

1

6
λ3

]}

−csTp
dmp

dt
,

(67)

where

ϑ =



















1 when βs
1 > 0 (flame inside the particle) or

βg < 0 (there is no oxygen in the vicinity),

ϕ

eλ − 1
when βg

1 > 0 and βs
1 < 0 (flame outside the particle),

The homogenized sources in the gas phase per unit volume and time, at point x, are

computed adding the contributions of each single particle that at some instant t is at

point x by the expression

fα(x) =
Ne
∑

j=1

Np
∑

i=1

q̃j
pij
100

∫ tij
f

0

F α
ij(t)δ(x− xij

p (t))dt (68)
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where F α
ij(t) is the source of mass or energy of one particle of type i introduced through

inlet j, at instant t, xij
p (t) is the position occupied by this particle at instant t, δ(x) is the

Dirac measure at point 0, tijf is the time needed for the particle to be completely burned

or to leave the furnace, q̃j is the mass flow of coal through the inlet j, pij is the percentage

of particles of the type i through inlet j, and Ne and Np are the number of inlets and

types of particles, respectively.

2.3 Particle Motion Model

To solve the solid phase model we need to follow each single particle along the domain.

We will suppose that the forces affecting the particle motion are only the drag force and

the gravity. We obtain the particle velocity by solving the ordinary differential equation:

dvp

dt
= FA (vg − vp) + g, (69)

vp(0) = vp0, (70)

where FA is the drag force per mass unit which can be written as

FA =
3

16

µ

ρpa2
CDRe. (71)

Here vg is the gas mixture velocity, vp the particle velocity, µ the gas viscosity, Re is the

Reynolds number relative to the particle, namely,

Re = ρg | vg − vp |
2a

µ
, (72)

and CD is the drag coefficient which can be deduced from

CD =

{

1+0.15Re0.687

Re/24
if Re ≤ 1000,

0.44 in other case.

2.3.1 Stochastic Particle Dispersion Modelling

In the particle motion model that we propose, coal particles only respond to the mean

fluid velocity. This is correct if the flow is laminar but if we consider a turbulent flow

we must take into account the effect of a random fluctuating velocity. For this purpose

we have coupled the particle motion model with a discrete random walk model. This

type of models specify the velocity as the sum of the mean fluid velocity and a Gaussian

distributed random velocity fluctuation with zero mean and a variance related to the

turbulent velocity scale computed from the turbulence model used. The random value of

the velocity is kept constant over an interval of time given by the characteristic lifetime

of the eddies, as made by [8].
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Since we use the k− ǫ turbulence model, the instantaneous fluid velocity is calculated

as

vg = v̄g +

(

ξ1

√

2k

3
, ξ2

√

2k

3
, ξ3

√

2k

3

)

, (73)

where ξi, i = 1, 2, 3, are normally distributed random numbers. The eddy time scale that

we consider is

τe = −0.15
k

ǫ
log(r), (74)

where r is a uniform random number between 0 and 1. The particle eddy crossing time

is given by

τc = −τ log

(

1−
Le

τ‖vg − vp‖

)

, (75)

where τ = 1/FA is the particle relaxation time and

Le = 0.09
k1.5

ǫ
(76)

is the eddy length scale.

As many random walk models, this model produces reasonable behavior in flows with

homogeneous turbulence. The suitability of many random walk models and others particle

dispersion models is analyzed in [6] or in [9] to include the effect of anisotropy.

We compute the trajectory, the density, the temperature and the sources to the gas

phase for a sufficient number of representative particles (“number of tries”) with different

sizes, dropped from each cell of each inlet (as seen in Figure 6).

Figure 6.— Trajectories of particles from a single cell

3 Algorithm and numerical methods

In order to numerically solve the different equations of the coupled two-phases problem

we implement a segregated procedure, leading to the algorithm shown in Figure 7.
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Figure 7.— Global algorithm

In the next subsections we describe the numerical methods used to solve the equations

of each problem in the sequential algorithm of Figure 7.

3.1 Momentum conservation equations

For solving the steady-state Navier-Stokes equations we use a P1-bubble/P1 mixed

finite element combined with the method of characteristics and proceed to the elimination

of bubbles prior to the assembly by static condensation. Thus, we have to solve the
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following boundary-value problem:



























































ρ
3v − 4v ◦X∆t + v ◦X2∆t

2∆t
−∇ · τ +∇p = f in Ω

∇ · v =
fm
ρ

−
1

2∆t
(3 ln ρ− 4 ln ρ ◦X∆t + ln ρ ◦X2∆t) in Ω

v = ve on Γe

v = 0 on Γp

τ~n− p′~n = 0 on Γs

where X∆t(x) = χ(x,∆t; 0) and X2∆t(x) = χ(x, 2∆t; 0).

For that, we propose the following algorithm:

Step 0. Input v0 y p0

Step 1. Given v0 and p0 , v1 and p1 are the solution of the system:



























































∫

Ω

1

∆t
ρv1~zdx+

∫

Ω

µe(∇v1 + (∇v1)T ) : ∇~zdx−

∫

Ω

p̃1∇ · ~zdx =

∫

Ω

f 1~zdx+

+

∫

Ω

1

∆t
ρv0 ◦X0~zdx

∫

Ω

∇ · v1qdx =

∫

Ω

g qdx

v1 = ve on Γe

v1 = 0 on Γp

with

g =
fm
ρ

−
1

∆t
(ln ρ− ln ρ ◦X0),

p̃ = p+
2

3
µeg.

Step n (n ≥ 1). Given vn−1, vn, pn−1 and pn, vn+1 and pn+1 are the solution of the

system:



























































∫

Ω

3

2∆t
ρvn+1~zdx+

∫

Ω

µe(∇vn+1 + (∇vn+1)T ) : ∇~zdx−

∫

Ω

p̃n+1∇ · ~zdx =

∫

Ω

fn+1~zdx+

+

∫

Ω

2

∆t
ρvn ◦Xn~zdx−

∫

Ω

1

2∆t
ρvn−1 ◦Xn−1~zdx

∫

Ω

∇ · vn+1qdx =

∫

Ω

g qdx

vn+1 = ve on Γe

vn+1 = 0 on Γp
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with

g =
fm
ρ

−
1

2∆t
(3 ln ρ− 4 ln ρ ◦Xn + 3 ln ρ ◦Xn−1),

p̃ = p+
2

3
µeg.

Discretizing and eliminating the bubbles for all steps, this leads to a linear system

with the following structure:












A 0 0 B(1)T

0 A 0 B(2)T

0 0 A B(3)T

B(1) B(2) B(3) C

























v1

v2

v3

p̃













=













S
(1)
1

S
(2)
1

S
(3)
1

S2













3.2 Radiation

For the equation of the intensity of radiation we use a six-flux method for the semidis-

cretization in ω and choose between a finite element method and a finite difference method

(the latter is only valid for a structured mesh), for spatial discretization.

The equations to be solved are














ω · ∇xI + (a+ σs)I −
σs

4π

∫

S2

φ(ω∗, ω)I(x, ω∗)dω∗ = aIb in Ω,

I(x) =
1− εw
πεw

~qr · ~n+
σT 4

w

π
on Γ.

3.2.1 Six-flux method

Let Î(x, ·) ∈ W :=< w1, . . . , w6 > and

I+1 (x) = Î(x, ω1) I−1 (x) = Î(x, ω2)

I+2 (x) = Î(x, ω3) I−2 (x) = Î(x, ω4)

I+3 (x) = Î(x, ω5) I−3 (x) = Î(x, ω6)

Then

Î(x, ω) = I+1 (x)w1(ω) + I−1 (x)w2(ω) + · · ·+ I+3 (x)w5(ω) + I−3 (x)w6(ω)

because of

wj(ω
i) = δij , 1 ≤ i, j ≤ 6.

By introducing Fi := I+i + I−i and qi := I+i − I−i , for 1 ≤ i ≤ 3, the six-flux method

for the semidiscretization in ω leads to the boundary-value problem,


























−
∂

∂xi

(

β
∂Fi

∂xi

)

+KFi − 2σs

3
∑

j=1
j 6=i

Fj =
2aσT 4

π
in Ω, 1 ≤ i ≤ 3

Fi +
ni

|ni|
β
∂Fi

∂xi

= −
1− εw
εw

[

β
3
∑

i=1

∂Fi

∂xi

ni

]

+ 2
σT 4

w

π
on Γ, 1 ≤ i ≤ 3
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3.2.2 Finite elements

The algorithm proposed is the following:

Step 0. Input F 0
i , 0 ≤ i ≤ 3

Step n+1. Given F n
i , F

n+1
i are solution of the problems:

∫

Ω

β
∂F n+1

i

∂xi

∂zi
∂xi

dx+

∫

Ω

KF n+1
i zidx+

∫

Γ

1 + C2C3

C1

F n+1
i zi|ni|dΓ−

∫

Γ

C2

C1

(
3
∑

j=1
j 6=i

F n
j |nj|)zi|ni|dΓ−

−

∫

Γ

1

C1

2σT 4
w

π
zi|ni|dΓ−

∫

Ω

2σss(

3
∑

j=1
j 6=i

F n
j )zidx =

∫

Ω

2agσT
4

π
zidx+

∫

Ω

2asσT
4
s

π
zidx

where

C1 = 1 +
1− εw
εw

(

3
∑

j=1

|nj |

)

C2 =
1− εw
εw

C3 =

3
∑

j=1
j 6=i

|nj |

3.2.3 Finite Differences

We suppose that Ω = [0, lx]× [0, ly ]× [0, lz ]. Then the boundary condition above reads

εwFi + β
∂Fi

∂xi
ni =

2

π
εwσT

4
w on Γ.

The proposed algorithm is the following:

Step 0. Input F 0
i , 0 ≤ i ≤ 3

Step n+1. Given F n
i , we obtain F n+1

1 as the solution to the problems defined on lines

parallel to the x axis















−
∂

∂x

(

β
∂F n+1

1

∂x

)

+KF n+1
1 = b1n in Ωx = [0, lx]× {yj} × {zl},

β
∂F n+1

1

∂x
n1 + εwF

n+1
1 =

2σ

π
εw(T

n
w)

4 on Γx = {(0, yj, zl)} ∪ {(lx, yj, zl)},

with

b1n = 2σss

3
∑

j=1
j 6=1

F n
j +

2agσ(T
n)4

π
+

2asσ(Ts)
4

π
.

This leads to the simple linear system

A{F1} = S
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where

A =















d1p d1s

d1s
. . .

. . .
. . .

. . . dnx−1
s

dnx−1
s dnx

p















S =

























1

2
h1b

1
1 +

2σ

π
εw(Tw(x1, yj, zl))

4

...
1

2
(hi−1 + hi)b

1
i

...
1

2
hnx−1b

1
nx

+
2σ

π
εw(Tw(xnx

, yj, zl))
4

























dp =



























1

2

β1 + β2

h1
+ εw +

1

2
h1K1

...
1

2

βi−1 + βi

hi−1

+
1

2

βi + βi+1

hi

+
1

2
(hi−1 + hi)Ki

...
1

2

βnx−1 + βnx

hnx−1
+ εw +

1

2
hnx−1Knx



























ds =













−
1

2

β1 + β2

h1
...

−
1

2

βnx−1 + βnx

hnx−1













F1 = (F11, . . . , F1nx
)T

and F1i = F n+1
1 (xi, yj, xl), i = 1, . . . , nx.

In a similar way, we proceed with lines parallel to the axis y and z, giving values of

F n+1
2 and F n+1

3 , respectively.

3.3 Advection-diffusion equations

The advection-diffusion-reaction equations of the gas-phase model are of the general

form,

ρ
Du(x, t)

Dt
−∇ · (ρ(x, t)D(x)∇u(x, t)) + c(x, t)u(x, t) = f(x, t).

More specifically, the energy and mass conservation equations are of this type. In order

to solve them we use a second order semi-Lagrange-Galerkin scheme. We discretize the

convective term using the formula

Du

Dt
=

∂u

∂t
+ v · ∇u ≈

1

2∆t

(

3un+1 − 4un ◦ χn + un−1 ◦ χn−1
)

,

where

χn(x) = χ(x, tn+1; tn)

is the position at time t = tn of the fluid particle that is at point x at time tn+1 and that

moves with velocity v. The characteristic curves χ(x, s; t) are the unique solution of the

ODE

dχ(x, s; t)

dt
= v(χ(x, s; t), t), s, t ∈ [0, T ]

χ(x, s; s) = x.
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To solve this ODE we can use a fourth-order Runge-Kutta method or a third-order

fixed point method with the operator T : Ω → Ω defined by

T = ∆t
(

1.5vn − 0.5vn−1
)

that satisfies Ty = y with

y = x− χ(x, tn+1; tn).

The latter makes possible to adapt the time step.

3.4 Algorithm for the solid phase model

In order to solve the combustion model introduced in the previous sections, we have

designed an algorithm which distinguishes, at each time step, the combustion stage in

which the particle is. In Figure 3.4 we can see a scheme of this algorithm that we apply

to each single particle.

Figure 8.— Algorithm for solving the combustion model
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4 Numerical Results

4.1 Analysis of numerical diffusion

Results of the study of the numerical diffusion when solving a convection-diffusion

equation with the finite element method introduced in the previous section can be seen

in Figure 4.1. They could be compared, for instance, with those of [5].

Figure 9.— Comparison of results for a benchmark 3D test

4.2 A coal flame simulation

A detailed study of the structure of a turbulent pulverized coal flame has been done

in Hwang et al [3, 4].

Our purpose will be to do a full numerical simulation of the turbulent pulverized coal

burner, used in these articles (see Figure 10).

Figure 10.— Scheme of the experiment
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In this study, methane is supplied to ignite the two-phase jet because the coal injection

rate is very small and flame stabilization is impossible for a pure pulverized coal flame.

The methane flow rate is the minimum amount needed to form a stable flame. The

experiment is designed as follows: first the air is supplied to the main burner port and the

methane to the annular slit burner. Next the gas flame due to the air and the methane

is formed, and finally, when the methane diffusion flame becomes stable, the pulverized

coal particles are dropped.

In order to make a numerical simulation of this experiment we proceed to the following

steps:

1. We make a simulation with Fluent of the first stage of the experiment, until the

methane flame is stable. Figure 11 shows the geometrical domain for the CFD

simulation. The data corresponding to flows are: through the coal-air inlet 1.8×10−4

kg/s of air and 1.49× 10−4 kg/s of coal are introduced whereas 1.67× 10−5 kg/s of

gas enters through the gas inlet.

Figure 11.— Geometry of the burner

2. With the results of the gas phase obtained from the Fluent simulation we solve our

combustion model.

3. We solve the combustion model with Fluent (namely Discrete Phase Model) starting

at the same initial data.

4. We compare results provided by both methods.

Figures 12 and 13 show the homogenized sources of total mass and O2, respectively,

obtained with both models.
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Figure 12.— Source of mass (fm)

Figure 13.— Source of O2 (fm
O2

)

Furthermore, with respect to unburned coal we have obtained the following results

from the two different models:

• Fluent:

Volume integral of mass source: 6.34664× 10−5 kg/s

Mass of released volatiles: 94.54 %

Mass of gasified char: 50.50 %

• BFL:

Volume integral of mass source: 7.55143× 10−5 kg/s

Mass of released volatiles: 98.31 %

Mass of gasified char: 44.53 %
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5 Conclusions

We have proposed a mathematical model for a pulverized coal furnace and subse-

quently numerical methods for solving it. For validation purposes, we have simulated an

experiment involving the combustion of pulverized coal particles in a cylindrical domain.

Results obtained have been compared with those given by Fluent.
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