
Knowledge Modelling in Multiagent Systems: 
The Case of the Management of a National Network 

Martin Molina 1  and  Sascha Ossowski 2  

1 Department of Artificial Intelligence, Technical University of Madrid, 
Campus de Montegancedo s/n, 28660 Boadilla del Monte (Madrid), Spain 

mmolina@dia.fi.upm.es 
2 School of Engineering, Rey Juan Carlos University, 

Campus de Móstoles, Calle Tulipán s/n, 28933 Móstoles (Madrid), Spain 
S.Ossowski@escet.urjc.es 

 

Abstract. This paper presents the knowledge model of a distributed decision 
support system, that has been designed for the management of a national 
network in Ukraine. It shows how advanced Artificial Intelligence techniques 
(multiagent systems and knowledge modelling) have been applied to solve this 
real-world decision support problem: on the one hand its distributed nature, 
implied by different loci of decision-making at the network nodes, suggested to 
apply a multiagent solution; on the other, due to the complexity of problem-
solving for local network administration, it was useful to apply knowledge 
modelling techniques, in order to structure the different knowledge types and 
reasoning processes involved. The paper sets out from a description of our 
particular management problem. Subsequently, our agent model is described, 
pointing out the local problem-solving and coordination knowledge models. 
Finally, the dynamics of the approach is illustrated by an example. 

1. Introduction 

The problem of coherent distributed decision-making is intrinsic to many complex 
real-world situations, where the behaviour of a complex dynamic system is to be 
regulated by a group of operators, each performing particular control actions on 
different parts of the system. In the management of a road traffic network, for 
instance, different control centres are responsible for making certain types of control 
decisions (e.g. private vehicles, public transport, etc.). Another example is the 
management of a computer network, where different local administrators reconfigure 
sub-networks to improve network performance. In general, local decisions made by a 
particular operator may affect the decisions of other control personnel. So, besides 
making good local control decisions, it is necessary to achieve certain level of 
coordination in order to obtain a coherent and mutually acceptable set of local control 
decisions.  

A distributed decision support system is a software tool that assists operators in 
their decision-making within the frame of a distributed organisation, by automatically 
monitoring a dynamic system, warning about present or future undesired situations 
and suggesting appropriate control actions to operators [9]. In order to develop a 

In “Intelligence in Services and Networks”. H. Zuidweg et al. (Eds.). Proc. 6th International Conference on 
Intelligence and Services in Networks, IS&N 99, LNCS 1597, pp. 501-513. Barcelona, Spain, April,  1999. 
© Springer-Verlag Berlin Heidelberg 1999. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148670021?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


software architecture that implements such a system, a variety of technical problems 
have to be considered: efficient communication between management centres, a 
powerful interface to the dynamic system to be controlled etc. However, there are two 
key issues that are crucial for the successful implantation of this kind of system in an 
existing organisation: 
• Operators are responsible for the effects of the control decisions taken. As bad 

decisions may have catastrophic effects, the support system must be able to 
provide explanations respecting its recommendations, which need to be logically 
and conceptually understandable by the operators 

• The operators’ responsibility goes in line with certain autonomy in their decision 
making. In such a distributed organisation a decision support system will not be 
accepted, if it tries to achieve coordination by centrally imposed decisions, without 
taking into account local preferences and autonomy 

In order to cope with these characteristic features, two advanced techniques from the 
field of Artificial Intelligence appear adequate: 
• Knowledge-based systems technology is popular for its capability of providing 

explanations. By using recent knowledge modelling techniques, the knowledge of 
local decision-makers can be organised and structured, so as to provide 
explanations at a reasonable level of complexity. 

• Multiagent techniques provide a natural context to solve the coordination problem 
between local decisions: unlike centralised traditional approaches that rely on a 
top-level authority to solve conflicts, each agent is given the autonomy to make its 
own decisions. Coordination emerges by means of peer communication in a 
“bottom-up” fashion. Its result is biased by existing conventions and organisational 
structures. 

Still, when trying to build real-world systems in a principled manner on the basis of 
the above insights, a problem arises. Although there is a variety of methodologies and 
tools that support design and implementation of “monolithic” knowledge-based 
systems (e.g. [25, 8, 20, 15]), similar approaches for multiagent system design (e.g. 
[16, 12, 4]) are still in quite initial stages. A convincing integration of knowledge 
modelling and multiagent design methodologies is still to come. 

In this paper we take a pragmatic tack towards the problem, showing how existing 
knowledge modelling approaches can be transferred to solve a real-world distributed 
decision support problem. We first describe our particular problem: the management 
of a national Wide Area Network in Ukraine. Local problem-solving and coordination 
knowledge models are described next within a task-oriented knowledge modelling 
framework, giving rise to the implementation. We illustrate the dynamics of the 
system by an example and discuss the lessons learnt from this enterprise. 

2. The Problem: The Management of a National Network 

The government of Ukraine recently initiated the programme Informatization of 
Ukraine, directed towards the development of telecommunication infrastructures and 
information technologies at a national level, during the years 1996-2000. Together 
with partners from Greece, Spain, Ukraine and Hungary we contributed to this 



enterprise in the frame of the project ExperNet, which is financed through the 
European Union’s Inco-Copernicus Programme. The goal of the ExperNet project was 
to develop a distributed expert system that supports the management of an Ukrainian 
national data network.  

Within this context, we considered that most conventional network management 
systems (e.g. [11]), based on algorithmic techniques, are usually not able to provide 
the required level of assistance for the operators. Such a level of support requires 
conceptually understandable recommendations together with explanations, which can 
be offered by knowledge-based technology. Recently, agent-based approaches have 
been applied to network management [13,23], but they attack mainly complexity 
issues and provide rather limited support to the different node operators within the 
framework of a distributed organisation. In the sequel we are concerned with our 
contribution to the project: the definition of the conceptual model of the system, and 
the development of a computational version. 

Relcom, one of the main national networks of Ukraine, was chosen as the 
experimental zone of the ExperNet project. Relcom mainly provides Internet services 
(email, ftp, news, telnet, Cyrillic-oriented version of Lynx for the access to www-
servers, etc.). The connectivity between the nodes is based on UUCP using switched 
telephone lines and permanent/leased lines using TCP/IP. Besides the usual dial-up 
modem connection, Relcom makes use of different radio, fibre and satellite channels. 
As illustrated by figure 1, the network includes several hundreds of network nodes 
provided by independent organisations. For the access to international networks 
channels provide speeds up to 512 K. 

 
Figure 1. The Relcom Network in Ukraine (Courtesy of Relcom). 

 



The infrastructure of a typical 
network node is shown in figure 2. 
The node is endowed with an 
external link of 256 K, and 
maintains connections to four other 
network nodes: Technosoft (256K), 
UACOM (33.6K), the Institute of 
Physics and Semiconductors (28.8K) 
and to the Donetsk University of 
Physics and Technology (64K). 
Routing is supported by two Cisco 
2511 (“goodwin” and “gal”) and one 
Cisco 2501 (“skiff”) hardware 
routers. A Sun UltraSparc1 and 8 
Pentium computers are configured to 
provide a variety of different 
services. 

At each node of the Relcom 
network, there is a node 
administrator, responsible of 
maintaining a convenient quality of 
service. The administrator obtains 
information about the state of certain part of the network by means of a whole bunch 
of different observables, including current and historic data on link and host 
utilisation, routing tables, message buffer queues, average message delays between 
nodes, service delays, etc.. In the course of the ExperNet project several tools have 
been installed (such as HNMS+, an adapted version of the Hierarchical Network 
Management System [11], and the DEVICE system [2], which includes an object-
oriented database), by means of which most of the above data is supplied on-line. 
Administrators can also access additional variables as the result of exploratory 
actions, such as the output of executing operating system commands. 

3. Knowledge Acquisition 

During the knowledge acquisition phase it became clear that node administrators 
perform essentially three tasks for local problem-solving. (1) fault detection: in case 
of communication malfunctions, a repair plan is to be configured that besides the 
primary actions (e.g. repair equipment) also comprises additional secondary actions 
that isolate a fault so as to minimise its impact (e.g. change routing); (2) performance 
optimisation: in order to assure a convenient network performance, resource 
utilisation is to be balanced, by deferring services (e.g. news), changing services to 
different hosts, changing routing tables etc.; (3) network re-configuration: while 
maintaining a certain quality of service, the economic efficiency of the network is to 
be assured through actions such as increasing/decreasing the capacity of channels, 
leasing or cancelling new lines, installing new equipment etc. 

 64Mb RAM, 2Gb HDD

33.6 K to
UACOM

 GVC
 33000

256 K
external

 RAD
ASMi-50

...

 RAD
ASMi-50

256 K to
echnosoft

site

Cisco 2511
( goodwin )

28.8 K to
Institute of Phisics of

Semiconductors

 GVC
 28800

...
Cisco 2511

( gal )

64 K to
Donetsk University for
Phisics and Technology

 Patton 1092

...
Cisco 2501

( skiff )

Sun Ultra 1

 32Mb RAM, 2Gb HDD

PC Pentium

 32Mb RAM, 2Gb HDD

PC Pentium

 32Mb RAM, 1.5 Gb HDD

PC Pentium

 24 Mb RAM, 1.5 Gb HDD

PC Pentium

 16 Mb RAM, 1.5 Gb HDD

PC Pentium

 16 Mb RAM, 1 Gb HDD

PC Pentium

 16 Mb RAM, 1 Gb HDD

PC Pentium

DigiBoard

Dialup users

T

 
Figure 2. Typical node infrastructure  

(Courtesy of Technosoft). 



It soon turned out that coordination problems play an essential role in the tasks of 
administrators. They arise in at least four situations: (1) Information acquisition 
problems: a node lacks observables which are available to (or can be acquired by) 
another node. (2) Responsibility problems: nodes with overlapping problem-solving 
capacities have to agree upon which one of them is to attack a task. (3) Interest 
problems: a node’s plan to overcome a problem concerns another node, because it 
affects the utilisation of resources (hosts, links etc.) that “belong” to the latter (who 
paid for them). Still, the affected node does not agree with this. (4) Resource conflicts: 
nodes develop complementary plans (in order to cope with different problems), but 
these plans try to employ the same, scarce resource in different, incompatible ways. 

In order to solve these problems, the internal organisation of the Relcom network 
has evolved towards a hierarchical structure. Nodes may correspond to any of three 
levels (national, regional and district), associated with different authority and 
responsibility patterns. Within this framework, nodes communicate in accordance 
with certain conversation patterns so as to overcome coordination problems. 
Information acquisition problems are tackled by observable acquisition conversations, 
where a node simply asks an acquaintance to provide a desired information. 
Responsibility problems are coped with by delegation to higher level nodes. The 
solution to interest problems relies on a conversation scheme, in the course of which a 
higher level node successively generates alternative management plans, until all 
affected nodes agree with it. The occurrence of resource conflicts are mostly avoided 
by a hierarchical link placements, but if they occur their solution involves peer 
negotiation.1 

4. The System Architecture 

Our objective was to design a distributed decision support system, which assists the 
Relcom node administrators in coping with their network management tasks. The 
inherent distribution of the problem suggested to use a multiagent system architecture, 
where each management node in the network is endowed with one agent, specialised 
in managing the network area that the node is responsible for. Each decision support 
agent communicates the results of its reasoning processes to its human administrator, 
which is in charge of settling the management actions to be taken. In this section we 
describe an agents’ “individual” knowledge endowment for local problem-solving as 
well as its “social” knowledge that enables it to render support to inter-node 
coordination. 

4.1 The knowledge modelling approach 

In order to characterise the knowledge model of each agent we have applied the 
concept of model-based expert system development, which has become a popular 
approach to the development of complex knowledge-based systems. This modelling 
approach considers the existence of an abstract knowledge level [18] at which the 

                                                           
1 Resource conflicts are out of the scope of the current version. 

 



knowledge can functionally described on the basis of its role, independently on the 
particular symbolic representation. Some recent methodologies for system 
development (such as KADS [23], KSM [8], Protégé-II [19] and KREST [15]) follow 
this model-based approach. Any of these methodologies organise the knowledge 
according to certain structuring principles. In particular, one organisation followed by 
most of the methodologies is the task-oriented perspective.  

According to this view, a task is an abstract description that identifies a goal to be 
achieved (for instance, mineral classification or the design of the machinery of an 
elevator). Tasks are usually characterised by the classes of premises that they receive 
as input and the classes of conclusions that they produce as output. On the other hand, 
problem-solving methods (or methods in short) are used to cope with the tasks. A 
method indicates how a task is achieved, by describing the different reasoning steps 
by which its inputs are transformed into outputs. Simple tasks (called primitive 
inferences following the KADS methodology [23]) can be attained directly by means 
of basic methods. They rely on a knowledge base, modelling the declarative domain 
knowledge used by basic methods. The complexity of real-world tasks requires 
compound methods that decompose tasks into subtasks. These subtasks may again be 
decomposed by a method and so on, developing a task-method-subtask hierarchy, 
whose leaves are given by basic methods that use simple knowledge bases. Thus, the 
resulting model for an agent can be viewed as a collection of types of knowledge 
bases (each one with its own symbolic representation) together with a hierarchically 
structured set of reasoning strategies that make use of such knowledge bases. 

4.2 Agent Local Knowledge Model 

We have modelled the problem-solving competence of each decision support agent 
within this task oriented perspective (figure 3). It reflects the fact that a node 
administrator’s reasoning comprises three main tasks, which follow a three step 
sequence: (1) symptom detection, where administrators watch out for symptoms of 
undesired network states and behaviours (e.g. a certain service –ftp, www, etc.– does 
not respond, a host is unreachable, over/under-utilisation of links or equipment, etc.), 
(2) diagnosis, which is done by discriminating hypothesis of different degrees of 
precision on the basis of network data and the result of exploratory actions to find the 
causes of symptoms (e.g. inadequate capacity for some resource, unbalance of 
workload and resources, resource malfunctions, etc.) and (3) repair, where a sequence 
of repair actions is proposed to solve the problem. Figure 3 shows this abstract 
reasoning structure corresponding to an agent. The top-level method network 
diagnosis & repair performs the reasoning cycle outlined above: first, the detect 
method generates symptoms, whose causes are determined during the invocation of 
the diagnose method, which deduces a set of current problems. Finally, the repair 
method generates repair plans by means of which these problems shall be overcome.  

In order to achieve these sub-tasks we have adapted three well-known problem-
solving methods: heuristic classification for symptom detection, establish-and-refine 
for diagnosis, and hierarchical planning for repair.  

The heuristic classification problem-solving method [6] identifies a typical 
reasoning structure for classification problems, such as symptom detection. It follows 



three steps (abstraction, matching and refinement) that are performed in our model by 
three subtasks using two types of knowledge bases: one about the network model for 
abstraction and refinement, that includes a declarative representation of the network 
structure, and another one that uses a set of problem scenarios relating symptoms and 
observables.  

For diagnosis, the establish and refine method is used [5]. This method can be 
conceived as an abstract reasoning pattern based on a heuristic search in a taxonomy 
of hypotheses of problems. The particular adaptation of the establish and refine 
method in the network management domain makes use of three primitive inferences: 
(1) refine problem hypotheses uses a knowledge base represented by a taxonomy of 
hypothesis classes using the is-a relation; (2) select best hypothesis makes use of 
knowledge about the validity of hypotheses (represented using frames) to establish 
whether any of the input hypothesis can be proved; (3) acquire additional observables 
determines the sequence of exploratory actions to get additional observables by using 
a knowledge base about acquisition methods (represented by rules).  

Finally, the hierarchical planning method is used for the repair task. This method 
is based on a search in a hierarchy of specialists that are knowledgeable about partial 
abstract plans, which are dynamically composed during the reasoning [3]. The 
particular instance of the hierarchical planning method that we use in the network 
management domain makes use of four specialists (top level, fault detection, 
performance management and configuration) and uses five primitive inferences 
supported by four types of knowledge bases. 

 

Manage Network

Diagnose and
Repair

Abstract Match Refine
Hipothesis

Refine Select
Best

Acquire
Observ.

Select
Specialist

Determine
Applicab.

Propose
Plan

Decompose
Plan

Compose
Plan

Detect Diagnose Repair

Heuristic
Classification

Establish &
Refine

Hierarchical
Planning

Propose
Partial Plan

Conditional
Refinement

Plan
Structure

RefinementHeuristic
Plans

Applicab.
Conditions

Plan
Structure

Acquisition
Methods

Hypothesis
Validity

Hypothesis
Taxonomy

Network
Model

Problem
Scenar.

Network
Model  

Figure 3. Knowledge model of an agent. 

 



4.3 Agent Social Knowledge Model 

In this section we show how social abilities can be “wrapped” around the local 
problem-solving capabilities of our stand-alone decision support agents within the 
task-oriented knowledge modelling framework. For this purpose we see the different 
conversations that resulted from the knowledge acquisition process (see section 3) as 
logically coherent sequences of agent interactions [1]. Interactions within a 
conversation are based on a message passing model. Every message that is exchanged 
during such interactions conveys a speech act, as by emitting it the sender wants to 
influence the behaviour of the receiver [17]. In consequence, we identified additional 
methods that generate such speech acts as part of their execution, given that the agent 
is to act within a conversation. In much the same way, methods have been built, 
which are activated when agents need to react to a speech act within the conversation, 
i.e. which are executed when certain messages are received. 

The first column of table 1 shows the most important methods that comprise 
speech acts as well as the message types that they generate during their execution 
(column 2). In column three you see the agents’ reaction upon the reception of 
messages, again in terms of methods to be activated. Note that for the problem at hand 
just three speech acts were sufficient: DO directive acts, where the sender wants the 
receiver to perform a certain problem-solving activity; ASK FOR directive acts, where 
the sender wants the receiver to perform a certain activity, and to inform it about its 
outcome; and ANSWER WITH assertive acts, by means of which the sender provides the 
receiver of a message with a certain information. 

 
Sender’s active method Message types Receiver’s method activation 
query agents for observable ASK FOR observable reply with observable 
query agents for acceptance ASK FOR plan acceptance reply with acceptance 
query agents for refinements ASK FOR plan refinements reply with refinements 
notify agents to diagnose DO diagnosis and repair perform diagnosis and repair 
notify agents to isolate problem DO isolation perform problem isolation 
notify agents to repair DO repair perform repair 
reply with observable ANSWER WITH observable <continue with suspended method> 
reply with acceptance ANSWER WITH plan acceptance <continue with suspended method> 
reply with refinements ANSWER WITH plan refinements <continue with suspended method> 

Table 1. Methods and Messages 

Within conversations there are various degrees of freedom for the involved agents, as 
they usually may choose from several behaviour options (in the simplest case to 
accept or to reject a request). This accounts for the autonomy of the network 
administrator within the frame of the organisation. The behaviour of an administrator 
in a conversation (i.e. his/her choice among the different options) is not just 
determined by information respecting its local situation, but also by its knowledge and 
experience with other nodes in the network. This knowledge is represented in the 
agent models (this type of knowledge is also referred to as “acquaintance model” [7] 
or “external description” [22]). 



An agent maintains such local agent model of all acquaintances that it interacts 
with in a frame-based knowledge base. Frames consist of three parts: the modelled 
agent’s interest, its capability and its social relation. The interest part of a local agent 
model describes the local reasoning results that the modelled agent may be interested 
in. It contains slots for the problems and plan patterns of interest. The capability part 
describes the types of results of local reasoning that the modelled agent is capable of. 
It contains slots for the observables, problems, and plans that others may be asked to 
obtain or perform. Finally the social relation part describes the relation between the 
maintainer of the model and the modelled agent. For instance, it might contain an 
expression that determines the relative importance (or authority) of the latter. Note 
that every agent is also endowed with (reflective) knowledge about itself, which it 
maintains in a frame of similar structure. 

Agent model knowledge provides basic functionalities that are needed by the 
methods of table 1 in order to cope with the “non-determinism” within conversations. 
These functionalities are expressed by the following basic inference methods: (1) 
problem interest: checks whether the modelled agent is believed to be interested in 
being notified about a problem (e.g. because it is indirectly affected by that problem 
and wants to isolate it in order to keep its effects as local as possible); (2) plan 
interest: checks whether the modelled agent is believed to be interested in being 
notified about a given plan (either because it is involved in it or because its side-
effects concern the modelled agent); (3)plan rights: checks whether there is a need to 
obtain the agreement of the modelled agent for enacting a given plan; (4) observation 
capability, checks whether the modelled agent is believed to be capable of acquiring 
the value of a given observable; (5) diagnosis capability, checks whether the 
modelled agent is believed to be able to perform diagnosis for a given symptom; (6) 
plan repair capability, checks whether the modelled agent is believed to be able to 
elaborate a plan for a given problem; (7) plan refinement capability, checks whether 
the modelled agent is believed to be capable of refining a given abstract plan for a 
given problem. 

It remains to be shown how the “social” methods described in this section are 
finally integrated with the local problem-solving methods described previously. For 
this purpose, the “symptom detection – diagnosis – repair” cycle that coped with the 
manage network task (see figure 3) is extended. The new top-level method for the 
social decision support agents is given by the following steps: 

 
1. Detect symptoms. 
2. Inform agents interested in the symptoms, in order to diagnose them. 
3. Diagnose problem (if the agent is responsible).  

If there are missing observables, ask agents for acquiring the 
corresponding value. 

4. Inform agents interested in problems, in order to isolate them. 
5. Inform agents interested in problems, in order to repair them. 
6. Generate a repair plan (if the agent is responsible). 

If necessary, asks agents for plan acceptance 

 



4.4 Implementation 

The above system has been implemented on top of the KSM knowledge modelling 
tool [8], developed at the Artificial Intelligence Department of the Technical 
University of Madrid, and has been applied to different test cases. The final version of 
this system, using efficient software components, has been installed at the end of 1998 
at a particular test site that included several network nodes in Ukraine [24]. The initial 
experience showed the validity of the present technical solution, although further 
trials with a more extensive installation still need to be performed. 

 

 

Figure 4. KSM Interface to an ExperNet agent model 

5. An Example  

This section illustrates the previous model on the basis of an example case. The case 
comprises three agents – Relcom Ukraine, Technosoft and UACOM– corresponding to 
three network nodes, and presents the interactions that arise from a certain situation in 
the frame of a reconfiguration task. Suppose that the administrator at the Technosoft 
node is notified by an external observer that the FTP service of the node UACOM is 
slow. This is notified manually by the administrator to the local agent at this node and 
triggers the task for diagnosis and repair of this agent. Internally, this agent activates 
specific subtasks and concludes that an additional observable is needed to 
discriminate between the hypotheses (state of carrier detect indicator of Relcom 



Modem on Technosoft 
channel). The agent uses its 
own social knowledge about 
the other agents, and 
determines that only Relcom 
Ukraine is capable acquiring 
the value. So, Technosoft 
sends the message ASK FOR 
observable to agent Relcom 
Ukraine and waits until the 
answer from that agent arrives. 
Upon arrival of the Technosoft 
message, the agent Relcom 
Ukraine replies with the 
message ANSWER WITH 
observable after acquiring the 
value of such a variable. 

Agent: 
Technosoft

Agent: 
Relcom Ukraine

Agent  
UACOM

ASK FOR observable

ANSWER WITH observable

DO diagnosis and repair

DO diagnosis and repair

ASK FOR plan acceptance

ANSWER WITH plan acceptance

DO diagnosis and repair

ASK FOR plan acceptance

ANSWER WITH plan acceptance

DO repair

ASK FOR plan acceptance

ANSWER WITH plan acceptance

Time

 
Figure 5. Agent Interaction in the example. 

Once this message arrives at 
Technosoft, the diagnosis process continues and concludes with a partial description 
of the problem (WAN problem between Relcom Ukraine and UACOM), stating that 
this type of problem is under foreign responsibility. The agent Technosoft determines 
which agent might continue the diagnosis concluding that both agents, UACOM and 
Relcom Ukraine, are responsible for this problem. So, Technosoft sends the 
corresponding DO diagnosis & repair messages and finishes its reasoning cycle. 
Upon receiving the above message, the agent Relcom Ukraine continues with the 
diagnosis and detects that only UACOM is responsible for this problem. So, Relcom 
Ukraine also sends the message DO diagnosis & repair to UACOM and terminates its 
reasoning cycle.  

When the agent UACOM receives the above messages, it concludes the “final 
cause” of the detected problem (link problem between Relcom Ukraine and UACOM). 
UACOM tries to select the agents to be notified about the result of diagnosis in order 
to isolate it. For this, UACOM determines that no agents need to be informed for the 
sake of problem isolation. The next step consists in determining the agents that will 
perform problem repair. UACOM determines that itself will perform the repair and 
thus sends no messages. It performs hierarchical planning to compose a repair plan, 
and checks whether it can be enacted directly or whether the acceptance of any 
acquaintance is necessary. By looking up its social knowledge, it determines that this 
plan affects agent Relcom Ukraine, so this agent needs to be asked for plan 
acceptance. In consequence, it sends the message ASK FOR plan acceptance to 
Relcom Ukraine. Still, in its answer Relcom Ukraine, rejects the plan. 

As a consequence, problem-solving actions in UACOM are “redone” successively 
in order to generate an alternative plan. However, this procedure does not find a valid 
plan and UACOM determines that problem repair needs to be delegated. Using the 
social knowledge UACOM determines that agent Relcom Ukraine should do this job, 
so it sends the message Do repair and finishes its reasoning cycle. Upon receiving the 
above message, the agent Relcom Ukraine proposes a new repair plan and checks 
whether the acceptance of any acquaintance is necessary. By looking up its social 

 



knowledge, it detects that this plan affects agent UACOM as well as agent Technosoft. 
In consequence, Relcom Ukraine sends ASK FOR plan acceptance messages to both 
agents. Finally, both agents accept the proposed plan and return ANSWER WITH plan 
acceptance messages to the UACOM agent, indicating that they accept the plan.  

6. Conclusions 

This paper has reported our experience in the development of a real-world distributed 
decision support system. We have argued that a combination of knowledge based 
systems technology and multiagent techniques is appropriate for this task, showed 
how both approaches can be expressed homogeneously in a task-oriented knowledge 
modelling framework, and sketched the implementation and operation of the system. 

This paper claims to provide a pragmatic contribution in the area of multiagent 
system design rather than a theoretical approach. We built our system around the 
knowledge obtained during the knowledge elicitation phase of the project, whose 
structure implied the “shape” of our agent model. By this, we have shown that, at the 
time being, knowledge-based multiagent systems can be built in a principled fashion 
on the basis of today’s knowledge engineering tools. Setting out from our experience 
in the ExperNet project we argue that without our multiagent problem analysis and 
knowledge-centred structuring approach the construction of the system would have 
been much more difficult (or maybe even impossible given the available resources). 
The key point for the success of our approach in the present case study lies in its 
“parsimony” and “economic” efficiency. 

Acknowledgements 

This work has been supported by EU’s Inco-Copernicus project no. 960114 
(ExperNet). The partners from Ukraine, Technosoft and the Glushkov Cybernetics 
Institute, provided expertise about network management. The partner Link S.A. from 
Greece provided also expertise in network management and participate in the 
knowledge elicitation process. The partner Aristotle University of Thessaloniki from 
Greece was the coordinator of the project and, among others activities, was 
responsible for the development software tools for knowledge representation and the 
final implementation of the system (together with Link S.A). The partner from 
Hungary, ML Consulting and Computing Ltd., provided a distributed logic 
programming environment for the implementation of the final system. 

References 

1. Barbuceanu M., Fox S.: “COOL: A Language for Describing Coordination in Multi Agent 
Systems”. Proc. ICMAS, 1995 



2. Bassiliades N.; Vlahavas I.: “Processing Production Rules in DEVICE, an Active 
Knowledge Base System”, Data & Knowledge Engineering 24(2), pp. 117-155, 1997 

3. Brown, D.; Chandrasekaran, B.: Design Problem-solving: Knowledge Structures and 
Control Strategies, Morgan Kaufman, 1989 

4. Burmeister, B.: “Models and methodology for agent-oriented analysis and design”. Proc. 
KI-96 Workshop on Agent-oriented Programming and Distributed Systems, DFKI, 1996 

5. Chandrasekaran, B.; Johnson, T.; Smith, J.: “Task-Structure Analysis for Knowledge 
Modelling”. Communications of the ACM 35 (9), 1992 

6. Clancey W.: “Heuristic Classification”. Artificial Intelligence 27, 1985 
7. Cockburn, D.; Jennings, N.: “ARCHON: A Distributed Artificial Intelligence System for 

Industrial Applications”. In: Foundations of DAI (O’Hare & Jennings, eds.), Wiley, 1996 
8. Cuena J., Molina M.: "KSM: An Environment for Design of Structured Knowledge 

Models". In: Knowledge-based Systems: Advanced Concepts, Techniques and Applications 
(Tzafestas, ed.), World Scientific, 1997. 

9. Cuena J., Ossowski S.: “Distributed Models for Decision Support”. To appear in: 
Introduction to Distributed Artificial Intelligence (Weiß & Sen, eds.), MIT Press, 1998 

10. Cuena, J.: “Los Sistemas multiagente basados en el conocimiento: Una posible alternativa 
para la ingeniería del Software”. To appear in a special issue on DAI of Inteligencia 
Artificial - Revista Iberoamericana sobre I.A. (García-Serrano & Ossowski, eds.), 1998 

11. George J.; Schecht L.: “The NAS Hierarhical Network Management System”. In: 
Integrated Network management III, (Hegering & Yemini, eds.), Elsevier, 1993 

12. Glaser, N.: Contribution to Knowledge Modelling in a Multi-Agent Framework. Ph.D. 
thesis, L’Université Henri Poincaré, Nacy Y, 1996 

13. Gyires, T.: Intelligent Routing Agents in Wide-Area Networks. Intelligent Agents for 
Telecommunications Applications (Albayrak, ed.), IOS Press, 1998  

14. Matov A.: “The development of Internet-like networks in Ukraine”. Networks and 
Telecommunications,, no.2, 1997, pp.4-11 

15. McIntyre A.: KREST User Manual 2.5. Vrije Universiteit Brussel, AI lab, Brussels, 1993 
16. Moulin B., Brassard M.: “A scenario-based design method and an environment for the 

development of multiagent systems”. In: DAI Architectures and Modelling (Zhang & 
Lukose, eds.), Springer, 1995 

17. Müller, H.-J.: “Negotiation Principles”. In: Foundations of DAI (O’Hare & Jennings, eds.), 
Wiley, 1996 

18. Newell A.: "The Knowledge Level". Artificial Intelligence 18, 1982, pp. 87-127 
19. Ossowski S.: Social Structure in Artificial Agent Societies. LNAI 1535, Springer, 1998 
20. Puerta A.R., Tu S.W., Musen M.A.: “Modelling Tasks with Mechanisms”. International 

Journal of Intelligent Systems, Vol. 8, 1993. 
21. Rao, A.; Georgeff, M.: “BDI Agents: From Theory to Practice”. Proc ICMAS-95, 1995 
22. Sichman J., Demazeau Y.: “Exploiting Social Reasoning to deal with Agency Level 

Inconsistencies”. Proc. ECAI-94, 1994 
23. Somers, F.: HYBRID: Intelligent Agents for Distributed ATM Network Management. 

Intelligent Agents for Telecommunications Applications (Albayrak, ed.), IOS Press, 1998  
24. Vlahavas, I. et al.: “System Architecture of a Distributed Expert System for the 

Management of a National Data Network”. Proc. Int. Conf. on Artificial Intelligence – 
Methodology, Systems, Applications (AIMSA), Springer, 1998 

25. Wielinga B.J., Schreiber A.T., Breuker J.A.: "KADS: A Modelling Approach to 
Knowledge Engineering". Knowledge Acquisition, 1992. 

 

 


