
Chapter of the book “Knowledge Engineering and Agent Technology”
J. Cuena et al. (Eds), IOS Press, 2004

Using Knowledge Modelling Tools for
Agent-based Systems:

The Experience of KSM

Martin MOLINA and Jose CUENA
Department of Artificial Intelligence Technical University of Madrid,

Campus de Montegancedo s/n, 28660 Boadilla del Monte (Madrid), Spain
http://www.dia.fi.upm.es

Abstract. The aim of this chapter is to discuss the applicability of recently proposed
knowledge modelling tools to the development of agent-based systems. The
discussion is derived from the real world experience of a particular software tool
called KSM (Knowledge Structure Manager). The chapter provides details about this
tool and then proceeds to show in which forms the software may be used to support
the development of agent-based systems. Two multiagent systems, one in the field
of telecommunications management and the other one in the field of flood control,
are described. Conclusions about these studies are presented, summarizing the main
contributions that knowledge modelling tools can bring to the development of agent-
based systems.

1. Introduction

Consideration of computer systems as agent-based systems has received increasing
attention as design paradigm. One distinguishes between two different types of multiagent
architectures: (1) complex societies of simple, homogeneous agents, wherein the system
complexity is derived from the existence of a large number of agents of quite simple
internal architecture; and (2) simple societies of complex, heterogeneous agents, wherein
each agent possesses a significant internal architecture and where the society usually
encompasses different types of agents. With respect to the second type, knowledge-based
techniques can be appropriate solutions for construction of the individual agents.

In this second type of software architectures, the usual internal knowledge complexity
of each agent, that determines both individual and social behavior, requires an adequate
process for modulating and configuring of the cognitive capacities of the individual agent.
For this purpose, it is convenient to make use of recent advances in the field of knowledge
engineering involving methodologies and tools that can provide criteria and technical
solutions to cope with the usual complexity and diversity of knowledge found in each
agent. Thus, it is very adequate to combine agent-based technology with knowledge-based
technology to facilitate the development of more complex systems in real world problems.

According to this, the present chapter describes the use of an advanced knowledge
engineering tool in the development of agent-based systems. The chapter describes first the
characteristics of a particular knowledge engineering software environment: the KSM tool.
Subsequently, a general approach is shown for using this tool in the development of agent-
based systems. This is done with the discussion of two case studies corresponding to two
different real world systems: one in the field of telecommunications management and the
other one in the field of flood control. Finally, general conclusions derived from these
studies are presented.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148670016?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.dia.fi.upm.es/

2. The KSM tool for knowledge modelling

This section summarizes the main characteristics of the KSM tool, a software environment
that was designed to help developers and end-users in the development and maintenance of
large and complex knowledge-based systems following a modelling approach. The section
includes a first part that describes the main knowledge modelling concepts followed by
KSM. Then, the second part presents the types of symbolic knowledge representation
languages provided by KSM. Finally, this section describes the characteristics of the KSM
software environment. More detailed descriptions about this tool can be found at [1], [2],
[3], [4], [5].

2.1. Knowledge modelling concepts

In order to characterize the knowledge model of an agent it is possible to apply the
paradigm of model-based system development, which has become a popular approach to
the development of complex knowledge-based systems. This modelling approach considers
the existence of an abstract level (proposed by Newell with the name of knowledge level
[6]) at which the knowledge can functionally described on the basis of its role,
independently on the particular symbolic representation (this view contrasts to the
traditional approach where a knowledge system was usually considered as a container to be
filled with knowledge extracted from an expert). Some recent methodologies for system
development such as KSM and others (KADS [7] or Protégé-II [8]) follow this model-
based approach.

Task ...

Primary
Method

... ...

...

...

...

... ...

...

...

... ...

Declarative
Model

Vocabulary
Domain
Model

Primary
Method

Primary
Method

Primary
Method

Primary
Method

Primary
Method

Vocabulary Vocabulary Vocabulary Vocabulary Vocabulary
Declarative

Model
Declarative

Model
Declarative

Model
Declarative

Model
Declarative

Model

Task Task Task Task Task

Method Method Method

...

Method Method

...

TaskTaskTaskTask

MethodMethod

.......Top-level
Task

Top-level
Task

...

Method

TaskTask

Method

Top-level
Task

Figure 1: Hierachies of task-method-domain structures to describe a knowledge-model

These methodologies organise the knowledge according to certain structuring

principles. One organisation followed by most of the methodologies is the task-oriented
approach. According to this view, a task is an abstract description that identifies a goal to
be achieved (for instance, mineral classification or the design of the machinery of an
elevator). Tasks are usually characterised by the classes of premises that they receive as
input and the classes of conclusions that they produce as output. On the other hand,
problem-solving methods (or methods in short) are used to cope with the tasks. A method

indicates how a task is achieved, by describing the different reasoning steps by which its
inputs are transformed into outputs. Simple tasks can be attained directly by means of
primary methods. What is considered as a primary method is a design decision established
by the developer. Typically, primary methods correspond to methods that can be directly
implemented at symbolic level by simple problem-solving techniques (such as knowledge
based techniques like backward or forward chaining in rule-based representations,
constraint satisfaction methods, and also specific algorithmic solutions that do not require a
explicit representation of declarative knowledge). Primary methods rely on a knowledge
base, modelling the declarative domain knowledge used by basic methods. The use of
declarative knowledge by primary methods requires an ontological definition of such a
knowledge that is viewed as a set of domain models that support primary tasks. This type of
description based on tasks and methods was originally present in several proposals from
different authors such as the generic task [9], [10], the KADS model [7], the components of
expertise [11], the role limiting method [12]. Following this approach, a model can be
described initally as a collection of top-level tasks that identify the set of main goals to be
achieved by the application. These tasks requires compound methods that decompose them
into subtasks. These subtasks may again be decomposed by a method and so on, developing
a task-method-domain hierarchy (figure 1), whose leaves are given by basic methods that
use simple knowledge bases. Thus, the resulting model for an agent can be viewed as a
collection of types of knowledge bases (each one with its own symbolic representation)
together with a hierarchically structured set of reasoning strategies that make use of such
knowledge bases.

Knowledge Area

Area 1

Area 2

Area M

Task 1

...
Task 2

Task N

...

Figure 2: The structure of a knowledge area

However, in real applications, the experience shows that, sometimes, too large

descriptions can be designed by using this type of formulation that may produce problems
of understanding and maintainance together with problems of efficiency in the final
software implementations. Thus, although the conceptual description based on task-
methods-domains is adequate for the analysis process, it needs to be complemented and re-
organized using additional modelling concepts for the final design of the application, to
have a synthetic view of an application at several levels of conceptual aggregation. For this
purpose, an additional description entity can be used. This entity is called knowledge area
and was originally proposed as a main structuring concept within the KSM tool [1], [2].

A knowledge area in KSM follows the intuition of a body of knowledge that explains
a certain problem solving behaviour observed in an agent. A cognitive architecture that
models the expertise can be viewed as a hierarchically structured collection of knowledge
areas at different levels of detail, where each knowledge area represents a particular
qualification or speciality that supports particular problem solving actions. A knowledge
area (figure 2) is described with two parts: (1) its knowledge, represented as a set of
component sub-areas of knowledge, and (2) its functionality, represented by a set of tasks
(and their corresponding methods). The first part decomposes the knowledge area into
simpler subareas, developing a hierarchy at different degrees of detail. The second part
associates tasks to knowledge areas showing their functional capabilities.

T1 T2

T3 T4

T5 T6 T7 T8 T9

M1 M2

M4

M5 M6 M7 M8

KB1 KB2 KB3Domain
model

M3

M9

A1

A2

A3
A4 A5

T5
T6

KB1

A3

T7
T8

KB2

A4

T9KB3

A5

T3
T4

A2

A 3
A4

T1
T2

A1

A 2
A3
A5

Figure 3: Example of the encapsulation provided by the knowledge area concept. The
hierarchy of task-method-domain on the left can be grouped using five knowledge areas
on the right.

The knowledge area concept is useful to produce a more synthetic view of the

knowledge model given that it groups a set of tasks (together with the corresponding
methods) in a conceptual entity of higher level. Figure 3 shows how the tasks of the task-
method-domain hierarchy on the left can be grouped in a hierarchy of five knowledge areas
on the right. In principle, given a hierarchy of task-method-domain resulting from the
knowledge level analysis, it is possible to design different hierarchies of areas according to
a principle of knowledge area structuring. In order to guarantee a reasonable level of
understandability of the knowledge model, the final hierarchy should be designed to follow
the natural intuitions associated to the knowledge attibuted to the human problem solving
process to be modelled. The formulation using the knowledge area format provides certain
advantages: (1) every task at any level of the hierarchy is associated to the explicit
knowledge that supports its functionality, which makes more meaningful the model (2) the
structure of knowledge areas synthesizes the structure of tasks-method-domains, which is
useful to better understand complex models, (3) at the bottom level, primary knowledge
areas encapsulate declarative domain models, so it is a solution to organize the domain
layer in separate modules, which contributes to keep easier the consistency of the model
and (4) primary knowledge areas are easy to be implemented by reusable and efficient
software components, which gives a solution for the development and maintenance of the
final executable version of the system.

Knowledge areas can be defined at generic and at domain level. Generic areas mean
classes of bodies of knowledge that allow to formulate a model. Then, a particular domain
model is viewed as a collection of instances of such classes that can share by inheritance
different properties of the classes such as relations with other areas, problem-solving
methods, etc. This possibility of defining classes of areas is a solution to support reuse.
Thus, abstract structures of knowledge areas may be reused to develop different
applications operating in different domains. This structuration contrasts to a plain
organization of knowledge, such as the traditional structure proposed in the original rule-
based systems that does not describe explicitly the different knowledge modules in which
rules could be organized. Knowledge areas allow to identify such modules, even by
establishing several conceptual levels (knowledge areas being part of other knowledge
areas). Thus, the resulting system can describe better its own knowledge (more similar to
how a human expert does) showing the categories in which it can be classified. This
contributes to present different levels of detail of the expertise, and to produce explanation
of good quality. Section 4 includes specific examples of the use of this methodology in two
real-world problems.

2.2. Symbolic knowledge representation in KSM

One of the basic assumptions followed by the KSM approach to develop a knowledge
model is that, instead of using a uniform symbolic knowledge representation for the whole
model (e.g., logic or rules) that can be useful for the analysis and formalization phases but
could be artificial and inneficient for the development of the final application, the
developer will use for each case the most appropriate symbolic representation in order to
produce both an efficient and a comprehensible model. According to this, KSM
distinguishes between three categories of knowledge for which there are different
approaches for symbolic knowledge representation: (1) domain knowledge bases
corresponding to primary areas, (2) conceptual vocabularies, i.e., common basic domain
terminologies shared by different knowledge bases, and (3) procedural knowledge to
formulate problem-solving methods. For the first category, KSM provides a library of
reusable software components, called primitives of representation, that offer the required
freedom to the developer to select the most convenient representation for each case (rules,
frames, constraints, belief networks, etc.). For the second and third categories, KSM
provides two languages the Concel and the Link languages. The rest of the section explains
in more detail these three types of components for symbolic representation.

The primitives of representation for knowledge bases

As it was presented, the central structure of a knowledge model is defined as a hierarchy of
knowledge areas, where each area is divided into subareas until elementary areas are
reached (called primary knowledge areas). The purpose of a primitive of representation is
to provide a symbolic representation together with a set of primitive inference methods to
build the operational version of a primary area of a knowledge model (a more detailed
description of this type of components can be found at [13]). For each primary knowledge
area of the model, the developer selects the most appropriate primitive that acts like a
template to be filled using domain knowledge in order to create the final operational
component that implements the primary area. The primitives of representation are taken
from an library of primitives provided by KSM. This library is open, i.e., new primitives
can be included as a result of the development of new software components.

Each primitive of representation is considered as a reusable pre-programmed
software component that implements a generic technique for solving certain classes of
problems. The primitive defines a particular domain representation using a declarative
language together with several inference procedures that provide problem-solving
competence. In a simplified way, the structure of the primitive is defined by a pair <L, I>,
where L is a formal language for knowledge representation and I = {ij} is the set of
inferences, i.e., a collection of inference procedures that use the declarative representation
written in L. The module defined by a primitive is a design decision that is mainly
influenced by the representation language L. This language is usually homogeneous,
declarative and close to personal intuitions or professional fields. In a particular primitive,
this language can adopt one of the representations used in knowledge engineering such as:
rules, constraints, frames, logic, uncertainty (fuzzy logic, belief networks, etc.), temporal
or spatial representations, etc. Also other parameterised or conventional representations
can be considered, such as the parameters of a simulator or a graph-based language. Each
element of the set of inferences I expresses an inference procedure that uses the knowledge
formulated in the language L. For instance, the rule-based primitive may have an
inference, called forward chaining, that implements an inference procedure following a
forward chaining strategy to determine whether a goal can be deduced from a set of facts
given the rules of the knowledge base. In addition, there may be also another inference that
follows the backward chaining strategy for the same goal. Each inference ij defines a pair
<P, C> where P is a set of inputs (premises) and C is a set of outputs (conclusions).

The primitive provides an interesting level of generality due to the abstraction of the
domain knowledge that provides the use of the representation language. The same
primitive can be used to construct different modules with different domain knowledge. For
instance, a rule-based primitive can be used to construct a module to diagnose infectious
diseases or it can be used to build a module that classifies sensor data. Both modules are
supported by the same primitive but they include different domain knowledge. Another

interesting advantage provided by the primitive is that there is a clear analogy between
primitives and knowledge areas, so this offers an easy transition from the implementation-
independent model (as a result of analysis phase) to a more refined model where
elementary computable components have been selected to configure the operational
version. This continuity preserves the structure defined by the abstract model and, as a
consequence, improves the understandability and flexibility of the final system.

The representation language of the primitive is used to formulate a declarative model
of the domain knowledge. However, this local information could be shared by other
different primitives. This problem about common concepts is solved by using of
conceptual vocabularies (see below). From the point of view of primitives of
representation, they need to be capable of sharing vocabularies. The solution to this is that
the primitive provides mechanisms to import vocabulary definitions that are translated to
the local representation language of the primitive. Thus, when the user of the primitive
needs to write a particular local knowledge base during the knowledge acquisition phase,
the vocabularies shared by the primitive are previously imported to be part of the base, in
such a way that vocabularies are directly available in the language of the primitive to help
in writing the knowledge base.

At the implementation level, the primitive is a software module designed and
implemented as a class (from the object-oriented development point of view), i.e.
programmed with a hidden data structure and with a collection of operations which are
activated when the class receives messages. The language where each primitive must be
formulated is open. Different programming languages such as C,C++, Fortran, Prolog, etc
may be applied. If they are knowledge-based they must have a user interface to acquire the
structures of representation for the knowledge base (such as rules or frames). This activity
is carried out by programmers outside of KSM using particular programming languages.
Once a particular primitive is built, it must be individually validated and then it is
integrated in the KSM library as a reusable software component for building several
applications. The executable version of the knowledge model is built by duplicating,
adapting and assembly primitives using the KSM facilities.

The Concel language for common terminologies

In order to facilitate an efficient operationalization of the final model, it is important to
distinguish between the domain descriptions that are common to the whole model and
additional extensions oriented to perform specific primary tasks. In KSM, the common
descriptions are formulated with what is called conceptual vocabularies. A conceptual
vocabulary allows the developer to define a common terminology which can be used by
different primary knowledge areas. One of the direct advantages of the use of vocabularies
is that they provide a common location where concepts are defined. This avoids to
repeatedly define the same concepts eliminating the risk of incoherence in the knowledge
of different domains. The concepts defined by the vocabulary will be later referred by
other symbolic representations (rules, frames, constraints, etc.) used by primary areas. Due
to the general use of vocabularies by different knowledge modules, they must be
formulated in a common language. KSM provides the Concel language for this purpose. It
allows the developer to define: concepts, attributes, facets and values and the classification
of the concepts in classes and instances.

Figure 4 shows an example of the definition of some concepts using the Concel
language.This example defines the class called urban section as a subclass of the concept
section. It is defined with six attributes where there are both numerical and qualitative
attributes. For instance the attributes lanes and length are integers (with ranges 1-4 and 0-
1000 respectively) and the attribute capacity is an interval (with range 0-2000). There is a
default value for the attribute lanes (one lane). The attributes capacity and length have
units (vehicles/Km and meters respectively). On the other hand the attributes detectors,
speed and circulation have qualitative values. In the case of speed and circulation they
present explicitly the set of possible values (e.g., low, medium and high for speed). The
type of values of the attribute detectors are defined as instances of the class detector. In
addition to that, the concept Main Street is defined as an instance of the class urban
section. In this case, particular values are associated to some attributes defined in the class.
Usually, a generic model include conceptual vocabularies that define classes of concepts

(and possibly also instances) that are domain-independent. The particular instances or
subclasses of such concepts corresponding to a specific domain will be defined later when
the model is instantiated on such a domain.

CONCEPT urban section SUBCLASS OF section.
ATTRIBUTES:
 capacity (INTERVAL RANGE 0 2000) [veh_Km],
 lanes (INTEGER RANGE 1 4): 1,
 detectors (INSTANCES OF Detector),
 length (INTEGER RANGE 0 1000) [m],
 speed {low, medium, high},
 circulation {free, saturated, congested}.
...
...
CONCEPT Main Street IS A urban section.
ATTRIBUTES:
 capacity: [1400, 1800] [Veh_Km],
 lanes: 3,
 detectors: (DE1003, DE1005),
 length: 350 [m].
...
...

Figure 4: Partial example of concepts definition using the Concel language

The Link language for problem-solving knowledge

On the other hand, in order to describe how a task is carried out, a developer defines a
method with a particular problem-solving strategy using the Link language. Methods may
be considered control knowledge given that they describe control strategies about the use
of domain knowledge Basically, using the Link language, the method formulation is
described by two main parts (see example of figure 5): (1) the data flow section, to define
the data connection among subtasks and (2) the control flow section, to formulate the
execution order of subtasks. In addition to this, there are also other two optional sections
(for reflective behaviour and for default values of search control parameters) which are not
described here in detail (for a deeper description of the Link language, see [4]).

The data flow section describes the data connection of subtasks showing how some
outputs of a subtask are inputs of other subtasks. The developer here writes input/output
specifications of subtasks. Each i/o specification includes (1) the subtask name as a pair
made of the knowledge area name and the subtask identifier, (2) the input of the subtask
with names identifying data (here, each input flow accepts a mode to either get all the
elements of a list at once or element by element, which is useful to formulate non-
deterministic search methods), (3) the output is defined with a list of single identifiers. In
Link language, in general, subtasks are considered non-deterministic processes. This
means that as a result of a reasoning, a task may generate not just one result, but several
ones. For instance, in the context of medical diagnosis, the task may deduce several
diseases and several therapies for the same symptoms. Thus, when tasks are going to be
connected in the data flow section this possibility must be taken into account. This is
managed with two output modes. Modes select whether the whole set of outputs must be
generated one by one element considering that there is a non-deterministic result (this is
the default mode) or, on the contrary, it must generate all the outputs at once as a list of
single elements for each output flow, which is called the all mode.

The purpose of the control flow section is to formulate the strategic knowledge that
determines the execution order of subtasks. The representation uses production rules. The
advantage of this representation is that it easily may define local search spaces considering
the non-deterministic behaviour of subtasks. At the same time, the representation is simple
enough to be used easily due to this language is not a complex programming language but,
on the contrary, it serves as an easy description language to formulate procedural
knowledge (a method will have a small number of rules, usually less than 10). Using
production rules provides a intuitive representation, and flexibility for maintenance. The
format of each rule is: (1) the left hand side includes a set of conditions about intermediate
state of task executions, and (2) the right hand side includes a sequence of specification of

task execution. Each one of the first elements (state of task executions) includes a reference
about a knowledge area, a task identifier of that area and a control state, which means that
the result of the execution of the task has generated the control state. The representation of
the elements in the right hand side (specification of task execution) includes a knowledge
area, a task and a execution mode, to indicate a task to be executed with a particular mode.

METHOD establish and refine

ARGUMENTS
 INPUT description
 OUTPUT category

DATA FLOW
 (validity) establish
 INPUT description, hypothesis
 OUTPUT category
 (taxonomy) refine
 INPUT category
 OUTPUT hypothesis

CONTROL FLOW
 START
 -> (taxonomy) refine, MODE maximum answers=3,
 (validity) establish.

 (validity) establish IS established,
 (taxonomy) refine IS intermediate hypothesis
 -> (taxonomy) refine MODE maximum answers=3,
 (validity) establish.

 (validity) establish IS established,
 (taxonomy) refine IS final hypothesis
 -> END.

Figure 5: Example of method formulation using the Link language

For instance, figure 5 shows a complete example of a method formulation for

hierarchical classification using the establish-and-refine strategy. Besides the global inputs
and outputs, the method includes a section for data flow with two tasks and a section for
control flow with three rules. The representation with rules includes references to the
beginning and the end of the execution to indicate the first set of actions to be done and
when the process has reached a solution of the problem. The beginning of the execution is
referred as a state of the execution (to be included in the left hand side of the rules) and it is
written with the reserved word START. The end of the execution is considered as an action
(to be included in the right hand side of the rules) and it is written with the reserved word
END.

The execution of a method formulated using the Link language follows the control
established by the set of control rules. In the simplest case, when this sequence is
permanent, there is just one rule with the explicit order at the right hand side. However, the
use of control rules allows to define more complex situations. First, it allows to
dynamically determine the sequence of execution, so that it is possible to represent control
structures such as if-then, loops, repeat, etc. In order to do so, control states are used. For
instance, in the previous example of method that follows the establish and refine strategy,
the second rule can be triggered in a loop until the hypothesis is not intermediate. In
addition to that, in Link language it is possible to define a more powerful execution with a
non-linear sequence. This is possible by two reasons: on the one hand, for a given state
more than one rule may be used and, on the other hand, a given task may generate more
than one result. This possibility of non-linear executions is a powerful technique that
allows the developer to define more easily problem-solving strategies where there are
search procedures. According to this, Link develops a local search space for the execution
of a particular problem-solving method. In general, given that a method calls subtasks,
each one with its particular method, different local search spaces are developed at run time
by the Link interpreter, each one for each method.

2.3. The KSM software environment

The previous knowledge modelling approach is supported by the KSM sofware
environment. The KSM environment helps developers and end-users to construct and
maintain large and complex applications, using both knowledge-based and conventional
techniques. KSM covers different steps of the life-cycle of an application:

• Analysis. KSM uses a particular modeling paradigm, based on the knowledge area
concept, for a high level description of the knowledge of the application. The
developer uses this paradigm to create a conceptual model to be accepted by the end-
user before starting the implementation. Unlike the conventional models of software
engineering based on a perspective of information processing, this model is focused on
knowledge components which provides a richer and more intuitive description of the
architecture of the application. The analysis phase may be either (1) totally creative,
i.e. the model is only derived from the information provided by domain experts, or (2)
model-based, i.e., the model is also derived from a generic model taken from a library
of reusable models that establishes the abstract structure of components and relations.

• Design and implementation. KSM assists the developer to create the final executable
version of the knowledge model. In order to do so, KSM manages reusable software
components (the primitives of representation) which are adapted and assembled by the
developer following the structure of the conceptual model. Normally, primitives
provide general inference procedures and representation techniques to write
knowledge bases (although also domain dependent primitives can be considered). In
this phase it is also required to fill in the architecture with the specificities of the
problems to be solved. For this purpose the domain models are to be formulated by
introducing parameter values and knowledge bases required for case modeling.

• Operation and maintenance. Once the application is built, the end user can apply
KSM to consult the structure of the conceptual model of the application and may
access to local independent knowledge bases following this structure. The role of
KSM here is to allow the end-user to open the application to access to its knowledge
structure so that, instead of being a black box like the conventional systems, the final
application shows high level comprehensible descriptions of its knowledge. The user
also may change the conceptual model at this level, without programming, in order to
adapt the system to new requirements. KSM automatically translates these changes
into the implementation level.

KSM software environment

Domain
knowledge
model

Generic knowledge
model

Library of Primitives of representation

Figure 6: Main building blocks corresponding to a complete knowledge model in KSM.
It is considered as a structure of four layers, where each layer is supported by the layer
immediately below.

Figure 6 shows the main building blocks that correspond to a complete knowledge
model developed using KSM. It is considered as a structure of four layers, where each
layer is supported by the layer immediately below. Here the KSM software tool serves as a
plataform to support the rest of the components. Immediately above this platform, the
library of primitives of representation provide the basic set of software components that
support the next layer, the generic knowledge model considered as an abstract knowledge
structure. Finally, at the top, the domain knowledge model shares the generic model to
organize the specific knowledge bases corresponding to the particular domain. Thus, KSM
conceives the final application as a modular architecture made of a structured collection of
basic modules. At the implementation level, each elementary module is a reusable software
component programmed with an appropriate language and a particular technique
(knowledge-based or conventional). Using KSM, a developer can duplicate, adapt and
assemble the different software components following a high level knowledge model
which offers a global view of the architecture.

Figure 7: Screen example of the KSM environment.

In summary, the KSM software environment provides the following facilities:
a) A user interface for knowledge modeling, following the knowledge area paradigm.

This interface consists of: (1) a graphical window-based view of knowledge modules
providing visual facilities to create, modify and delete components, (2) the Link
language interpreter which allows the developer to formulate high level problem-
solving strategies that integrate basic components, and (3) the Concel language
compiler to define common terminologies shared by different modules. Figure 7
presents a general screen presented by the KSM environment showing the knowledge
areas components of a structured model.

b) A library of reusable software components (the primitives of representation). They
may be either conventional or knowledge-based modules. Examples of general
knowledge-based primitives are: rule-based primitive with forward and backward
chaining inference procedures, frame-based primitive with pattern-matching

procedures, constraint-based primitive with satisfaction procedures, etc. The library is
open to include new components according to the needs of new applications and they
can be programmed by using different languages (C++, Prolog, etc.).

c) A user interface for execution. This interface allows the developer to execute
knowledge models to validate them. The evaluation may be done either for the whole
model or parts of it. Using the interface, the developer may select tasks to be executed,
provide input data and consult results and explanations. The execution makes use of the
Link interpreter to execute methods and the primitives of representation to execute the
basic inferences.

3. A general approach to agent-based design using KSM

As indicated above, KSM is a knowledge modelling tool which finds use in configuring
and organizing a variety of knowledge and problem-solving methods. For an agent-based
system, this tool can be very convenient for modelling the knowledge of the different
system components to produce a social behavior. In particular, a typical multiagent system
may, in this context, include at least the following types of categories:
(1) Local knowledge. This encompasses problem-solving knowledge to solve the

particular problems pertaining to a specific agent. In general, a knowledge-based
agent is designed to perform multiple tasks. Some of these tasks may be defined to
sense and to act on a particular environment by self-motivation. Each agent is
capable of perceiving information about its surroundings (observables) and it is
capable of performing some actions determined by applying the local problem-
solving knowledge. Structure and form of this knowledge are specific for each
particular individual agent, although there may be similarities between the same
types of agents.

(2) Social knowledge. This encompasses what is known to each agent about its society
in general and permanent terms. Included are: (i) interaction norms or protocols
and (ii) local views about the other members of the society (single members or
groups of members as sub-organizations). Usually, this requires to add to each
agent a reflective knowledge layer which simulates how the agent reasons about
itself and the other agents to distribute the problem-solving actions.

(3) Multiagent organization. These are types of agents and social structures which are
organized in combination with a communication medium. For instance, one
distinguishes between homogeneous and heterogeneous agents, between
hierarchical and flat organizations, and other factors, such as communication
between agents, the physical medium used by agents to establish communication,
etc.

These components of a multiagent architecture can be supported by the KSM tool as
follows. According to the original purpose of KSM, the tool naturally provides an answer
about how to develop a model for the local problem-solving knowledge of each particular
agent. Thus, KSM provides a solution to organize the complex local problem-solving
knowledge by defining hierarchies of knowledge areas that encompass domain knowledge
together with the corresponding problem-solving methods for specific problems.

From the point of view of social knowledge, the KSM methodology allows the
developer to define knowledge areas specialized in social knowledge (i.e., interaction
protocols for local agent models). Given the knowledge-based general approach for this
case, the social behavior of agents is open, i.e., it can be written for each case and accessed
by external users of the particular knowledge base. Interaction protocols are defined in
terms of declarative sentences about criteria that indicate when it is necessary to solve local
problems or send messages to other agents. In such a case, diagrams showing states and
transitions are typical representations, where each state represents a task of a particular
agent and each transition defines a particular response.

Likewise, the local view of an agent about the others can be written for each case in
the particular knowledge base and can even be modified by the problem-solving
experience. Also, it is important to note the usual presence of the reflective layer to allow
the agent to reason about itself and to decide which actions will be carried out by other
agents when its own competence or function is limited. To this effect, KSM provides a

meta-knowledge representation language about tasks, methods, and knowledge areas that
can be used to express the specific competence or function of each agent. For instance,
each agent may possess a 'self-view' defined as a set of tasks, where each task includes a
set of types of premises (inputs) and types of responses (outputs). The remaining agents
will usually possess a subset of these tasks in their social knowledge.

Finally, KSM can also provide support for multiagent organizations. In this context,
KSM may help to define families of homogeneous agents that share a similar knowledge
structure. This is supported by the idea of a generic model that identifies an abstract
knowledge structure and general control mechanisms common to different agents of the
same type. In addition, KSM also provides common terminologies supported by what is
called 'conceptual vocabularies' that can be shared by different agents. Thus, KSM
provides on this instance a solution for knowledge-sharing and reuse that facilitates the
development of each agent within families of individual agents. Lastly, KSM may also
provide a mechanism for easier communiation between different agents by selection of the
most appropriate solution for each case. This can be derived from the idea of a basic
representation that locally encapsulates and controls the most effective communication
medium for each agent.

In addition to the above applications of KSM to multiagent systems, this tool also
helps the developer in accomplishment of the following tasks: (1) agent programming -
KSM provides software components (representation primitives) facilitating the
development of the whole application; these software constructs are knowledge-based
components that offer a high degree of adaptability derived from local declarative
representations; and (2) agent validation and maintenance - KSM enables the developer to
validate each individual module which facilitates and systematizes the entire validation
process.

The next section describes how KSM provided this type of assistance in the
development of two real world multiagent systems.

4. Examples of agent-based systems developed using KSM

This section describes how the KSM tool was used in the developement of two multiagent
systems. The first system, called EXPERNET, was developed for the problem of
distributed management of a telecommunication national network [14]. The second
application, called SAIDA, was built to assist operators in emergency management in the
domain of river floods [15].

4. 1. Example No 1: Distributed network management

The governement of Ukraine initiated the programme Informatization of Ukraine, directed
towards the development of telecommunication infrastructures and information
technologies at a national level, during the years 1996-2000. In this context, the goal of
the EXPERNET project (funded by the European Union’s Inco-Copernicus Programme)
was to develop a distributed expert system to support network administrators in the
management of a national data network. One of the main national networks of Ukraine,
was chosen as the experimental zone of the project, that provides Internet services (email,
ftp, news, telnet, access to www-servers, etc.). Figure 8 illustrates the structure of the
network that includes a significant number of network nodes provided by independent
organisations.

At each node of this network, there is a node administrator, responsible of
maintaining a convenient quality of service. The main goals of the administrator is fault
detection, performance optimisation (e.g., changing services to different hosts, changing
routing tables etc.) and network re-configuration (e.g. increasing/decreasing the capacity of
channels, leasing or cancelling new lines, installing new equipment etc.). Coordination
problems play an essential role in the tasks of administrators (for instance, when a node
lacks observables which are available to another node or when nodes with overlapping
problem-solving capacities have to agree to apply a solution). Nodes may correspond to
any of three levels of a hierarchy (national, regional and district) and they can

communicate in accordance with certain conversation patterns to overcome coordination
problems.

Figure 8: Structure of a telecommunication network of Ukraine.

Agent knowledge models

Within this context, the EXPERNET system was designed to assist the node administrators
in the network management tasks. The inherent distribution of the problem suggested to
use a multiagent system architecture, where each management node in the network is
associated to one agent, specialised in managing the network area that the node is
responsible for. Each decision support agent communicates the results of its reasoning
processes to its human administrator, which is in charge of settling the management actions
to be taken. The local problem-solving competence of each decision support agent follows
a three step sequence: (1) symptom detection to watch out for symptoms of undesired
network states and behaviours (e.g. a certain service –ftp, www, etc.– does not respond, a
host is unreachable, over/under-utilisation of links or equipment, etc.), (2) diagnosis, which
is done by discriminating hypotheses of different degrees of precision on the basis of
network data and the result of exploratory actions to find the causes of symptoms and (3)
repair, where a sequence of repair actions is proposed to solve the problem. In order to
achieve these tasks we adapted three well-known problem-solving methods in the
knowledge engineering community: a generic data-driven heuristic classification method
[16] for symptom detection, a version of the establish-and-refine method for diagnosis
[17], and the hierarchical planning method for repair [18].

From the point of view of social knowledge within each agent, we identified
interactions within a conversation based on a message passing model. Every message that
is exchanged during such interactions conveys a speech act with which the sender tries to
influence the behaviour of the receiver [19]. Within conversations there are various
degrees of freedom for the involved agents, as they usually may choose from several
behaviour options (in the simplest case to accept or to reject a request). This accounts for
the autonomy of the network administrator within the organisation. The behaviour of an
administrator in a conversation (i.e. his/her choice among the different options) is not just

determined by information respecting its local situation, but also by its knowledge and
experience with other nodes in the network. This knowledge is represented in the agent
models (this type of knowledge is also referred to as acquaintance model [20] or external
description [21]). An agent maintains such local agent model of all acquaintances that it
interacts with (every agent is also endowed with reflective knowledge about itself).

The main social functionalities provided by EXPERNET agents are: (1) problem
interest, checks whether the modelled agent is believed to be interested in being notified
about a problem, (2) plan interest, checks whether the modelled agent is believed to be
interested in being notified about a given plan, (3) plan rights, checks whether there is a
need to obtain the agreement of the modelled agent for enacting a given plan, (4)
observation capability, checks whether the modelled agent is believed to be capable of
acquiring the value of a given observable, (5) diagnosis capability, checks whether the
modelled agent is believed to be able to perform diagnosis for a given symptom, (6) plan
repair capability, checks whether the modelled agent is believed to be able to elaborate a
plan for a given problem, (7) plan refinement capability, checks whether the modelled
agent is believed to be capable of refining a given abstract plan for a given problem.

plan
refinement

plan
heuristics

applicability

specialist (*)plan
structure

diagnosis
knowledge

hypothesis
taxonomy

hypothesis
validity

data
acquisiton

problem
scenarios

network
model

repair
knowledge

problem
knowledge

local
knowledge

social
relations

capabilityinterest

agent
model (*)

communication
model

messages to
other agents

social
knowledge

LOCAL PROBLEM SOLVING KNOWLEDGE

Network node mana-
gement knowledge

SOCIAL KNOWLEDGE

Figure 9: General structure of the knowledge of an individual agent of the EXPERNET
system. This structure is described as a hierarchy of knowledge areas of different levels
of aggregation and it is common for every agent. The two areas marked by (*)
correspond to generic areas that normally are instanced by more than one areas at
domain level (see figure 10).

All this knowledge (both local problem-solving and social knowledge) was

structured and organized following the methodology supported by the KSM tool. Figure 9
shows the generic knowledge model corresponding to EXPERNET agents. This figure
shows a general organization of the agent expertise in knowledge-areas that is common for
every agent. In the figure, the whole knowledge model, represented by the area network
node management knowledge, is divided into two areas corresponding respectively to the
local and social knowledge. The local knowledge includes two knowledge areas: (1)
problem knowledge, with expertise respecting undesired states of the network of the
experimental zone, and (2) repair knowledge, with expertise of how undesired states of the
network can be overcome. The problem knowledge of every agent is given by a collection

of four sub-areas: (1) network model, knowledge about the network entities that provides
functionalities for data abstraction and symptom refinement, (2) problem scenarios, about
network states (this area provides the support for symptom detection in the frame of a
heuristic classification symptom detection method) (3) data acquisition, knowledge
respecting exploratory action (provides a method to acquire additional observables) (4)
diagnosis knowledge, that comprises two sub-areas, relating to hypothesis validity and
hypothesis taxonomy. The structure of the repair knowledge area is influenced by the
hierarchical planning method that is used for the routine design of repair plans. It
comprises just two classes of knowledge areas: (1) specialist, the structure of the class of
knowledge that specialists are endowed with, and (2) plan structure, this knowledge area
models expertise concerning the structure of repair plans. It is thus capable of co-
ordinating the activities if specialists during the hierarchical planning process, by
decomposing and re-composing abstract plans as well as partial.

fault
management

specialist

performance
management

specialist

configuration
management

specialist

general
specialist

local knowledge

self
view

UACOM
model

technosoft
model

social knowledge

.....

Relcom Ukraine node

planning specialist for RELCOM Ukraine

agent models for Relcom Ukraine

Figure 10: Structure of the knowledge model of a particular EXPERNET agent
(responsible of the RELCOM Ukraine node). This model corresponds to a
particularization of the generic model that figure 9 shows. The figure shows with
explicit names the particular knowledge modules for agent models and planning
specialists.

The social knowledge includes two classes of subareas: (1) agent model, with all the

information that an agent has about an acquaintance, (2) communication model, this
knowledge area models expertise respecting an agent’s capabilities to communicate with
its acquaintances (it knows about relations between an agent’s desires respecting the
actions of other and the speech acts that have to be sent in consequence). The agent model
is subdivided in three parts, which are modelled as sub-areas: (1) the capability describes
what the modelled agent is capable of, (2) the interest describes what information the
modelled agent is interested in, (3) the social relation complies knowledge respecting the
authority, relations between agents, etc.

At the implementation level, the previous generic knowledge structure is supported
by several primitives of representation that provide representation languages together with
inference procedures. In this particular multiagent model, there is a primitive of
representation that was used to communicate agents. This primitive supports the area
communication model (within the social knowledge) and corresponds to a software
component that encapsulates the communication mechanisms between agents. Thus, when
a particular agent sends a message to another agent, this is done by using a procedure of
this primitive that controls the specific communication protocol according to the type of
message.

The generic model (together with the primitives of representation) is shared to build
each particular agent knowledge model. For instance, figure 10 shows the particular

structure of the knowledge model corresponding the agent called Relcom Ukraine node
(the decision support agent at the node of Relcom Ukraine). This agent shares the generic
structure of EXPERNET agents (local and social knowledge, etc.). The figure makes
explicit the set of knowledge areas corresponding to planning specialists and agent models.
Within agent models, note that there is a particular set of areas corresponding to the self
view of the Relcom Ukraine agent that provide the required reflective capability for this
agents, besides the local views of the other agents (UACOM, Technosoft, etc.).

4.2. Example No. 2: Emergency management

As a second example of a multiagent system where KSM was applied, this section
describes the SAIDA system for emergency management. This system belongs to a
national programme in Spain (SAIH, Spanish acronym for Automatic System of
Hydrology Information) whose goal is to install an advanced information infrastructure in
the main river basins. This programme includes the use of new technologies for data
sensoring and communications to get on real time the information on rainfall, water levels
and flows in river channels.

Figure 11: Screen example of the user interface presented by the SAIDA system.

One of the main purposes of this information system is to help in decision making

during flood emergency situation. However, receiving a large amount of detailed data flow
(every 5 minutes data of about hundreds of sensors in a typical watershed) requires an
intelligent interface able to translate the data flow to a conceptual framework close enough
to the natural intuitions followed by the persons in charge of control. To meet this
objective, the SAIDA system was developed with the following goals: (1) to identify
relevant problematic events to be detected, (2) to predict the future behaviour assuming
that the current state of control is maintained, (3) to recommend possible plans of control
actions on the causes of the detected problems and, (4) to predict what will happen if the
recommended plans or some variants for them are applied.

Given that the SAIH programme will develop several of such systems it was
important to consider the reusability of the software architecture. Also, given the
incremental installation of the information ifrastructure at different river basins, it is

impossible to start with closed versions of the systems because data available about the
physical features of the river and reservoir systems are very unequally distributed. This
leads to use an open structure based on a knowledge based architecture where the results of
the experience using the system can be applied to refine the knowledge contents.
Autonomy of the models was also required to ensure a good maintenance policy for
extension of the system. All these circumstances lead to an intelligent, knowledge based
agent architecture where the main functions of problem detection, reservoir management,
water resources behavior and civil protection resources management are encapsulated in
specialized agents integrated by relations of physical behavior and multiplan generation for
flood problems management.

Agent knowledge models

In this problem, according to the different nature of the goals to achieve, the following
types of agents were considered (figure 12):
• Hydraulic agents that are responsible to give answers about the behavior of the

physical phenomena (the rainfall, the runoff produced by the rainfall incidence in the
land, the concentration of the runoff in the main river channel, the reservoir operation
and the flow in the lower levels on the river).

• Problem detection agents, responsible of evaluating the flood risk in a particular
geographical area.

• Reservoir management agents, which embody criteria for exploitation strategy for each
reservoir.

• Civil protection agents, responsible to provide with resources of different types
according to the demands of the problem detection agents.

Figure 12: Types of agents in the SAIDA system for a river basin.

Local problem detection agents are responsible of detecting and predicting potential

problems at specific locations of the river basin. For this purpose they receive input data
from sensors, analyses them and, when a particular agent identifies a potential dangerous
scenario, it asks for a prediction of behaviour to the corresponding hydraulic agents. Once,
the problem detection agent receives the prediction from hydraulic agents, it interprets the
information to conclude the level of severity of the future problem. When local problem
detection agents predict the existence of future problems they ask for limiting the water
flow upstream their areas location. In general, different problem detection agents (or even
other reservoir management agents) may ask for a limitation to the same reservoir, so the
reservoirs must adapt their discharge policy in order to avoid several problems and, at the
same time, to maintain its own risk under a reasonable level. To deal with the case of
multiple reservoirs, it is required to keep an homogeneous risk level among all the

reservoir
management
agents hydraulic

agent

problem
detection
agents

civil protection
resources agent

civil protection
resources agent

accesibility relations

reservoir management agents so an individual agent must accept to increase its risk level if
the other cooperating agents accept also to increase. Thus, the global strategy to attain this
solution is based on a method that increases or decreases step by step the risk level of
reservoirs, following the social rule that all the reservoirs must have similar risk levels.

Figure 13: Example of generic structure of the knowledge for a type of agent of the
SAIDA system (the reservoir management agent).

Each type of agent has its local knowledge model that includes both local and social

knowledge. For illustration purposes, figure 13 shows part of the abstract knowledge
model defined for the one of the main agents of this model, the reservoir management
agent. Each river includes several instances of such a model depending on the number of
reservoirs in that river (e.g., the Jucar river includes six instances). The reservoir
management agent is responsible of suggesting local control actions related to the
operation of a single reservoir, directed to increase or to decrease the water discharge. For
this purpose the agent perceives directly the state of the river by using sensor data from the
information system but also this agent interacts with other agents (e.g., problem detection
agents or other reservoir management agents) that request specific control actions to
modify the discharge. The generic structure of figure 13 includes a top-level area that
represents the whole model, the reservoir management knowledge area, that is divided into
the local problem-solving knowledge and the social knowledge. The local problem-solving
knowledge is divided into three areas: (1) data abstraction knowledge to interpret and
abstract sensor data in order to classify the severity of the current situation, (2) the risk
evaluation knowledge, that includes expertise about how to evaluate the future behaviour
of the reservoir in order to estimate the risk level, and (3) reservoir operation methods, that
includes control strategies to increase or decrease the volume. The social knowledge
includes four areas: (1) request acceptance criteria, that encapsulates the criteria to decide
how to answer to the request from other agents (problem detection agents or reservoir
management agents), (2) social view, that includes the set of agents with which the
reservoir management agent is related (e.g., the corresponding hydraulic agents related to
this agent, etc.), (3) global improvement evaluation criteria, to evaluate different risk
levels of several agents in order to know if a particular control action contributes to
improve the global situation, and (4) cooperative strategies, that are used to determine the
best control action (e.g., in order to decrease the risk level of the reservoir, this area
provides criteria to discriminate between two different control actions: either to ask upper
reservoirs to decrease their flow or to increase locally its discharge).

strategies
to decrease

volume

relations
between

risk levels
and flows

temporal
aggregation

criteria

alarm
scenario
patterns

qualitative
interpretation

knowledge

temporal
series

abstraction

reservoir operation
methods

data abstraction
knowledge

local
knowledge

strategies
to increase

volume

request
acceptance

criteria

cooperative
strategies

social
knowledge

LOCAL PROBLEM SOLVING KNOWLEDGE

reservoir management
knowledge

SOCIAL KNOWLEDGE

risk evaluation
knowledge

social
view

global
improvement
evaluation

primitives of repre-
sentation for reservoir
management agents

generic knowledge
model for reservoir
management agents

reservoir
management
agent 1

reservoir
management
agent N

.....

primitives of repre-
sentation for problem
detection agents

generic knowledge
model for problem
detection agents

problem
detection
agent 1

problem
detection
agent M

.....

KSM software tool KSM software tool

.....

primitives of repre-
sentation for hydraulic
agents

generic knowledge
model for hydaulic
agents

hydraulic
agent 1

hydraulic
agent K

.....

KSM software tool

social communication mechanism

Figure 14: Distributed knowledge model using KSM to support the multiagent
architecture of the SAIDA system.

As a main difference from the point of view of knowledge organization between

SAIDA and EXPERNET systems, the SAIDA system includes several types of agents with
different knowledge structures (whereas EXPERNET only includes one type of agent),
which makes more complex the final software architecture. Figure 14 shows a summary of
the final solution adopted by the SAIDA system, where efficiency was an important factor.
In this architecture, there are several copies of the KSM tool, where each one supports a
family of agents with the same generic knowledge structure. For example, the left hand
side of the figure shows the solution for reservoir management agents. Here, a copy of the
KSM tool serves as a software platform where it is installed a library of primitives of
representation (reusable software components) that are used to implement the generic
knowledge model for reservoir management agents (see figure 13). In its turn, this
structure of generic model is shared by the particular knowledge models of each reservoir
management agent that includes specific knowledge bases. This organization is similar for
the other types of SAIDA agents: problem detection agents, civil protection agents and
hydraulic agents. In addition to that, a global mechanism is used to communicate agents
according to the required individual autonomy in the model. Thus, here, KSM also gives a
solution to build general knowledge structures that are reused and shared by different
instances of agents, giving the required freedom to write the particular adaptations of each
agent in their particular knowledge bases.

Representation Language Characteristics
Inference rules A rule-based primitive with backward/forward
 chaining inference procedures
Frames A frame-based primitive with fuzzy
 pattern-matching inference methods.
Logic clauses A logic-based primitive with inference
 procedures based on automatic deduction
Belief networks A network-based primitive with bayesian
 inference procedures.
Influence networks A network-based primitive to represent
 functionally a dynamic system.
Temporal series functions A function-based primitive to perform
 operations on termporal series.

Figure 15: Main reusable knowledge-based software components (primitives of
representation) provided by KSM to develop the SAIDA system.

From the point of view of software programming, KSM provided particular reusable
software components specialized in knowledge representation (the primitives of
representation) that helped in building the particular models. In the case of SAIDA, figure
15 shows the main set of general primitives used. This set includes different knowledge
representation languages such as rules, frames or belief networks that were used to develop
local knowledge bases within agents.

4.3. Summary

This section summarizes how KSM was used for the EXPERNET and SAIDA case studies
described above. In regard to the development of local problem-solving models for
EXPERNET, KSM provided support in defining a generic abstract knowledge structure,
common to all specific agents, in terms of a set of 14 knowledge areas and 9 types of
knowledge bases. In the SAIDA system, KSM provided four types of knowledge
structures, one for each type of agent (hydraulic agent, problem-detection agent, reservoir
management agent, and civil protection agent). There were 44 knowledge areas with a set
of 33 types of knowledge bases. In both case studies, KSM provided solutions for
configuring and organizing the local problem-solving knowledge of each type of agent.

In regard to the development of social models for the EXPERNET system, KSM was
useful to define the specific social knowledge from which agent interaction could be
derived. This was done with 5 knowledge areas and 4 types of knowledge bases pertaining
to communication and agent models, whereby one of the latter included a reflective model
for self-view. In the SAIDA system, KSM likewise provided a way to implement social
knowledge. For instance, 5 knowledge areas were used in the case of reservoir
management to determine the social interactions among cooperative strategies. In both case
studies, thanks to the use of symbolic models for each agent, it was possible to specify the
particular details for each agent. For example, in the case of a reservoir management agent,
particular criteria could be established to compare its inherent risk level to those of the
remaining agents so that cooperative action procedures could be accepted or rejected.

Finally, regarding a multiagent organization of the EXPERNET system, KSM was
applied to formulate specific agents. In the final implementation, there were three complete
agents (corresponding to the three nodes Rtelcom, Ukraine, UACOM, and Technosoft)
which resulted in 39 knowledge bases (27 for local knowledge and 12 for social
knowledge). All of them shared the same abstract knowledge structure. Here, KSM
provided a solution to reuse the abstract structure together with the corresponding software
components. Communication between agents was solved by a knowledge area supported
by a primitive of representation capable of sending messages via a communication network
and awaiting responses according to the specific protocol for each agent. In this case, KSM
provided a solution for encapsulating and integrating this module into the entire
architecture from a homogeneous knowledge-based perspective. In addition to that, one of
the last implementations of the SAIDA case study was applied to a Spanish watershed
involving two rivers (Jucar and Serpis), with a total of 26 agents. In this set, 7 agents
corresponded to reservoir management agents. These data show the importance of
knowledge-sharing and reuse capabilities to minimize development efforts and to facilitate
validation and maintenance of the final system.

5. Conclusions

As shown by the ideas outlined in this chapter, the kind of support available from
knowledge modelling tools for the development of agent-based systems is particularly
significant in terms of the following capabilities:

• Knowledge configuring and encapsulation facilities to formulate a model about
the cognitive capacities of each individual agent. Knowledge modelling tools
can provide a solution, using descriptions based on natural intuitions, to
separate and organize the various knowledge categories in a model.

• Meta-knowledge description entities facilitate formulation and inclusion of
reflective layers that normally would be required to give each agent the
capability of reasoning about itself as well as about the other agents
(acquaintance models).

• Knowledge-sharing and reuse support based on the possibility of developing
abstract knowledge structures that include general problem-solving knowledge
together with global structuring patterns. These structures can be reused for the
development of different particular agents sharing the same knowledge
structure and, possibly, contents of knowledge bases.

• Open architectures in which - in addition to local problem solving knowledge
corresponding to the local capability of an individual agent - it is possible to
formulate explicitly for each agent social norms for interaction mechanisms,
using particular symbolic declarative representations. This facilitates revision
and adaptation for comprehension and maintenance purposes.

• Programming facilities based on the management of libraries containing
reusable pre-programmed knowledge-based software components together
with a natural combination scheme to implement the target system. Availability
of this type of componnts can significantly decrease the programming efforts
required for development of a global system.

All of these factors were particularly handled by the KSM environment as shown for

the development of the multiagent systems of the EXPERNET and SAIDA case studies,
where eficient solutions were provided for integration of agent-based and knowledge-based
technologies. This combination leads to consideration of a next generation of tools defined
as software frameworks, where knowledge modelling tools are enhanced by agent-based
features to provide a whole and complete environment that may enable developers to
formulate, implement, and maintain large-scale applications developed by reusable
software components and knowledge structures from a global agent-based view. For
example, within these agent-based features, it will be necessary to consider factors, such
as: (1) computational inter-communication-distributed mechanisms integrated within these
frameworks, (2) representation languages and open tools to give support to a wide range of
different social decentralized interaction methods among agents, and (3) flexible abstract
agent models and interaction mechanisms that can be reused in particular applications.

References

[1] M. Molina: “Desarrollo de Aplicaciones a Nivel Cognitivo Mediante Entornos de Conocimiento

Estructurado” PhD Thesis, Technical University of Madrid. November, 1993.
[2] J. Cuena, M. Molina: “KSM: An Environment for Knowledge Oriented Design of Applications Using

Structured Knowledge Architectures” in Applications and Impacts. Information Processing’94,
Volume 2. K. Brunnstein y E. Raubold (eds.) Elsevier Science B.V. (North-Holland), 1994 IFIP.

[3] J. Cuena, M. Molina: "The Role of Knowledge Modeling Techniques in Software Development: A
General Approach Based on a Knowledge Management Tool". International Journal of Human-
Computer Studies (2000) 52, 385-421.

[4] M. Molina, J.L. Sierra, J.M. Serrano: "A Language to Formalize and to Operationalize Problem
Solving Strategies of Structured Knowledge Models" 8th Workshop on Knowledge Engineering:
Methods and Languages KEML 98. Karlsruhe, Alemania, 1998.

[5] M. Molina, J. Hernández, J. Cuena: "A Structure of Problem Solving Methods for Real-time Decision
Support in Traffic Control" International Journal of Human and Computer Studies (1998) 49.

[6] A. Newell: "The Knowledge Level" in Artificial Intelligence Vol 18 pp 87-127, 1982.
[7] B.J. Wielinga, A.T. Schreiber, J.A. Breuker: "KADS: A Modelling Approach to Knowledge

Engineering". Knowledge Acquisition, 1992.
[8] A.R. Puerta, S.W. Tu, M.A. Musen: “Modelling Tasks with Mechanisms”. International Journal of

Intelligent Systems, Vol. 8, 1993.
[9] B. Chandrasekaran, B.: “Towards a Taxonomy of Problem Solving Types” A.I. Magazine 4 (1) 9-17,

1983.
[10] B. Chandrasekaran: "Generic Tasks in Knowledge Based Reasoning: High Level Building Blocks for

Expert Systems Design" IEEE Expert, 1986.
[11] L. Steels: "Components of Expertise" AI Magazine, Vol. 11(2) 29-49.

[12] J. McDermott: “Preliminary Steps Toward a Taxonomy of Problem Solving Methods” in Automating
Knowledge Acquisition for Expert Systems, S.Marcus ed., Kluwer Academic, Boston, 1988.

[13] M. Molina, J. Sierra, J. Cuena: "Reusable Knowledge-based Components for Building Software
applications: A Knowledge Modelling Approach" International Journal of Software Engineering and
Knowledge Engineering, Vol. 9 No. 3 (1999) 297-317.

[14] M. Molina, S. Ossowski: "Knowledge Modelling in Multiagent Systems: The Case of the
Management of a National Network" in "Intelligence in Service and Networks. Paving the Way for an
Open Service Market" Lecture Notes in Computer Science 1597, Springer, 1999.

[15] J. Cuena, M. Molina: "A Multiagent System for Emergency Management in Floods" in "Multiple
Approaches to Intelligent Systems", Lecture Notes in Artificial Intelligence 1611, Springer, 1999.

[16] W. Clancey: “Heuristic Classification”. Artificial Intelligence 27, 1985.
[17] B. Chandrasekaran, T. Johnson, J. Smith: “Task-Structure Analysis for Knowledge Modelling”.

Communications of the ACM 35 (9), 1992.
[18] D. Brown, B. Chandrasekaran: "Design Problem-solving: Knowledge Structures and Control

Strategies", Morgan Kaufman, 1989.
[19] H.J. Müller: “Negotiation Principles” in: Foundations of DAI (O’Hare & Jennings, eds.), Wiley, 1996.
[20] D. Cockburn, N. Jennings: “ARCHON: A Distributed Artificial Intelligence System for Industrial

Applications” in: Foundations of DAI (O’Hare & Jennings, eds.), Wiley, 1996.
[21] J. Sichman, Y. Demazeau: “Exploiting Social Reasoning to deal with Agency Level Inconsistencies”.

Proc. ECAI-94, 1994

	4. Examples of agent-based systems developed using KSM
	4. 1. Example No 1: Distributed network management
	4.2. Example No. 2: Emergency management

