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Electronic devices endowed with camera platforms require new and powerful machine vision applications, which
commonly include moving object detection strategies. To obtain high-quality results, the most recent strategies es-
timate nonparametrically background and foreground models and combine them by means of a Bayesian classifier.
However, typical classifiers are limited by the use of constant prior values and they do not allow the inclusion of
additional spatiodependent prior information. In this Letter, we propose an alternative Bayesian classifier that, un-
like those reported before, allows the use of additional prior information obtained from any source and depending
on the spatial position of each pixel. © 2012 Optical Society of America
OCIS codes: 100.2960, 150.0150.

Recently, the number of electronic devices endowed
with camera platforms has increased very significantly
[1]. Consequently, the demand for image processing ap-
plications required by these devices has also increased
[2]. To perform high level analysis tasks, these applica-
tions include as a first step moving object detection stra-
tegies [3]. The simplest detection strategies aim to be fast
and to reduce memory requirements [4]. However, they
do not provide satisfactory results in complex scenarios
and depend on several thresholds [5]. To improve the
quality of the detections and avoid the use of thresholds,
several multimodal strategies have been also proposed
[6]. These strategies are able to model multiple alternat-
ing states for each pixel, and prove themselves effective
in most practical scenarios.
Among multimodal strategies, nonparametric methods

have drawn the most attention from the researchers [7].
These strategies do not consider the values of the pixels
as a particular distribution, and build instead probabilis-
tic representations of the underlying process from sets of
recent samples for each pixel [8]. In this way, they are
able to provide very high quality detections in environ-
ments where other methods cannot correctly describe
pixel variations.
To avoid false detections resulting from small dis-

placements of the background, these strategies use
spatiotemporal reference data in the modeling [9].
Furthermore, to improve the quality of the detections
in scenarios where moving objects and background have
similar characteristics [10], most recent nonparametric
proposals estimate not only a background density func-
tion but also a foreground model, combining both models
by means of a Bayesian classifier [11]. However, typically
used Bayesian classifiers only use prior probabilities de-
fined constantly over the whole image extent [12]. Con-
sequently, they do not allow the inclusion of additional
information sources expressing the prior confidence in
each pixel location to be occupied by a moving object,
which are commonly available as the result of auxiliary
processes of many detection strategies [13].

To overcome this important limitation, we propose a
novel and efficient adaptable Bayesian classifier. This
classifier, unlike those reported before in the literature,
allows the natural integration of additional prior informa-
tion obtained from any source and depending on the spa-
tial position of each pixel. In this way, it improves the
quality of the detections when the estimated background
and foreground models do not discriminate adequately
the moving objects from the background regions.

The proposed adaptable Bayesian classifier was origin-
ally designed for moving object detection strategies,
hence the notation deployed throughout this Letter. How-
ever, many other computer vision and optics applications
using Bayesian approaches could also naturally benefit
from the flexibility and spatial information fusion cap-
abilities of our proposal (adapted correspondingly to
the application under study). As an example of those po-
tentially benefited applications we could cite: anomaly
detection in infrared [14] and hyperspectral [15] imaging,
detection and characterization of discrete objects in as-
trophysics and cosmology [16], or salient object detec-
tion in static images [17].

Let pn be a pixel in the current image In, at time n,
defined as a (D� 2)-dimensional vector xn���an�T ;
�sn�T �T ∈RD�2, where an ∈ RD is a vector containing ap-
pearance information of pn (e.g., color, gradient, depth)
and sn � �rn; cn� ∈ R2 is a vector containing its spatial
coordinates (rows and columns).

Using (D� 2)-dimensional spatiotemporal reference
samples and applying Gaussian kernels, nonparametric
moving object detection strategies [9] commonly con-
struct the nonparametric models for the background,
β, and for the foreground, ϕ, as follows:

Mβ�xn� � Mβ�an; sn� �
1
Nβ

XNβ

i�1

jΣβj−1 ∕ 2
�2π�D�2

2

× exp
�
−
1
2
�xn − xiβ�T

�
Σβ

�
−1
�xn − xiβ�

�
; (1)
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Mϕ�xn� � Mϕ�an; sn� � αγ � �1 − α�
Nϕ

XNϕ
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�2π�D�2

2

× exp
�
−
1
2
�xn − xiϕ�T

�
Σϕ

�
−1
�xn − xiϕ�

�
; (2)

where fxiβg
Nβ

i�1 is the set of Nβ background reference

samples, fxiϕg
Nϕ

i�1 represents the set of Nϕ foreground re-
ference samples, Σβ and Σϕ are symmetric positivedefi-
nite �D� 2� × �D� 2� bandwidth matrices [5], γ is the
constant density of a uniform random variable in the
set of D� 2 components, and α is a mixture factor.
Common detection strategies [18] assume that the

expressions Mβ�xn� and Mϕ�xn� represent directly the
joint spatioappearance distributions for background,
p�an; snjβ�, and foreground, p�an; snjϕ�, respectively. This
assumption leads to the computation of the probability
of pn to belong to the foreground class, via Bayes’
theorem, as

Pr�ϕjan; sn� � Pr�ϕ�Mϕ�an; sn�
Pr� β �Mβ�an; sn� � Pr�ϕ�Mϕ�an; sn�

; (3)

where Pr�ϕ� and Pr�β� � 1 − Pr�ϕ� are the prior probabil-
ities of an observation in any spatial position to belong to
the foreground or to the background. In addition, if no
further information is available, the prior probabilities
in Eq. (3) are assumed equal (Pr�β� � Pr�ϕ� � 1 ∕ 2) over
the whole image extent.
The previously defined Bayesian classifier does not al-

low the integration of additional sources of prior infor-
mation depending on the spatial position of each pixel.
To overcome this important limitation, we propose a no-
vel and efficient adaptable Bayesian classifier. Our pro-
posal, inspired by an elegant and useful reinterpretation
of the classical Bayesian classifier, makes it possible to
inject additional spatial prior information into the sys-
tem, while retaining the discriminative capabilities of
the nonparametric appearance models at each pixel po-
sition. For this purpose, we stem now from the alterna-
tive decomposition,

Pr�ϕjan; sn�p�anjsn� � p�ϕ; anjsn� � Pr�ϕjsn�p�anjsn;ϕ�;
(4)

to obtain the equivalent expression

Pr�ϕjan; sn� � Pr�ϕjsn�p�anjsn;ϕ�
Pr� βjsn�p�anjsn; β � � Pr�ϕjsn�p�anjsn;ϕ� ;

(5)

where Pr�ϕjsn� and Pr�βjsn� are prior probabilities de-
fined for each specific position sn, which can be ex-
pressed as

Pr�ϕjsn� � Pr�ϕ�p�snjϕ�
Pr� β �p�snjβ� � Pr�ϕ�p�snjϕ� (6)

and Pr� βjsn� � 1 − Pr�ϕjsn�.
This rewriting allows a more comprehensive interpre-

tation of the inherent prior spatial distributions assumed
by the classical classifier, as illustrated in Fig. 1. The left
part of this figure shows the decomposition of the spa-
tioappearance background model into its marginal distri-
bution of sn and its conditional appearance distribution.
In the opposite part of the figure, the corresponding
decomposition of the spatioappearance foreground
model is depicted. Finally, the figure illustrates how
the decomposed versions of both original distributions
are combined with the background and foreground prior
probabilities in a Bayesian classifier.

According to this interpretation of the classical classi-
fier, the joint spatioappearance distributions p�an; snjβ�
and p�an; snjϕ� are respectively decomposed into the pro-
duct of two factors: (1) the marginal distributions of sn,
p�snjβ� and p�snjϕ�, which in the conditions of Eq. (3)
yield

p�snjβ� � Mβ�sn� �
Z

Mβ�an; sn�dan; (7)

p�snjϕ� � Mϕ�sn� �
Z

Mϕ�an; sn�dan; (8)

Fig. 1. Bayesian classifier from the combination of spatioappearance background and foreground estimated models decomposed
in: spatial marginal distributions, conditional appearance distributions, and prior probabilities. To facilitate the graphical represen-
tations only one appearance component and one spatial component have been considered.

3160 OPTICS LETTERS / Vol. 37, No. 15 / August 1, 2012



and (2) the conditional appearance distributions
p�anjsn; β� and p�anjsn;ϕ� for each spatial position, which
in the discussed case are

p�anjsn; β� � Mβ�an; sn�
Mβ�sn�

; (9)

p�anjsn;ϕ� � Mϕ�an; sn�
Mϕ�sn�

; (10)

for the background and for the foreground, respectively.
Therefore, although the classical classifier described in
Eq. (3) does not apparently inject any prior information
on foreground object locations in the considered frame,
it does not only inject appearance models for each spatial
position through the conditional appearance distribution
defined in Eqs. (9) and (10), but also forces implicitly a
spatial prior probability function, Pr�ϕjsn�, directly deter-
mined by the sample sets used for appearance modeling
through

Pr�ϕjsn� � Pr�ϕ�Mϕ�sn�
Pr�β �Mβ�sn� � Pr�ϕ�Mϕ�sn�

: (11)

Common detection strategies sticking to Eq. (3) are
thus unable to integrate naturally multiple sources of spa-
tial prior information. To overcome this limitation, we re-
take Eq. (5) to propose a flexible classifier that retains
the appearance modeling performed for each individual
spatial position sn by maintaining the conditional distri-
butions given in Eqs. (9) and (10), but allowing the inte-
gration of additional sources of spatial information
through the definition of the modified prior spatial
distribution

~Pr�ϕjsn�≡ Nϕ�sn�Mϕ�sn�
Nβ�sn�Mβ�sn� � Nϕ�sn�Mϕ�sn�

; (12)

where Mϕ�sn� and Mβ�sn� are the spatial marginal ver-
sions of the nonparametric models, as defined in Eqs. (7)
and (8), and Nϕ�sn� and Nβ�sn� are any pair of strictly
positive functions whose quotient represents the relative
prior confidence that the spatial position sn is occupied
by a moving object, according to all the additional avail-
able sources on object presence at time n. The definition
in Eq. (12) is a perfectly valid spatial prior function,
whose main advantage is to allow the satisfactory fusion
of multiple information sources, including naturally the
observed samples used for appearance modeling, but
not restricting prior information to them.
This beneficial characteristic of the proposed Bayesian

classifier, that is, the chance to use prior spatial functions
obtained from any source of information, makes it per-
fectly suitable not only for the moving object detection
but also for many other computer vision and optics

applications using similar Bayesian methods. Some good
examples of these are: anomaly detection in infrared and
hyperspectral imaging, detection and characterization of
discrete objects in astrophysics and cosmology, or sali-
ent object detection in static images.

We have presented a novel, efficient, and adaptable
Bayesian classifier that allows the natural combination
of nonparametric appearance modeling of foreground
and background objects with additional sources of prior
information on moving object detection location. The de-
finition of this prior information is carried out in a prac-
tical and convenient way, expressed as a combination of
strictly positive spatial functions defined over the spatial
domain of the images.

Although this classifier has been designed for moving
object detection strategies, its use is not limited to this
type of task. Its ability to include any additional prior in-
formation obtained from unspecific sources of informa-
tion (depending on the spatial position of each pixel)
makes it perfectly suitable for many others fields of re-
search (e.g., computer vision and optics applications),
where Bayesian classifiers are required.
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