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brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148670279?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Sparse differential resultant formulas: between the linear and

the nonlinear case

Sonia L. Rueda
E.T.S. Arquitectura, Universidad Politécnica de Madrid (Spain)
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Abstract

A matrix representation of the sparse differential resultant is the basis for efficient compu-
tation algorithms, whose study promises a great contribution to the development and applica-
bility of differential elimination techniques. It is shown how sparse linear differential resultant
formulas provide bounds for the order of derivation, even in the nonlinear case, and they also
provide (in many cases) the bridge with results in the nonlinear algebraic case.
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1 Introduction

Differential elimination is an important operation in differential algebraic geometry that, in the-
ory, can be achieved through Gröbner bases, characteristic sets and differential resultants. For
applications, sparse differential elimination is the operation that is naturally necessary. Sparse
algebraic resultants have been broadly studied, regarding theory and computation (see [2], [3], [8]
and references there in), meanwhile differential resultants were recently defined in [4] for sparse
Laurent differential polynomials.

The computation and applicability of sparse algebraic resultants attained great benefits from
having close formulas for their representation. Similar formulas in the differential case would im-
prove the existing bounds for degree and order of the sparse differential resultant and therefore the
existing algorithms for its computation. Matrix formulas would also contribute to the development
of methods to predict the support of the sparse differential resultant, achieving similar benefits
to the ones obtained in the algebraic case. In the differential case, these so called Macaulay style
formulas do not exist. The differential resultant formula defined by Carrà-Ferro in [1], is the alge-
braic resultant of Macaulay, of a set of derivatives of the ordinary differential polynomials in P.
Already in the linear sparse generic case, these formulas vanish often, giving no information about
the differential resultant ∂Res(P), and this was the starting point of my interest in this topic ([5],
[6]).

In [7], determinantal formulas are provided for systems of n linear nonhomogeneous (non nec-
essarily generic) differential polynomials P in a set U of n − 1 differential indeterminates. These
formulas are determinants of coefficient matrices of appropriate sets of derivatives of the differential
polynomials in P, or in a linear perturbation Pε of P, and allow the elimination of the differential
variables in U from P. In particular, the formula ∂FRes(P) is the determinant of a matrix M(P)
having no zero columns if the system P is “super essential”. As an application, if the system P is
sparse generic, such formulas can be used to compute the differential resultant ∂Res(P) introduced
in [4].

To approach the nonlinear case, one should observe that differential polynomials can be sparse
in degree and in order of derivation. One can start with the problem of taking the appropriate
set of derivatives of the elements in P to get a system of differential polynomials ps(P), that seen
as algebraic, should have L polynomials in L − 1 variables. For this purpose, we extend here the
“super essential” condition to non linear polynomials, taking into consideration the sparsity in the
order. Results obtained in the linear case can also be used to check, in some cases, the existence
of the algebraic resultant of the generic system of algebraic polynomials whose specialization is
ps(P), providing a link with the machinery available in the sparse algebraic case.



2 Sparse differential resultant

Let D be an ordinary differential domain with derivation ∂. Let U = {u1, . . . , un−1} be a set of
differential indeterminates over D. By N we mean the natural numbers including 0. For k ∈ N,
we denote by uj,k the k-th derivative of uj and for uj,0 we simply write uj . We denote by {U}
the set of derivatives of the elements of U , {U} = {∂ku | u ∈ U, k ∈ N}, and by D{U} the
ring of differential polynomials in the differential indeterminates U , which is a differential ring
with derivation ∂. Given a subset U ⊂ {U}, we denote by D[U ] the ring of polynomials in the
indeterminates U . Given f ∈ D{U} and y ∈ U , we denote by ord(f, y) the order of f in the
variable y. If f does not have a term in y then we define ord(f, y) = −1. The order of f equals
max{ord(f, y) | y ∈ U}.

Let P := {f1, . . . , fn} be a system of differential polynomials in D{U}. We assume that:

(P1) The order of fi is oi ≥ 0, i = 1, . . . , n. So that no fi belongs to D.

(P2) P contains n distinct polynomials.

(P3) P is a nonhomogeneous system. At least one of the polynomials in P has nonzero degree
zero term.

Let [P] denote the differential ideal generated by P in D{U}. Our goal is to obtain elements of
differential elimination ideal [P] ∩ D, using differential resultant formulas.

Let us consider a generic system of nonhomogeneous sparse differential polynomials

P =

{
Fi := ci +

mi∑
h=1

ci,hMi,h | i = 1, . . . , n

}
,

ci and ci,h are differential indeterminates over Q, mi is the number of monomials of Fi, andMi,h are
monomials in the variables {U}. Let us consider the differential field K = Q⟨ci,h|i=1,...,n,h=1,...,mi

⟩
and observe that P is a system in D{U}, with D = K{c1, . . . , cn}. If the differential elimination
ideal [P] ∩ D has dimension n − 1 then [P] ∩ D = sat(∂Res(P)), the saturated ideal determined
by a differential polynomial ∂Res(P), which is called the sparse differential resultant of P. Sparse
differential resultants were defined in [4], were their existence is proved to be equivalent with the
differentially essential condition on P.

3 A system ps(P) of L polynomials in L−1 algebraic variables

Given f ∈ D{U}, let us denote the differential support in uj of f by

Sj(f) = {k ∈ N | uj,k/M for some monomial M of f}.

Note that ord(f, uj) := maxSj(f) and define lord(f, uj) := minSj(f). For j = 1, . . . , n − 1, we
define the next positive integers, to construct convenient intervals bounding the differential support
sets Sj(fi),

γj(P) := min{oi − ord(fi, uj) | Sj(fi) ̸= ∅, i = 1, . . . , n},
γ
j
(P) := min{lord(fi, uj) | Sj(fi) ̸= ∅, i = 1, . . . , n}, (1)

Given j ∈ {1, . . . , n− 1}, observe that, for all i such that Sj(fi) ̸= ∅ we have

Sj(fi) ⊆ [γ
j
(P), oi − γj(P)]. (2)

Finally, γ(P) :=
∑n−1

j=1 γj(P), with γj(P) := γ
j
(P) + γj(P).

Let N :=
∑n

i=1 oi. If N − oi − γ(P) ≥ 0, i = 1, . . . , n, the sets of lattice points Ii :=
[0, N − oi − γ(P)] ∩ N are non empty. We define the set of differential polynomials

ps(P) := {∂kfi | k ∈ Ii, i = 1, . . . , n}, (3)

containing L :=
∑n

i=1(N − oi − γ(P) + 1) differential polynomials, whose variables belong to the
set V of L− 1 differential indeterminates

V := {uj,k | k ∈ [γ
j
(P), N − γj(P)− γ(P)] ∩ N, j = 1, . . . , n− 1}.



In general, given j ∈ {1, . . . , n− 1} we have

∪f∈ps(P)Sj(f) ⊆ [γ
j
(P), N − γj(P)− γ(P)] ∩ N, (4)

and we cannot guarantee that the equality holds. If there exists j such that (4) is not an equality,
we will say that the system P is sparse in the order.

Let xi,j , i = 1, . . . , n, j = 1, . . . , n− 1 be algebraic indeterminates over Q, the field of rational
numbers. Let X(P) = (Xi,j) be the n× (n− 1) matrix, such that

Xi,j :=

{
xi,j , Sj(fi) ̸= ∅,
0, Sj(fi) = ∅. (5)

We denote by Xi(P), i = 1, . . . , n, the submatrix of X(P) obtained by removing its ith row. Thus
X(P) is an n× (n− 1) matrix with entries in the field K := Q(Xi,j | Xi,j ̸= 0).

The notion of super essential system of differential polynomials was introduced in [7], for systems
of linear differential polynomials and it is extended here to the nonlinear case.

Definition 3.1 The system P is called super essential if det(Xi(P)) ̸= 0, i = 1, . . . , n.

Given a super essential system P (non necessarily linear), it can be proved as in [7], Lemma
3.6 that N − oi − γ(P) ≥ 0, i = 1, . . . , n. Furthermore, the next result can be shown adapting the
proof of [7], Theorem 3.11 to the nonlinear case.

Theorem 3.2 If P is super essential then

∪f∈ps(P)Sj(f) = [γ
j
(P), N − γj(P)− γ(P)] ∩ N, j = 1, . . . , n− 1.

That is, P is a system of L polynomials in L− 1 algebraic indeterminates.

It can be proved as in [7], Section 4 that every system P contains a super essential subsystem
P∗ and if rank(X(P)) = n− 1 then P∗ is unique.

Example 3.3 Let us consider the systems P1 = {f1, f2, f3, f4} and P2 = {f1, f2, f3, f5} with

f1 = 2 + u1u1,1 + u1,2, f2 = u1u1,2, f3 = u2u3,1, f4 = u1,1u2, f5 = u1,2,

X(P1) =


x1,1 0 0
x2,1 0 0
0 x3,2 x3,3

x4,1 x4,2 0

 and X(P2) =


x1,1 0 0
x2,1 0 0
0 x3,2 x3,3

x4,1 0 0

 .

P1 is not super essential but since rank(X(P1)) = 3, it has a unique super essential subsystem,
which is {f1, f2}. P2 is not super essential and rank(X(P1)) < 3, super essential subsystems are
{f1, f2}, {f1, f3} and {f2, f3}.

4 Associated sparse algebraic resultant

We can establish a bijection between V and the set Y = {y1, . . . , yL−1} of L − 1 algebraic inde-
terminates. This can be extended to a ring homomorphism β : D[V] → D[Y ]. Monomials in D[Y ]
are Y α = yα1

1 · · · yαL−1

L−1 with α = (α1, . . . , αL−1) ∈ NL−1. Given f ∈ D[V], we denote the algebraic

support A(f) of f , with β(f) =
∑

α∈NL−1 aαY
α, as A(f) :=

{
α ∈ NL−1 | aα ̸= 0

}
.

We define the algebraic system of generic polynomials associated to P as

ags(P) =

 ∑
α∈A(f)

cα(f)Y
α | f ∈ ps(P)

 ,

where cα(f) are algebraic indeterminates over Q. Let us denote c(f) := c0(f), f ∈ ps(P), where 0
is the zero of NL−1.



Given a subsystem S ⊆ ags(P), let us define the fields

E := Q
(
cα(f) | f ∈ ps(P), α ∈ A(f)\{0}

)
, ES := E (f − c(f) | f ∈ S) .

As in [4], a subsystem of polynomials S of ags(P) is said to be algebraically independent if the
transcendence degree, of ES over E , trdeg(ES/E) = |S|, otherwise it is said to be algebraically
dependent. A subsystem of polynomials S of ags(P) is said to be algebraically essential if S is
algebraically dependent and every proper subsystem S ′ of S is algebraically independent.

Assuming that ∪f∈ps(P)A(f)\{0} spans ZL−1, it was proved in [8] that, a necessary and suffi-
cient condition for the existence of the algebraic resultant R of ags(P) is the existence of a unique
algebraically essential subsystem of ags(P).

Example 4.1 Let us consider the system P = {f1, f2} in D{u},

f1 = a2x+ (a1 + a4x)u+ u′ + (a3 + a6x)u
2 + a5u

3,
f2 = x′ + (b1 + b3x)u+ (b2 + b5x)u

2 + b4u
3,

with ai, bj algebraic indeterminates over Q, D = Q(t)[ai, bj ]{x} and ∂ = ∂
∂t . Since ps(P) =

{f1, f2, ∂f2}, with ∂f2 = x′′ + b3x
′u + (b3x + b1)u

′ + b5x
′u2 + (2b5x + 2b2)uu

′ + 3b4u
2u′ and

V = {u, u′}, we have the following system of algebraic generic polynomials in y1, y2

ags(P) =


P1 = c1(0,0) + c1(1,0)y1 + c1(0,1)y2 + c1(2,0)y

2
1 + c1(3,0)y

3
1 ,

P2 = c2(0,0) + c2(1,0)y1 + c2(2,0)y
2
1 + c2(3,0)y

3
1 ,

P3 = c3(0,0) + c3(1,0)y1 + c3(0,1)y2 + c3(2,0)y
2
1 + c3(1,1)y1y2 + c3(2,1)y

2
1y2

 ,

where cα,f1 , cα,f2 and cα,∂f2 are denoted by c1α, c
2
α and c3α respectively, α ∈ N2. Observe that ags(P)

is algebraically essential because the linear part of the polynomials in ags(P), {c1(0,0) + c1(1,0)y1 +

c1(0,1)y2, c
2
(0,0) + c2(1,0)y1, c

3
(0,0) + c3(1,0)y1 + c3(0,1)y2} is an algebraically essential system. Thus the

algebraic resultant R of ags(P) exists and it generates the algebraic ideal (ags(P)) ∩ Q[ciα | α ∈
A(fi), i = 1, 2, α ∈ A(∂f2), i = 3] = (R). Using ”toricres04”, Maple 9 code for sparse (toric)
resultant matrices by I.Z. Emiris, [2], we obtain a matrix M whose determinant is c3(0,0)R. This
matrix is the coefficient matrix of the polynomials

y1P1, y1y2P1, y1y
2
2P1, y

2
1P2, y1y2P2, y

2
1y2P2, y1y

2
2P2, y

2
1y

2
2P2, y1P3, y1y2P3, y1y

2
2P3, y1y

3
2P3

in the monomials y1, y
2
1 , y1y2, y

2
1y2, y1y

2
2 , y

2
1y

2
2 , y1y

3
2 , y

2
1y

3
2 , y1y

4
2 , y

2
1y

4
2 , y1y

5
2 , y

2
1y

5
2. The specialization

of the algebraic indeterminates {ciα | α ∈ A(fi), i = 1, 2, α ∈ A(∂f2), i = 3} in R, to the correspond-
ing coefficients of ps(P), gives a nonzero differential polynomial R in the differential elimination
ideal [P] ∩ D.

5 Some consequences from results in the linear case

Given a linear system P, differential resultant formulas were defined in [7], see also [5] and [6]. In
particular, if N − oi − γ ≥ 0, i = 1, . . . , n, the formula ∂FRes(P) is the determinant of the L× L
coefficient matrix M(P) of the set of polynomials ps(P) in the set of variables V. Furthermore,
if P is super essential, by Theorem 3.2 (which is [7], Theorem 3.11 in the linear case), the matrix
M(P) has no zero columns.

Let P be a linear system and let S = ags(P), which is also a linear system. For every subsystem
S ′ of S, let C(S ′) be the coefficient matrix of the homogeneous part of the polynomials in S ′ in the
variables Y , this is a |S ′|×L−1 matrix. Adapting the results in [7], Section 4 the next proposition
is proved.

Proposition 5.1 Let P be a super essential linear system and let S = ags(P). The following
statements hold:

1. Let Sl be the subsystem of S obtained by removing its lth polynomial, l = 1, . . . , L. S is
algebraically essential if and only if det(C(Sl)) ̸= 0, l = 1, . . . , L.

2. There exists an algebraically essential subsystem of S.



3. rank(C(S)) = |S| − 1 = L − 1 if and only if there exists a unique algebraically essential
subsystem S∗ of S.

Let P be a generic system of sparse linear differential polynomials. As a consequence of the
previous result, if ∂FRes(P) ̸= 0 then ags(P) contains a unique algebraically essential subsystem
S∗, which corresponds to a subsystem of ps(P) that we call S∗. Let M(S∗) be the coefficient
matrix of S∗, which is |S∗| × |S∗|. The rows and columns of M(P) can be reorganized to obtain
a matrix[

E ∗
0 M(S∗)

]
, such that ∂FRes(P) = ± det(E) det(M(S∗)), and ∂Res(P) = det(M(S∗)).

Using the previous results, a family of systems F of generic sparse differential polynomials
can be obtained, so that degree bounds of the sparse differential resultant can be given in terms
of mixed volumes. In [4], such bound was given for the case of generic non sparse differential
polynomials. Let lin(P) be the system of the linear parts of the polynomials in P. We define F
as the family of all systems of generic sparse differential polynomials in the variables {U} such
that the supports of the polynomials in ps(lin(P)) jointly span ZL−1 and ∂FRes(lin(P)) ̸= 0, see
Example 4.1. For every P in F , ags(lin(P)) is algebraically essential and furthermore ags(P) is
algebraically essential, thus the algebraic resultant of ags(P) exists and it can be used to give
bounds of the degrees in terms of mixed volumes.
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