
The Role of Knowledge Modeling Techniques

in Software Development:

A General Approach Based on a Knowledge Management Tool

Jose Cuena and Martin Molina

Department of Artificial Intelligence, Technical University of Madrid

Campus de Montegancedo s/n, Boadilla del Monte, 28660-Madrid (SPAIN)

{jcuena,mmolina}@dia.fi.upm.es

http://www.dia.fi.upm.es

This version corresponds to a preprint
of the actual paper published in:
International Journal of Human and Computer Studies,
(2000) 52, 385-421

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148670019?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract. The aim of the paper is to discuss the use of knowledge models to formulate

general applications. First, the paper presents the recent evolution of the software field where

increasing attention is paid to conceptual modeling. Then, the current state of knowledge

modeling techniques is described where increased reliability is available through the modern

knowledge acquisition techniques and supporting tools. The KSM (Knowledge Structure

Manager) tool is described next. First, the concept of knowledge area is introduced as a

building block where methods to perform a collection of tasks are included together with the

bodies of knowledge providing the basic methods to perform the basic tasks. Then, the

CONCEL language to define vocabularies of domains and the LINK language for methods

formulation are introduced. Finally, the object oriented implementation of a knowledge area

is described and a general methodology for application design and maintenance supported by

KSM is proposed. To illustrate the concepts and methods, an example of system for

intelligent traffic management in a road network is described. This example is followed by a

proposal of generalization for reuse of the resulting architecture. Finally, some concluding

comments are proposed about the feasibility of using the knowledge modeling tools and

methods for general application design.

1. INTRODUCTION

The use of knowledge based systems has been limited to an area of very specific applications

where special methodologies and tools are used (different from the techniques applied for

software engineering) oriented to model, according to different conventions of knowledge

representation, the expertise in several commercially relevant fields. The Software

Engineering field has been mainly focused in information systems development improving

the reliability and efficiency of data services. However, the current users of these services are

2

being increasingly interested in deeper functions integrated in the information systems

supported by the knowledge related with the data conceptual domains.

The relationship between both approaches has been produced only in the area of knowledge

based support to software engineering tasks. Lowry, Duran, (1989) summarize this recent

evolution in two main trends: (1) improvement of automatic program synthesis techniques

aiming to transform in operative programs high level specifications using set theory and logic

such as the commercial system REFINE or the experimental system KIDS Smith (1988) built

on top of REFINE, and (2) broadening the automatic programming scope to the entire

software life cycle by building knowledge based assistants for acquiring validating and

maintaining specifications. These capacities have been embedded in CASE tools. However,

three circumstances are creating a different situation:

• The need for a more open architecture in applications to ensure an adequate human-

machine interaction according to the recent approaches for design that follow a user-

centred view.

• The need of software reuse which requires an open structure: (1) to easily understand the

contents of any software component and (2) to be able of accepting changes in its contents

according to the specific needs of the application where the component is going to be

reused.

• The improvements on reliability and capacity of representation produced in the last ten

years in the field of knowledge representation and knowledge acquisition methods, giving

3

birth to a collection of mature technologies supported by experimental tools, yet, but

providing levels of services very close to the industrial requirements.

Therefore, now it is possible to formulate and to build an application by using directly the

knowledge modeling concepts supported by adequate tools instead of formulating the

application using information structuring concepts and data processing algorithms as in the

usual software environments. This is a very important feature because it approaches the

design phase to the conceptual specification phase, that usually in the traditional software

world are separated by a bigger gap and, hence, subject to more errors than the errors possible

between the conceptual model and the knowledge model which is closer to the conceptual

abstractions.

However, not many attempts have been produced by the AI community to produce something

like cognitive programming environments in an operational way where reasoning steps using

domain models are applicable to describe and to explain the answers of the application. AI

has to invade with practical views the area of applications. Although the paradigm modeling

efforts must continue as focus of research, an additional focus should be the advanced

modeling of complex applications using the available paradigms.

This paper aims precisely to propose a type of this structured knowledge model formulation

based on a tool oriented to support the design and implementation of general applications

using the knowledge engineering approach which means to understand the current

applications from a richer conceptual perspective. The interest of the paper is to provide some

initial results on the possibilities of this class of tools to be acceptable by the general

applications development community.

4

First, a summary of the actual requirements for software development is commented. Then,

the concept, the structure and the organization of the KSM (Knowledge Structure Manager)

tool is presented conceived to support and extend the state of the art in knowledge modeling

approach. Then, an application using KSM for real time emergency management is described

where practical comments are included. Finally, some general conclusions are proposed about

the role of the knowledge oriented approach in the context of Software Engineering by

evaluating the behavior of the model experimented with respect to the usual parameters and

criteria applied for software evaluation.

2. GOALS OF THE SOFTWARE DEVELOPMENT SUPPORT

The conventional software field has evolved after the first crisis of software at the end of the

sixties in terms of better human understanding models for applications and the supporting

programming languages. Thus, now, there exists as main well understood programming

paradigms the object oriented ones, based mostly in C++, Java and CLOS, and the logic

programming ones based on different versions of Prolog language based environments. The

methods for design of applications supporting the evolution of the formulation of concepts

from the human mind structure format to the computable format on some programming

paradigm have been formalized in structured life cycles where the different steps of

requirements analysis, design, implementation, test and maintenance are detailed in diverse

standard processes derived from the initial proposals of Yourdon, De Marco, Weinberg, etc.

now summarized in the methodologies Metrica, Merise, Ssadm, OMT, etc. Pressman (1992).

To support these life cycles, different CASE tools have been proposed guiding the design and

maintenance process of an application from the conceptual specifications to computable

5

models. Increasing attention is given to the research area of Requirements Engineering

aiming to the conceptual modeling via specifications of the underlying human understanding

of applications. Finally, reuse techniques based on these conceptual modeling approaches

have been established without not too innovative results yet with respect to the traditional

reuse of libraries of functions and libraries of classes supported by objects. At the current

state of the art any environment to support application design and development should

provide as main functions:

• Structuring and encapsulation facilities to ensure an adequate size of the different

components of the application and an understandable format to allow easy access to the

different component modules.

• Software sharing facilities to ensure that no function is formulated twice with the

corresponding inconsistency and redundancy risks for operation and maintenance.

• Software reuse potentiality to ensure the use of the already experimented existing

applications.

• Advanced Human Computer Interaction support, to ensure adequate and reliable user and

programmer contribution to maintenance and operation of the applications.

• An adequate level of efficiency in the operation for the needs of the user.

• Test and validation facilities.

6

The current state of knowledge modeling technology allows to contribute with quality enough

to the previous items by providing higher levels of conceptual modeling in consonance with

the growing trend in Requirements Engineering. In the following paragraphs a brief summary

of the knowledge modeling area is presented and an example of a product, summarizing state

of the art in knowledge acquisition, used for application development is described.

3. GENERAL VIEW OF THE KNOWLEDGE MODELING

METHODOLOGY

First generation knowledge-based systems provided a set of standard reasoning procedures

using declarative representations (such as rules, frames, etc.). The next generation of

knowledge-based systems abstracted from symbolic representational considerations the

design process and evolved to the paradigm of model-based system development, in which a

knowledge system is viewed as an operational model capable of simulating a certain observed

problem solving behaviour from an intelligent agent (e.g., a human expert in a certain

professional field). This view contrasts to the traditional approach where a knowledge system

was usually considered as a container to be filled with knowledge extracted from an expert.

The modelling process considers the existence of an abstract level where the knowledge can

be functionally described showing its role in the problem solving process, independently of a

particular representation. This level, proposed by Newell with the name of knowledge level

Newell (1982), allows to describe a knowledge model in terms of strategies of reasoning and

roles of knowledge types, abstracting away from how these are implemented by specific

symbolic representation formalisms. After some years of different proposals for knowledge

modeling at the knowledge level, the knowledge acquisition community agreed several key

7

concepts such as the generic task (proposed by Chandrasekaran (1983, 1986), also present

with some variants in the KADS model Wielinga et al. (1992) and in the model of

components of expertise Steels (1990)), the role limiting method McDermott (1988) and the

ontology concept Gruber (1993). According to these concepts we can distinguish two main

organization principles for structured knowledge based applications:

• The task oriented principle. A task is defined as a goal to be achieved (for instance

diagnosis of infectious diseases or design of the machinery of an elevator). It is described

with the type of inputs it gets and the type of outputs it produces. The main function of the

model is represented by a global task. This task is decomposed into simpler subtasks

developing a tree which shows the general structure of the model. A problem-solving

method (or method in short) defines a way in which the goal of a task can be achieved

through the execution of subtasks, so that when a method is associated to a task, the

method establishes how the task is divided into subtasks. Thus, a knowledge model can be

understood as a hierarchical composition of tasks where each task is carried out by a

problem-solving method. We may call this organizational principle the task-oriented

organization that makes emphasis in procedural knowledge given that it mainly shows

how to reason for solving problems integrating other, simpler, problem solver results.

• The domain oriented principle. On the other hand, the notion of ontology was defined to

describe explicit specifications of domain elements. An ontology is a declarative

description of the structure of a particular domain. The use of ontologies allows to more

easily reuse and share knowledge about certain domains to carry out different tasks. This

organizational principle makes more emphasis in declarative knowledge.

8

These principles need to be combined adequately in order to formulate a knowledge based

application. A reasonable approach to be followed in the design process is to start from the

collection of top-level tasks that describe the set of goals to be achieved by the application to

support an adequate conversation model between the user and the system. These top-level

tasks may be the basic types of answers required in such a conversation model. For each top-

level task, a hierarchical structure of task-method-domain may be used to show the way the

final task supports an answer type (Figure 1). Each hierarchy represents how each task is

carried out by a specific method, decomposing the task into simpler subtasks. Usually, the

hierarchy will present only one method associated to a task. However, in the near future,

when reusable libraries of problem-solving methods will be available, it could be more usual

to associate more than one method to a task, developing a more complex architecture (this

architecture could be named the problem solving medium). This means that the same task will

be able to be solved in different ways depending of certain dynamic characteristics (such as

the type of dialogue with the user, the context, etc.). At the bottom level of the hierarchy of

task-method-subtasks there is a collection of primary methods associated to primary tasks.

What is considered as a primary method is a design decision established by the developer.

Typically, primary methods correspond to methods that can be directly implemented at

symbolic level by simple problem-solving techniques (such as knowledge based techniques

like backward or forward chaining in rule-based representations, network-based

representations, constraint satisfaction methods, and also specific algorithmic solutions that

do not require a explicit representation of declarative knowledge).

The use of declarative knowledge by primary methods requires an ontological definition of

such a knowledge that is viewed as a set of domain models that support primary tasks.

Domain models can be formulated with two components: (1) a conceptual vocabulary where

9

a concept-attribute format organized in classes and instances may be used to establish the

basic language of the domain model, and (2) relations between these concepts described by

the corresponding declarative knowledge base (that at symbolic level will be formulated as

frames, constraints, rules, etc.). The same vocabulary and knowledge base of a domain model

may be used by several methods (showing cases where the same concepts play several roles)

and also a subtask can be part of different methods.

As an example of the previous ideas, consider a simplified generic model for decision support

for management of a dynamic system (e.g., a chemical plant, a traffic network, etc.) Cuena,

Hernández (1997). The goal of this decision support model is to help an operator in detecting

and diagnosing problems in the dynamic system, as well as to help in choosing appropriate

regulation actions to cope with the detected problems. Figure 2 shows a possible task-method-

domain structure for this case. Four classes of questions are considered in this model: what is

happening, why is it happening, what may happen if and what to do if. These questions

correspond to the four top level tasks: classification, diagnosis, prediction and configuration.

Each top-level task is carried out by a particular problem-solving method. For instance, the

diagnosis task is carried out by the method model-based diagnosis, which decomposes the

tasks into two simpler tasks: propose causes, filter causes. At the bottom level, there are

primary methods such as qualitative abstraction, pattern matching, instantiation, etc. Each

primary method uses a particular declarative model. For instance, the method causal covering

uses the declarative model causal model. Note that certain declarative models may be used by

several methods (e.g., in this example, the system structure model).

Thus, following this approach, a cognitive architecture is formulated as a collection of task-

method-domain hierarchies for each of the basic questions to be answered through the user

10

interface of the system. However, in real applications, the experience shows that, sometimes,

too large descriptions can be produced by using this type of formulation. Thus, although the

conceptual description based on task-methods-domains is adequate for the analysis process, it

needs to be complemented and re-organized using additional modelling concepts for the final

design of the application. There are some reasons for this: (1) the task-method-domain

structure presents too much level of detail that increases the difficulties to understand and

maintain complex architectures and (2) the level of disaggregation of components can

produce software implementations with problems of efficiency.

Therefore, as it happens in the conventional software field, it is required to have a synthetic

view of an application at several levels of conceptual aggregation allowing easy

understanding and, hence, easy maintenance. This is an issue not too much considered by AI

research community who is mostly focused in the identification of innovative models and

paradigms but not so much in final tools supporting design and maintenance of applications.

This type of tools are more common in software engineering (e.g., CASE environments) that

support conventional methodologies (such as DDF, OMT, etc.) together with libraries of

software components that can help in the design and implementation process of an

application. However, these tools are based on the traditional perception of applications as

data+algorithms that is not enough to be used in some applications that require also

knowledge-based solutions. Thus, from the point of view of knowledge modelling, several

preliminary proposals have been produced (e.g., SHELLEY or MIKE Landes, Studer, (1994)

that follow the KADS methodology, or PROTEGE-II Musen, Tu (1993) and KREST

McIntyre (1993)).

11

4. KSM: A KNOWLEDGE MODELING TOOL

A proposal in the direction commented in the previous paragraph is the KSM (Knowledge

Structure Manager) environment. KSM follows the described task-method-domain approach

but it introduces some new description entities that facilitate the design process of the

application.

The main structuring concept in KSM is what is called knowledge area1 which is a block

summarizing parts of the global structure of task method subtasks. A knowledge area in KSM

follows the intuition of body of knowledge that explains a certain problem solving behaviour.

A cognitive architecture that models the expertise of a professional can be viewed as a

hierarchically structured collection of knowledge areas at different levels of detail, where

each knowledge area represents a particular qualification or speciality that supports particular

problem solving actions which appear in the global task method subtask structure. Thus, each

module that represents a knowledge area, in contrast to the functional view that provides a

task (which is an answer the question what does it do), is an answer to the question what does

it know at different levels of detail. The concept of knowledge area in KSM is useful as a

basic module for structuring tasks, methods and domains. A knowledge area (figure 3) is

described with two well differentiated parts: (1) its knowledge, represented as a set of

component sub-areas of knowledge, and (2) its functionality, represented by a set of tasks

(and their corresponding methods). The first part decomposes the knowledge area into

simpler subareas, developing a hierarchy at different degrees of detail. The second part

associates tasks to knowledge areas showing their functional capabilities.

12

The knowledge area concept is useful to produce a more synthetic view of the knowledge

model given that it groups a set of tasks (together with the corresponding methods) in a

conceptual entity of higher level. Figure 4 shows this idea. The tasks of the task-method-

domain hierarchy on the left can be grouped in five knowledge areas. In this process, the

developer must follow the rule that a method corresponding to a task T of a certain

knowledge area A only can use subtasks provided by the subareas of the area A. In principle,

given a hierarchy of task-method-domain resulting from the knowledge level analysis, it is

possible to design different hierarchies of areas according to a principle of knowledge area

structuring. In order to guarantee a reasonable level of understandability of the knowledge

model, the final hierarchy should be designed to follow the natural intuitions associated to the

knowledge attibuted to the human problem solving process to be modeled.

Figure 5 shows a possible structure of knowledge areas corresponding to the previous

example (figure 2) where different knowledge areas embody the different methods and its

corresponding domain knowledge. For instance, in the example, a top-level knowledge area,

called decision support knowledge, has been designed to include as top-level task the decision

support one integrating as component subtasks, provided by its component knowledge,

classification, diagnosis, prediction and configuration required to answer the three main

question types (what is happening, why is it happening, what may happen if and what to do

if). This area makes use of other three intuitive knowledge areas: problem knowledge,

behaviour knowledge and regulation knowledge. The bottom-level knowledge areas

correspond to what is called primary areas, that include one single declarative model

together with the set of tasks that make use of such a model. For instance, the area called

patterns of problems is an example of primary area and includes a declarative model with a

13

set of problem patterns together with the task match that receives a set of facts corresponding

to a current state of the system and finds problem patterns that satisfy their conditions.

Knowledge areas can be defined at generic and at domain level. Generic areas mean classes

of bodies of knowledge that allow to formulate a model. Then, a particular domain model is

viewed as a collection of instances of such classes that can share by inheritance different

properties of the classes such as relations with other areas, problem-solving methods, etc.

This possibility of defining classes of areas is a solution to support reuse. Thus, abstract

structures of knowledge areas may be reused to develop different applications operating in

different domains.

The formulation using the knowledge area format provides certain advantages: (1) every task

at any level of the hierarchy is associated to the explicit knowledge that supports its

functionality, which makes more meaningful the model (2) the structure of knowledge areas

synthesizes the structure of tasks-method-domains, which is useful to better understand

complex models, (3) at the bottom level, primary knowledge areas encapsulate declarative

domain models, so it is a solution to organize the domain layer in separate modules, which

contributes to keep easier the consistency of the model and (4) primary knowledge areas are

easy to be implemented by reusable and efficient software components, which gives a

solution for the development and maintenance of the final executable version of the system.

This structuration contrasts to a plain organization of knowledge, such as the traditional

structure proposed in the original rule-based systems that does not describe explicitly the

different knowledge modules in which rules could be organized. Knowledge areas allow to

identify such modules, even by establishing several conceptual levels (knowledge areas being

14

part of other knowledge areas). Thus, the resulting system can describe better its own

knowledge (more similar to how a human expert does) showing the categories in which it can

be classified. This contributes to present different levels of detail of the expertise, and allows

to produce good quality of the explanations which may be poduced by tracing the reasoning

steps at different levels.

The organizational principle followed in KSM may be called the knowledge-area oriented

principle. In order to summarize and compare the organizational principles mentioned in this

paper, it may be established an analogy with similar principles followed in software

engineering:

• The task oriented principle is somehow similar to the functional description used in the

top-down methodology of structured analysis where a process is systematically

decomposed into simpler processes developing a hierarchy. However, tasks in contrast to

the traditional processes, are not viewed as procedures for data processing, but are

considered reasoning steps within a global problem solving behaviour observed in a

human expert; every reason step uses a body of knowledge available in the component

knowledge areas (for instance, in the primary areas a reasoning step uses a frame or a rule

to evaluate if the class modelled by the frame is true or to chain the rule with the current

state in the working memory).

• The domain oriented principle presents similarities to the data-base design where data have

to be organized according to a particular scheme. The domain oriented principle however

is established at a more abstract level and also consider more complex declarative

organizations than the ones usually supported by conventional databases.

15

• The knowledge-area oriented principle is somehow similar to the object oriented principle

that encapsulates in intuitive entities processes and data. Knowledge areas, however, are

associated to the intuition of a body of knowledge, which gives a more specific semantics

to this component and it is useful to naturally explains a possible set of cognitive skills that

justifies the problem solving competence of a human expert in terms of a collection of

associated methods to perform several tasks.

This three modelling principles are very useful to analyze the expertise in a particular domain

problem and to develop a formal design that allows the construction of an operative model on

the computer. They provide a new logical level for system conceptualization, closer to human

natural intuitions and, therefore, easier to be understood by non computer scientists. The

proposed description entities follow cognitive metaphors which allow to have a more natural

perception of the resulting application. It is important to note that these principles are very

general and can be used to different kind of problem-solving applications, i.e., they are useful

for both knowledge based and conventional applications, providing a unified view for

development of applications.

4.1. The KSM Languages to Formulate a Knowledge Model

KSM provides two formal languages to formulate two characteristics of the model: common

terminologies about the domain (conceptual vocabularies) and strategies of reasoning

(problem solving methods). Both languages are used by the developer to refine the knowledge

16

model that previously has been defined as a structured collection of knowledge areas together

with tasks and methods. These two languages are the Concel language for vocabularies, and

the Link language for problem solving methods. This section explains both languages.

4.1.1. A Language for Vocabularies: The Concel Language

The declarative description of a domain within a model can be viewed as a collection of

classes concepts, relations, structures, etc. In order to facilitate an efficient operationalization

of the final model, it is important to distinguish between the domain descriptions that are

common to the whole model and additional extensions oriented to perform specific primary

tasks. In KSM, the common descriptions are formulated with what is called conceptual

vocabularies and the extensions are written within specific knowledge bases using different

symbolic representations. This section describes the language used in KSM to formulate

conceptual vocabularies. Section 3.3 explains how to write additional descriptions of the

domain oriented to carry out particular tasks, using specific symbolic representations taken

from a library of primitives of representation.

A conceptual vocabulary allows the developer to define a common terminology which can be

used by different primary knowledge areas. One of the direct advantages of the use of

vocabularies is that they provide a common location where concepts are defined. This avoids

to repeatedly define the same concepts eliminating the risk of incoherence in the knowledge

of different domains The concepts defined by the vocabulary will be later referred by other

17

symbolic representations (rules, frames, constraints, etc.) used by primary areas. Due to the

general use of vocabularies by different knowledge modules, they must be formulated in a

common language. KSM provides the Concel language for this purpose. It allows the

developer to define: concepts, attributes, and facet values and the classification of the

concepts in classes and instances.

In more detail Concel uses the following elements. The basic element is the concept.

Examples of concepts are: a sensor, a symptom, a disease, etc. Each concept has attributes

which describe characteristics of the concept. For example, the concept gas may have the

following attributes: pressure, volume and temperature. Each attribute has also its

characterization through facets. Concepts can be organized into classes and instances. A class

concept represents a family concepts. For example, the class concept sensor represents the

generic concept of the sensor family. The elements of a family are called instances. For

example, S0735 is a instance of sensor. The general syntax to define concept is:

According to this format, each concept is defined with a name. It can be either a subclass of a

higher level class or an instance of a class. The concept can be described with a collection of

attributes and each attribute is defined with a collection of facets. The possible facets are:

• Type integer. It defines that the attribute has integer values. Optionally a range can be

defined to establish the limits. The formulation of this facet is (INTEGER [RANGE <min>

<max>]). For instance (INTEGER RANGE 125 235).

18

• Type interval. The attribute has as possible values numerical intervals. Optionally a range

can be defined to establish limits. The format of this facet is (INTERVAL [RANGE <min> <max>]).

For example (INTERVAL RANGE 0 200).

• Type boolean. The attribute may have one of the two boolean values true and false. It is

written with the format (BOOLEAN).

• Type instance. The values of the attribute are instances of a class. The format is (INSTANCE

OF <class>). For example (INSTANCE OF symptom).

• Type qualitative values. The values of the attribute are defined as a list of possible

qualitative values. The format is {<value-1>, <value-2>,... , <value-n>}. For example {low, medium,

high}.

• Default value. It defines a constant value for the attribute. The value is written after a

colon, following the format : <value>. For instance: 5.

• Units. It defines the units in which the attribute is measured. The unit is defined between

brackets with the format [<unit>]. For example [minutes].

The following example illustrates a complete definition of a class:

CONCEPT Urban Section SUBCLASS OF Section.

ATTRIBUTES:

Capacity (INTERVAL RANGE 0 2000) [Veh_Km],

Lanes (INTEGER RANGE 1 4): 1,

19

Detectors (INSTANCES OF Detector),

Length (INTEGER RANGE 0 1000) [m],

Speed {low, medium, high},

Circulation {free, saturated, congested}.

This example defines the class called urban section as a subclass of the concept section. It is

defined with six attributes where there are both numerical and qualitative attributes. For

instance the attributes lanes and length are integers (with ranges 1-4 and 0-1000 respectively)

and the attribute capacity is an interval (with range 0-2000). There is a default value for the

attribute lanes (one lane). The attributes capacity and length have units (vehicles/Km and

meters respectively). On the other hand the attributes detectors, speed and circulation have

qualitative values. In the case of speed and circulation they present explicitly the set of

possible values (e.g., low, medium and high for speed). The type of values of the attribute

detectors are defined as instances of the class detector. The following example shows a case

of the definition of an instance:

CONCEPT Main Street IS A Urban Section.

ATTRIBUTES:

 Capacity: [1400, 1800] [Veh_Km],

 Lanes: 3,

 Detectors: (DE1003, DE1005),

 Length: 350 [m].

This example defines the concept main street as an instance of the class urban section. In this

case, particular values are associated to some attributes defined in the class. A generic model

include conceptual vocabularies that define normally classes of concepts (and possibly also

instances) that are domain-independent. The particular instances or subclasses of such

20

concepts corresponding to a specific domain will be defined later when the model is

instantiated on such a domain.

4.1.2. A Language for Problem-solving Methods: The Link Language

In order to describe how a task is carried out, a developer defines a method with a particular

problem-solving strategy. Methods may be considered control knowledge given that they

describe control strategies about the use of domain knowledge. They formulate how the

system reasons when it solves a problem; in other words, they formally define the problem-

solving behaviour of the knowledge model (from a different point of view, considering the

knowledge modeling activity as a process of selecting, adapting and assembling reusable

building blocks, the method formulation may be considered also as a process of linking

knowledge components to construct the whole knowledge model).

Basically, using the Link language, the method formulation includes on the one hand, the data

connection among subtasks and, on the other hand, the execution order of subtasks (a deeper

description of the Link language can be found at Molina et al. (1998a)). The view of each

particular subtask to be used by a method is divided into two levels (the data level and the

control level). The data level shows input data and output data. For instance, the task of

classification receives as input measures and generates as output a category. Likewise, the

task of medical diagnosis receives as inputs symptoms and the case history of a patient and

generates as output a disease and a therapy. On the other hand, the control level offers a

higher level view of the tasks showing an external view about how the task works. This level

includes two elements of information: control parameters and control states. A control

21

parameter selects how the task must work when it accepts different execution modes. For

instance, a classification task classifies into categories measures received as input data

according to a similarity degree. The similarity degree may be considered as a control

parameter. In the context of a real time system, other examples are the maximum reasoning

time or the maximum number or answers, when more than one could be expected. Control

states, in their turn, indicate the degree of success or failure of the task after the reasoning.

For instance, the medical diagnosis task may have as possible control states: insufficient data

(when there are not enough data to give a result), healthy patient (when the patient does not

have any disease), no therapy found (when the patient has a disease but the system does not

find out a therapy) or therapy found (when the patient has a disease and the system finds out a

therapy). Note that control states do not provide the actual results of the task, but they give an

abstract information about how the tasks worked. In summary, at the control level of a task,

control parameters selecting modes are received as input and control states informing about

the reasoning are generated as output.

According to this division, the formulation of a method using the Link language includes

several sections (figure 7). After the name of the method, the first section, that is called

arguments, indicates the global inputs and outputs of the method. Then, there are two main

sections: the data flow and the control flow. The data flow section describes the data

connection of subtasks at the data level, indicating how some outputs of a task are inputs of

other tasks. The control flow section describes the execution order of subtasks using control

rules that include control states and parameters. In addition, there are also other two optional

sections: the control tasks and the parameters. The control tasks section allows the developer

to include tasks that decide the execution of other tasks, and the parameters section is used to

write default values for control parameters.

22

The data flow section describes the data connection of subtasks showing how some outputs of

a subtask are inputs of other subtasks. The developer here writes input/output specifications

of subtasks using what is called flow. A flow identifies a dynamic collection of data, for

instance the symptoms of a patient in medical diagnosis or the resulting design of an elevator.

For a given method, there are several names of variables identifying the different flows that

will be used to connect subtasks. These variables represent plain flows, i.e. flows whose

internal organization is not known at this level. In addition, complex flows, called flow

expressions, can be written as the composition of others using a set of basic operators

(conjunction, disjunction, selection, list, etc.). To formulate this inference structure, the

developer writes a collection of input/output specifications (i/o specifications). Each i/o

specification includes, first, the subtask name as a pair made of the knowledge area name and

the subtask identifier. Second, it is defined the input of the subtask. Basically, the input is

defined with names identifying flows (plain or complex flows). Each input flow accepts a

mode that may be the default mode or the one-of mode (the default mode gets all the

elements of a list at once, while the one-of mode gets element by element, which is useful to

formulate non-deterministic search methods). Finally, the output is defined with a list of

single identifiers giving names to the output flows. In Link language, in general, subtasks are

considered non-deterministic processes. This means that as a result of a reasoning, a task may

generate not just one result, but several ones. For instance, in the context of medical

diagnosis, the task may deduce several diseases and several therapies for the same symptoms.

So, when tasks are going to be connected in the data flow section this possibility must be

taken into account. This is managed with two output modes. Modes select whether the whole

set of outputs must be generated one by one element considering that there is a non-

deterministic result (this is the default mode) or, on the contrary, it must generate all the

outputs at once as a list of single elements for each output flow, which is called the all mode.

23

The purpose of the control flow section is to provide a formal description of a control strategy

that determines the execution order of subtasks. The representation uses production rules for

the control flow. The advantage of this representation is that it easily may define local search

spaces considering the non-deterministic behavior of subtasks. At the same time, the

representation is simple enough to be used easily due to this language is not a complex

programming language but, on the contrary, it was designed to serve as an easy description to

formulate procedural knowledge (a method will have a small number of rules, usually less

than 10). Using production rules provides a intuitive representation, and flexibility for

maintenance. The format of a rule is: (1) the left hand side includes a set of conditions about

intermediate state of task executions is, and (2) the right hand side includes a sequence of

specification of task execution . Each one of the first elements (state of task executions) is a

triplet <K,T,S> where K is a knowledge area, T is a task identifier and S is a control state.

This means that the result of the execution of the task T of the area K has generated the

control state S. The value of S is control information such as successful execution or failure of

different types, which may be used as premises to trigger other production rules. The

representation of the elements in the RHS (specification of task execution) is another triplet

<K,T,M>, where K is a knowledge unit, T a task and M an execution mode. This

representation means that the task T of the knowledge unit K must be executed with the

execution mode M. The execution mode expresses the conditions limiting the search such as:

maximum number of answers allowed, threshold for matching degree in a primary unit using

frame representation, time-out, etc. For instance, the following rule is an example of this

representation:

<K: validity, T: establish, S: established>,

<K: taxonomy, T: refine, S: intermediate>

->

24

<K: taxonomy, T: refine, M: maximum 3 answers>

<K: validity, T: establish, M: null>.

However, in Link language, this representation has been modified to include some syntactic

improvements. A complete example of a method formulation for hierarchical classification

using the establish-and-refine strategy is presented below, where the second rule within the

control flow section correspond to the previous rule but re-written according to the syntax of

Link:

METHOD establish and refine

ARGUMENTS

 INPUT description

 OUTPUT category

DATA FLOW

 (validity) establish

 INPUT description, hypothesis

 OUTPUT category

 (taxonomy) refine

25

 INPUT category

 OUTPUT hypothesis

CONTROL FLOW

 START

 -> (taxonomy) refine, MODE maximum answers=3,

 (validity) establish.

 (validity) establish IS established,

 (taxonomy) refine IS intermediate hypothesis

 -> (taxonomy) refine MODE maximum answers=3,

 (validity) establish.

 (validity) establish IS established,

 (taxonomy) refine IS final hypothesis

 -> END.

The representation also includes references to the beginning and the end of the execution to

indicate the first set of actions to be done and when it is considered that the process has

reached a solution of the problem. The beginning of the execution is referred as a state of the

execution (to be included in the left hand side of the rules) and it is written with the reserved

word START. The end of the execution is considered as an action (to be included in the right

hand side of the rules). It is written with the reserved word END and, optionally, can be

followed by a symbol that expresses the control state that has been reached.

In addition to the previous representation, the Link language includes also the possibility of

formulating a more complex control mechanism by using what is called control tasks. These

tasks are included in the control task section in the same way that is formulated in the data

flow section. The main difference is that control tasks produce as output, instead of only flows

(at data level), tasks to be executed, formulated as task specifications. These task

specifications can be included in the right hand side of control rules to determine when they

26

must be executed. In addition, a control task can get as input the execution state of another

tasks. In this way, it is possible to build models that include specific knowledge bases that

include criteria to select the next tasks according to the execution of previous tasks. These

solutions provide the required freedom to use the most appropriate knowledge representation

and inference for different control strategies. Another utility of the use of control tasks is that

they make possible to implement a dynamic selection of methods for tasks. The idea is that a

control task uses a knowledge base that establish how to select the most appropriate method

and, as output, the control tasks generates the name of a subtask (with the corresponding

method) to be executed.

Concerning the execution of a method formulated using the Link language, it follows the

control established by the set of control rules. In the simplest case, when this sequence is

previously known and it is permanent, there is just one rule with the explicit order at the right

hand side. However, the use of control rules allows to define more complex situations. First,

it allows to dynamically determine the sequence of execution, so that it is possible to

represent control structures such as if-then, loops, repeat, etc. In order to do so, control states

are used. For instance, in the previous example of method that follows the establish and refine

strategy, the second rule can be triggered in a loop until the hypothesis is not intermediate. In

addition to that, in Link language is possible to define a more powerful execution with a non-

linear sequence. This is possible by two reasons: on the one hand, for a given state more than

one rule may be used and, on the other hand, a given task may generate more than one result.

This possibility of non-linear executions is a powerful technique that allows the developer to

define more easily problem-solving strategies where there are search procedures. The

developer can also modify the search control strategy using some tools provided by Link:

input modes (one-of or set), output mode (all, one-each-time), and search parameters (such as

27

maximum number of replies and time-out). According to this, Link develops a local search

space for the execution of a particular problem-solving method. In general, given that a

method calls subtasks, each one with its particular method, different local search spaces are

developed at run time by the Link interpreter, each one for each method. A concrete example

of an execution corresponding to the establish-and-refine problem solving method which has

been presented in Link language previously is presented in figure 9.

4.2. Primitives of Representation to Operationalize the Knowledge Model

During the development of a particular knowledge model, the developer initially defines an

implementation-independent abstract model that constitutes a description of a cognitive

architecture. As it was presented, the central structure of this model is defined as a hierarchy

of knowledge areas, where each area is divided into subareas until elementary areas are

reached (called primary knowledge areas).This structure is refined by using the Concel and

Link languages. In order to produce the final operational version of this knowledge model,

KSM provides a set of software components called primitives of representation. A deeper

description of this type of components can be found at Molina et al. (1999).

The purpose of a primitive of representation is to provide a symbolic representation together

with a set of primitive inference methods to be used in the operationalization of a primary

area of a knowledge model. For each primary knowledge area of the model, the developer

selects the most appropriate primitive that acts like a template to be filled using domain

knowledge in order to create the final operational component that implements the primary

area. It is important to note here that the use of primitives of representation (taken from an

28

open library of primitives in KSM) provides the required freedom to the developer to use the

most appropriate representation and inference for each case, which is especially important to

ensure the adequate level of efficiency of the final implementation. As a consequence, the

declarative description of the domain of a final model will be formulated using different

languages, part of it using the Concel language (the common terminology) and the rest

written in different languages provided by primitive of representation.

A primitive of representation is a reusable pre-programmed software component that

implements a generic technique for solving certain classes of problems. The primitive defines

a particular domain representation using a declarative language together with several

inference procedures that provide problem-solving competence. In a simplified way, the

structure of the primitive is defined by a pair <L, I>, where L is a formal language for

knowledge representation and I = {ij} is the set of inferences, i.e., a collection of inference

procedures that use the declarative representation written in L. The module defined by a

primitive is a design decision that is mainly influenced by the representation language L. This

language is usually homogeneous, declarative and close to personal intuitions or professional

fields. In a particular primitive, this language can adopt one of the representations used in

knowledge engineering such as: rules, constraints, frames, logic, uncertainty (fuzzy logic,

belief networks, etc.), temporal or spatial representations, etc. Also other parameterised or

conventional representations can be considered, such as the parameters of a simulator or a

graph-based language. Each element of the set of inferences I expresses an inference

procedure that uses the knowledge formulated in the language L. For instance, the rule-based

primitive may have an inference, called forward chaining, that implements an inference

procedure following a forward chaining strategy to determine whether a goal can be deduced

from a set of facts given the rules of the knowledge base. In addition, there may be also

29

another inference that follows the backward chaining strategy for the same goal. Each

inference ij defines a pair <P, C> where P is a set of inputs (premises) and C is a set of

outputs (conclusions).

The primitive provides an interesting level of generality due to the abstraction of the domain

knowledge that provides the use of the representation language. The same primitive can be

used to construct different modules with different domain knowledge. For instance, a rule-

based primitive can be used to construct a module to diagnose infectious diseases or it can be

used to build a module that classifies sensor data. Both modules are supported by the same

primitive but they include different domain knowledge. Another interesting advantage

provided by the primitive is that there is a clear analogy between primitives and knowledge

areas, so this offers an easy transition from the implementation-independent model (as a result

of analysis phase) to a more refined model where elementary computable components have

been selected to configure the operational version. This continuity preserves the structure

defined by the abstract model and, as a consequence, improves the understandability and

flexibility of the final system.

Primitives of representation are combined to develop a complex architecture, following a

model defined as a structure of knowledge areas modeling an understanding structure at the

knowledge level. Each primitive is associated to one or more primary areas and then, each

primary area is part of higher level knowledge areas. Basic tasks provided by primitives are

combined to define strategies of reasoning by using the Link language. On the other hand, the

representation language of the primitive is used to formulate a declarative model of the

domain knowledge. However, this local information could be shared by other different

primitives. This problem about common concepts is solved by using of conceptual

30

vocabularies. Vocabularies define global sets of concepts to be shared by different knowledge

areas and, therefore, they have to use a general representation, the Concel language. From the

point of view of primitives of representation, they must be capable of sharing vocabularies.

The solution to this is that the primitive provides mechanisms to import Concel definitions

that are translated to the local representation language of the primitive. Thus, when the user of

the primitive needs to write a particular local knowledge base during the knowledge

acquisition phase, the vocabularies shared by the primitive are previously imported to be part

of the base, in such a way that vocabularies are directly available in the language of the

primitive to help in writing the knowledge base.

At the implementation level, the primitive is a software module designed and implemented as

a class (from the object-oriented development point of view), i.e. programmed with a hidden

data structure and with a collection of operations which are activated when the class receives

messages. A class implementing a primitive (figure 10) includes, on the one hand, an internal

data structure divided into three basic parts: (1) a data structure to support the local

vocabulary used by the knowledge base (for instance, in the case of a representation of rules,

this part contains the set of concepts, attributes and allowed values that will be valid in the

knowledge base), (2) a data structure that implements the internal structure that supports the

knowledge base as a result of the compilation of the language provided by the primitive, and

(3) a working memory that stores intermediate and final conclusions during the reasoning

processes together with traces that can serve to justify conclusions through explanations. The

data structures (1) and (2) are created during the knowledge acquisition phase and the data

structure (3) is created and modified during the problem-solving phase when inference

procedures develop their strategies of reasoning.

31

On the other hand, the class implementing a primitive includes a set of external operations

that can be classified into three types: (1) knowledge acquisition operations, whose purpose is

to help the user in creating and maintaining the knowledge base, (2) problem-solving

operations that execute the inferences provided by the primitive; they receive a set of inputs

and generate responses using the internal structure representing the knowledge base, and (3)

explanation operations, that justify the conclusions using the traces stored in working

memory. If the primitive is not knowledge based, the corresponding object includes neither

knowledge acquisition nor explanation operations.

During the creation of a knowledge model, the developer constructs each knowledge area

using the corresponding primitive, which is implemented by a particular class. Internally, an

instance of the corresponding class is automatically created. Certain operations for knowledge

acquisition can be invoked (by inheritance) to construct and modify the knowledge base:

import a conceptual vocabulary, edit the knowledge base (using an external user-friendly

view of the knowledge base to the operator, with facilities to create and modify) and machine

learning procedures. During the execution of tasks of the knowledge model, the problem-

solving operations of the corresponding objects of the primitives are invoked with input data.

Those local operations navigate through the internal data structure of the knowledge base to

generate outputs. During the problem solving reasoning, the operations produce intermediate

and final conclusions that are stored in the working memory. This information can be used

later, when the user of primitives wants to get explanations that justify the conclusions of the

reasoning.

In summary, the reusable component for knowledge modelling, the primitive of

representation, is implemented by a software object. In fact, object-oriented methodologies,

32

that have already a long tradition in software engineering, provide a good context for reuse.

The philosophy of the object-oriented design proposes a more stable modularity based on the

identification of components of a certain world (real or imaginary), instead of the original

modularity based on functions or processes that tends to be less stable. This philosophy is

adequate for implementing primitives where the intuition associated to each object is the

representation technique used by the primitive. The language where each primitive must be

formulated is open. Different programming languages such as C,C++, Fortran, Prolog, etc

may be applied. If they are knowledge-based they must have a user interface to acquire the

structures of representation for the knowledge base (such as rules or frames). This activity is

carried out by programmers outside of KSM using particular programming languages. Once a

particular primitive is built, it must be individually validated and then it is integrated in the

KSM library as a reusable software component. However, for a specific application, it is not

always necessary to program the complete set of primitives of representation. The reason for

that is that some primitives may exist already in the KSM library. They were developed

previously for a different application, so that they can be reused for the development of a new

one. Therefore, just part of the primitives will have to be programmed and the rest of them

will be reused. KSM facilitates software reuse, decreasing the effort of developing new

applications. Once the complete set of primitives has been programmed, the executable

version of the knowledge model is built by duplicating, adapting and assembly primitives

using the KSM facilities.

33

4.3. Characteristics of the KSM Software Environment

The KSM environment helps developers and end-users to construct and maintain large and

complex applications, using both knowledge-based and conventional techniques. KSM covers

different steps of the life-cycle of an application:

• Analysis. KSM uses a particular modeling paradigm, based on the knowledge area concept,

for a high level description of the knowledge of the application. The developer uses this

paradigm to create a conceptual model to be accepted by the end-user before starting the

implementation. Unlike the conventional models of software engineering based on a

perspective of information processing, this model is focused on knowledge components

which provides a richer and more intuitive description of the architecture of the

application. During the analysis phase, the developer follows several steps (the actual

realization of these steps may include loops):

1. Identification of top-level tasks: Initially, the developer defines a conversation model

between the user and system, where the top-level task are established. This

conversation model can be validated with the end-user by developing a mock-up

prototype.

2. Top-down task decomposition: Each top-level task is refined by turn selecting its

appropriate method (or methods) which decomposes the task into subtasks. This top-

down decomposition continues several levels until primary methods are identified.

As a result, a set of task-method-subtask-domain hierarchies is produced, one for

each top-level task.

34

3. Knowledge area integration: Finally, the components of the task-method-subtask-

domain hierarchies are encapsulated in a structure of knowledge areas. Here,

different structuring options may be considered until an acceptable one is obtained

representing adequately the epxert intuitions.

 It is important to note that the analysis phase may be either (1) totally creative, i.e. the

model is only derived from the information provided by domain experts, or (2) model-

based, i.e., the model is also derived from a generic model taken from a library of reusable

models that establishes the abstract structure of components and relations.

• Design and implementation. KSM assists the developer to create the final executable

version of the knowledge model. In order to do so, KSM manages reusable software

components (called primitives of representation) which are adapted and assembled by the

developer following the structure of the conceptual model. Normally, primitives provide

general inference procedures and representation techniques to write knowledge bases

(although also domain dependent primitivess can be considered). In this phase it is also

required to fill in the architecture with the specificities of the problems to be solved. For

this purpose the domain models are to be formulated by introducing parameter values and

knowledge bases required for case modeling.

• Operation and maintenance. Once the application is built, the end user can apply KSM to

consult the structure of the conceptual model of the application and may access to local

independent knowledge bases following this structure. The role of KSM here is to allow

the end-user to open the application to access to its knowledge structure so that, instead of

being a black box like the conventional systems, the final application shows high level

35

comprehensible descriptions of its knowledge. The user also may change the conceptual

model at this level, without programming, in order to adapt the system to new

requirements. KSM automatically translates these changes into the implementation level.

As it was described, KSM conceives the final application as a modular architecture made of a

structured collection of building blocks. At the implementation level, each elementary block

is a reusable software module programmed with an appropriate language and a particular

technique (knowledge-based or conventional). Using KSM, a developer can duplicate, adapt

and assemble the different software components following a high level knowledge model

which offers a global view of the architecture. The direct advantages of the use of KSM are:

(1) it is easier to design and to develop large and complex knowledge based systems with

different symbolic representations, (2) the final application is open to be accessed by the end-

user in a structured way, (3) the modular nature of the architecture allows the system to be

more flexible to accept changes, and it is also useful for production planning (i.e. it is possible

to define an implementation plan according to the structural constraints of the model), and for

budgeting (the project is decomposed in understandable components where it is possible to

make better prediction of time and costs). The KSM software environment provides the

following facilities:

a) A user interface for knowledge modeling, following the knowledge area paradigm. This

interface consists of: (1) a graphical window-based view of knowledge modules providing

visual facilities to create, modify and delete components, (2) the Link language interpreter

which allows the developer to formulate high level problem-solving strategies that

integrate basic components, and (3) the Concel language compiler to define common

36

terminologies shared by different modules. Figure 11 presents a general screen presented

by the KSM environment showing the knowledge areas components of a structured model.

b) A library of reusable software components (the primitives of representation). They may be

either conventional or knowledge-based modules. Examples of general knowledge-based

primitives are: rule-based primitive with forward and backward chaining inference

procedures, frame-based primitive with pattern-matching procedures, constraint-based

primitive with satisfaction procedures, etc. The library is open to include new components

according to the needs of new applications and they can be programmed by using different

languages (C++, Prolog, etc.).

c) A user interface for execution. This interface allows the developer to execute knowledge

models to validate them. The evaluation may be done either for the whole model or parts

of it. Using the interface, the developer may select tasks to be executed, provide input data

and consult results and explanations. The execution makes use of the Link interpreter to

execute methods and the primitives of representation to execute the basic inferences.

The original version of KSM operated on Unix environments with a minimum of 32 Mb of

RAM and more than 50 MIPS of CPU. This version of KSM was implemented using C and

Prolog languages. Both languages were improved by adding object oriented features. X

Window and OSF/Motif were used to develop the user interface. Recently, a new version for

the Windows operating system was constructed using C++ and Java languages.

37

5. EXAMPLE OF KNOWLEDGE MODEL USING KSM

In order to illustrate the previous knowledge modeling process, an example about traffic

management is presented in this section (another detailed example in this domain can be

found at Molina et al. (1998b)). Traffic management systems must be reactive to the different

states of traffic flow in a controlled network (a network equipped by sensors and data

communication facilities allowing to get real time data in a central computer and to diffuse

signals from this central computer). These systems evolved from an initial approach based on

a library of signal plans which were applied on a time based pattern, to an intelligence for

understanding traffic situations in real time integrating a model for decision making

(Bretherton et al. (1990), Mauro (1989)). Nevertheless, the experience in using such systems

showed deficiencies when the traffic situation became specially problematic and the

intervention of the operator was necessary and almost customary in most installations.

The above considerations suggested a need to complement the existing traffic control systems

(including pre-calculated plan systems, dynamic systems and VMS systems) with an

additional layer where the strategic knowledge, currently applied by human operators, may be

applied to understand the specific processes of congestion development, and corresponding

actions for alleviating the problem may be modeled. From this viewpoint, the technology of

knowledge-based systems was considered adequate for designing and implementing suitable

knowledge structures to formulate conceptual models for traffic analysis and management.

To control a motorway a technique usually applied is to send messages to the drivers through

panels whose content can be modified by operators at the control center (these panels are

named Variable Message Signals (VMS)). The motorway is adequately controlled if in any

38

moment the message panels are pertinent and consistent with the state of the traffic flows in

the motorway. An intelligent system to help in decision support could be formulated in terms

of a general propose and revise method where the current state of the panel messages are

evaluated with respect to the state of traffic and are revised accordingly. The following

analysis is performed to design such simple system.

5.1 The Domain Knowledge

The basic traffic vocabulary of this example includes the following concepts (figure 12).

There are traffic detectors with three attributes, occupancy, speed and flow that get as value

temporal series of numerical values. A road section is a significant cross point of the road that

is characterized by its capacity (maximum flow that the section accepts), the detector

associated to the road section, and two dynamic qualitative attributes, saturation level and

circulation regime, that are useful to characterize the current state of the section with

symbolic values. The road link serves to connect consecutive sections. It is characterized by

the upstream and the downstream section. Thus, the structure of the road network is

represented by a set of road links. A path is a sequence of links and includes the attribute

travel time. Finally, there are variable message signs (VMS) where it is possible to write

messages for drivers. Two types of meaningful messages can be considered in this simplified

example: (i) qualification of the traffic state downstream the panel location (e.g., "slow traffic

ahead at N Km.", "congested link at N Km") and (ii) information on time delays to reach

some destination (e.g., "to destination D, 20 min by option B").

39

The declarative knowledge of the domain model is based, on the one hand, on conditions

relating traffic states in some sections and the possibility of writing a message in a particular

VMS. Each panel includes a predefined set of messages (messages qualifying the situation in

a set of traffic sections and messages for path recommendation) where each message should

be presented to the drivers when certain conditions about the situation in several downstream

sections are satisfied. On the other hand, there are also conditions modeling consistency

between messages along a path or in an intersection to ensure that the drivers along a path do

not find contradictory recommendations or that the drivers incoming a roundabout are

adequately directed by the messages to select the adequate options. In order to represent the

first type of knowledge, rules can be written using the following format:

 if circulation regime of section Si = Ri,

 saturation level of section Si = Li,

 circulation regime of section Sj = Rj,

 saturation level of section Sj = Lj

 ...

 travel time of path Pn = close to N minutes,

 travel time of path Pm = close to M minutes,

 ...

 then message of panel Mk = Tk

This type of rules model the fact that when the sections Si, Sj, ... (sections that are

downstream the panel Mk) are in a certain state characterized by the circulation regime and

the saturation level of such sections, and when the estimated travel time of certain paths are

close to N minutes (where the evaluation of the close to qualifier can be done by using a

particular fuzzy possibility function), then it is deduced that the panel Mk should present the

40

message Tk. Thus, each panel will have a set of this type of rules that establish conditions

about the sections downstream the panel for each type of message to be presented.

The second type of conditions that establish consistency between messages may be modeled

by two classes of rules. First, a set of rules to deduce sets of messages for panels based on

messages of other panels, with the following format:

 if message of panel Mi = {Ti,...},

 message of panel Mj = {Tj,...},

 ...

 then message of panel Mk = {Tk,...},

 message of panel Ml = {Tl,...},

 ...

This type of rule means that the occurrence of messages {Ti,...} for panel Mi, and

messages {Tj,...} for panel Mj implies that the messages of panel Mk and panel Ml must

be respectively included in the sets of messages{Tk,...} and {Tl,...}. The previous

rules are complemented with rules defining no-good representing incompatible sets of

messages. This type of rules present the following format (meaning that is not possible the

occurrence of messages {Ti,...} for panel Mi, and messages {Tj,...} for panel Mj):

 if message of panel Mi = {Ti,...},

 message of panel Mj = {Tj,...},

 ...

 then no-good.

41

In addition to the previous declarative model, there are also abstraction methods to determine

(1) the qualitative values of road sections for qualification of the saturation level and

circulation regime, based on the numerical values recorded by detectors for occupancy, flow

and speed, and (2) the estimated travel times for the predefined paths, based on the current

speed registered on detectors.

5. 2. The Strategy of Inference

The standard general reasoning method usually applied in this type of control applications is

based in three main steps: (1) problem detection, where possible situations with significant

differences with respect to the features of a goal situation are identified (in the case of traffic

this ideal situation is the flow on the road with no congested areas) (2) problem diagnosis,

when an undesirable situation is presented, its potential causes are identified, and (3) problem

repair, an analysis of the possible sets of actions capable to modify the causes in positive

terms is performed to select the adequate ones. This is the approach followed in the KITS

project Boero et al. (1993, 1994) and the TRYS system Cuena et al. (1995, 1996a, 1996b).

Although this is a right approach it is also possible to use as alternative a shallow model

where a direct relation between the state of traffic and the panel messages is established as the

one proposed in this model, where the diagnosis and repair steps are summarized in a single

situation-action relationship, Cuena (1997).

The inference procedure follows a general strategy based on a cycle of reasoning that updates

the set of messages that were determined in the previous cycle, according to the current state

of the road network. This updating is a kind of reconfiguration task that first abstracts the

42

current state using information recorded by detectors, then removes not valid messages

(messages whose conditions to be presented are not satisfied), and finally extend the current

set of messages with new ones. This strategy can be modelled by a task-method-domain

structure (figure 13) where the global task called determine messages configuration is divided

into three subtasks. The first task abstracts information from detectors using a network of

abstraction functions to determine qualitative values (e.g., for control regime and saturation

level) and also uses elementary numerical procedures in order to compute derived numerical

values (such as the estimated travel time and the exact numerical value for saturation). The

second task, remove not valid messages, studies the pertinence of each message by checking

their applicability conditions. Finally, the third task, extend with new messages, is applied for

the panels that have removed their messages. It can be carried out by a propose-and-revise

method with three subtasks: propose new message, verify messages consistency and remedy

violations. The first subtask, propose new messages, may be performed by a rule based

forward chaining method which uses a knowledge base of rules proposing possible messages

in panels. These rules present the format of the first type of rules presented in the previous

section. The next subtask, verify message consistency, may be performed by a method using

no-good rules (of the second type of rules presented in the previous section) for the definition

of contradictory messages along paths in the network. Finally, the remedy violations subtask

solves inconsistencies by retracting inadequate messages. This subtask may be performed

using a base of priority rules providing criteria for selection of messages candidates to retract

after the results of the two previous subtasks. The last subtask applies a minimum retraction

criterion, i.e. it is selected the minimum set of messages according to the priority scheme that

ensure the consistency. These three tasks work in a loop using the following control

mechanism. First, a new message is proposed for a single panel that does not have a message

yet. Then the global consistency is studied. If a violation is found, then the remedy task

43

decides which panel must change its message and a new proposal is generated, starting a new

cycle. This process finishes successfully when all panels have at least one message and they

do not present inconsistencies.

The previous analysis may be summarized in terms of the knowledge-area structure presented

in figure 14. This structure includes a top-level area representing the whole model, called

VMS management knowledge, that includes the task called determine messages

configuration. This area is decomposed into two simpler areas: abstraction knowledge, that

includes the criteria to abstract data from detectors, and messages knowledge, that represents

the knowledge about messages of panels. This second area is decomposed into three:

messages applicability, messages consistency and preference criteria. Note that each primary

area (bottom-level area) encapsulates one type of domain model defined in the previous task-

method-domain structure which corresponds to a type of knowledge base (KB), together with

the associated primary tasks. For instance, the domain model called applicability conditions

for messages is part of the primary area called messages applicability and also includes the

two tasks that make use of this model: remove not valid messages and propose new messages.

In this case the message applicability is evaluated using fuzzy possibility distributions of

every message defined with respect traffic flow, speed. A message is discarded when its

possibilities with respect to the current and predictable traffic conditions are unacceptable.

5.3 Generalization to Support Reuse

A more realistic and complex model may be designed if a larger area for traffic management

is considered. In this case, an appropriate approach is to divide the whole traffic network into

44

local regions in such a way that first, a decision about messages for panels is locally carried

out taking into account the specific problems of each region and, then, the local proposals are

combined avoiding incompatibilities (given that there may be common panels to several

regions). The previous model can be used to locally propose messages for the region panels

and it needs to be extended with other knowledge areas that include knowledge to manage the

whole network. Figure 15 shows the complete structure of knowledge areas where

additionally to the knowledge areas of the previous model, a new top-level area has been

included that contains the model for a region together with another new area responsible for

combining local proposals. The combination is based on a kind of generate-and-test strategy

where first a combination is generated based on the local proposals and, then, a test is

performed to detect conflicts produced by inconsistent proposals in the panels common to two

areas. As an alternative to this design, the proposed architecture using region control models

could be also considered like a multiagent system, where the interaction between regions

could be modelled by social domain model to solve cooperation and consensus formation in

dealing with common problems. Some experiments in this direction can be found at Ossowski

et al. (1996).

Note that the model that figure 15 presents is a generic structure considered as a pattern to be

instantiated using the particular knowledge of a specific traffic network. In doing so, there

will be several instances of the knowledge structure for a region, all of them having the same

set of classes of knowledge areas and the same tasks and methods, but with different

knowledge bases. Therefore this design presents already a certain level of generality to be

reused for different traffic networks of different cities. However, in order to increase the level

of reuse it is interesting, when it is possible, to abstract its components and to propose a more

general knowledge structure, capable to be used for other domains. The appropriate level of

45

abstraction is a decision that the developer must establish according to the possibilities of

each model and taking into account that too general methods may be difficult to be used by

other developers.

In this example, the previous described model can be abstracted in order to build a more

general version, independent of the traffic domain. Figure 16 shows the task-method-domain

structure corresponding to the structure that figure 13 presents, that has been extended to

consider several components (regions in the traffic problem) and tasks, methods and domain

models have been abstracted from the traffic domain. Here, the set of messages for panels are

generalized to be considered as a set of values for parameters, and the selection of the traffic

control plan is viewed as a configuration problem, i.e., updating values to parameters

according to certain constraints.

Likewise, figure 17 shows the generalized knowledge-area structure corresponding to the

structure presented in figure 15. This structure includes traffic-independent tasks and

knowledge areas. The operationalization of this model using KSM requires first (1) to write

the corresponding Link methods for non primary tasks, (2) to write conceptual vocabularies

using Concel and (3) to select appropriate primitives of representation that implement primary

areas. In this case, for instance, the knowledge base for applicability conditions can be written

using rule-based representation, and the combination constraints base can use a constraint-

based representation. Thus, primitives that follow these representations and implement the

corresponding inference procedures can be used here as reusable software components to

support this part of the model. Finally, once this generic architecture has been built, it can be

used as a pattern to construct a particular domain model by creating instances of the generic

knowledge areas and writing specific vocabularies and knowledge bases .

46

6. DISCUSSION

The proposed approach may be evaluated according to the potential capacities and drawbacks

to support applications.

6.1. The Capacities

• Structuring & encapsulation support: it is produced through the knowledge areas structure

with the advantage that the modularity of structuring is based in a conceptual organization

close to the common sense understanding of the model. An example of structure is

summarized in figure 15, where the relations between knowledge areas are is part of type

and the internal structure of the areas in terms of tasks and knowledge components may be

inspected. This structure allows the user to understand and to maintain in acceptable

conditions a given application. The usual structuring principle of application in software

engineering is based on the data and process components. These concepts are less close to

the common sense intuitions of users non computer literate so the new organization based

on knowledge level structuring is a more adequate solution for encapsulation and structure.

Moreover, this organization may be implemented in object oriented software models which

means that the advantages of this type of implementation are implicit in the approach

based on knowledge areas.

• Software sharing support: The components of a generic model may be replicated several

times with different contents in a case model. In fact, the proposed concept of knowledge

area based encapsulation allows a new level of abstraction of applications as it is displayed

47

in the figure 18 where they are presented the three abstraction levels based provided by the

KSM environment where:

- In the lower level a collection of procedures to interpret the basic knowledge

representation entities is included together with the software for editing and

maintaining an application.

- In the following level there is a generic model abstraction with a generic structure of

knowledge areas and where all the composed inference methods are formulated.

- The generic methods of the previous level use different domain models as presented

in the case model level.

• Reusability: Two types of reuse may be possible:

- Reuse of the basic units representing primary methods of reasoning supported by

rules, frames, constraints, tables etc. The reuse is produced at the level of the

problem solving methods where different knowledge bases of constraints, rules, etc.

are formulated for every case.

- Reuse of total or partial generic models. In this case reuse is produced by importing

an upper level reasoning method of a generic model that may be used to perform a

subtask in other model.

48

 Reusable software components are self contained, clearly identifiable artefacts that

describe and/or perform specific functions, have clear interfaces, appropriate

documentation and a defined reuse status Sametinger (1997). The reuse status contain

information about who is the owner of a component and who maintains it. Every

component, then, must include a description of its functionality and a code which performs

it. The problem is that as a consequence of the maintenance process it may happen that

some discrepancies between the textual description of the component and the software

code exist. This may be the source of misunderstandings in the use and performance of the

component. Obviously, a knowledge area (including the lower level units supporting its

functionality) is a typical software component which has the advantage that its code

written in knowledge representation language is understandable by the users even not

expert in Computer Science. Then, it is not required to include the double aspect of textual

description and software code to get an understandable formulation of a software

component. This is an advantage for maintenance and applicability of the components

formulated in a knowledge based approach.

• Support of the software production process through the generic model abstraction. This is

justified by: (1) generic models is a form of specification of an application class contents,

(2) possibility to schedule and to budget case applications of a generic model because all

the elements to be developed are well defined in this type of models where it is explicit a

structured organization of components every one well known and, hence, easy to evaluate

in time and cost, and (3) certain level of maintenance by users.

• Advanced human-computer interaction support: The usual approach to human computer

interaction is to include in the application facilities to generate versions of the system

49

answers closer to the user needs and understanding facilities (natural language expression,

multimedia presentation of answers, etc.). However, not too much attention has been paid

to allow the user to enter in the conceptual world of an application because, usually, it is

implemented as a fixed set of functions supported by a blackbox implementation using

conventional languages not understandable enough by the users. Using knowledge based

models it is possible a type of interface where for every class of questions a task-method-

structure is designed supported by declarative domain models allowing the production of

explanations at different levels and, hence, to allow the user to communicate at the

knowledge level with the application.

6.2 The Drawbacks

There are two types of critiques for the knowledge modeling approach:

• Knowledge building & validation process: To ensure that the right contents are introduced

in a case model, an experimental approach must be applied. The current state of knowledge

acquisition methods ensure more reliable (and predictable in terms of time and budge)

development processes. As commented before using structured knowledge representation

50

models it is possible to identify in the phase of specification a structured view of the

knowledge of an application in terms of hierarchical structures of problem solving methods

and associated domain models. This generates a framework to guide the implementation of

the reasoning method and to the elicitation of domain models in terms of adequate size

which will ensure reliability and efficiency. Moreover, if qualified operators are used to

develop applications and advanced human-computer interaction environment is used, as it

is possible now, the knowledge debugging will be efficient enough because it is possible to

obtain explanations at different depths so it will be possible to establish the role of the

different levels of knowledge used to produce and answer.

• Efficiency: Although the knowledge based models work in an interpreted mode, which is a

drawback for efficiency, the hardware evolution already shows power enough to ensure an

acceptable timing in the answers even in these conditions.

7. CONCLUSIONS

An outline of the possible profile of tools for application development based on knowledge

modeling technologies has been proposed using as example the approach supported by the

KSM tool. Although alternative approaches may be used to improve some of the specific

drawbacks that the KSM tool may present, our experience shows that it is possible to

conceive software development platforms supporting something that could be named

cognitive programming where data and procedures specification are included as pieces of

51

knowledge. At the current state of this technology, it may provide, both from the point of

view of operation and development, levels of service competitive enough with the

conventional approaches because, as commented in the previous paragraph, it is possible to

satisfy most of the conditions usually asked for a good software development platform and

methodology with additional advantages not usually considered in conventional approaches

that are being focus of growing attention such as potentialities for reuse and advanced user

interaction support.

8. ACKNOWLEDGEMENTS

B. Chandrasekaran provided valuable comments to an earlier version of this paper, the PhD

and undergraduate students of the Intelligent Systems Group (ISYS group) provided help in

implementation of KSM. Reyes Riera was the responsible for edition.

9. REFERENCES

BOERO M. & CUENA J. & KIRSCHFINK H. & KROGH C. (1993): “KITS: A General Approach for

Knowledge-Based Traffic Control Models” Proc. Technical Days on Advanced

Transport Telematics, Brussels, March 1993.

BOERO M. & CUENA J. & KIRSCHFINK H. & TRAETTEBERG H. & WILD D. (1994): “The Role of

Knowledge-Based Models in Traffic Management and their Design” in Towards an

Intelligent Transport System Vol. 2, edited by ERTICO. Paris, 1994.

52

BRETHERTON R.D. & BOWEN G.T. (1990): “Recent Enhancements to SCOOT - SCOOT version

2.4”, Proc. of the 3rd International Conference on Road Traffic Control, IEE, London,

1990.

CHANDRASEKARAN B. (1983): “Towards a Taxonomy of Problem Solving Types” A.I.

Magazine 4 (1) 9-17, 1983.

CHANDRASEKARAN, B. (1986): "Generic Tasks in Knowledge Based Reasoning: High Level

Building Blocks for Expert Systems Design" IEEE Expert, 1986.

CHANDRASEKARAN B. & JOHNSON T.R. & SMITH J.W. (1992): “Task-Structure Analysis for

Knowledge Modeling”. Communications of the ACM, vol 35, nº 9. September, 1992.

Also in Knowledge Oriented Software Design J.Cuena (ed). Elsevier, 1993.

CUENA J. (1997): "Traffic Control As Non Monotonic Reasoning: Truth Maintenance

Systems For VMS Panels Messages" in Proc. 5th European Congress on Intelligent

Techniques and Soft Computing (EUFIT'97), Vol.1, pp 2005-2008, Elite Foundation,

Aachen, 1997.

CUENA J. & MOLINA M. (1994): “KSM: An Environment for Knowledge Oriented Design of

Applications Using Structured Knowledge Architectures” in Applications and

Impacts. Information Processing’94, Volume 2. K. Brunnstein y E. Raubold (eds.)

Elsevier Science B.V. (North-Holland), 1994 IFIP.

53

CUENA J. & HERNÁNDEZ J. & MOLINA M. (1995): “Knowledge-based Models for Adaptive

Traffic Management Systems” Transportation Research Part C, Issue 3 (5), 1995.

CUENA J. & HERNÁNDEZ J. & MOLINA M. (1996): “Knowledge Oriented Design of an

Application for Real Time Traffic Management: The TRYS System” in European

Conference on Artificial Intelligence (ECAI’96). W.Wahlster (ed.), Wiley, 1996.

CUENA J. & HERNÁNDEZ J. & MOLINA M. (1996): “An Intelligent Model for Road Traffic

Management in the Motorway Network around Barcelona” in Advanced IT Tools.

N.Terashima, E.Altman (eds.). IFIP, Chapman & Hall, 1996.

CUENA J. & HERNÁNDEZ J. (1997): “An Exercise of Knowledge Oriented Design: Architecture

for Real Time Decision Support Systems” in Knowledge-Based Systems-Advanced

Concepts, Techniques and Applications. Spyros G. Tzafestas (ed). World Scientific

Publishing Company, 1997.

CUENA J. & MOLINA M. (1997): “KSM: An Environment for Design of Structured Knowledge

Models” in Knowledge-Based Systems-Advanced Concepts, Techniques and

Applications. Spyros G. Tzafestas (ed). World Scientific Publishing Company, 1997.

54

GRUBER T.R. (1993): "A Translation Approach to Portable Ontology Specifications".

Knowledge Acquisition, 5, 1993.

LANDES, D. & STUDER R. (1994): "The Design Process in MIKE", Proc. 8th Knowledge

Acquisition for Knowledge-Based Systems Workshop KAW'94 (Banff, Canada, January

30-February 4), 1994.

LOWRY M. & DURAN R. (1989): "Knowledge-based Software Engineering", chapter XX in

Handbook of AI (Vol IV), Barr A., Cohen P.R. and Feigenbaum E. (eds.), Addison

Wesley, 1989.

MAURO V. & DI TARANTO (1989): “UTOPIA” Proc. 6th IFAC/IFORS Conference on Control,

Computers and Communications in Transport. Paris, 1989.

McDERMOTT J. (1988): “Preliminary Steps Toward a Taxonomy of Problem Solving

Methods” in Automating Knowledge Acquisition for Expert Systems, S.Marcus ed.,

Kluwer Academic, Boston, 1988.

McINTYRE A. (1993): “KREST User Manual 2.5” Vrije Universiteit Brussel, AI-Lab.

Brussels, 1993.

55

MOLINA M. & SIERRA J.L. & SERRANO J.M. (1998a): "A Language to Formalize and to

Operationalize Problem Solving Strategies of Structured Knowledge Models" 8th

Workshop on Knowledge Engineering: Methods and Languages KEML 98. Karlsruhe,

Alemania, 1998.

MOLINA M. & HERNÁNDEZ J. & CUENA J. (1998b): "A Structure of Problem Solving Methods

for Real-time Decision Support in Traffic Control" International Journal of Human

and Computer Studies (1998) 49.

MOLINA M. & SIERRA J., CUENA J. (1999): "Reusable Knowledge-based Components for

Building Software applications: A Knowledge Modelling Approach" International

Journal of Software Engineering and Knowledge Engineering, 1999.

MUSEN M.A. & TU S.W. (1993): "Problem-Solving Models for Generation of Task-Specific

Knowledge-Acquisition Tools" in Knowledge Oriented Software Design, J.Cuena

(ed.), Elsevier, 1993.

NEWELL A. (1982): "The Knowledge Level" in Artificial Intelligence Vol 18 pp 87-127.

OSSOWSKI S. & GARCÍA-SERRANO A. & CUENA J. (1986): “Emergent Co-ordination of Flow

Control Actions Through Functional Co-operation of Social Agents”. European

Conference on Artificial Intelligence ECAI’96, W.Wahlster (ed.), Wiley, 1996.

56

PRESSMAN R.G. (1992): "Software Engineering: A Practitioner's Approach", 3ª edition,

McGraw-Hill, 1992.

SAMETINGER J. (1997): "Software Engineering with Reusable Components" Springer Verlag,

1997.

SMITH D. (1988): "A Knowledge based Software Development System", Proc. AAAI-88

Workshop on Automating Software Design. St. Paul, Minnessotta, 1988.

STEELS, L. (1990): "Components of Expertise" AI Magazine, Vol. 11(2) 29-49.

WIELINGA B.J. & SCHREIBER A.T. & BREUKER J.A. (1992): “KADS a modeling approach to

knowledge engineering “ in Knowledge Acquisition 4, 1992.

57

Conversation Model

Method

..........

Task ...

...

Primary
Method

... ...

...

...

...

... ...

...

...

... ...

Declarative
Model

Vocabulary

........

Domain
Model

Primary
Method

Primary
Method

Primary
Method

Primary
Method

Primary
Method

Vocabulary Vocabulary Vocabulary Vocabulary Vocabulary
Declarative

Model
Declarative

Model
Declarative

Model
Declarative

Model
Declarative

Model

Task Task Task Task Task

Method Method Method

...

Method MethodMethodMethod

... ...

TaskTaskTaskTaskTaskTask

MethodMethodMethod

........Top-level
Task

Top-level
Task

Top-level
Task

Figure 1: Task-method-domain structure for a model

58

What is happening?

propose
causes

filter
causes

compare

evaluate

Why is it
happening?

What may
happen if? What to do if?

classification task

heuristic
 classification

refineabstract match

model based
diagnosis

prediction task

simulate

model based
prediction

generate
regulation

pattern
matching

qualitative
abstraction

instan-
tiation

causal
covering

fuzzy
comparison

model-based
simulation

pattern
matching

selection
by prefer.

Conversation Model

 abstraction
relations

patterns of
problems

system
structure

model

causal
model

comparison
criteria

system
structure

model

patterns of
regulations

preference
crieria

concepts
and

classes

pattern
slot

names

component
features

concepts
attributes

values

fuzzy
qualifiers
measures
for fuzzy

references

types of
connections

pattern
slot names

names of
criteria

select
best

KNOW-
LEDGE
BASES

VOCA-
BULARY

DOMAIN
MODEL

prediction
based filtering

evaluation by
simulation

diagnosis task configuration
task

generate
and test

Figure 2: Example of task-method-domain structure

59

Knowledge Area

Sub-areas (bodies) of knowledge that
provide sub-tasks for the methods to
perform the tasks of the knowledge area

Supporting Knowledge bodies Functionality
Set of tasks (each one with its
corresponding method) that
define the functionality of the
knowledge area.

Area 1

Area 2

Area M

Task 1

...
Task 2

Task N

...

Figure 3: Format of a knowledge area

60

T1 T2

T3 T4

T5 T6 T7 T8 T9

M1 M2

M4

M5 M6 M7 M8

KB1 KB2 KB3Domain
model

M3

M9

A1

A2

A3
A4 A5

T5
T6

KB1

A3

T7
T8

KB2

A4

T9KB3

A5

T3
T4

A2

A3
A4

T1
T2

A1

A2
A3
A5

Figure 4: Abstract example of the encapsulation provided by the knowledge area concept.

The hierarchy of task-method-domain on the left can be grouped using five knowledge areas

A1, A2, ..., A5. This produces the knowledge-area view on the right which offers a more

synthetic view of the model

61

Patterns of
Regulation
Preference
Criteria

Abstraction Relations

Abstraction
Relations

K.Base

Abstract
KB

Patterns of Problems

Problem
Patterns
K. Base

Match

KB

Causal Model

Causal
Relations
K. Base

Propose
Causes

KB

Comparison Criteria

Comparison
Criteria
K. Base

Compare
KB

Problem Knowledge

Abstrac. Rel.

Patt. Problems

Causal Model

Comp. Crit.

Beh. Knowl.

Classify

Diagnose

Filter Causes

Behaviour Knowledge

System
Structure

Model

Simulate

Refine

KB

Patterns of Regulation

Patterns
of Regulat.
K. Base

Generate
Regulation

KB

Preference Criteria

Preference
Criteria
K. Base

Select
Best

KB

Regulation Knowledge

Behaviour
Knowledge Configure

Evaluate

Decision Support Knowledge

Problem
Knowledge
Behaviour
Knowledge

Regulation
Knowledge

Classification

Diagnosis

Prediction

Configuration

Figure 5: Knowledge-area view of the generic decision support model

62

CONCEPT name-of-concept {SUBCLASS OF | IS A} name-of-class.

[ATTRIBUTES:

 name-of-attribute facet facet ... facet,

 name-of-attribute facet facet ... facet,

 ...

 name-of-attribute facet facet ... facet.]

Figure 6: General format of the formulation of a concept using the Concel language.

63

 METHOD method-name

 ARGUMENTS

 [INPUT list-of-inputs]

 [OUTPUT list-of-outputs]

 DATA FLOW

 data-connection-among-subtasks

 [CONTROL TASKS

 data-connection-among-control-tasks]

 CONTROL FLOW

 rules-to-determine-the-control-regime

 [PARAMETERS

 default-values-for-parameters]

Figure 7: General format of a method formulation using the Link language.

64

 (knowledge-area-name) task-identifier

 [INPUT

 { [mode] flow-expression } +]

 [OUTPUT

 [mode] { flow-identifier } +]

Figure 8: General format of an input/output specification using the Link language.

65

start

refine

rule-1

intermediate

hypothesis = liver disease

establish
established

category = liver disease

refine
rule-2

hypothesis = cancer

establish
not- established
(IMPASSE)

intermediate

hypothesis = infection

establish

intermediate

establish
established

category =infection

rule-2

refine

hypothesis = bacterial

establish

final

hypothesis = viral

establish

final

establish
established

category =bacterial

rule-3

(END)

not- established
(IMPASSE)

Figure 9: Example of the execution of a method where there is a non linear reasoning

(example taken from Chandrasekaran et al. (1992) and adapted to the Link operation).

66

Class Implementing a Primitive of Representation

External OperationsInternal Structure

Knowledge Acquisition Operations:
 • Import-Vocabulary(Vocabularies)
 • Edit-Knowledge-Base()
 • Learning-Procedure(Case-File)
 ...
Problem-Solving Operations:
 • Inference-Procedure-1(Args)
 • Inference-Procedure-2(Args)
 ...
 • Inference-Procedure-N(Args)

Explanation Operations:
 • Explanation-Inference-1(Question, Args)
 • Explanation-Inference-2(Question, Args)
 ...
 • Explanation-Inference-N(Question, Args)

Local Vocabulary
Data Structure

Knowledge Base
Data Structure

Working Memory
Data Structure

Internal
Procedures

for
 Manipulating

Data
Structures

Figure 10: Structure of the class implementing a primitive of representation

67

Figure 11: Screen example of the KSM environment.

68

Clases of concepts Attributes Values

Mi: Variable
 Message
 Sign

message
{“slow traffic ahead at N Km”,
 “congested link at N Km”,
 “to area A, 20 min by option B”,
...}

Di: Detector occupancy
speed

flow

temporal series of num.values in %

Si: Road Section capacity number in veh/h
saturation level {free, critical}

circulation regime {fluid, unstable, congested}

detector instance of detector

Li: Road Link upstream section instance of section
instance of section

temporal series of num.values in Km/h

temporal series of num.values in veh/h

downstream section

Pi: Path links list of instance of links
number in minutestravel time

Figure 12: Basic vocabulary used in the traffic domain model

69

determine messages
configuration

messages updating

extend with new
messages

propose and revise

verify messages
consistency

priority
selection

propose
new message

remedy
violations

deductive
chainingmatchvalidity

testing
value

propagation

network of
abstraction

functions of network

applicability
conditions

for messages

applicability
conditions

for messages

incompatible
combinations

between messages
priority
scheme

vocabulary of pannels and messagesnode-link vocabulary
DOMAIN
MODEL

Vocabularies

Knowledge
bases

remove not valid
messages

abstract traffic
state

Figure 13: Task-method-subtask-domain structure for the traffic control example

70

VMS Management Knowledge

Abstraction
Knowledge

Messages
Knowledge

Determine
Messages
Configuration

Abstraction Knowledge

Network of
Abstraction
Functions

Abstract
Traffic State

Messages Applicability

Applicability
Conditions
for Messages

Messages Consistency

Incompatible
Combinations
of Messages

Verify
Messages
Consistency

Messages Priority

Priority
Scheme

Remedy
Violations

Remove not
Valid Messages

Propose
New Message

KBKBKB

KB

Messages Knowledge

Messages
Applicability

Messages
Consistency

Remove not
Valid Messages

Messages
Priority

Extend with
New Messages

Figure 14: The knowledge-area view of the knowledge model for road VMS management

71

Messages Applicability

Applicability
Conditions
for Messages

Messages Consistency

Incompatible
Combinations
of Messages

Verify
Messages
Consistency

Messages Priority

Priority
Scheme

Remedy
Violations

Remove not
Valid Messages

Propose
New Message

KB KB KB

Messages Knowledge

Messages
Applicability

Messages
Consistency

Remove not
Valid Messages

Messages
Priority

Extend with
New Messages

Abstraction Knowledge

Network of
Abstraction
Functions

Abstract
Traffic State

KB

Local Management for Region Ri

Abstraction
Knowledge Determine

Local
ConfigurationMessages

Knowledge

Combination Model for Regional
Management Policies

Combination
Constraints

Combine
KB

Local Mana-
gement for
Region Ri

Combination
Model

VMS Management Knowledge

Determine
Messages
Configuration

Figure 15: Knowledge-area structure corresponding to an extension of the model of figure 13

where a more complex traffic network has been considered that needs to decompose the total

network into simpler regions.

72

updating

propose

propose and revise

verify remedy

extend remove abstract

applicability
conditions

applicability
conditions

incompatible
combinations

priority
scheme

hierarchy of
components

combination
constraints

network of
abstraction
functions

match deductive
chaining

priority
selection

value
propagation

hierarchical
decomposition

validity
testing

decompose compose

configure

decomposition

local
configure

combination

Figure 16: Task-method-domain structure corresponding to an extension and abstraction of

the structure established for the traffic problem (shown in figure 12).

73

Local Management for Region Ri Combination Model for Regional
Management Policies

Combination
Constraints

Combine

Abstraction
Knowledge
Configuration
Knowledge

Local
Configure

Applicability

Applicability
Conditions

Remove

Propose

KB

Consistency

Incompatible
Combinations

Verify
KB

Priority

Priority
Scheme

Remedy
KB

KB

Configuration Knowledge

Applicability

Consistency
Remove

Priority
Extend

Abstraction Knowledge

Network of
Abstraction
Functions

Abstract
KB

Local Mana-
gement for
Region Ri

Combination
Model

System Management Knowledge

Configure

Figure 17: Knowledge-area structure corresponding to an abstraction of the structure

designed for the traffic problem (figure 14) .

74

Knowledge view manager

KSM ENVIRONMENT

Knowledge acquisition module

User Interface

Library
of

primitives
of

representation

Rule base

parser reasoning methods

Frame base

parser

Constraints base

parser reasoning methods

reasoning methods

Busnetwork

parser reasoning methods

Private traffic network

parser reasoning methods

Concel
language

Link
language

parser

interpreter

parser

interpreter

Knowledge relations

Reasoning Methods

GENERIC MODEL

Conceptual
vocabulary
specification

Patterns of relational
structures of frames,
constraints and rules

Domain
model

Formulation of Composed Methods Basic methods specification

Specification
of input/output

BR1R1 R2 Rn
......

.

.

Reasoning methods

CASE MODEL

Conceptual
vocabularies
for the case

(domain values)
Ad hoc primitives
methods formula
(i.e. a simulator, a

data base manager)Declarative
knowledge bases
with instances of

the patterns in
the generic model

Domain model

Which concepts
Which attributes

Knowledge area
structure

BRm.

......

Figure 18: The three main components of an application deveoped using KSM

75

	1. INTRODUCTION
	2. GOALS OF THE SOFTWARE DEVELOPMENT SUPPORT
	3. GENERAL VIEW OF THE KNOWLEDGE MODELING METHODOLOGY
	4. KSM: A KNOWLEDGE MODELING TOOL
	4.1. The KSM Languages to Formulate a Knowledge Model
	4.1.1. A Language for Vocabularies: The Concel Language
	4.1.2. A Language for Problem-solving Methods: The Link Lang
	4.2. Primitives of Representation to Operationalize the Know
	4.3. Characteristics of the KSM Software Environment
	5. EXAMPLE OF KNOWLEDGE MODEL USING KSM
	5.1 The Domain Knowledge
	5. 2. The Strategy of Inference
	5.3 Generalization to Support Reuse
	6. DISCUSSION
	6.1. The Capacities
	6.2 The Drawbacks
	7. CONCLUSIONS
	8. ACKNOWLEDGEMENTS
	9. REFERENCES

