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Abstract

The conchoid of a surface F with respect to given fixed point O is roughly speaking the surface
obtained by increasing the radius function with respect to O by a constant. This paper studies
conchoid surfaces of spheres and shows that these surfaces admit rational parameterizations. Ex-
plicit parameterizations of these surfaces are constructed using the relations to pencils of quadrics
in R3 and R4. Moreover we point to remarkable geometric properties of these surfaces and their
construction.
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1. Introduction

The conchoid is a classical geometric construction and dates back to the ancient Greeks. Given
a planar curve C, a fixed point O (focus point) and a constant distance d, the conchoid D of C
with respect to O at distance d is the (Zariski closure of the) set of points Q in the line OP at
distance d of a moving point P varying in the curve C,

D = {Q ∈ OP with P ∈ C, and QP = d}∗, (1)

where the asterisk denotes the Zariski closure. For a more formal definition of conchoids in terms
of diagrams of incidence we refer to [12, 13].

The definition of the conchoid surface to a given surface F in space with respect to a given
point O and distance d follows analogous lines.

We aim at studying real rational surfaces in 3-space whose conchoid surfaces are also rational
and real. A surface F ⊂ R3 will be represented by a polar representation f(u, v) = ρ(u, v)k(u, v),
where k(u, v) is a parameterization of the unit sphere S2. Without loss of generality we assume
O = (0, 0, 0). Consequently their conchoid surfaces Fd for varying distance d admit the polar
representation fd(u, v) = (ρ(u, v)± d)k(u, v).

Since we want to determine classes of surfaces whose conchoid surfaces for varying distances
are rational, we focus at rational polar surface representations. Then the ’base’ surface F and
its conchoids Fd correspond to the same rational parameterization k(u, v) of the unit sphere S2.
The following definition excludes possibly occurring cases where F and Fd are rational, but their
rational parameterizations f and/or fd are not corresponding to a rational representation k(u, v)
of S2.

Definition 1. A surface F is called rational conchoid surface with respect to the focus point
O = (0, 0, 0) if F admits a rational polar representation ρ(u, v)k(u, v), with a rational radius
function ρ(u, v) denoting the distance function from O to F and a rational parameterization k(u, v)
of S2.
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Contribution:. The main contribution of this article is the study of the conchoid surfaces of
spheres. We prove that a sphere F in R3 admits a rational polar representation f(u, v) =
ρ(u, v)k(u, v) with a rational radius function ρ(u, v) and a particular rational parameterization
k(u, v) of the unit sphere S2, independently of the relative position of the sphere F and the focus
point O. This implies that the conchoids G of F with respect to any focus in R3 admit rational
parameterizations.

It is remarkable that an analogous result to this contribution for spheres does not exist for
circles and conics in R2. The conchoid curves of conics C are only rational if either O ∈ C or O
coincides with one of C’s focal points.

Two constructions to prove the main result are presented. The first one uses the cone model
being introduced in Section 1.1 and studies a pencil of quadrics in R4. This construction is explicit
and leads to a surprisingly simple solution and a rational polar representation of a sphere. The
second approach investigates pencils of quadrics in R3 containing a sphere and a cone of revolution
whose base locus is a rational quartic with rational distance from O.

1.1. The cone model

Let F be a surface in R3 and let G be its conchoid surface at distance d with respect to the
origin O = (0, 0, 0) as focal point. The construction of the conchoid surfaces G of the ’base’
surface F is performed as follows. Consider Euclidean 4-space R4 with coordinate axis x, y, z
and w, where R3 is embedded in R4 as the hyperplane w = 0. Consider the quadratic cone
D : x2 + y2 + z2−w2 = 0 in R4. Further, let A be the cylinder through F , whose generating lines
are parallel to w. Note that A as well as D are three-dimensional manifolds in R4. The conchoid
construction of the ’base’ surface F is based on the study of the intersection Φ = A ∩D, which is
typically a two-dimensional surface in R4.

For a given parameterization f(u, v) of F in R3, the cylinder A through F admits the represen-
tation a(u, v, s) = (f1, f2, f3, 0)+s(0, 0, 0, 1). Let F be a rational surface and f(u, v) be rational. If
the intersection Φ = A∩D is a rational surface in R4, then it is obvious that F admits a rational
polar representation. Let ϕ(a, b) = (ϕ1, . . . , ϕ4)(a, b) be a rational representation of Φ in R4, then
(ϕ1, ϕ2, ϕ3)(a, b) is obviously a rational polar representation of F . Since ϕ2

4 = ϕ2
1 +ϕ2

2 +ϕ2
3 holds,

k = 1/ϕ4(ϕ1, ϕ2, ϕ3) is a rational parameterization of S2 and ρ(a, b) = ϕ4(a, b) is a rational radius
function of F . We summarize the construction.

Theorem 2. The rational conchoid surfaces F ⊂ R3 are in bijective correspondence to the rational
2-surfaces in the quadratic cone D : x2 + y2 + z2 − w2 = 0 in R4.

Proof: We proved already that for a rational surface Φ ⊂ D, its orthogonal projection (ϕ1, ϕ2, ϕ3)
onto R3 is a rational conchoid surface with rational radius function ϕ4. Conversely, any rational
conchoid surface F with respect to O is defined by a rational polar parameterization ρ(u, v)k(u, v),
with k = (k1, k2, k3) ∈ R(u, v)3 and ‖k‖ = 1. The corresponding surface Φ ⊂ D is represented by
ϕ(u, v) = ρ(k1, k2, k3, 1)(u, v). �

The quadratic cone D possesses universal parameterizations and we may use them to specify
all possible rational parameterizations of rational conchoid surfaces. The construction starts with
rational universal parameterizations of the unit sphere S2. Following [4] we choose four arbitrary
polynomials a(u, v), b(u, v), c(u, v) and d(u, v) without common factor. Let

α = 2(ac+ bd), β = 2(bc− ad), γ = a2 + b2 − c2 − d2, δ = a2 + b2 + c2 + d2,

then k(u, v) = 1
δ (α, β, γ) is a rational parameterization of the unit sphere S2. Thus ϕ(u, v) =

ρ(u, v)(α, β, γ, δ) with a non-zero rational function ρ(u, v) is a rational parameterization of a two-
dimensional surface Φ ⊂ D. Consequently

f(u, v) = ρ(u, v)

(
α

δ
,
β

δ
,
γ

δ

)
(u, v) = ρ(u, v)k(u, v),
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is a rational polar representation of a rational conchoid surface F in R3, with ρ(u, v) as radius
function and k(u, v) as rational parameterization of the unit sphere S2. It is sufficient to consider
polynomials and the construction reads as follows.

Corollary 3. Given six relatively prime polynomials a(u, v), b(u, v), c(u, v), d(u, v), and r(u, v)
and s(u, v), a universal parameterization of a rational 2-surface Φ ⊂ D in R4 is given by

ϕ(u, v) =
r

s

(
2(ac+ bd), 2(bc− ad), a2 + b2 − c2 − d2, a2 + b2 + c2 + d2

)
(u, v). (2)

Consequently, a universal rational parameterization of a rational conchoid surface reads

f(u, v) =
r

s(a2 + b2 + c2 + d2)

(
2(ac+ bd), 2(bc− ad), a2 + b2 − c2 − d2

)
(u, v). (3)

This is a general result about all rational parameterizations of rational conchoid surfaces. For
a particular given rational surface F it is difficult to decide whether the intersection Φ = D ∩W
admits rational parameterizations or not. Typically the surface Φ is not rational. Nevertheless,
there are interesting non-trivial cases where Φ admits rational parameterizations.

In [7] it has been proved that conchoids of rational ruled surfaces F are rational. We give
a hint how this result can be proved with help of the cone model D and Theorem 2. If F is a
ruled surface, the cylinder A ⊂ R4 carries a one-parameter family of planes parallel to the w-axis.
These planes pass through the generating lines of F . This implies that typically the intersection
Φ = A ∩ D carries a one-parameter family of conics obtained as intersections of the mentioned
planes with D. This family of conics is rational, and it is known ([6, 9]) that there exist rational
parameterizations ϕ(u, v) of Φ. Thus the conchoids of real rational ruled surfaces are rational.

In this context we mention a trivial but useful statement which we prove for completeness.

Lemma 4. Given a rational curve C with parameterization c(t) on a rotational cone D, then the
distance ‖c(t)− v‖ between the curve C and the vertex v of D is a rational function.

Proof: We use a special coordinate system with v at the origin, and z as rotational axis of D. This
implies that D is the zero set of x2 +y2−γ2z2. Without loss of generality we let γ = 1. The given
curve C admits therefore a rational parameterization c(t) = (c1, c2, c3)(t) satisfying c21 + c22 = c23.
Obviously one obtains ‖c(t)‖ =

√
2c3(t) being rational. �

2. Conchoids of spheres

Given a sphere F in R3 and an arbitrary focus point O, the question arises if there exists
a rational representation f(u, v) of F with the property that ‖f(u, v)‖ is a rational function of
the parameters u and v. To give a constructive answer to this question we describe an approach
using the cone-model presented in Section 1.1. Later on in Section 3 we study a different method
working in R3 directly. There are several relations between these methods which will be discussed
along their derivation.

Let F be the sphere with center m = (m, 0, 0) and radius r, and let O = (0, 0, 0). Thus F is
given by

F : (x−m)2 + y2 + z2 − r2 = 0. (4)

If m = 0, the center of F coincides with O. In this trivial situation the conchoid surface of F
is reducible and consists of two spheres, where one might degenerate to F ’s center if d = r. If
m2− r2 = 0, the focal point O is contained in F . To construct a rational polar representation, we
make the ansatz f(u, v) = ρ(u, v)k(u, v) with k(u, v) = (k1, k2, k3)(u, v) and ‖k(u, v)‖ = 1 and an
unknown radius function ρ(u, v). Plugging this into (4), we obtain a rational polar representation
with rational radius function ρ(u, v) = 2mk1(u, v). Note that in this case the conchoid is irreducible
and rational.
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2.1. Pencil of quadrics in R4

Consider the Euclidean space R4 with coordinate axes x, y, z and w and let R3 be embedded
as the hyperplane w = 0. Let a sphere F ⊂ R3 be defined by (4) and O = (0, 0, 0). To study the
general case we assume m 6= 0 and m2 6= r2. The equation of the cylinder A ⊂ R4 through F with
w-parallel lines agrees with the equation of F in R3,

A : (x−m)2 + y2 + z2 − r2 = 0. (5)

Consider the pencil Q(t) = A + tD of quadrics in R4, spanned by A and the quadratic cone
D : x2 + y2 + z2 = w2 from Section 1.1. Any point X = (x, y, z, w) ∈ D has the property
that the distance from X = (x, y, z) to O in R3 equals w. We study the geometric properties of
the del Pezzo surface Φ = A ∩ D of degree four, the base locus of the pencil of quadrics Q(t).
According to Theorem 2, the sphere F is a rational conchoid surface exactly if Φ admits rational
parameterizations.

Besides A and D there exist two further singular quadrics in Q(t). These quadrics are obtained
for the zeros t1 = −1 and t2 = r2/γ2 of the characteristic polynomial

det(A+ tD) = −(1 + t)2t(γ2t− r2), with γ2 = m2 − r2 6= 0. (6)

The quadric corresponding to the twofold zero t1 = −1 is a cylinder

R : w2 − 2mx+m2 − r2 = 0. (7)

Its directrix is a parabola in the xw-plane and its two-dimensional generators are parallel to the
yz-plane. The singular quadric S corresponding to t2 = r2/γ2 is a quadratic cone and reads

S :

(
x− m2 − r2

m

)2

+ y2 + z2 =
r2

m2
w2.

Its vertex is the point O′ = (m
2−r2
m , 0, 0, 0). The intersections of S with three-spaces w = c are

spheres σ(c), whose top view projections in w = 0 are centered at O′ and their radii are rc/m.
The intersections of D with three-spaces w = c are spheres d(c) whose top view projections in
w = 0 are centered at O with radii c. The intersections k(c) = s(c)∩ d(c) of these spheres (w = c)
are circles in planes x = (c2 +m2− r2)/(2m). Thus Φ contains a family of conics, whose top view
projections are the circles k(c). The conics in Φ are contained in the planes

ε(c) : x =
c2 +m2 − r2

2m
,w = c.

The half opening angle δ of D with respect to the w-axis is π/4, thus tan δ = 1. The half
opening angle σ of S is given by tanσ = r/m, see Figure 1(a). Applying the scaling

(x′, y′, z′, w′) = (fx, fy, fz, w), with f =
r

m

in R4 maps D to a congruent copy of S. Consider a point X = (x, y, z, w) in Φ = A ∩D and its
projection X = (x, y, z) in F . The distance dist(X,O) of X to O in R3 is w. For the distance
dist(X,O′) between X and O′ we consequently obtain

dist(X,O′) =
r

m
dist(X,O), for all X ∈ F. (8)

Remark on the circle of Apollonius. Note that O′ is the inverse point of O with respect to the
sphere F . It is an old result by Apollonius Pergaeus (262–190 b.c.) that the set of points X in the
plane having constant ratio of distances f = d/d′, with d = dist(O,X) and d′ = dist(O′, X), from
two given fixed points O and O′, respectively, is a circle k, see Fig. 1(b). Rotating k around the
line OO′ gives the sphere F and O and O′ are inverse points with respect to F (and the circle k).

If we consider a varying constant ratio f , one obtains a family of spheres F (f) with inverse
points O and O′ which form an elliptic pencil of spheres. Their centers are on the line OO′. Ratio
1 (d = d′) corresponds to the bisector plane of O and O′.
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Figure 1: Pencil of quadrics in R4 and Apollonius circle

2.2. A rational quartic on the sphere

The pencil of quadrics Q(t) in R4 spanned by the sphere F and the cone D contains the cylinder
R. Expressing the variable x from (7) one gets

x =
w2 +m2 − r2

2m
, (9)

and inserting this into D results in the polynomial

α(w) : 4m2(y2 + z2) + p(w) = 0, with p(w) = w4 − 2w2(m2 + r2) + (m2 − r2)2. (10)

Considering y and z as variables, α(w) is a one-parameter family of conics (circles) in the yz-plane,
depending rationally on the parameter w. The circles α(w) do not possess real points for all w,
but there exist intervals determining families of real circles α(w). To obtain real circles one has
to perform a re-parameterization w(u) within an appropriate interval. The factorization of p(w)
reads

p(w) = (w + a)(w − a)(w + b)(w − b), with a = m+ r, and b = m− r.

If O is outside of F , thus m > r, the polynomial −p(w) is positive in the interval [m− r,m+ r].
Thus a possible re-parameterization is

w(u) =
au2 + b

1 + u2
=
u2(m+ r) +m− r

1 + u2
. (11)

Otherwise we could re-parameterize over another appropriate interval. Additionally we note that
if O is inside of F , the inverse point O′ is outside of F . Since equation (8) holds for the distances
of a point X ∈ F to O and O′, we can exchange roles and perform the computation for the point
O′.

We return to the family of conics α(w). Substituting (11) into (10) leads to a family of real
conics

α(u) : y2 + z2 =
4r2u2

m2(1 + u2)4
(au2 +m)(mu2 + b). (12)

We are looking for rational functions y(u) and z(u) satisfying (12) identically. Therefore we
introduce auxiliary variables ỹ and z̃ by the relations y = 2ỹru/(m(1+u2)2) and z = 2z̃ru/(m(1+
u2)2). We obtain ỹ2+z̃2 = (au2+m)(mu2+b). Factorizing left and right hand side of this equation
results in a linear system to determine ỹ and z̃,

ỹ + iz̃ = (
√
au+ i

√
m)(
√
mu+ i

√
b),

ỹ − iz̃ = (
√
au− i

√
m)(
√
mu− i

√
b).
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(a) Base curve of the pencil in R3
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G1G2

(b) Sphere F and both conchoid surfaces G1 and G2 w.r.t.
O

Figure 2: Rational polar representation of a sphere and its conchoid surfaces

The solution ỹ =
√
m(
√
au2 −

√
b), z̃ = u(m+

√
ab) finally leads to

y(u) =
2r
√
mu

m(1 + u2)2

(√
au2 −

√
b
)
, and z(u) =

2ru2

m(1 + u2)2

(
m+

√
ab
)
, (13)

which is a rational parameterization of a curve in the yz-plane, following the family of conics α(w).
We note that any real rational family of conics possesses real rational parameterizations, see

for instance [6, 9]. The solution (13) together with (9) determines a curve C ⊂ F which possesses
the rational distance function

‖c(u)‖ = w(u) =
u2(m+ r) + (m− r)

1 + u2
(14)

with respect to O. Its parameterization is

c(u) =
1

m(1 + u2)2

 u4m(m+ r) + 2u2(m2 − r2) +m(m− r)
2r
√
mu(u2

√
m+ r −

√
m− r)

2ru2(m+
√
m2 − r2)

 . (15)

Theorem 5. Let F be a sphere and let O be an arbitrary point in R3. Then there exists a rational
quartic curve C ⊂ F and a rational parameterization c(u) of C such that the distance of C to O
is a rational function in the curve parameter u.

Rotating C around the x-axis leads to a rational polar representation r(u, v)k(u, v) of F with
rational distance function ρ(u, v) = w(u) from O. The quartic curve C together with this param-
eterization is illustrated in Fig. 2(a). Fig. 2(b) displays a sphere F together with both conchoid
surfaces G1 and G2 for distances d and −d with respect to O. We summarize the presented
construction.

Theorem 6. Spheres in R3 admit rational polar representations with respect to any focus point
O. This implies that the conchoid surfaces of spheres admit rational parameterizations. The
construction is based on rational quartic curves on F with rational distance from O.
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Rationality and Uni-Rationality. The construction performed in Section 2.2 yields a rational pa-
rameterization f(u, v) of the sphere F with rational radius function ρ(u, v), given by (14), such
that f(u, v) = ρ(u, v)k(u, v), where k(u, v) is an improper parameterization of the unit sphere S2.
This means that typically a point X ∈ F corresponds to two points (u, v1) and (u, v2) in the
parameter domain. Rotating the curve C around the x-axis, the sphere F is double covered.

The conchoid surface G of F at distance d typically consists of two surfaces G1 and G2, which
admit the rational parameterizations

g1 = (ρ(u, v) + d)k(u, v), and g2 = (ρ(u, v)− d)k(u, v), (16)

for positive and negative distance. The conchoid G = G1 ∪G2 is an irreducible algebraic surface
of order six. It is not bi-rational equivalent to the projective plane but each component G1 as
well as G2 admits improper rational parameterizations. These components G1 and G2 are called
uni-rational. This is not a contradiction to Castelnuovo’s theorem since we are not working over
an algebraically closed field but over the field of real numbers R.

Let us consider an example to illustrate these properties. We consider the sphere F with center
m = (3/2, 0, 0) and radius r = 1, and compute its conchoid G for variable distance d. We obtain
parameterizations g1(u, v) and g2(u, v) from equation (16) for the real uni-rational varieties G1

and G2. The algebraic variety G = G1 ∪G2 is given by the equation

G : (x2 + y2 + z2)(4(x2 + y2 + z2)− 12x+ 5)2

+d2(40(x2 + y2 + z2)− 144x2 + 96x(x2 + y2 + z2)− 32(x2 + y2 + z2)2)

+16d4(x2 + y2 + z2) = 0.

(17)

Remarks on the parameterization. The rational quartic C on F is of course not unique but depends
on the re-parameterization (11). An admissible rational re-parameterization of a real interval is
of even degree. Let us consider a quadratic re-parameterization. Since α is of degree four in w,
the re-parameterized family is typically of degree ≤ 8 in u. This implies that the solutions y(u)
and z(u) are of degree ≤ 4, which holds also for x(u) because of (9). The coefficient functions
c(u) = (x, y, z)(u) determine a rational quartic C on F , with rational norm ‖c‖ = w(u).

Different choices of the interval and a quadratic re-parameterization will typically result in
different quartic curves on F . In (11) we have chosen the largest possible interval and a rational
function satisfying w(−u) = w(u) and obtained the curve C through antipodal points of F . By
rotating we obtain the full sphere, doubly covered.

For any quadratic re-parameterization, the quartic C is the base locus of a pencil of quadrics
Q(t) = F + tK, spanned by the sphere F and, for instance, the quadratic projection cone K with
vertex at C’s double point.

The particular choice (11) implies that the quartic C is symmetric with respect to the xz-plane.
This holds since u appears only with even powers in x and z, thus we have x(−u) = x(u) and
z(−u) = z(u). The orthogonal projection of C to the xz-plane is doubly covered, thus a conic. In
this case (x, z)(u) parameterizes a parabola, because of the factor (1+u2)2 in c(u)’s denominator.
This implies that the pencil Q(t) can also be spanned by the sphere F and the parabolic cylinder
P passing through C, whose generating lines are parallel to y. It can be proved that all quadrics
in Q(t) except P are rotational quadrics with parallel axes. This implies that K is a rotational
cone, and the remaining singular quadric L is a rotational cone, too. For the particular choice (11)
and for the generalized construction performed in Section 3, the rotational cone L has the vertex
O. We note that for any admissible re-parameterization L’s vertex is typically different from O.

2.3. Pencil of quadrics in R3

The quartic curve C from (15) on the sphere F is the base locus of a pencil of quadrics F +λK
in R3, spanned by F and the projection cone K of C from its double point s, see Fig. 3. The
double point s is located in the symmetry plane of C and in the polar plane of the origin O with
respect to F . Its coordinates are

s =
1

m
(γ2, 0, rγ) with γ2 = m2 − r2. (18)
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The pencil F+λK contains two further singular quadrics which are obtained for the zeros λ1 = 1/m
and λ2 = −1/γ of the characteristic polynomial

det(F + λK) = r2(mλ− 1)(γλ+ 1).

Corresponding to λ1 there is a parabolic cylinder P with y-parallel generating lines passing through
C. Corresponding to λ2 we find the rotational cone L through C with vertex O.

To give explicit representations for the quadrics we use homogeneous coordinates y = (1, x, y, z)T .
Since there should not be any confusion, we use same notations for the quadric F and its coor-
dinate matrix appearing in the homogeneous quadratic equation yT · F · y = 0. The coefficient
matrices F and K read

F =


m2 − r2 −m 0 0

−m 1 0 0

0 0 1 0

0 0 0 1

 , K =


γ3 −γm 0 0

−γm γ 0 r

0 0 −m 0

0 r 0 −γ

 . (19)

An elementary computation shows that K is a cone of revolution with opening angle π/2 and
a = (m+ γ, 0, r) denotes a direction vector of its axis.

The cone L through C with vertex at O is again a cone of revolution, whose axis is parallel to
a. The parabolic cylinder P through the quartic C has y-parallel generating lines. The axis of the
cross section parabola in the xz-plane is orthogonal to a, see Fig. 3(a). The coefficient matrices
L and P are

L =


0 0 0 0

0 0 0 −r
0 0 m+ γ 0

0 −r 0 2γ

 , P =


γ2(m+ γ) −m(m+ γ) 0 0

−m(m+ γ) m+ γ 0 r

0 0 0 0

0 r 0 m− γ

 . (20)

A trigonometric parameterization of the quartic C is obtained by intersecting the cone K with
one quadric of the pencil F + λK, for instance F . Let a be a unit vector in direction of K’s axis,
and b and c complete it to an orthonormal basis in R3. A trigonometric parameterization of K is
given by

k(t, v) := s + v(a + (b cos t+ c sin t)), with

a = 1√
2m(m+γ)

(m+ γ, 0, r), b = (0,−1, 0), and c = 1√
2m(m+γ)

(r, 0,−(m+ γ)).

Thus K admits the explicit parameterization

k(t, v) =
1

2m
√
m(m+ γ)

 2γ2
√
m(m+ γ) + v

√
2m(m+ γ + r sin t)

−2vm
√
m(m+ γ) cos t

2rγ
√
m(m+ γ) + v

√
2m(r − (m+ γ) sin t)

 .

Finally, a trigonometric parameterization of the quartic C follows by

c(t) =
1

2m

 (m+ r sin t)2 + γ2√
2
√
m(m+ γ) cos t(γ −m− r sin t)

r(m+ γ) cos2 t

 , with ‖c(t)‖ = m+ r sin t. (21)

The correspondence of the trigonometric parameterization and its norm with the expressions (15)
and (14) in terms of rational functions is realized by the substitutions sin t = (u2−1)/(u2 +1) and
cos t = 2u/(u2 + 1) and some rearrangement of the equations. Section 2.4 discusses relations to
Viviani’s curve (or Viviani’s window). This particular quartic has a similar shape and its pencil
of quadrics has similar properties. Viviani’s curve has an additional symmetry.
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Figure 3: Geometric properties of the conchoid construction

Remark. The inversion with center O at the sphere which intersects the given sphere F perpendic-
ularly, maps the sphere F onto itself. Analogously this inversion fixes the rotational cone L. Thus
the quartic intersection curve C = F ∩ L remains fixed as a whole, but of course not point-wise.
The product of the distances dist(O,P ) and dist(O,P ′) of two inverse points P ∈ F and P ′ ∈ F
equals

√
m2 − r2. This property follows from the elementary tangent-secant-theorem of a circle.

2.4. Relations to Viviani’s curve

The quartic curve C, the base locus of the pencil of quadrics F + tK, can be considered as
generalization of Viviani’s curve V . This particularly well known curve V is the base locus of a
pencil of quadrics, spanned by a sphere F and a cylinder of revolution L touching F and passing
through the center of F . The pencil of quadrics of Viviani’s curve also contains a right circular
cone K with vertex in V ’s double point and opening angle π/2, and further a parabolic cylinder
P . Viviani’s curve V is obtained from C by letting O → ∞. Consequently, the inverse point O′

becomes the center of the sphere F .

Choosing the inverse point O′ = (m
2−r2
m , 0, 0) as origin, the parameterization (21) of C becomes

c(t) =
1

2m

 r2(1 + sin2 t) + 2mr sin t√
2
√
m(m+ γ) cos t(γ −m− r sin t)

r(m+ γ) cos2 t

 . (22)

By letting m→∞ one obtains V as limit curve

v(t) =
(
r sin t,−r sin t cos t, r cos2 t

)
. (23)

Fig. 4(a) illustrates Viviani’s curve V , together with the sphere and the singular quadrics
belonging to the pencil. The generalized Viviani curve C being the base locus of the pencil
appearing in the conchoid construction of the sphere is illustrated in Fig. 4(b). In contrast to the
classical Viviani curve V whose single parameter r is the radius of the sphere F , the quartic curve
C has two parameters r and m.
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Figure 4: Quadric pencils of Viviani’s curve and its generalization

3. Rotational quadrics with parallel axes

We consider the mentioned pencil of quadrics Q(t) = A+tD from Section 2.1, and a hyperplane
E : ax+ by + cz − dw = 0 passing through O = (0, 0, 0, 0). The intersection D ∩E is a quadratic
cone whose projection onto R3 is a cone of revolution L with axis in direction of a = (a, b, c).
Assuming ‖a‖ = 1, the opening angle 2τ of L is determined by d = cos τ .

Consider the quartic intersection curve C = F ∩L of a sphere F and the cone of revolution L.
It is rational exactly if the cone L is touching F at a single point. Since this touching point has to
be contained in the polar plane of O = (0, 0, 0) with respect to F , we choose s = (γ2/m, 0, rγ/m)
(compare 18) and prescribe an arbitrary opening angle 2τ for L. Thus the unit direction vector
of L’s axis is

a =
1

m
(γ cos τ − r sin τ, 0, γ sin τ + r cos τ) = (a, b, c).

The quartic C is real if the axis is contained in the wedge formed by s and the x-axis, see
Figure 3(b). Thus −r/γ ≤ tan τ ≤ 0, because the rotation from s to a by τ ≤ 0 is counterclockwise.
In the following we use the abbreviations ct := cos τ and st := sin τ . The quadrics of the pencil
with base locus C are denoted similarly to Section 2.3. The coefficient matrix of the projection
cone L reads

L(τ) =


0 0 0 0

0 r2(ct2 − st2) + 2γrstct 0 −γr(ct2 − st2) + (r2 − γ2)stct

0 0 m2ct2 0

0 −γr(ct2 − st2) + (r2 − γ2)stct 0 γ2(ct2 − st2)− 2γrstct

 .

Rewriting L(τ) in terms of the double angle 2τ and substituting

cos 2τ = γ/m, and sin 2τ = −r/m (24)

we obtain L from equation (20). This holds for all equations and parameterizations in this section
in an analogous way.

The pencil of quadrics F+tL(τ) contains two further singular quadrics. The first is a parabolic
cylinder P (τ) passing through C. It corresponds to the eigenvalue −1

m2ct2 and its generating lines
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are parallel to the y-axis. Its coefficient matrix of cylinder reads

P (τ) =


γ2m2ct2 −m3ct2 0 0

−m3ct2 γ2(ct2 − st2) +m2st2 − 2rγstct 0 (γ2 − r2)stct+ rγ(ct2 − st2)

0 0 0 0

0 (γ2 − r2)stct+ rγ(ct2 − st2) 0 m2ct2 − γ2(ct2 − st2) + 2rγstct

 .

Our goal is not only to characterize the pencil of quadrics but to provide an explicit param-
eterization of the quartic curve C on F whose distance from O is rational. This is performed by
using a parameterization of the second singular quadric K which corresponds to the zero r

γm2ctst

of the characteristic polynomial det(F + tL(τ)). K is a cone of revolution with axis parallel to a,
and its coefficient matrix reads

K(τ) =


γ2 −m 0 0

−m γ(m2+2r2)stct+r3(ct2−st2)
γm2stct 0 −r((γ2−r2)stct+γr(ct2−st2))

γm2stct

0 0 γst+rct
γst 0

0 −r((γ2−r2)stct+γr(ct2−st2))
γm2stct 0 γ(γ2−r2)stct+rγ2(ct2−st2)

γm2stct

 .

A parameterization of the cone of revolution K with respect to its vertex s is

k(u, v) = s + v(a +R(b cosu+ c sinu)),

where a is a unit vector in direction of its axis, and b and c complete a to an orthonormal basis
in R3, and R denotes the radius of the cross section circle at distance 1 from s which has still to
be determined. In detail this reads

k(u, v) =


γ2

m + v(γct−rstm +R sinu(γst+rct)
m )

−vR cosu
γr
m + v(γst+rctm +R sinu(−γct+rst)

m )

 .

Inserting k(u, v) into the equation yT ·K(τ) · y = 0 defines the radius

R =

√
−ctst(γst+ rct)(γct− rst)

ct(γst+ rct)
=

√
−st(γct− rst)
ct(γst+ rct)

.

The final parameterization of the quartic curve C is obtained for v = 2r(R sinuct−st)
1+R2 and is a bit

lengthy. It reads

c(u) =


(4Rr sinuct(γct−rst)+2rct(γst+rct)(R2 sin2 u−1)+m2+r2+R2(m2−r2)−2Rrγ sinu)

m(1+R2)
−2Rr cosu(Rct sinu−st)

1+R2

r(2R2ct sin2 u(rst−γct)+4Rγ sinuctst−γ(1−R2)−2rctst+2γct2+2Rr sinu(ct2−st2))
m(1+R2)

 , (25)

and its norm is

‖c(u)‖ =
γct(1 +R2)− 2rst+ 2rRct sin(u)

ct(1 +R2)
.

This is proved by using the incidence c ⊂ E, thus ac1 + bc2 + cc3 = ctw, with w = ‖c‖. Note
that R is not rational in any rational substitution for the trigonometric functions cos τ and sin τ .
Rotating C around the x-axis gives a rational polar representation f(u, v) of the sphere F . The
resulting parameterization f of F is not proper, but almost all points of F are traced twice,
therefore belonging to two parameter values (u1, v) and (u2, v). We summarize the construction.

Corollary 7. There exists a one-parameter family of quartic curves C(τ) ⊂ F with double point
at s and symmetry plane y = 0. The corresponding pencils of quadrics Q(t) = F + λL(τ) contain
rotational cones K(τ) and L(τ), where the vertex of the latter is at O, and a parabolic cylinder
P (τ). Besides P (τ) all quadrics have rotational symmetry with parallel axes a(τ). The distance
function dist(OC) = ‖c(u)‖ is rational in the curve parameter, but not rational in the angle-
parameter τ .
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4. Conclusion

We have discussed the conchoid construction for spheres and have shown that a sphere in
R3 admits a rational polar representation with respect to an arbitrary chosen focus point, which
implies that the conchoid surfaces of spheres possess rational parameterizations. Additionally we
have given a geometric construction for these parameterizations which are based on a rational
curve of degree four being the base locus of a pencil of quadrics in R3. Relations to the classical
Viviani curve have been addressed. The construction of the rational parameterization of the
conchoids is also based on a pencil of quadrics in R4.
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