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Abstract. The aim of the paper is to discuss the use of knowledge models to formulate 

general applications. First, the paper presents the recent evolution of the software field where 

increasing attention is paid to conceptual modeling. Then, the current state of knowledge 

modeling techniques is described where increased reliability is available through the modern 

knowledge acquisition techniques and supporting tools. The KSM (Knowledge Structure 

Manager) tool is described next. First, the concept of knowledge area is introduced as a 

building block where methods to perform a collection of tasks are included together with the 

bodies of knowledge providing the basic methods to perform the basic tasks. Then, the 

CONCEL language to define vocabularies of domains and the LINK language for methods 

formulation are introduced. Finally, the object oriented implementation of a knowledge area 

is described and a general methodology for application design and maintenance supported by 

KSM is proposed. To illustrate the concepts and methods, an example of system for 

intelligent traffic management in a road network is described. This example is followed by a 

proposal of generalization for reuse of the resulting architecture. Finally, some concluding 

comments are proposed about the feasibility of using the knowledge modeling tools and 

methods for general application design. 

1. INTRODUCTION 

The use of knowledge based systems has been limited to an area of very specific applications 

where special methodologies and tools are used (different from the techniques applied for 

software engineering) oriented to model, according to different conventions of knowledge 

representation, the expertise in several commercially relevant fields. The Software 

Engineering field has been mainly focused in information systems development improving 

the reliability and efficiency of data services. However, the current users of these services are 
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being increasingly interested in deeper functions integrated in the information systems 

supported by the knowledge related with the data conceptual domains. 

The relationship between both approaches has been produced only in the area of knowledge 

based support to software engineering tasks. Lowry, Duran, (1989) summarize this recent 

evolution in two main trends: (1) improvement of automatic program synthesis techniques 

aiming to transform in operative programs high level specifications using set theory and logic 

such as the commercial system REFINE or the experimental system KIDS Smith (1988) built 

on top of REFINE, and (2) broadening the automatic programming scope to the entire 

software life cycle by building knowledge based assistants for acquiring validating and 

maintaining specifications. These capacities have been embedded in CASE tools. However, 

three circumstances are creating a different situation: 

• The need for a more open architecture in applications to ensure an adequate human-

machine interaction according to the recent approaches for design that follow a user-

centred view.  

• The need of software reuse which requires an open structure: (1) to easily understand the 

contents of any software component and (2) to be able of accepting changes in its contents 

according to the specific needs of the application where the component is going to be 

reused.  

• The improvements on reliability and capacity of representation produced in the last ten 

years in the field of knowledge representation and knowledge acquisition methods, giving 
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birth to a collection of mature technologies supported by experimental tools, yet, but 

providing levels of services very close to the industrial requirements. 

Therefore, now it is possible to formulate and to build an application by using directly the 

knowledge modeling concepts supported by adequate tools instead of formulating the 

application using information structuring concepts and data processing algorithms as in the 

usual software environments. This is a very important feature because it approaches the 

design phase to the conceptual specification phase, that usually in the traditional software 

world are separated by a bigger gap and, hence, subject to more errors than the errors possible 

between the conceptual model and the knowledge model which is closer to the conceptual 

abstractions. 

However, not many attempts have been produced by the AI community to produce something 

like cognitive programming environments in an operational way where reasoning steps using 

domain models are applicable to describe and to explain the answers of the application. AI 

has to invade with practical views the area of applications. Although the paradigm modeling 

efforts must continue as focus of research, an additional focus should be the advanced 

modeling of complex applications using the available paradigms. 

This paper aims precisely to propose a type of this structured knowledge model formulation 

based on a tool oriented to support the design and implementation of general applications 

using the knowledge engineering approach which means to understand the current 

applications from a richer conceptual perspective. The interest of the paper is to provide some 

initial results on the possibilities of this class of tools to be acceptable by the general 

applications development community. 

4 



First, a summary of the actual requirements for software development is commented. Then, 

the concept, the structure and the organization of the KSM (Knowledge Structure Manager) 

tool is presented conceived to support and extend the state of the art in knowledge modeling 

approach. Then, an application using KSM for real time emergency management is described 

where practical comments are included. Finally, some general conclusions are proposed about 

the role of the knowledge oriented approach in the context of Software Engineering by 

evaluating the behavior of the model experimented with respect to the usual parameters and 

criteria applied for software evaluation. 

2.  GOALS OF THE SOFTWARE DEVELOPMENT SUPPORT 

The conventional software field has evolved after the first crisis of software at the end of the 

sixties in terms of better human understanding models for applications and the supporting 

programming languages. Thus, now, there exists as main well understood programming 

paradigms the object oriented ones, based mostly in C++, Java and CLOS, and the logic 

programming ones based on different versions of Prolog language based environments. The 

methods for design of applications supporting the evolution of the formulation of concepts 

from the human mind structure format to the computable format on some programming 

paradigm have been formalized in structured life cycles where the different steps of 

requirements analysis, design, implementation, test and maintenance are detailed in diverse 

standard processes derived from the initial proposals of Yourdon, De Marco, Weinberg, etc. 

now summarized in the methodologies Metrica, Merise, Ssadm, OMT, etc. Pressman (1992). 

To support these life cycles, different CASE tools have been proposed guiding the design and 

maintenance process of an application from the conceptual specifications to computable 
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models. Increasing attention is given to the research area of Requirements Engineering 

aiming to the conceptual modeling via specifications of the underlying human understanding 

of applications. Finally, reuse techniques based on these conceptual modeling approaches 

have been established without not too innovative results yet with respect to the traditional 

reuse of libraries of functions and libraries of classes supported by objects. At the current 

state of the art any environment to support application design and development should 

provide as main functions: 

• Structuring and encapsulation facilities to ensure an adequate size of the different 

components of the application and an understandable format to allow easy access to the 

different component modules. 

• Software sharing facilities to ensure that no function is formulated twice with the 

corresponding inconsistency and redundancy risks for operation and maintenance. 

• Software reuse potentiality to ensure the use of the already experimented existing 

applications. 

• Advanced Human Computer Interaction support, to ensure adequate and reliable user and 

programmer contribution to maintenance and operation of the applications. 

• An adequate level of efficiency in the operation for the needs of the user. 

• Test and validation facilities. 
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The current state of knowledge modeling technology allows to contribute with quality enough 

to the previous items by providing higher levels of conceptual modeling in consonance with 

the growing trend in Requirements Engineering. In the following paragraphs a brief summary 

of the knowledge modeling area is presented and an example of a product, summarizing state 

of the art in knowledge acquisition, used for application development is described. 

3. GENERAL VIEW OF THE KNOWLEDGE MODELING 

METHODOLOGY 

First generation knowledge-based systems provided a set of standard reasoning procedures 

using declarative representations (such as rules, frames, etc.). The next generation of 

knowledge-based systems abstracted from symbolic representational considerations the 

design process and evolved to the paradigm of model-based system development, in which a 

knowledge system is viewed as an operational model capable of simulating a certain observed 

problem solving behaviour from an intelligent agent (e.g., a human expert in a certain  

professional field). This view contrasts to the traditional approach where a knowledge system 

was usually considered as a container to be filled with knowledge extracted from an expert. 

The modelling process considers the existence of an abstract level where the knowledge can 

be functionally described showing its role in the problem solving process, independently of a 

particular representation. This level, proposed by Newell  with the name of knowledge level 

Newell (1982), allows to describe a knowledge model in terms of strategies of reasoning and 

roles of knowledge types, abstracting away from how these are implemented by specific 

symbolic representation formalisms. After some years of different proposals for knowledge 

modeling at the knowledge level, the knowledge acquisition community agreed several key 
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concepts such as the generic task (proposed by Chandrasekaran (1983, 1986), also present 

with some variants in the KADS model Wielinga et al. (1992) and in the model of 

components of expertise Steels (1990)), the role limiting method McDermott (1988) and the 

ontology concept Gruber (1993). According to these concepts we can distinguish two main 

organization principles for structured knowledge based  applications: 

• The task oriented principle. A task is defined as a goal to be achieved (for instance 

diagnosis of infectious diseases or design of the machinery of an elevator). It is described 

with the type of inputs it gets and the type of outputs it produces. The main function of the 

model is represented by a global task. This task is decomposed into simpler subtasks 

developing a tree which shows the general structure of the model. A problem-solving 

method (or method in short) defines a way in which the goal of a task can be achieved 

through the execution of subtasks, so that when a method is associated to a task, the 

method establishes how the task is divided into subtasks. Thus, a knowledge model can be 

understood as a hierarchical composition of tasks where each task is carried out by a 

problem-solving method. We may call this organizational principle the task-oriented 

organization that makes emphasis in procedural knowledge given that it mainly shows 

how to reason for solving problems integrating other, simpler, problem solver results. 

• The domain oriented principle. On the other hand, the notion of ontology was defined to 

describe explicit specifications of domain elements. An ontology is a declarative 

description of the structure of a particular domain. The use of ontologies allows to more 

easily reuse and share knowledge about certain domains to carry out different tasks. This 

organizational principle makes more emphasis in declarative knowledge.  
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These principles need to be combined adequately in order to formulate a knowledge based 

application. A reasonable approach to be followed in the design process is to start from the 

collection of top-level tasks that describe the set of goals to be achieved by the application to 

support an adequate conversation model between the user and the system. These top-level 

tasks may be the basic types of answers required in such a conversation model. For each top-

level task, a hierarchical structure of task-method-domain may be used to show the way the 

final task supports an answer type (Figure 1). Each hierarchy represents how each task is 

carried out by a specific method, decomposing the task into simpler subtasks. Usually, the 

hierarchy will present only one method associated to a task. However, in the near future, 

when reusable libraries of problem-solving methods will be available, it could be more usual 

to associate more than one method to a task, developing a more complex architecture (this 

architecture could be named the problem solving medium). This means that the same task will 

be able to be solved in different ways depending of certain dynamic characteristics (such as 

the type of dialogue with the user, the context, etc.). At the bottom level of the hierarchy of 

task-method-subtasks there is a collection of primary methods associated to primary tasks. 

What is considered as a primary method is a design decision established by the developer. 

Typically, primary methods correspond to methods that can be directly implemented at 

symbolic level by simple problem-solving techniques (such as knowledge based techniques 

like backward or forward chaining in rule-based representations, network-based 

representations, constraint satisfaction methods, and also specific algorithmic solutions that 

do not require a explicit representation of declarative knowledge). 

The use of declarative knowledge by primary methods requires an ontological definition of 

such a knowledge that is viewed as a set of domain models that support primary tasks. 

Domain models can be formulated with two components: (1) a conceptual vocabulary  where 
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a concept-attribute format organized in classes and instances may be used to establish the 

basic language of the domain model, and (2) relations between these concepts described by 

the corresponding declarative knowledge base (that at symbolic level will be formulated as 

frames, constraints, rules, etc.). The same vocabulary and knowledge base of a domain model 

may be used by several methods (showing cases where the same concepts play several roles) 

and also a subtask can be part of different methods. 

As an example of the previous ideas, consider a simplified generic model for decision support 

for management of a dynamic system (e.g., a chemical plant, a traffic network, etc.) Cuena, 

Hernández (1997). The goal of this decision support model is to help an operator in detecting 

and diagnosing problems in the dynamic system, as well as to help in choosing appropriate 

regulation actions to cope with the detected problems. Figure 2 shows a possible task-method-

domain structure for this case. Four classes of questions are considered in this model: what is 

happening, why is it happening, what may happen if and what to do if. These questions 

correspond to the four top level tasks: classification, diagnosis, prediction and configuration. 

Each top-level task is carried out by a particular problem-solving method. For instance, the 

diagnosis task is carried out by the method model-based diagnosis, which decomposes the 

tasks into two simpler tasks: propose causes, filter causes. At the bottom level, there are 

primary methods such as qualitative abstraction, pattern matching, instantiation, etc. Each 

primary method uses a particular declarative model. For instance, the method causal covering 

uses the declarative model causal model. Note that certain declarative models may be used by 

several methods (e.g., in this example, the system structure model). 

Thus, following this approach, a cognitive architecture is formulated as a collection of task- 

method-domain hierarchies for each of the basic questions to be answered through the user 
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interface of the system. However, in real applications, the experience shows that, sometimes, 

too large descriptions can be produced by using this type of formulation. Thus, although the 

conceptual description based on task-methods-domains is adequate for the analysis process, it 

needs to be complemented and re-organized using additional modelling concepts for the final 

design of the application. There are some reasons for this: (1) the task-method-domain 

structure presents too much level of detail that increases the difficulties to understand and 

maintain complex architectures and (2) the level of disaggregation of components can 

produce software implementations with problems of efficiency.  

Therefore, as it happens in the conventional software field, it is required to have a synthetic 

view of an application at several levels of conceptual aggregation allowing easy 

understanding and, hence, easy maintenance. This is an issue not too much considered by AI 

research community who is mostly focused in the identification of innovative models and 

paradigms but not so much in final tools supporting design and maintenance of applications. 

This type of tools are more common in software engineering (e.g., CASE environments) that 

support conventional methodologies (such as DDF, OMT, etc.) together with libraries of 

software components that can help in the design and implementation process of an 

application. However, these tools are based on the traditional perception of applications as 

data+algorithms that is not enough to be used in some applications that require also 

knowledge-based solutions. Thus, from the point of view of knowledge modelling, several 

preliminary proposals have been produced (e.g., SHELLEY or MIKE Landes, Studer, (1994) 

that follow the KADS methodology, or PROTEGE-II Musen, Tu (1993) and KREST 

McIntyre (1993)). 
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4. KSM: A KNOWLEDGE MODELING TOOL 

A proposal in the direction commented in the previous paragraph is the KSM (Knowledge 

Structure Manager) environment. KSM follows the described task-method-domain approach 

but it introduces some new description entities that facilitate the design process of the 

application.  

The main structuring concept in KSM is what is called knowledge area1 which is a block 

summarizing parts of the global structure of task method subtasks. A knowledge area in KSM 

follows the intuition of body of knowledge that explains a certain problem solving behaviour. 

A cognitive architecture that models the expertise of a professional can be viewed as a 

hierarchically structured collection of knowledge areas at different levels of detail, where 

each knowledge area represents a particular qualification or speciality that supports particular 

problem solving actions which appear in the global task method subtask structure. Thus, each 

module that represents a knowledge area, in contrast to the functional view that provides a 

task (which is an answer the question what does it do),  is an answer to the question what does 

it know  at different levels of detail. The concept of knowledge area in KSM is useful as a 

basic module for structuring tasks, methods and domains. A knowledge area (figure 3) is 

described with two well differentiated parts: (1) its knowledge, represented as a set of 

component sub-areas of knowledge, and (2) its functionality, represented by a  set of tasks 

(and their corresponding methods). The first part decomposes the knowledge area into 

simpler subareas, developing a hierarchy at different degrees of detail. The second part 

associates tasks to knowledge areas showing their functional capabilities.  
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The knowledge area concept is useful to produce a more synthetic view of the knowledge 

model given that it groups a set of tasks (together with the corresponding methods) in a 

conceptual entity of higher level. Figure 4 shows this idea. The tasks of the task-method-

domain hierarchy on the left can be grouped in five knowledge areas. In this process, the 

developer must follow the rule that a method corresponding to a task T of a certain 

knowledge area A only can use subtasks provided by the subareas of the area A. In principle, 

given a hierarchy of task-method-domain resulting from the knowledge level analysis, it is 

possible to design different hierarchies of areas according to a principle of knowledge area 

structuring. In order to guarantee a reasonable level of understandability of the knowledge 

model, the final hierarchy should be designed to follow the natural intuitions associated to the 

knowledge attibuted to the human problem solving process to be modeled. 

Figure 5 shows a possible structure of knowledge areas corresponding to the previous 

example (figure 2) where different knowledge areas embody the different methods and its 

corresponding domain knowledge. For instance, in the example, a top-level knowledge area, 

called decision support knowledge, has been designed to include as top-level task the decision 

support one integrating as component subtasks, provided by its component knowledge, 

classification, diagnosis, prediction and configuration required to answer the three main 

question types (what is happening, why is it happening, what may happen if and what to do 

if). This area makes use of other three intuitive knowledge areas: problem knowledge, 

behaviour knowledge and regulation knowledge. The bottom-level knowledge areas 

correspond to what is called primary areas,  that include one single declarative model 

together with the set of tasks that make use of such a model. For instance, the area called 

patterns of problems is an example of primary area and includes a declarative model with a 
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set of problem patterns together with the task match that receives a set of facts corresponding 

to a current state of the system and finds problem patterns that satisfy their conditions. 

Knowledge areas can be defined at generic and at domain level. Generic areas mean classes 

of bodies of knowledge that allow to formulate a model. Then, a particular domain model is 

viewed as a collection of instances of such classes that can share by inheritance different 

properties of the classes such as relations with other areas, problem-solving methods, etc. 

This possibility of defining classes of areas is a solution to support reuse. Thus, abstract 

structures of knowledge areas may be reused to develop different applications operating in 

different domains. 

The formulation using the knowledge area format provides certain advantages: (1) every task 

at any level of the hierarchy is associated to the explicit knowledge that supports its 

functionality, which makes more meaningful the model (2) the structure of knowledge areas 

synthesizes the structure of tasks-method-domains, which is useful to better understand 

complex models, (3) at the bottom level, primary knowledge areas encapsulate declarative 

domain models, so it is a solution to organize the domain layer in separate modules, which 

contributes to keep easier the consistency of the model and (4) primary knowledge areas are 

easy to be implemented by reusable and efficient software components, which gives a 

solution for the development and maintenance of the final executable version of the system.  

This structuration contrasts to a plain organization of knowledge, such as the traditional 

structure proposed in the original rule-based systems that does not describe explicitly the 

different knowledge modules in which rules could be organized. Knowledge areas allow to 

identify such modules, even by establishing several conceptual levels (knowledge areas being 
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part of other knowledge areas). Thus, the resulting system can describe better its own 

knowledge (more similar to how a human expert does) showing the categories in which it can 

be classified. This contributes to present different  levels of detail of the expertise, and allows 

to produce good quality of the explanations which may be poduced by tracing the reasoning 

steps at different levels.  

The organizational principle followed in KSM may be called the knowledge-area oriented 

principle. In order to summarize and compare the organizational principles mentioned in this 

paper, it may be established an analogy with similar principles followed in software 

engineering: 

• The task oriented principle is somehow similar to the functional description used in the 

top-down methodology of structured analysis where a process is systematically 

decomposed into simpler processes developing a hierarchy. However, tasks in contrast to 

the traditional processes, are not viewed as procedures for data processing, but are 

considered reasoning steps within a global problem solving behaviour observed in a 

human expert; every reason step uses a body of knowledge available in the component 

knowledge areas (for instance, in the primary areas a reasoning step uses a frame or a rule 

to evaluate if the class modelled by the frame is true or to chain the rule with the current 

state in the working memory). 

• The domain oriented principle presents similarities to the data-base design where data have 

to be organized according to a particular scheme. The domain oriented principle however 

is established at a more abstract level and also consider more complex declarative 

organizations than the ones usually supported by conventional databases. 

15 



• The knowledge-area oriented principle is somehow similar to the object oriented principle 

that encapsulates in intuitive entities processes and data. Knowledge areas, however, are 

associated to the intuition of a body of knowledge, which gives a more specific semantics 

to this component and it is useful to naturally explains a possible set of cognitive skills that 

justifies the problem solving competence of a human expert in terms of a collection of 

associated methods to perform several tasks. 

This three modelling principles are very useful to analyze the expertise in a particular domain 

problem and to develop a formal design that allows the construction of an operative model on 

the computer. They provide a new logical level for system conceptualization, closer to human 

natural intuitions and, therefore, easier to be understood by non computer scientists. The 

proposed description entities follow cognitive metaphors which allow to have a more natural 

perception of the resulting application. It is important to note that these principles are very 

general and can be used to different kind of problem-solving applications, i.e., they are useful 

for both knowledge based and conventional applications, providing a unified view for 

development of applications.  

 

4.1. The KSM Languages to Formulate a Knowledge Model 

KSM provides two formal languages to formulate two characteristics of the model: common 

terminologies about the domain (conceptual vocabularies) and strategies of reasoning 

(problem solving methods). Both languages are used by the developer to refine the knowledge 
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model that previously has been defined as a structured collection of knowledge areas together 

with tasks and methods. These two languages are the Concel language for vocabularies, and 

the Link language for problem solving methods. This section explains both languages. 

4.1.1. A Language for Vocabularies: The Concel Language 

The declarative description of a domain within a model can be viewed as a collection of 

classes concepts, relations, structures, etc. In order to facilitate an efficient operationalization 

of the final model, it is important to distinguish between the domain descriptions that are 

common to the whole model and additional extensions oriented to perform specific primary 

tasks. In KSM, the common descriptions are formulated with what is called conceptual 

vocabularies and the extensions are written within specific knowledge bases using different 

symbolic representations. This section describes the language used in KSM to formulate 

conceptual vocabularies. Section 3.3 explains how to write additional descriptions of the 

domain oriented to carry out particular tasks, using specific symbolic representations taken 

from a library of primitives of representation. 

 

A conceptual vocabulary allows the developer to define a common terminology which can be 

used by different primary knowledge areas. One of the direct advantages of the use of 

vocabularies is that they provide a common location where concepts are defined. This avoids 

to repeatedly define the same concepts eliminating the risk of incoherence in the knowledge 

of different domains The concepts defined by the vocabulary will be later referred by other 
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symbolic representations (rules, frames, constraints, etc.) used by primary areas. Due to the 

general use of vocabularies by different knowledge modules, they must be formulated in a 

common language. KSM provides the Concel language for this purpose. It allows the 

developer to define: concepts, attributes, and facet values and the classification of the 

concepts in classes and instances. 

In more detail Concel uses the following elements. The basic element is the concept. 

Examples of concepts are: a sensor, a symptom, a disease, etc. Each concept has attributes 

which describe characteristics of the concept. For example, the concept gas may have the 

following attributes: pressure, volume and temperature. Each attribute has also its 

characterization through facets. Concepts can be organized into classes and instances. A class 

concept represents a family concepts. For example, the class concept sensor represents the 

generic concept of the sensor family. The elements of a family are called instances. For 

example, S0735 is a instance of sensor. The general syntax to define concept is: 

According to this format, each concept is defined with a name. It can be either a subclass of a 

higher level class or an instance of a class. The concept can be described with a collection of 

attributes and each attribute is defined with a collection of facets. The possible facets are: 

• Type integer. It defines that the attribute has integer values. Optionally a range can be 

defined to establish the limits. The formulation of this facet is (INTEGER [RANGE <min> 

<max>]). For instance (INTEGER RANGE 125 235). 
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• Type interval. The attribute has as possible values numerical intervals. Optionally a range 

can be defined to establish limits. The format of this facet is (INTERVAL [RANGE <min> <max>]). 

For example (INTERVAL RANGE 0 200). 

• Type boolean. The attribute may have one of the two boolean values true and false. It is 

written with the format (BOOLEAN). 

• Type instance. The values of the attribute are instances of a class. The format is  (INSTANCE 

OF <class>). For example (INSTANCE OF symptom). 

• Type qualitative values. The values of the attribute are defined as a list of possible 

qualitative values. The format is  {<value-1>, <value-2>,... , <value-n>}. For example {low, medium, 

high}. 

• Default value. It defines a constant value for the attribute. The value is written after a 

colon, following the format : <value>. For instance: 5. 

• Units. It defines the units in which the attribute is measured. The unit is defined between 

brackets with the format [<unit>]. For example [minutes]. 

The following example illustrates a complete definition of a class:  

CONCEPT Urban Section SUBCLASS OF Section. 

ATTRIBUTES: 

Capacity (INTERVAL RANGE 0 2000) [Veh_Km], 

Lanes  (INTEGER RANGE 1 4): 1, 
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Detectors  (INSTANCES OF Detector), 

Length  (INTEGER RANGE 0 1000) [m], 

Speed  {low, medium, high}, 

Circulation {free, saturated, congested}. 

This example defines the class called urban section as a subclass of the concept section. It is 

defined with six attributes where there are both numerical and qualitative attributes. For 

instance the attributes lanes and length are integers (with ranges 1-4 and 0-1000 respectively) 

and the attribute capacity is an interval (with range 0-2000). There is a default value for the 

attribute lanes (one lane). The attributes capacity and length have units (vehicles/Km and 

meters respectively). On the other hand the attributes detectors, speed and circulation have 

qualitative values. In the case of speed and circulation they present explicitly the set of 

possible values (e.g., low, medium and high for speed). The type of values of the attribute 

detectors are defined as instances of the class detector. The following example shows a case 

of the definition of an instance: 

CONCEPT Main Street IS A Urban Section. 

ATTRIBUTES: 

  Capacity:  [1400, 1800] [Veh_Km], 

  Lanes:  3, 

  Detectors:  (DE1003, DE1005), 

  Length: 350 [m]. 

This example defines the concept main street as an instance of the class urban section. In this 

case, particular values are associated to some attributes defined in the class. A generic model 

include conceptual vocabularies that define normally classes of concepts (and possibly also 

instances) that are domain-independent. The particular instances or subclasses of such 
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concepts corresponding to a specific domain will be defined later when the model is 

instantiated on such a domain.  

4.1.2. A Language for Problem-solving Methods: The Link Language 

In order to describe how a task is carried out, a developer defines a method with a particular 

problem-solving strategy. Methods may be considered control knowledge given that they 

describe control strategies about the use of domain knowledge. They formulate how the 

system reasons when it solves a problem; in other words, they formally define the problem-

solving behaviour of the knowledge model (from a different point of view, considering the 

knowledge modeling activity as a process of selecting, adapting and assembling reusable 

building blocks, the method formulation may be considered also as a process of linking 

knowledge components to construct the whole knowledge model). 

Basically, using the Link language, the method formulation includes on the one hand, the data 

connection among subtasks and, on the other hand, the execution order of subtasks (a deeper 

description of the Link language can be found at Molina et al. (1998a)). The view of each 

particular subtask to be used by a method is divided into two levels (the data level and the 

control level). The data level shows input data and output data. For instance, the task of 

classification receives as input measures and generates as output a category. Likewise, the 

task of medical diagnosis receives as inputs symptoms and the case history of a patient and 

generates as output a disease and a therapy. On the other hand, the control level offers a 

higher level view of the tasks showing an external view about how the task works. This level 

includes two elements of information: control parameters and control states. A control 
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parameter selects how the task must work when it accepts different execution modes. For 

instance, a classification task classifies into categories measures received as input data 

according to a similarity degree. The similarity degree may be considered as a control 

parameter.  In the context of a real time system, other examples are the maximum reasoning 

time or the maximum number or answers, when more than one could be expected. Control 

states, in their turn, indicate the degree of success or failure of the task after the reasoning. 

For instance, the medical diagnosis task may have as possible control states: insufficient data 

(when there are not enough data to give a result), healthy patient (when the patient does not 

have any disease), no therapy found (when the patient has a disease but the system does not 

find out a therapy) or therapy found (when the patient has a disease and the system finds out a 

therapy). Note that control states do not provide the actual results of the task, but they give an 

abstract information about how the tasks worked. In summary, at the control level of a task, 

control parameters selecting modes are received as input and control states informing about 

the reasoning are generated as output. 

According to this division, the formulation of a method using the Link language includes 

several sections (figure 7). After the name of the method, the first section, that is called 

arguments, indicates the global inputs and outputs of the method. Then, there are two main 

sections: the data flow and the control flow. The data flow section describes the data 

connection of subtasks at the data level, indicating how some outputs of a task are inputs of 

other tasks. The control flow section describes the execution order of subtasks using control 

rules that include control states and parameters. In addition, there are also other two optional 

sections: the control tasks and the parameters. The control tasks section allows the developer 

to include tasks that decide the execution of other tasks, and the parameters section is used to 

write default values for control parameters.   
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The data flow section describes the data connection of subtasks showing how some outputs of 

a subtask are inputs of other subtasks. The developer here writes input/output specifications 

of subtasks using what is called flow. A flow identifies a dynamic collection of data, for 

instance the symptoms of a patient in medical diagnosis or the resulting design of an elevator. 

For a given method, there are several names of variables identifying the different flows that 

will be used to connect subtasks. These variables represent plain flows, i.e. flows whose 

internal organization is not known at this level. In addition, complex flows, called flow 

expressions, can be written as the composition of others using a set of basic operators 

(conjunction, disjunction, selection, list, etc.). To formulate this inference structure, the 

developer writes a collection of input/output specifications (i/o specifications). Each i/o 

specification includes, first, the subtask name as a pair made of the knowledge area name and 

the subtask identifier. Second, it is defined the input of the subtask. Basically, the input is 

defined with names identifying flows (plain or complex flows). Each input flow accepts a 

mode  that may be the default mode or the one-of mode (the default mode gets all the 

elements of a list at once, while the one-of mode gets element by element, which is useful to 

formulate non-deterministic search methods). Finally, the output is defined with a list of 

single identifiers giving names to the output flows. In Link language, in general, subtasks are 

considered non-deterministic processes. This means that as a result of a reasoning, a task may 

generate not just one result, but several ones. For instance, in the context of medical 

diagnosis, the task may deduce several diseases and several therapies for the same symptoms. 

So, when tasks are going to be connected in the data flow section this possibility must be 

taken into account. This is managed with two output modes. Modes select whether the whole 

set of outputs must be generated one by one element considering that there is a non-

deterministic result (this is the default mode) or, on the contrary, it must generate all the 

outputs at once as a list of single elements for each output flow, which is called the all mode.  
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The purpose of the control flow section is to provide a formal description of a control strategy 

that determines the execution order of subtasks. The representation uses production rules for 

the control flow. The advantage of this representation is that it easily may define local search 

spaces considering the non-deterministic behavior of subtasks. At the same time, the 

representation is simple enough to be used easily due to this language is not a complex 

programming language but, on the contrary, it was designed to serve as an easy description to 

formulate procedural knowledge (a method will have a small number of rules, usually less 

than 10). Using production rules provides a intuitive representation, and flexibility for 

maintenance. The format of a rule is: (1) the left hand side includes a set of conditions about 

intermediate state of task executions is, and (2) the right hand side includes a sequence of 

specification of task execution . Each one of the first elements (state of task executions) is a 

triplet <K,T,S> where K is a knowledge area, T is a task identifier and S is a control state. 

This means that the result of the execution of the task T of the area K has generated the 

control state S. The value of S is control information such as successful execution or failure of 

different types, which may be used as premises to trigger other production rules. The 

representation of the elements in the RHS (specification of task execution) is another triplet 

<K,T,M>, where K is a knowledge unit, T a task and M an execution mode. This 

representation means that the task T of the knowledge unit K must be executed with the 

execution mode M. The execution mode expresses the conditions limiting the search such as: 

maximum number of answers allowed, threshold for matching degree in a primary unit using 

frame representation, time-out, etc. For instance, the following rule is an example of this 

representation: 

<K: validity, T: establish, S: established>, 

<K: taxonomy, T: refine, S: intermediate> 

-> 
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<K: taxonomy, T: refine, M: maximum 3 answers> 

<K: validity, T: establish, M: null>. 

However, in Link language, this representation has been modified to include some syntactic 

improvements. A complete example of a method formulation for hierarchical classification 

using the establish-and-refine strategy is presented below, where the second rule within the 

control flow section correspond to the previous rule but  re-written according to the syntax of 

Link: 

 

 

 

 

 

METHOD establish and refine 

ARGUMENTS 

  INPUT description 

  OUTPUT category 

DATA FLOW 

 (validity) establish  

   INPUT description, hypothesis 

   OUTPUT category 

 (taxonomy) refine  
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   INPUT category 

   OUTPUT hypothesis 

CONTROL FLOW 

 START  

 ->  (taxonomy) refine, MODE maximum answers=3, 

     (validity) establish. 

 

 (validity) establish IS established, 

 (taxonomy) refine IS intermediate hypothesis 

 ->  (taxonomy) refine MODE maximum answers=3, 

     (validity) establish. 

 

 (validity) establish IS established, 

 (taxonomy) refine IS final hypothesis 

 -> END. 

The representation also includes references to the beginning and the end of the execution to 

indicate the first set of actions to be done and when it is considered that the process has 

reached a solution of the problem. The beginning of the execution is referred as a state of the 

execution (to be included in the left hand side of the rules) and it is written with the reserved 

word START. The end of the execution is considered as an action (to be included in the right 

hand side of the rules). It is written with the reserved word END and, optionally, can be 

followed by a symbol that expresses the control state that has been reached.  

In addition to the previous representation, the Link language includes also the possibility of  

formulating a more complex control mechanism by using what is called control tasks. These 

tasks are included in the control task section in the same way that is formulated in the data 

flow section. The main difference is that control tasks produce as output, instead of only flows 

(at data level), tasks to be executed, formulated as task specifications. These task 

specifications can be included in the right hand side of control rules to determine when they 
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must be executed. In addition, a control task can get as input the execution state of another 

tasks. In this way, it is possible to build models that include specific knowledge bases that 

include criteria to select the next tasks according to the execution of previous tasks. These 

solutions provide the required freedom to use the most appropriate knowledge representation 

and inference for different control strategies. Another utility of the use of control tasks is that 

they make possible to implement a dynamic selection of methods for tasks. The idea is that a 

control task uses a knowledge base that establish how to select the most appropriate method 

and, as output, the control tasks generates the name of a subtask (with the corresponding 

method) to be executed. 

Concerning the execution of a method formulated using the Link language, it follows the 

control established by the set of control rules. In the simplest case, when this sequence is 

previously known and it is permanent, there is just one rule with the explicit order at the right 

hand side. However, the use of control rules allows to define more complex situations. First, 

it allows to dynamically determine the sequence of execution, so that it is possible to 

represent control structures such as if-then, loops, repeat, etc. In order to do so, control states 

are used. For instance, in the previous example of method that follows the establish and refine 

strategy, the second rule can be triggered in a loop until the hypothesis is not intermediate. In 

addition to that, in Link language is possible to define a more powerful execution with a non-

linear sequence. This is possible by two reasons: on the one hand, for a given state more than 

one rule may be used and, on the other hand, a given task may generate more than one result. 

This possibility of non-linear executions is a powerful technique that allows the developer to 

define more easily problem-solving strategies where there are search procedures. The 

developer can also modify the search control strategy using some tools provided by Link: 

input modes (one-of or set),  output mode (all, one-each-time), and search parameters (such as 

27 



maximum number of replies and time-out). According to this, Link develops a local search 

space for the execution of a particular problem-solving method. In general, given that a 

method calls subtasks, each one with its particular method, different local search spaces are 

developed at run time by the Link interpreter, each one for each method. A concrete example 

of an execution corresponding to the establish-and-refine problem solving method which has 

been presented in Link language previously is presented in figure 9. 

4.2. Primitives of Representation to Operationalize the Knowledge Model 

During the development of a particular knowledge model, the developer initially defines an 

implementation-independent abstract model that constitutes a description of a cognitive 

architecture. As it was presented, the central structure of this model is defined as a hierarchy 

of knowledge areas, where each area is divided into subareas until elementary areas are 

reached (called primary knowledge areas).This structure is refined by using the Concel and 

Link languages. In order to produce the final operational version of this knowledge model, 

KSM provides a set of software components called primitives of representation. A deeper 

description of this type of components can be found at Molina et al. (1999). 

The purpose of a primitive of representation is to provide a symbolic representation together 

with a set of primitive inference methods to be used in the operationalization of a primary 

area of a knowledge model. For each primary knowledge area of the model, the developer 

selects the most appropriate primitive that acts like a template to be filled using domain 

knowledge in order to create the final operational component that implements the primary 

area. It is important to note here that the use of primitives of representation (taken from an 
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open library of primitives in KSM) provides the required freedom to the developer to use the 

most appropriate representation and inference for each case, which is especially important to 

ensure the adequate level of efficiency of the final implementation. As a consequence, the 

declarative description of the domain of a final model will be formulated using different 

languages, part of it using the Concel language (the common terminology) and the rest 

written in different languages provided by primitive of representation. 

A primitive of representation is a reusable pre-programmed software component that 

implements a generic technique for solving certain classes of problems. The primitive defines 

a particular domain representation using a declarative language together with several 

inference procedures that provide problem-solving competence. In a simplified way, the 

structure of the primitive is defined by a pair <L, I>, where L is a formal language for 

knowledge representation and I  = {ij} is the set of inferences, i.e., a collection of inference 

procedures that use the declarative representation written in L. The module defined by a 

primitive is a design decision that is mainly influenced by the representation language L. This 

language is usually homogeneous, declarative and close to personal intuitions or professional 

fields. In a particular primitive, this language can adopt one of the representations used in 

knowledge engineering such as: rules, constraints, frames, logic, uncertainty (fuzzy logic, 

belief networks, etc.), temporal or spatial representations, etc. Also other parameterised or 

conventional representations can be considered, such as the parameters of a simulator or a 

graph-based language. Each element of the set of inferences I expresses an inference 

procedure that uses the knowledge formulated in the language L.  For instance, the rule-based 

primitive may have an inference, called forward chaining, that implements an inference 

procedure following a forward chaining strategy to determine whether a goal can be deduced 

from a set of facts given the rules of the knowledge base. In addition, there may be also 
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another inference that follows the backward chaining strategy for the same goal. Each 

inference ij defines a pair <P, C> where P is a set of inputs (premises) and C is a set of 

outputs (conclusions).  

The primitive provides an interesting level of generality  due to the abstraction of the domain 

knowledge that provides the use of the representation language. The same primitive can be 

used to construct different modules with different domain knowledge. For instance, a rule-

based primitive can be used to construct a module to diagnose infectious diseases or it can be 

used to build a module that classifies sensor data. Both modules are supported by the same 

primitive but they include different domain knowledge. Another interesting advantage 

provided by the primitive is that there is a clear analogy between primitives and knowledge 

areas, so this offers an easy transition from the implementation-independent model (as a result 

of analysis phase) to a more refined model where elementary computable components have 

been selected to configure the operational version. This continuity preserves the structure 

defined by the abstract model and, as a consequence, improves the understandability and 

flexibility of the final system. 

Primitives of representation are combined to develop a complex architecture, following a 

model defined as a structure of knowledge areas modeling an understanding structure at the 

knowledge level. Each primitive is associated to one or more primary areas and then, each 

primary area is part of higher level knowledge areas. Basic tasks provided by primitives are 

combined to define strategies of reasoning by using the Link language. On the other hand, the 

representation language of the primitive is used to formulate a declarative model of the 

domain knowledge. However, this local information could be shared by other different 

primitives. This problem about common concepts is solved by using of conceptual 
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vocabularies. Vocabularies define global sets of concepts to be shared by different knowledge 

areas and, therefore, they have to use a general representation, the Concel language. From the 

point of view of primitives of representation, they must be capable of sharing vocabularies. 

The solution to this is that the primitive provides mechanisms to import Concel definitions 

that are translated to the local representation language of the primitive. Thus, when the user of 

the primitive needs to write a particular local knowledge base during the knowledge 

acquisition phase, the vocabularies shared by the primitive are previously imported to be part 

of the base, in such a way that vocabularies are directly available in the language of the 

primitive to help in writing the knowledge base. 

At the implementation level, the primitive is a software module designed and implemented as 

a class (from the object-oriented development point of view), i.e. programmed with a hidden 

data structure and with a collection of operations which are activated when the class receives 

messages. A class implementing a primitive (figure 10) includes, on the one hand, an internal 

data structure divided into three basic parts: (1) a data structure to support the local 

vocabulary used by the knowledge base (for instance, in the case of a representation of rules, 

this part contains the set of concepts, attributes and allowed values that will be valid in the 

knowledge base), (2) a data structure that implements the internal structure that supports the 

knowledge base as a result of the compilation of the language provided by the primitive, and 

(3) a working memory that stores intermediate and final conclusions during the reasoning 

processes together with traces that can serve to justify conclusions through explanations. The 

data structures (1) and (2) are created during the knowledge acquisition phase and the data 

structure (3) is created and modified during the problem-solving phase when inference 

procedures develop their strategies of reasoning. 
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On the other hand, the class implementing a primitive includes a set of external operations 

that can be classified into three types: (1) knowledge acquisition operations, whose purpose is 

to help the user in creating and maintaining the knowledge base, (2) problem-solving 

operations  that execute the inferences provided by the primitive; they receive a set of inputs 

and generate responses using the internal structure representing the knowledge base, and (3) 

explanation operations, that justify the conclusions using the traces stored in working 

memory. If the primitive is not knowledge based, the corresponding object includes neither 

knowledge acquisition nor explanation operations.  

During the creation of a knowledge model, the developer constructs each knowledge area 

using the corresponding primitive, which is implemented by a particular class. Internally, an 

instance of the corresponding class is automatically created. Certain operations for knowledge 

acquisition can be invoked (by inheritance) to construct and modify the knowledge base: 

import a conceptual vocabulary, edit the knowledge base (using an external user-friendly 

view of the knowledge base to the operator, with facilities to create and modify) and machine 

learning procedures. During the execution of tasks of the knowledge model, the problem-

solving operations of the corresponding objects of the primitives are invoked with input data. 

Those local operations navigate through the internal data structure of the knowledge base to 

generate outputs. During the problem solving reasoning, the operations produce intermediate 

and final conclusions that are stored in the working memory. This information can be used 

later, when the user of primitives wants to get explanations that justify the conclusions of the 

reasoning. 

In summary, the reusable component for knowledge modelling, the primitive of 

representation, is implemented by a software object. In fact, object-oriented methodologies, 
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that have already a long tradition in software engineering, provide a good context for reuse. 

The philosophy of the object-oriented design proposes a more stable modularity based on the 

identification of components of a certain world (real or imaginary), instead of the original 

modularity based on functions or processes that tends to be less stable. This philosophy is 

adequate for implementing primitives where the intuition associated to each object is the 

representation technique used by the primitive. The language where each primitive must be 

formulated is open. Different programming languages such as C,C++, Fortran, Prolog, etc 

may be applied. If they are knowledge-based they must have a user interface to acquire the 

structures of representation for the knowledge base (such as rules or frames). This activity is 

carried out by programmers outside of KSM using particular programming languages. Once a 

particular primitive is built, it must be individually validated and then it is integrated in the 

KSM library as a reusable software component. However, for a specific application, it is not 

always necessary to program the complete set of primitives of representation. The reason for 

that is that some primitives may exist already in the KSM library. They were developed 

previously for a different application, so that they can be reused for the development of a new 

one. Therefore, just part of the primitives will have to be programmed and the rest of them 

will be reused. KSM facilitates software reuse, decreasing the effort of developing new 

applications. Once the complete set of primitives has been programmed, the executable 

version of the knowledge model is built by duplicating, adapting and assembly primitives 

using the KSM facilities. 
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4.3. Characteristics of the KSM Software Environment 

The KSM environment helps developers and end-users to construct and maintain large and 

complex applications, using both knowledge-based and conventional techniques. KSM covers 

different steps of the life-cycle of an application: 

• Analysis. KSM uses a particular modeling paradigm, based on the knowledge area concept, 

for a high level description of the knowledge of the application. The developer uses this 

paradigm to create a conceptual model to be accepted by the end-user before starting the 

implementation. Unlike the conventional models of software engineering based on a 

perspective of information processing, this model is focused on knowledge components 

which provides a richer and more intuitive description of the architecture of the 

application. During the analysis phase, the developer follows several steps (the actual 

realization of these steps may include loops): 

1. Identification of top-level tasks: Initially, the developer defines a conversation model 

between the user and system, where the top-level task are established. This 

conversation model can be validated with the end-user by developing a mock-up 

prototype. 

2. Top-down task decomposition: Each top-level task is refined by turn selecting its 

appropriate method (or methods) which decomposes the task into subtasks. This top-

down decomposition continues several levels until primary methods are identified. 

As a result, a set of task-method-subtask-domain hierarchies is produced, one for 

each top-level task. 
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3. Knowledge area integration: Finally, the components of the task-method-subtask-

domain hierarchies are encapsulated in a structure of knowledge areas. Here, 

different structuring options may be considered until an acceptable one is obtained 

representing adequately the epxert intuitions. 

 It is important to note that the analysis phase may be either (1) totally creative, i.e. the 

model is only derived from the information provided by domain experts, or (2) model-

based, i.e., the model is also derived from a generic model taken from a library of reusable 

models that establishes the abstract structure of components and relations. 

• Design and implementation. KSM assists the developer to create the final executable 

version of the knowledge model. In order to do so, KSM manages reusable software 

components (called primitives of representation) which are adapted and assembled by the 

developer following the structure of the conceptual model. Normally, primitives provide 

general inference procedures and representation techniques to write knowledge bases 

(although also domain dependent primitivess can be considered). In this phase it is also 

required to fill in the architecture with the specificities of the problems to be solved. For 

this purpose the domain models are to be formulated by introducing parameter values and 

knowledge bases required for case modeling. 

• Operation and maintenance. Once the application is built, the end user can apply KSM to 

consult the structure of the conceptual model of the application and may access to local 

independent knowledge bases following this structure. The role of KSM here is to allow 

the end-user to open the application to access to its knowledge structure so that, instead of 

being a black box like the conventional systems, the final application shows high level 
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comprehensible descriptions of its knowledge. The user also may change the conceptual 

model at this level, without programming, in order to adapt the system to new 

requirements. KSM automatically translates these changes into the implementation level. 

As it was described, KSM conceives the final application as a modular architecture made of a 

structured collection of building blocks. At the implementation level, each elementary block 

is a reusable software module programmed with an appropriate language and a particular 

technique (knowledge-based or conventional). Using KSM, a developer can duplicate, adapt 

and assemble the different software components following a high level knowledge model 

which offers a global view of the architecture. The direct advantages of the use of KSM are: 

(1) it is easier to design and to develop large and complex knowledge based systems with 

different symbolic representations, (2) the final application is open to be accessed by the end-

user in a structured way, (3) the modular nature of the architecture allows the system to be 

more flexible to accept changes, and it is also useful for production planning (i.e. it is possible 

to define an implementation plan according to the structural constraints of the model), and for 

budgeting (the project is decomposed in understandable components where it is possible to 

make better prediction of time and costs). The KSM software environment provides the 

following facilities: 

a)  A user interface for knowledge modeling, following the knowledge area paradigm. This 

interface consists of: (1) a graphical window-based view of knowledge modules providing 

visual facilities to create, modify and delete components, (2) the Link language interpreter 

which allows the developer to formulate high level problem-solving strategies that 

integrate basic components, and (3) the Concel language compiler to define common 
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terminologies shared by different modules. Figure 11 presents a general screen presented 

by the KSM environment showing the knowledge areas components of a structured model. 

b) A library of reusable software components (the primitives of representation). They may be 

either conventional or knowledge-based modules. Examples of general knowledge-based 

primitives are: rule-based primitive with forward and backward chaining inference 

procedures, frame-based primitive with pattern-matching procedures, constraint-based 

primitive with satisfaction procedures, etc. The library is open to include new components 

according to the needs of new applications and they can be programmed by using different 

languages (C++, Prolog, etc.). 

c) A user interface for execution. This interface allows the developer to execute knowledge 

models to validate them. The evaluation may be done either for the whole model or parts 

of it. Using the interface, the developer may select tasks to be executed, provide input data 

and consult results and explanations. The execution makes use of the Link interpreter to 

execute methods and the primitives of representation to execute the basic inferences. 

The original version of KSM operated on Unix environments with a minimum of 32 Mb of 

RAM and more than 50 MIPS of CPU. This version of KSM was implemented using C and 

Prolog languages. Both languages were improved by adding object oriented features. X 

Window and OSF/Motif were used to develop the user interface. Recently, a new version for 

the Windows operating system was constructed using C++ and Java languages. 
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5. EXAMPLE OF KNOWLEDGE MODEL USING KSM 

In order to illustrate the previous knowledge modeling process, an example about traffic 

management is presented in this section (another detailed example in this domain can be 

found at Molina et al. (1998b)). Traffic management systems must be reactive to the different 

states of traffic flow in a controlled network (a network equipped by sensors and data 

communication facilities allowing to get real time data in a central computer and to diffuse 

signals from this central computer). These systems evolved from an initial approach based on 

a library of signal plans which were applied on a time based pattern, to an intelligence for 

understanding traffic situations in real time integrating a model for decision making 

(Bretherton et al. (1990), Mauro (1989)). Nevertheless, the experience in using such systems 

showed deficiencies when the traffic situation became specially problematic and the 

intervention of the operator was necessary and almost customary in most installations. 

The above considerations suggested a need to complement the existing traffic control systems 

(including pre-calculated plan systems, dynamic systems and VMS systems) with an 

additional layer where the strategic knowledge, currently applied by human operators, may be 

applied to understand the specific processes of congestion development, and corresponding 

actions for alleviating the problem may be modeled. From this viewpoint, the technology of 

knowledge-based systems was considered adequate for designing and implementing suitable 

knowledge structures to formulate conceptual models for traffic analysis and management.  

To control a motorway a technique usually applied is to send messages to the drivers through 

panels whose content can be modified by operators at the control center (these panels are 

named Variable Message Signals (VMS)). The motorway is adequately controlled if in any 
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moment the message panels are pertinent and consistent with the state of the traffic flows in 

the motorway. An intelligent system to help in decision support could be formulated in terms 

of a general propose and revise method where the current state of the panel messages are 

evaluated with respect to the state of traffic and are revised accordingly. The following 

analysis is performed to design such simple system. 

5.1 The Domain Knowledge 

The basic traffic vocabulary of this example includes the following concepts (figure 12). 

There are traffic detectors with three attributes, occupancy, speed and flow that get as value 

temporal series of numerical values. A road section is a significant cross point of the road that 

is characterized by its capacity (maximum flow that the section accepts), the detector 

associated to the road section, and two dynamic qualitative attributes, saturation level and 

circulation regime, that are useful to characterize the current state of the section with 

symbolic values. The road link serves to connect consecutive sections. It is characterized by 

the upstream and the downstream section. Thus, the structure of the road network is 

represented by a set of road links. A path is a sequence of links and includes the attribute 

travel time. Finally, there are variable message signs (VMS) where it is possible to write 

messages for drivers. Two types of meaningful messages can be considered in this simplified 

example: (i) qualification of the traffic state downstream the panel location (e.g., "slow traffic 

ahead at N Km.", "congested link at N Km") and (ii) information on time delays to reach 

some destination (e.g., "to destination D, 20 min by option B"). 
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The declarative knowledge of the domain model is based, on the one hand, on conditions 

relating traffic states in some sections and the possibility of writing a message in a particular 

VMS. Each panel includes a predefined set of messages (messages qualifying the situation in 

a set of traffic sections and messages for path recommendation) where each message should 

be presented to the drivers when certain conditions about the situation in several downstream 

sections are satisfied. On the other hand, there are also conditions modeling consistency 

between messages along a path or in an intersection to ensure that the drivers along a path do 

not find contradictory recommendations or that the drivers incoming a roundabout are 

adequately directed by the messages to select the adequate options. In order to represent the 

first type of knowledge, rules can be written using the following format: 

  if  circulation regime of section Si = Ri, 

   saturation level of section Si = Li, 

   circulation regime of section Sj = Rj, 

   saturation level of section Sj = Lj 

   ... 

   travel time of path Pn = close to N minutes, 

   travel time of path Pm = close to M minutes, 

   ... 

  then  message of panel Mk = Tk 

This type of rules model the fact that when the sections Si, Sj, ... (sections that are 

downstream the panel Mk) are in a certain state characterized by the circulation regime and 

the saturation level of such sections, and when the estimated travel time of certain paths are 

close to N minutes (where the evaluation of the close to qualifier can be done by using a 

particular fuzzy possibility function), then it is deduced that the panel Mk should present the 

40 



message Tk. Thus, each panel will have a set of this type of rules that establish conditions 

about the sections downstream the panel for each type of message to be presented. 

The second type of conditions that establish consistency between messages may be modeled 

by two classes of rules. First, a set of rules to deduce sets of messages for panels based on 

messages of other panels, with the following format: 

  if  message of panel Mi = {Ti,...}, 

   message of panel Mj = {Tj,...}, 

   ... 

  then  message of panel Mk = {Tk,...}, 

   message of panel Ml = {Tl,...}, 

   ... 

This type of rule means that the occurrence of messages {Ti,...} for panel Mi, and 

messages {Tj,...} for panel Mj implies that the messages of panel Mk and panel Ml must 

be respectively included in the sets of messages{Tk,...} and  {Tl,...}. The previous 

rules are complemented with rules defining no-good representing incompatible sets of 

messages. This type of rules present the following format (meaning that is not possible the 

occurrence of messages {Ti,...} for panel Mi, and messages {Tj,...} for panel Mj ): 

  if  message of panel Mi = {Ti,...}, 

   message of panel Mj = {Tj,...}, 

   ... 

  then  no-good. 
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In addition to the previous declarative model, there are also abstraction methods to determine 

(1) the qualitative values of road sections for qualification of the saturation level and 

circulation regime, based on the numerical values recorded by detectors for occupancy, flow 

and speed, and (2) the estimated travel times for the predefined paths, based on the current 

speed registered on detectors. 

5. 2. The Strategy of Inference 

The standard general reasoning method usually applied in this type of control applications is 

based in three main steps: (1) problem detection, where possible situations with significant 

differences with respect to the features of a goal situation are identified (in the case of traffic 

this ideal situation is the flow on the road with no congested areas) (2) problem diagnosis, 

when an undesirable situation is presented, its potential causes are identified, and (3) problem 

repair, an analysis of the possible sets of actions capable to modify the causes in positive 

terms is performed to select the adequate ones. This is the approach followed in the KITS 

project Boero et al. (1993, 1994) and the TRYS system Cuena et al. (1995, 1996a, 1996b). 

Although this is a right approach it is also possible to use as alternative a shallow model 

where a direct relation between the state of traffic and the panel messages is established as the 

one proposed in this model, where the diagnosis and repair steps are summarized in a single 

situation-action relationship, Cuena (1997).  

The inference procedure follows a general strategy based on a cycle of reasoning that updates 

the set of messages that were determined in the previous cycle, according to the current state 

of the road network. This updating is a kind of reconfiguration task that first abstracts the 
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current state using information recorded by detectors, then removes not valid messages 

(messages whose conditions to be presented are not satisfied), and finally extend the current 

set of messages with new ones. This strategy can be modelled by a task-method-domain 

structure (figure 13) where the global task called determine messages configuration is divided 

into three subtasks. The first task abstracts information from detectors using a network of 

abstraction functions to determine qualitative values (e.g., for control regime and saturation 

level) and also uses elementary numerical procedures in order to compute derived numerical 

values (such as the estimated travel time and the exact numerical value for saturation). The 

second task, remove not valid messages, studies the pertinence of each message by checking 

their applicability conditions. Finally, the third task, extend with new messages, is applied for 

the panels that have removed their messages. It can be carried out by a propose-and-revise 

method with three subtasks: propose new message, verify messages consistency and remedy 

violations. The first subtask, propose new messages, may be performed by a rule based 

forward chaining method which uses a knowledge base of rules proposing possible messages 

in panels. These rules present the format of the first type of rules presented in the previous 

section. The next subtask, verify message consistency, may be performed by a method using 

no-good rules (of the second type of rules presented in the previous section) for the definition 

of contradictory messages along paths in the network. Finally, the remedy violations subtask 

solves inconsistencies by retracting inadequate messages. This subtask may be performed 

using a base of priority rules providing criteria for selection of messages candidates to retract 

after the results of the two previous subtasks. The last subtask applies a minimum retraction 

criterion, i.e. it is selected the minimum set of messages according to the priority scheme that 

ensure the consistency. These three tasks work in a loop using the following control 

mechanism. First, a new message is proposed for a single panel that does not have a message 

yet. Then the global consistency is studied. If a violation is found, then the remedy task 
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decides which panel must change its message and a new proposal is generated, starting a new 

cycle. This process finishes successfully when all panels have at least one message and they 

do not present inconsistencies. 

The previous analysis may be summarized in terms of the knowledge-area structure presented 

in figure 14. This structure includes a top-level area representing the whole model, called 

VMS management knowledge, that includes the task called determine messages 

configuration. This area is decomposed into two simpler areas: abstraction knowledge, that 

includes the criteria to abstract data from detectors, and messages knowledge, that represents 

the knowledge about messages of panels. This second area is decomposed into three: 

messages applicability, messages consistency and preference criteria. Note that each primary 

area (bottom-level area) encapsulates one type of domain model defined in the previous task-

method-domain structure which corresponds to a type of knowledge base (KB), together with 

the associated primary tasks. For instance, the domain model called applicability conditions 

for messages is part of the primary area called messages applicability and also includes the 

two tasks that make use of this model: remove not valid messages and propose new messages. 

In this case the message applicability is evaluated using fuzzy possibility distributions of 

every message defined with respect traffic flow, speed. A message is discarded when its 

possibilities with respect to the current and predictable traffic conditions are unacceptable. 

5.3 Generalization to Support Reuse 

A more realistic and complex model may be designed if a larger area for traffic management 

is considered. In this case, an appropriate approach is to divide the whole traffic network into 
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local regions in such a way that first, a decision about messages for panels is locally carried 

out taking into account the specific problems of each region and, then, the local proposals are 

combined avoiding incompatibilities (given that there may be common panels to several 

regions). The previous model can be used to locally propose messages for the region panels 

and it needs to be extended with other knowledge areas that include knowledge to manage the 

whole network. Figure 15 shows the complete structure of knowledge areas where 

additionally to the knowledge areas of the previous model, a new top-level area has been 

included that contains the model for a region together with another new area responsible for 

combining local proposals. The combination is based on a kind of generate-and-test strategy 

where first a combination is generated based on the local proposals and, then, a test is 

performed to detect conflicts produced by inconsistent proposals in the panels common to two 

areas. As an alternative to this design, the proposed architecture using region control models 

could be also considered like a multiagent system, where the interaction between regions 

could be modelled by social domain model to solve cooperation and consensus formation in 

dealing with common problems. Some experiments in this direction can be found at Ossowski 

et al. (1996). 

Note that the model that figure 15 presents is a generic structure considered as a pattern to be 

instantiated using the particular knowledge of a specific traffic network. In doing so, there 

will be several instances of the knowledge structure for a region, all of them having the same 

set of classes of knowledge areas and the same tasks and methods, but with different 

knowledge bases. Therefore this design  presents already a certain level of generality to be 

reused for different traffic networks of different cities. However, in order to increase the level 

of reuse it is interesting, when it is possible, to abstract its components and to propose a more 

general knowledge structure, capable to be used for other domains. The appropriate level of 
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abstraction is a decision that the developer must establish according to the possibilities of 

each model and taking into account that too general methods may be difficult to be used by 

other developers. 

In this example, the previous described model can be abstracted in order to build a more 

general version, independent of the traffic domain. Figure 16 shows the task-method-domain 

structure corresponding to the structure that figure 13 presents, that has been extended to 

consider several components (regions in the traffic problem) and tasks, methods and domain 

models have been abstracted from the traffic domain. Here, the set of messages for panels are 

generalized to be considered as a set of values for parameters, and the selection of the traffic 

control plan is viewed as a configuration problem, i.e., updating values to parameters 

according to certain constraints.   

Likewise, figure 17 shows the generalized knowledge-area structure corresponding to the 

structure presented in figure 15. This structure includes traffic-independent tasks and 

knowledge areas. The operationalization of this model using KSM requires first (1) to write 

the corresponding Link methods for non primary tasks, (2) to write conceptual vocabularies 

using Concel and (3) to select appropriate primitives of representation that implement primary 

areas. In this case, for instance, the knowledge base for applicability conditions can be written 

using rule-based representation, and the combination constraints base can use a constraint-

based representation. Thus, primitives that follow these representations and implement the 

corresponding inference procedures can be used here as reusable software components to 

support this part of the model. Finally, once this generic architecture has been built, it can be 

used as a pattern to construct a particular domain model by creating instances of the generic 

knowledge areas and writing specific vocabularies and knowledge bases .  
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6. DISCUSSION 

The proposed approach may be evaluated according to the potential capacities and drawbacks 

to support applications. 

6.1. The Capacities 

• Structuring & encapsulation support: it is produced through the knowledge areas structure 

with the advantage that the modularity of structuring is based in a conceptual organization 

close to the common sense understanding of the model. An example of structure is 

summarized in figure 15, where the relations between knowledge areas are is part of type 

and the internal structure of the areas in terms of tasks and knowledge components may be 

inspected. This structure allows the user to understand and to maintain in acceptable 

conditions a given application. The usual structuring principle of application in software 

engineering is based on the data and process components. These concepts are less close to 

the common sense intuitions of users non computer literate so the new organization based 

on knowledge level structuring is a more adequate solution for encapsulation and structure. 

Moreover, this organization may be implemented in object oriented software models which 

means that the advantages of this type of implementation are implicit in the approach 

based on knowledge areas. 

• Software sharing support: The components of a generic model may be replicated several 

times with different contents in a case model. In fact, the proposed concept of knowledge 

area based encapsulation allows a new level of abstraction of applications as it is displayed 
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in the figure 18 where they are presented the three abstraction levels based provided by the 

KSM environment where: 

- In the lower level a collection of procedures to interpret the basic knowledge 

representation entities is included together with the software for editing and 

maintaining an application. 

- In the following level there is a generic model abstraction with a generic structure of 

knowledge areas and where all the composed inference methods are formulated. 

- The generic methods of the previous level use different domain models as presented 

in the case model level.  

• Reusability: Two types of reuse may be possible: 

- Reuse of the basic units representing primary methods of reasoning supported by 

rules, frames, constraints, tables etc. The reuse is produced at the level of the 

problem solving methods where different knowledge bases of constraints, rules, etc. 

are formulated for every case. 

- Reuse of total or partial generic models. In this case reuse is produced by importing 

an upper level reasoning method of a generic model that may be used to perform a 

subtask in other model. 
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 Reusable software components are self contained, clearly identifiable artefacts that 

describe and/or perform specific functions, have clear interfaces, appropriate 

documentation and a defined reuse status Sametinger (1997). The reuse status contain 

information about who is the owner of a component and who maintains it. Every 

component, then, must include a description of its functionality and a code which performs 

it. The problem is that as a consequence of the maintenance process it may happen that 

some discrepancies between the textual description of the component and the software 

code exist. This may be the source of misunderstandings in the use and performance of the 

component. Obviously, a knowledge area (including the lower level units supporting its 

functionality) is a typical software component which has the advantage that its code 

written in knowledge representation language is understandable by the users even not 

expert in Computer Science. Then, it is not required to include the double aspect of textual 

description and software code to get an understandable formulation of a software 

component. This is an advantage for maintenance and applicability of the components 

formulated in a knowledge based approach. 

• Support of the software production process through the generic model abstraction. This is 

justified by: (1) generic models is a form of specification of an application class contents, 

(2) possibility to schedule and to budget case applications of a generic model because all 

the elements to be developed are well defined in this type of models where it is explicit a 

structured organization of components every one well known and, hence, easy to evaluate 

in time and cost, and (3) certain level of maintenance by users. 

• Advanced human-computer interaction support: The usual approach to human computer 

interaction is to include in the application facilities to generate versions of the system 
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answers closer to the user needs and understanding facilities (natural language expression, 

multimedia presentation of answers, etc.). However, not too much attention has been paid 

to allow the user to enter in the conceptual world of an application because, usually, it is 

implemented as a fixed set of functions supported by a blackbox implementation using 

conventional languages not understandable enough by the users. Using knowledge based 

models it is possible a type of interface where for every class of questions a task-method-

structure is designed supported by declarative domain models allowing the production of 

explanations at different levels and, hence, to allow the user to communicate at the 

knowledge level with the application. 

 

 

 

6.2 The Drawbacks 

There are two types of critiques for the knowledge modeling approach: 

• Knowledge building & validation process: To ensure that the right contents are introduced 

in a case model, an experimental approach must be applied. The current state of knowledge 

acquisition methods ensure more reliable (and predictable in terms of time and budge) 

development processes. As commented before using structured knowledge representation 
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models it is possible to identify in the phase of specification a structured view of the 

knowledge of an application in terms of hierarchical structures of problem solving methods 

and associated domain models. This generates a framework to guide the implementation of 

the reasoning method and to the elicitation of domain models in terms of adequate size 

which will ensure reliability and efficiency. Moreover, if qualified operators are used to 

develop applications and advanced human-computer interaction environment is used, as it 

is possible now, the knowledge debugging will be efficient enough because it is possible to 

obtain explanations at different depths so it will be possible to establish the role of the 

different levels of knowledge used to produce and answer. 

• Efficiency: Although the knowledge based models work in an interpreted mode, which is a 

drawback for efficiency, the hardware evolution already shows power enough to ensure an 

acceptable timing in the answers even in these conditions. 

 

7. CONCLUSIONS 

An outline of the possible profile of tools for application development based on knowledge 

modeling technologies has been proposed using as example the approach supported by the 

KSM tool. Although alternative approaches may be used to improve some of the specific 

drawbacks that the KSM tool may present, our experience shows that it is possible to 

conceive software development platforms supporting something that could be named 

cognitive programming where data and procedures specification are included as pieces of 
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knowledge. At the current state of this technology, it may provide, both from the point of 

view of operation and development, levels of service competitive enough with the 

conventional approaches because, as commented in the previous paragraph, it is possible to 

satisfy most of the conditions usually asked for a good software development platform and 

methodology with additional advantages not usually considered in conventional approaches 

that are being focus of growing attention such as potentialities for reuse and advanced user 

interaction support. 
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Figure 1: Task-method-domain structure for a model 
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Figure 2: Example of task-method-domain structure 
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Figure 4: Abstract example of the encapsulation provided by the knowledge area concept. 

The hierarchy of task-method-domain on the left can be grouped using five knowledge areas 

A1, A2, ..., A5. This produces the knowledge-area view on the right which offers a more 

synthetic view of the model 
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Figure 5:  Knowledge-area view of the generic decision support model 
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CONCEPT name-of-concept {SUBCLASS OF | IS A} name-of-class. 

[ATTRIBUTES: 

 name-of-attribute facet facet ... facet, 

 name-of-attribute facet facet ... facet, 

 ... 

 name-of-attribute facet facet ... facet.] 

 

Figure 6: General format of the formulation of a concept using the Concel  language. 
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 METHOD method-name 

 

 ARGUMENTS 

  [INPUT list-of-inputs] 

  [OUTPUT list-of-outputs] 

 

 DATA FLOW 

  data-connection-among-subtasks 

 

 [CONTROL TASKS 

  data-connection-among-control-tasks] 

 

 CONTROL FLOW 

  rules-to-determine-the-control-regime 

 

 [PARAMETERS 

  default-values-for-parameters] 

 

Figure 7: General format of a method formulation using the Link language. 
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 (knowledge-area-name) task-identifier 

 [INPUT  

  { [mode] flow-expression } + ] 

 [OUTPUT  

  [mode]  { flow-identifier } + ] 

Figure 8: General format of an input/output specification using the Link language. 
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Figure 9: Example of the execution of a method where there is a non linear reasoning  

(example taken from Chandrasekaran et al. (1992) and adapted to the Link operation). 
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 • Import-Vocabulary(Vocabularies) 
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 ... 
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 • Inference-Procedure-2(Args) 
 ... 
 • Inference-Procedure-N(Args) 
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Figure 10: Structure of the class implementing a primitive of representation 
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Figure 11: Screen example of the KSM environment. 
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Clases of concepts Attributes Values

Mi: Variable 
       Message 
       Sign 

message
{“slow traffic ahead at N Km”, 
 “congested link at N Km”, 
 “to area A, 20 min by option B”, 
...}

Di:  Detector occupancy
speed

flow

temporal  series of num.values in %

Si:  Road Section capacity number in veh/h
saturation level {free, critical}

circulation regime {fluid, unstable, congested}

detector instance of detector

Li:  Road Link upstream section instance of section
instance of section

temporal  series of num.values in Km/h

temporal  series of num.values in veh/h

downstream section

Pi:  Path links list of instance of links
number in minutestravel time

 

Figure 12: Basic vocabulary used in the traffic domain model 
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Figure 13: Task-method-subtask-domain structure for the traffic control example 
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Figure 14: The knowledge-area view of the knowledge model for road VMS management 
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Figure 15: Knowledge-area structure corresponding to an extension of the model of figure 13 

where a more complex traffic network has been considered that needs to decompose the total  

network into simpler regions.  
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Figure 16: Task-method-domain structure corresponding to an extension and abstraction of 

the  structure  established for the traffic problem (shown in figure 12). 
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Figure 17: Knowledge-area structure corresponding to an abstraction of the structure 

designed for the traffic problem  (figure 14) . 
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Figure 18: The three main components of an application deveoped using KSM 
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