
 !
UNIVERSIDAD POLITÉCNICA DE MADRID !

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INFORMÁTICOS !!!!!!!!!
MASTER THESIS !

MASTER IN SOFTWARE AND SYSTEMS !!!!!
CONCURRENT LIBRARY ABSTRACTION

WITHOUT INFORMATION HIDING !!!!!!!!!!!
AUTHOR: ARTEM KHYZHA
SUPERVISOR: MANUEL CARRO LIÑARES
CO-SUPERVISOR: ALEXEY GOTSMAN !!

MADRID — JULY, 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148669865?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

The commonly accepted approach to specifying libraries of concurrent algorithms
is a library abstraction. Its idea is to relate a library to another one that abstracts
away from details of its implementation and is simpler to reason about. A library
abstraction relation has to validate the Abstraction Theorem: while proving a prop-
erty of the client of the concurrent library, the library can be soundly replaced with
its abstract implementation. Typically a library abstraction relation, such as lin-
earizability, assumes a complete information hiding between a library and its client,
which disallows them to communicate by means of shared memory. However, such
way of communication may be used in a program, and correctness of interactions
on a shared memory depends on the implicit contract between the library and the
client.

In this work we approach library abstraction without any assumptions about
information hiding. To be able to formulate the contract between components of
the program, we augment machine states of the program with two abstract states,
views, of the client and the library. It enables formalising the contract with the
internal safety, which requires components to preserve each other’s views whenever
their command is executed. We define the library abstraction relation by establishing
a correspondence between possible uses of a concrete and an abstract library. For
our library abstraction relation and traces of a program, components of which follow
their contract, we prove an Abstraction Theorem.

i

ii

Resumen

La técnica más aceptada actualmente para la especificación de libreŕıas de algoritmos
concurrentes es la abstracción de libreŕıas (library abstraction). La idea subyacente
es relacionar la libreŕıa original con otra que abstrae los detalles de implementación
y con la que es más fácil razonar formalmente. Una relación que describa dicha
abstracción de libreŕıas debe validar el Teorema de Abstracción: durante la prueba
de la validez de una propiedad del cliente de la libreŕıa concurrente, el reemplazo de
esta última por su implementación abstracta es lógicamente correcto. Usualmente,
una relación de abstracción de libreŕıas como la linearizabilidad (linearizability),
tiene como premisa el ocultamiento de información entre el cliente y la libreŕıa (in-
formation hiding), es decir, que no se les permite comunicarse mediante la memoria
compartida. Sin embargo, dicha comunicación ocurre en la práctica y la correctitud
de estas interacciones en una memoria compartida depende de un contrato impĺıcito
entre la libreŕıa y el cliente.

En este trabajo, se propone un nueva definición del concepto de abtracción de
libreŕıas que no presupone un ocultamiento de información entre la libreŕıa y el
cliente. Con el fin de establecer un contrato entre diferentes componentes de un
programa, extendemos la máquina de estados subyacente con dos estados abstractos
que representan las vistas del cliente y la libreŕıa. Esto permite la formalización de la
propiedad de seguridad interna (internal safety), que requiere que cada componente
preserva la vista del otro durante la ejecuci on de un comando. Consecuentemente,
se define la relación de abstracción de libreŕıas mediante una correspondencia entre
los usos posibles de una libreŕıa abstracta y una concreta. Finalmente, se prueba el
Teorema de Abstracción para la relación de abstracción de libreŕıas propuesta, para
cualquier traza de un programa y cualquier componente que satisface los contratos
apropiados.

iii

iv

Contents

Abstract i

Resumen iii

1 Introduction 1

2 Motivation 3

3 Preliminaries 9
3.1 Programming language . 9
3.2 Transition traces semantics . 11
3.3 Views . 11

4 Safety and local semantics 15

5 Library abstraction 19
5.1 Proof outline . 22

6 Auxillary proofs for the Abstraction theorem 25
6.1 Proof of the Decomposition Lemma 25
6.2 Proof of the Composition Lemma . 26
6.3 Proof of Corollary 18 . 26
6.4 Proof of Corollary 20 . 29
6.5 Proof of Proposition 8 . 30

7 Conclusions and future work 33

Bibliography 35

v

vi

Chapter 1

Introduction

The modern software normally is developed modularly by encapsulating frequently
used pieces of code into libraries. The typical examples of that are standard li-
braries of programming languages, which allow developers to benefit from using
well checked implementations of algorithms and data structures such as those from
java.util.concurrent for Java. The modularity becomes even more important, when
the reused code is error prone and difficult to reason about, which notoriously is
the case for concurrent algorithms and non-blocking data structures. To simplify
reasoning about concurrent software, we need to exploit the available modularity.
In particular, while reasoning about a client of a concurrent library, we would like to
abstract away from the details of a particular library implementation. This requires
an appropriate notion of library correctness.

Correctness of concurrent libraries is commonly formalised by linearizability [3],
which fixes a certain correspondence between the library and its specification that
is called library abstraction. The specification is usually just another library, but
implemented atomically using an abstract data type. A good notion of linearizability
should validate an Abstraction Theorem [4]: it is sound to replace a library with its
specification in reasoning about its client.

The classical linearizability assumes a complete isolation between a library and
its client, with interactions limited to passing values of a given data type as pa-
rameters or return values of library methods. However, for many applications this
assumption is too restrictive, because many non-blocking algorithms use different
ways of communication between components, i.e. they operate on the shared mem-
ory concurrently. In Section 2 we provide an example of such an algorithm. Overall,
there is a need in defining library abstraction under weaker assumptions, when client
and library communicate by means of shared memory.

In this work we approach the problem assuming that components of the program
do not hide any data from each other and share the whole address space. Although
the shared memory can be accessed and modified concurrently by both client and
library, typically components follow a certain contract that regulates communica-
tions between them. For instance, consider a memory cell being used by a client
as a counter. The contract that client may require from libraries is that no library

1

decreases this counter. In order to formalise the contract between the client and the
library, we augment executions of the program with abstract states, views, which
are provided by the Views Framework [2] and can be instantiated into assertions
of Hoare-style logics for reasoning about concurrent programs, such as Concurrent
Separation Logic [7] or Rely-Guarantee [5].

Each component has its own view at each step of the execution. The intuitive
meaning of a component’s view is a declaration of all possible transitions in it.
When all components are considered together, their views must be compatible with
a machine state and with each other, meaning that no transition of one component
invalidates views of the other. In Chapter 4 we formalise this property and call it
the internal safety of the program. Similarly, we define internally safe semantics
of programs that consists of the traces in which contracts between components are
followed.

We formulate the library abstraction relation and prove it to be sound in the
Abstraction Theorem (Definition 12 and Theorem 13, Chapter 5). We also extend
our result from internally safe semantics to usual traces (Corollary 20, Chapter 5)
for closed programs.

2

Chapter 2

Motivation

In this chapter we give an example of the program, in which components communi-
cate by means of the shared memory. We consider a well-known implementation of
a non-blocking concurrent queue due to Michael and Scott [6]. The queue algorithm
uses a custom memory allocator for nodes in the linked list representing the queue.
To avoid the allocator becoming a performance bottleneck, Michael and Scott also
implement it using a non-blocking algorithm – a concurrent stack due to Treiber [8].
In this program the non-blocking queue is the client and the allocator is the library.

The parts of the memory owned by the queue and the allocator are not disjoint
for the following reason. Non-blocking algorithms often need to check that the
information on the basis of which a change to a data structure was computed is
still valid when the data structure is updated accordingly. This is usually done
by ensuring that certain fields in the data structure have not been changed since
the last time the thread making the update read them. The CAS operation allows
checking that a field still has the old value atomically with the update. However,
this equality does not always imply that the field has not been changed. Namely,
a so-called ABA problem may arise, when the data structure is changed from its
original state A to B, and then restored to A again. For example, a queue node can
be returned to the allocator, and then allocated and inserted into the data structure
again. To avoid this problem, the queue and the allocator use modification counters,
atomically incremented at every write to certain memory cells in the data structures,
which allows distinguishing between the two As in ABA. However, in the case when
a validation of the update fails due to a modification counter mismatch, the read of
the counter might access a node that is no longer present in the data structure, i.e.,
has been returned to the allocator in the case of the queue, or has been allocated to
the queue in the case of the allocator. Consequently, at least modification counters
must be shared by the client and the library in this example.

We futher present the example in more detail. Michael and Scott’s queue is
presented in Figure 2.1. For illustration, in the example we use the C-like language.
A client using the implementation can call several enqueue or dequeue operations
concurrently. The queue is non-blocking, i.e., implemented with compare-and-swap
(CAS) operations instead of locks. CAS takes three arguments: a memory address

3

struct Node { NodeRef next; int val; };
struct NodeRef { Node *ptr; unsigned count; };
NodeRef head, tail;

void init() {
head.ptr = (Node*)alloc();
head.ptr->next = NULL;
head.count = 0;
tail = head;

}

int enqueue(int val) {
Node *node;
NodeRef next, last;
node = alloc();
if (node == NULL) return FAIL;
node->val = val;
node->next.ptr = NULL;
while (true) {
atomic { last = tail; }
atomic { next = last.ptr->next; }
if (atomic { tail != last }) continue;
if (next.ptr == NULL) {
if (CAS(last.ptr->next, next,

NodeRef(node, next.count+1)))
break;

} else
CAS(tail, last, NodeRef(next.ptr, last.count+1));

}
CAS(tail, last, NodeRef(next.ptr, last.count+1));
return SUCCESS;

}

int dequeue() {
NodeRef next, first, last;
int val;
while (true) {
atomic { first = head; }
atomic { last = tail; }
atomic { next = first.ptr->next; }
if (atomic { head != first }) continue;
if (first.ptr == last.ptr) {
if (next.ptr == NULL) return EMPTY;
CAS(tail, last, NodeRef(next.ptr, last.count+1));

} else {
atomic { val = next->val; }
if (CAS(head, first,

NodeRef(next.ptr, first.count+1)))
break;

}
}
free(first.ptr);
return val;

}

Figure 2.1: Michael and Scott’s non-blocking queue [6]

4

struct Block { Block *next; };
struct BlockRef { Block *ptr; unsigned count; };
BlockRef Top;

void free(void *block) {
BlockRef t, x;
do {
atomic { t = Top; }
(Block*)block->next = t.ptr;
x = BlockRef((Block*)block, t.count+1);

} while (!CAS(&Top, t, x));
}

void *alloc() {
BlockRef t, x;
do {
atomic { t = Top; }
if (t.ptr == NULL)
return NULL;

x = BlockRef(t.ptr->next, t.count+1);
} while (!CAS(&Top, t, x));
return t.ptr;

}

Figure 2.2: A concurrent memory allocator implemented using Treiber’s stack [8]

addr, an expected value v1, and a new value v2. It atomically reads the memory
address and updates it with the new value when the address contains the expected
value; otherwise, it does nothing. In C syntax CAS(addr, v1, v2) might be written
as follows:

atomic {

if (*addr==v1) { *addr=v2; return 1; }

else { return 0; }

}

In most architectures an efficient CAS (or an equivalent operation) is provided na-
tively by the processor.

Like most concurrent algorithms with explicit memory management, the queue
algorithm uses a custom memory allocator to allocate Node structures, which Michael
and Scott implement using a concurrent non-blocking stack due to Treiber [8] (Fig-
ure 2.2). We first explain this algorithm, as the simpler one of the two.

Memory allocator. The allocator stores the free list of memory blocks of size
sizeof(Node) as a linked list, pointed to by the variable Top. The pointer to
the next element of the list is stored at the beginning of each block. We assume
sizeof(Node) ≥ sizeof(Block*) + sizeof(unsigned), so that the pointer can be
stored without overwriting the last counter field of the structure Node. As we noted
in above, the queue algorithm relies on this field not being changed by the memory
allocator even after a node is deallocated. For brevity, we omitted the initialisation
code.

The operations on the list are implemented as follows. The free operation (i)

5

reads the current value of the top-of-the-stack pointer Top; (ii) stores the read value
of Top at the beginning of the block block being deallocated; and (iii) atomically
updates the top-of-the-stack pointer with the new value block. If the pointer has
changed between (i) and (iii), the CAS fails and the operation is restarted. The
alloc operation is implemented in a similar way. Note that it returns NULL when
the allocator is out of memory.

To avoid the ABA problem, the algorithm associates a counter with the Top vari-
able, incremented on every modification. This ensures that, when a CAS succeeds,
the Top variable has not changed since it was read by the thread that executed it: the
counter excludes the possibility of the variable being changed temporarily and then
restored to the previous value. We assume that the size of the NodeRef structure is
of a size such that it can be read and written to atomically. Following Michael and
Scott [6], we assume that the modification counter is unbounded, which is clearly
idealistic. However, a version of this algorithm with a bounded counting mechanism
does get used in practice, e.g., in Java memory management1. In this case, a bound
is picked such that an overflow will (hopefully) not occur, and a bounded counter
will be equivalent to an unbounded one.

Consider an execution of the alloc method in which it is preempted in between
reading Top and t.ptr->next. Another alloc method invocation might run to
completion, removing the memory block t.ptr points to and returning a pointer to
it to the client of the allocator. When the first alloc method wakes up, it will thus
read a memory cell that is being used by the client. This does not cause a problem,
since the allocator only reads the cell, but not writes to it, and free cells are never
returned to the operating system. However, this means that in our proof we cannot
consider the state of the allocator as being completely disjoint from the state of its
client, motivating the approach to library abstraction that we take in this work.

Non-blocking queue. We now give an explanation of the Michael and Scott’s
queue algorithm2. The algorithm in Figure 2.1 implements the queue as a singly-
linked list with head and tail pointers. The head pointer always points to a dummy
node, which is the first node in the list; tail points to either the last or second to last
node in the list. The implementation calls the allocator to create new nodes in the
list representing the queue. The enqueue operation returns FAIL if the allocator runs
out of memory, and SUCCESS in all other cases. Like the allocator implementation,
this algorithm uses modification counters to avoid the ABA problem, this time for
all nodes in the queue. It relies on the fact that modification counters only increase,
and are not modified by the memory allocator. As before, the queue implementation
might end up reading from a memory cell freed to the allocator (but not writing to
it).

The enqueue operation takes place in two distinct steps. Normally, the enqueue

method creates a new node by calling the memory allocator, locates the last node
in the queue, and performs the following two steps:

1D. F. Bacon. Parallel and concurrent real-time garbage collection. Slides from a talk at a
Summer School on Trends in Concurrency, 2008.

2M. Herlihy and N. Shavit. The Art of Multiprocessor Programming, 2008.

6

∙ executes a CAS to append the new node; and

∙ executes a CAS to swing the queue’s tail from the prior last node to the
current last node.

Because these two steps are not executed atomically, every other method call must
be prepared to encounter a half-finished enqueue call, and to finish the job (“help”
the enqueuer).

In more detail, an enqueuer creates a new node with the new value to be en-
queued, reads tail, and finds the node that appears to be last. To verify that node
is indeed last, it checks whether the node has a successor. If the node does not have
a successor, the thread attempts to append the new node using a CAS. If the CAS
succeeds, the thread uses a second CAS to advance tail to the new node. Even if
this second CAS fails, the thread can still return successfully because, as it happens,
the CAS fails only if some other thread “helped” it by advancing tail. If the tail
node has a successor, then the method tries to “help” other threads by advancing
tail to refer directly to the successor before trying again to insert its own node.

The dequeue method checks that the queue is nonempty by checking that the
next field of the head node is not null. It then executes a CAS to change head

from the sentinel node to its successor, making the successor the new sentinel node.
There is, however, a subtle issue: before advancing head one must make sure that
tail is not left referring to the sentinel node which is about to be removed from
the queue. To avoid this problem dequeue performs a test: if head equals tail and
the (sentinel) node they refer to has a non-null next field, then the tail is deemed
to be lagging behind. As in the enqueue method, dequeue then attempts to help
make tail consistent by swinging it to the sentinel node’s successor, and only then
updates head to remove the sentinel. The value is read from the successor of the
sentinel node.

As we have demonstrated above, Michael and Scott’s queue implementation relies
heavily on modification counters being shared between the allocator library and
its client. Consequently, a linearizability approach to library abstraction cannot
be used, since it requires the address space of components of the program to be
completely disjoint.

7

8

Chapter 3

Preliminaries

In this chapter, we establish background for our contribution further in the paper.
Section 3.1 defines in a common fashion the programming language and its opera-
tional semantics, which is defined w.r.t. machine states, primitive atomic commands
and their semantics as state transformers. In Section 3.3, we introduce the Views
Framework [2] as a general approach to abstracting from a machine state, axioma-
tising atomic commands and defining a composition operation.

3.1 Programming language

Syntax of the programming language. In our setting, the machines execute
programs, which consist of several components. For simplicity of presentation, we
further assume that there are two of them, which we call a client and a library,
ranged by C and L correspondingly. Formally, a program C(L) is defined with the
following notions:

P,C(L) ∈ Prog ::= let L in C; (programs)

C ::= 𝐶1 ‖ · · · ‖ 𝐶𝑁 ,where 𝐶1, . . . 𝐶𝑁 ∈ Comm; (client)

Methods = {𝑚1,𝑚2, . . . ,𝑚𝑘} (methods names)

𝐶 ∈ Comm ::= 𝛼 | 𝐶 ;𝐶 | 𝐶 + 𝐶 | 𝐶* | 𝑚(),where 𝑚 ∈ Methods; (commands)

L : Methods → Comm; (library)

The grammar of syntactic commands includes atomic commands 𝛼 ∈ Atom, se-
quential composition 𝐶 ;𝐶, non-deterministic choice 𝐶 + 𝐶, iteration 𝐶*, which we
consider to be finite, and method call 𝑚() of a method 𝑚 ∈ Methods. A client C is
a parallel composition of syntactic commands. A library L implements methods as
syntactic commands, and together with C they form a program C(L). In a program
C(L) we require that a library L provide implementation for all methods used by
a client. For simplicity, we assume that clients do not have their own methods and
that library methods do not call each other. Additionally, library methods do not

9

−→L : Comm× Σ × Atom× Comm× Σ:

⟨𝐶1, 𝜎⟩
𝛼−−→L ⟨𝐶 ′

1, 𝜎
′⟩

⟨𝐶1 ;𝐶2, 𝜎⟩
𝛼−−→L ⟨𝐶 ′

1 ;𝐶2, 𝜎′⟩ ⟨𝐶*, 𝜎⟩ skip−−→L ⟨𝐶 ;𝐶*, 𝜎⟩ ⟨𝐶*, 𝜎⟩ skip−−→L ⟨skip, 𝜎⟩

⟨skip;𝐶2, 𝜎⟩
skip−−→L ⟨𝐶2, 𝜎⟩ ⟨𝐶1 + 𝐶2, 𝜎⟩

skip−−→L ⟨𝐶1, 𝜎⟩ ⟨𝐶1 + 𝐶2, 𝜎⟩
skip−−→L ⟨𝐶2, 𝜎⟩

⟨𝑚(), 𝜎⟩ call𝑚−−−→L ⟨L(𝑚); ret𝑚, 𝜎⟩
𝜎𝛼 ∈ 𝑓𝛼(𝜎)

⟨𝛼, 𝜎⟩ 𝛼−−→L ⟨skip, 𝜎𝛼⟩

−→ : Prog × Σ × Atom× Prog × Σ:

⟨𝐶𝑖, 𝜎⟩
𝛼−−→L ⟨𝐶 ′

𝑖, 𝜎
′⟩ 1 ≤ 𝑖 ≤ NThreads

⟨let L in 𝐶1 ‖ · · · ‖ 𝐶𝑖 ‖ · · · ‖ 𝐶NThreads, 𝜎⟩
𝛼−−→ ⟨let L in 𝐶1 ‖ · · · ‖ 𝐶 ′

𝑖 ‖ · · · ‖ 𝐶NThreads, 𝜎′⟩

Figure 3.1: The operational semantics of programs

have parameters and return values, which is explained by the fact that a client and
a library share all the memory.

In order to simplify presentation of the operational semantics, we assume that
the set of atomic commands Atom can be split onto sets AtomC and AtomL consisting
of commands performed by client and library. Their common part AtomC∩AtomL =
AtomI ⊎ {skip} consists of atomic commands call𝑚 and ret𝑚 for each 𝑚 ∈ Methods,
which are called interface commands, and also a special identity command skip.
Syntactic commands 𝐶1, . . . , 𝐶𝑁 of a client C are required to use only non-interface
atomic commands from AtomC, and similarly each method 𝑚 of a library L uses
only non-interface commands from AtomL in L(𝑚).

Operational semantics. Programs operate with machine states from the set
Σ, ranged over by 𝜎. The interpretation for each atomic command 𝛼 is given by
non-deterministic state transformer 𝑓𝛼 : Σ → 𝒫(Σ) and Func is a set of all them.
Where necessary, we lift non-deterministic state transformers to sets of states: for
𝑆 ∈ 𝒫(Σ), 𝑓𝛼(𝑆) =

⋃︀
{𝑓𝛼(𝜎) | 𝜎 ∈ 𝑆}. We assume that the atomic command skip

has the interpretation 𝑓skip = 𝜆𝜎. {𝜎}, and let 𝑓call𝑚 = 𝑓ret𝑚 = 𝑓skip.

Additionally, we require that Atom be closed under composition of functions: for
all 𝛼, 𝛽 ∈ Atom there is 𝛾 ∈ Atom, written 𝛾 = 𝛼 ∘ 𝛽, such that 𝑓𝛾 = (𝑓𝛼 ∘ 𝑓𝛽). In
cases when a command 𝛼 is composed with skip, we let 𝛼 ∘ skip = skip ∘ 𝛼 = 𝛼.

Semantics of programs is defined by the transition relation −→ : Prog × Σ ×
Atom×Prog×Σ, which is introduced Figure 3.1. The relation −→ labels transition
between programs and their machine states with atomic commands performed. We
also define a multiple-step transition relation =⇒ : Prog×Σ×Atom×Prog×Σ with
the following rules:

10

∙ ⟨P, 𝜎⟩ skip
==⇒ ⟨P, 𝜎⟩;

∙ if ⟨P, 𝜎⟩ 𝛼−−→ ⟨P′, 𝜎′⟩, then ⟨P, 𝜎⟩ 𝛼
==⇒ ⟨P′, 𝜎′⟩;

∙ if ⟨P, 𝜎⟩ 𝛼−−→ ⟨P′, 𝜎′⟩, ⟨P′, 𝜎′⟩ 𝛼′
−−→ ⟨P′′, 𝜎′′⟩ and either 𝛼, 𝛼′ ∈ AtomC ∖ AtomI or

𝛼, 𝛼′ ∈ AtomL ∖ AtomI, then ⟨P, 𝜎⟩ 𝛼′∘𝛼
===⇒ ⟨P′′, 𝜎′′⟩;

∙ if ⟨P, 𝜎⟩ 𝛼−−→ ⟨P′, 𝜎′⟩, ⟨P′, 𝜎′⟩ 𝛼′
−−→ ⟨P′′, 𝜎′′⟩ and either 𝛼 = skip ∧ 𝛼′ ∈ AtomI or

𝛼′ = skip ∧ 𝛼 ∈ AtomI, then ⟨P, 𝜎⟩ 𝛼′∘𝛼
===⇒ ⟨P′′, 𝜎′′⟩;

3.2 Transition traces semantics

Giving a semantics for concurrent programs is notoriously difficult, because of a in-
evitable duality to be resolved, which is between supporting compositional reasoning
about programs and capturing all operational behaviours of them. After Brookes in
[1], we make use transition traces of programs, which are generated with assumptions
of any possible interference with environment capable of changing machine state in
an arbitrary way.

Informally, a transition trace of a program P is defined to be a finite sequence
(𝛼1, 𝜎1, 𝜎

′
1)(𝛼2, 𝜎2, 𝜎

′
2) . . . (𝛼𝑘, 𝜎𝑘, 𝜎

′
𝑘) such that P performs a computation from the

state 𝜎1 to the state 𝜎′
𝑘 having been interrupted by environment exactly 𝑘 − 1

times. For this trace, environment did transitions between pairs of states 𝜎′
𝑖 and

𝜎𝑖+1 (1 ≤ 𝑖 < 𝑘). The formal definition follows:

Definition 1 (Transition trace). A transition trace of a program P is such sequence
𝑍 ∈ Traces = (Atom×Σ×Σ)* of the form 𝑍 = (𝛼1, 𝜎1, 𝜎

′
1)(𝛼2, 𝜎2, 𝜎

′
2) . . . (𝛼𝑘, 𝜎𝑘, 𝜎

′
𝑘)

that the following holds:

∃P1,P2, . . .P𝑘+1.P = P1 ∧ ⟨P1, 𝜎1⟩
𝛼1==⇒ ⟨P2, 𝜎

′
1⟩ ∧ ⟨P2, 𝜎2⟩

𝛼2==⇒ ⟨P3, 𝜎
′
2⟩ ∧ . . .

∧ ⟨P𝑘, 𝜎𝑘⟩
𝛼𝑘==⇒ ⟨P𝑘+1, 𝜎

′
𝑘⟩,

and the set of all transition traces of program P is then denoted by 𝒯 JPK.

3.3 Views

Proving properties of transition traces of a program requires considering an arbitrary
environment. However, on practice, programs are usually designed with a specific
way of communication between their components, which means that intended en-
vironment of such component is not arbitrary – there is a contract between them
to follow. In order to be able to express such contracts, we use the Views Frame-
work of Dinsdale-Young et al [2], which generalises reasoning systems for concurrent
programs.

Typically, reasoning systems do not require the user to reason directly about the
state; they provide an abstract representation of the state that supports a particular

11

form of reasoning. Abstractions may contain some extra information that does
not exist on the level of concrete machine states, but helps establishing properties
of them. This information may serve as a contract between a program and its
environment, which may be formalised in terms of an ownership of certain memory
locations or a protocol of performing specific changes to the shared memory. The
Views Framework [2] offers a general way of introducing the notion of an abstract
state, which with additional requirements can be instantiated into many existing
program logics.

The Views Framework includes the following parameters that we operate with:

∙ A commutative View monoid (View, *, 𝑢), which is an algebraic structure on
a set View of abstract states, ranged over by 𝑝, with an associative and com-
mutative operation * that is called view composition, and also a unit 𝑢.

∙ A reification function ⌊−⌋ : View → 𝒫(Σ), which maps views to corresponding
sets of concrete state.

∙ A set of axioms from View×Atom×View, ranged over by triples 𝛼 {𝑝}{𝑞}.

A View monoid introduces views to the framework as abstract states, which are
related to machine states by means of reification. The composition 𝑝1 * 𝑝2 embodies
combining properties specified by two views 𝑝1 and 𝑝2. Although composition is a
total operation, the view 𝑝1 * 𝑝2 may not have any corresponding machine state,
i.e. ⌊𝑝1 * 𝑝2⌋ = ∅, which is the case when contradictory properties are combined.
A unit 𝑢 is a view that represents no knowledge about machine states, and thus
⌊𝑝 * 𝑢⌋ = ⌊𝑢 * 𝑝⌋ = ⌊𝑝⌋ for all 𝑝 ∈ View.

Axioms of the framework are required to satisfy the following constraint:

𝛼 {𝑝}{𝑞} =⇒ ∀𝑟 ∈ View. 𝑓𝛼(⌊𝑝 * 𝑟⌋) ⊆ ⌊𝑞 * 𝑟⌋ (3.1)

Two things are checked in the formula above. The first is that 𝛼 {𝑝}{𝑞} ensures
that making a transition with a transformer 𝛼 is allowed in an abstract state 𝑝, which
is equivalent to checking if 𝑓𝛼(⌊𝑝⌋) ⊆ ⌊𝑞⌋. The other requirement of 𝛼 {𝑝}{𝑞}
is that any view 𝑟, which a program’s environment could possibly have, remains
unchanged, and that is formalised by ∀𝑟 ∈ View. 𝑓𝛼(⌊𝑝 * 𝑟⌋) ⊆ ⌊𝑞 * 𝑟⌋. Since there
always is a unit 𝑢 ∈ View, the first requirement is just an instance of the second.
Also, it is easy to see that 𝛼 {𝑝 * 𝑟}{𝑞 * 𝑟} holds whenever 𝛼 {𝑝}{𝑞} does, and
further we call this observation the Frame Property of axioms.

We require the Framework to provide axioms with the strongest postconditions
in the way presented below:

Definition 2 (The Strongest Postconditions). Given 𝛼 ∈ Atom and 𝑝 ∈ View, we
define the set of strongest postconditions SP(𝛼, 𝑞):

SP(𝛼, 𝑝) = {𝑞 | 𝛼 {𝑝}{𝑞} ∧ ∀𝑞′. 𝛼 {𝑝}{𝑞′} =⇒ 𝑞 ⊆ 𝑞′},

and say that (𝑝, 𝛼, 𝑞) is best axiom when 𝑞 ∈ SP(𝛼, 𝑝).

12

Definition 3. We say that the Views Framework is supplied with best axioms, if:

∀𝛼, 𝑝. (∃𝑞. 𝛼 {𝑝}{𝑞}) =⇒ SP(𝑝, 𝛼) ̸= ∅.

As stated in the definition above, whenever there is an axiom (𝑝, 𝛼, 𝑞) for a
transformer 𝛼, there must also be best axiom for it. In the rest of the work we
assume that this is always the case.

Another adjustment to the Views Framework that we introduce is aimed at
a reification function: in our work views represent information about the whole
machine state, and memory locations from it are never being changed. We
achieve this by requiring reification to satisfy the following property:

Property 4. ⌊𝑝 * 𝑞⌋ ⊆ ⌊𝑝⌋ ∩ ⌊𝑞⌋.

This property implicitly states two facts about 𝑝 * 𝑞: memory locations of states
from ⌊𝑝⌋, ⌊𝑞⌋ and ⌊𝑝 * 𝑞⌋ are the same, and also 𝑝 * 𝑞 represents no more machine
states than 𝑝 or 𝑞 do, because it contains more restrictions to them.

13

14

Chapter 4

Safety and local semantics

In this chapter we combine views and transition traces into formalisms that represent
a contract between a program and its external environment.

Consider a program C(L) that consists of a client C and a library L. To for-
mulate our result, we need to give a semantics to parts of C(L): the library L
considered in isolation from its client and the client C considered in isolation from
the implementation of the library it uses. A semantics we would like to use is a
subset of transition traces semantics. In this chapter we introduce notions of safety
for programs, safe semantics and then explain how to extend them for clients and
libraries separately.

We consider a program P being specified with a view 𝑝, which serves as an initial
abstract state, i.e. a precondition. An unknown environment of P is expected to
have its own view as an abstraction of a memory state. Along the execution of P,
views of a program and environment are changed, however, the contract between P
and its environment requires that their views soundly describe a machine state after
each transition. Safety is a property of programs that incorporates this intuition.

Definition 5 (Safety). For a command P ∈ Prog and view 𝑝 ∈ View, the safety
judgement safe is defined to be the maximal relation over Prog × View × View such
that safe(P, 𝑝) holds if and only if the following is satisfied:

∀𝛼,P′, 𝜎, 𝜎′. 𝜎 ∈ ⌊𝑝⌋ ∧ ⟨P, 𝜎⟩ 𝛼
==⇒ ⟨P′, 𝜎′⟩ =⇒ ∃𝑝′. 𝑝′ ∈ SP(𝛼, 𝑝) ∧ safe(P′, 𝑝′). (4.1)

Safety of P w.r.t. 𝑝 considers each transition from P in a state 𝜎 satisfying 𝑝 that
is enabled by operational semantics, and ensures that there is an axiom (𝑝, 𝛼, 𝑝′) in
the framework and the same is true for further transitions of this kind. Being able to
choose an axiom means that 𝜎′ ∈ ⌊𝑝′⌋ holds of the resulting machine state 𝜎′ ∈ 𝑓𝛼(𝜎)
of a transition, because 𝜎 ∈ ⌊𝑝⌋ and according to the axiom, 𝑓𝛼(𝜎) ⊆ 𝑓𝛼(⌊𝑝⌋) ⊆ ⌊𝑝′⌋.

Intuitively, safe(P, 𝑝) can be understood as picking views consistent with machine
states along traces of P, which means absence of memory faults in these traces w.r.t.
precondition 𝑝. Note that only transition traces are checked in safety: safe(P′, 𝑝′)
considers every possible machine state 𝜎′′ ∈ ⌊𝑝′⌋ as initial, thus, when safe(P, 𝑝)
holds, between any transition ⟨P, 𝜎⟩ ==⇒ ⟨P′, 𝜎′⟩ and ⟨P′, 𝜎′′⟩ ==⇒ ⟨ , ⟩ the possibility
for environment to change a state between program’s transitions from 𝜎′ to 𝜎′′

15

is considered. Environment is restricted in changes he can make to a machine
state, because his state change must not invalidate program’s view. This is exactly
safe(P, 𝑝) formalises a contract with environment.

The set of all traces informally mentioned above is further defined as a semantics
for programs. Analogously to Traces, we let Traces# = (Atom×View×View)*, ranged
over by 𝑍#, be the set of all possible abstract traces. We use 𝜀 and 𝜀# to represent
an empty trace and abstract trace respectively.

Definition 6 (Safe semantics). Let 𝒮J−K : Comm×View → Traces×Traces# be the
minimal function satisfying constraint below with subset inclusion ordering lifted to
Comm× View → Traces× Traces# pointwise:

𝒮JPK(𝑝) , {(𝛼, 𝜎, 𝜎′)𝑍, (𝛼, 𝑝, 𝑝′)𝑍# | ∃P′. 𝜎 ∈ ⌊𝑝⌋ ∧ ⟨P, 𝜎⟩ 𝛼
==⇒ ⟨P′, 𝜎′⟩ ∧

𝑝′ ∈ SP(𝛼, 𝑝) ∧ (𝑍,𝑍#) ∈ 𝒮JP′K(𝑝′)} ∪ {(𝜀, 𝜀#)}.

When safe(P, 𝑝) holds, 𝒮JPK(𝑝) is called the safe semantics of P w.r.t. 𝑝.

In definitions of both safety and safe semantics, the strongest views are picked.
Such a choice is substantial for semantics, because otherwise abstract state may
be weakened too much, which is indeed sound, but imposes less restrictions on the
environment than program may actually rely on. Also, analogously to the safety
definition, 𝜎′ ∈ ⌊𝑝′⌋ in the set comprehension above.

Characterisation with traces. Definition 6 presents safe semantics inductively,
which illustrates its relation to coinductive definition of safety, but is hard to reason
about on practice. To make it more intuitive, in Proposition 8 we move on to a
definition that checks properties of transition traces explicitly.

For this purpose we define a concretisation of an abstract trace, which effectively
lifts a reification from views to abstract traces pointwise and checks that 𝜎 ∈ ⌊𝑝⌋
holds of each concrete state 𝜎 from a trace 𝑍 and a corresponding view 𝑝 from an
abstract trace 𝑍#. In validity of an abstract trace, we ensure that its views are
picked according to best axioms.

Definition 7. Given an abstract trace 𝑍# = {(𝛼′
𝑖, 𝑝𝑖, 𝑝𝑖+1)}𝑘𝑖=1 (𝑘 ≥ 0), we say that:

∙ 𝛾(𝑍#) ⊆ Traces is a set of concretisations of 𝑍#, when each trace 𝑍 ∈ 𝛾(𝑍#)
is of the form 𝑍 = {(𝛼𝑖, 𝜎𝑖, 𝜎

′
𝑖)}𝑘𝑖=1 and satisfies the requirement:

∀𝑖. 1 ≤ 𝑖 ≤ 𝑘 =⇒ 𝛼𝑖 = 𝛼′
𝑖 ∧ 𝜎𝑖 ∈ ⌊𝑝𝑖⌋ ∧ 𝜎′

𝑖 ∈ ⌊𝑝′𝑖⌋;

∙ 𝑍# is valid, written valid(𝑍#), if ∀𝑖. 1 ≤ 𝑖 ≤ 𝑘 =⇒ 𝑝𝑖+1 ∈ SP(𝛼𝑖, 𝑝𝑖).

Proposition 8. If safe(P, 𝑝) holds, then safe semantics may be represented as a set
of pairs (𝑍,𝑍#) of valid abstract traces 𝑍# and their concretisations 𝑍:

𝒮JPK(𝑝) = {(𝑍,𝑍#) | 𝑍 ∈ 𝒯 JPK∧𝑍# = (, 𝑝,) ∈ Traces#∧𝑍 ∈ 𝛾(𝑍#)∧valid(𝑍#)}.

16

Library-local semantics. To give a semantics to a library L, we consider specific
clients of it, which are programs {MGC𝑛}𝑛≥1 that are parametrised by the number
of threads 𝑛. In each its thread MGC𝑛 calls an arbitrary method 𝑚 of a library L
on each step of execution. More formally, these clients of L are:

MGC𝑛(L) = let L in 𝐶mgc
1 ‖ 𝐶mgc

2 ‖ · · · ‖ 𝐶mgc
𝑛 ,

where 𝐶mgc
𝑖 = (𝑚1 + 𝑚2 + · · · + 𝑚𝑘)* and dom(L) = {𝑚1,𝑚2, . . . ,𝑚𝑘}

The safe library-local semantics of L and its safety are then defined respectively as

𝒮JLK(𝑝) ,
⋃︁
𝑛≥1

𝒮JMGC𝑛(L)K(𝑝) and safe(L, 𝑝) ,
⋀︁
𝑛≥1

safe(MGC𝑛(L), 𝑝).

Internal safety. We further present the notion of internal safety of programs that
consist of two components.

Definition 9 (Internal safety). For a program C(L) and views 𝑝𝑐, 𝑝𝑙 ∈ View, safeint
is defined to be the maximal relation such that judgement safeint(C(L), 𝑝𝑐, 𝑝𝑙) holds
if and only if the following condition is satisfied:

∀𝛼,P, 𝜎, 𝜎′. 𝜎 ∈ ⌊𝑝𝑐 * 𝑝𝑙⌋ ∧ ⟨C(L), 𝜎⟩ 𝛼
==⇒ ⟨P, 𝜎′⟩ =⇒

(𝛼 ∈ AtomC =⇒ ∃𝑝′𝑐. 𝑝′𝑐 ∈ SP(𝛼, 𝑝𝑐) ∧ safeint(P, 𝑝′𝑐, 𝑝𝑙)) ∧
(𝛼 ∈ AtomL =⇒ ∃𝑝′𝑙. 𝑝′𝑙 ∈ SP(𝛼, 𝑝𝑙) ∧ safeint(P, 𝑝𝑐, 𝑝′𝑙)).

Analogously to safety, internal safety of C(L) w.r.t. 𝑝𝑐*𝑝𝑙 considers every possible
transition from C(L) in a state 𝜎 ∈ ⌊𝑝𝑐 * 𝑝𝑙⌋ and chooses an axiom (𝑝𝑐, 𝛼, 𝑝

′
𝑐) or

(𝑝𝑙, 𝛼, 𝑝
′
𝑙) that justifies the transition and enables internal safety of safeint(P, 𝑝′𝑐, 𝑝𝑙)

or safeint(𝑃 ′, 𝑝𝑐, 𝑝
′
𝑙) respectively. It is easy to show that 𝜎′ satisfies 𝑝′𝑐 * 𝑝𝑙 or 𝑝𝑐 * 𝑝′𝑙

in either case. The choice of an axiom depends on the component that performed a
transition, and this is what differs internal safety from safety: here an axiom is picked
w.r.t. to only a part of the abstract state 𝑝𝑐 *𝑝𝑙 that belongs to the component, and
the Frame Property of axioms allows to conclude that a view of the other component
remains holding. Consequently, internal safety explicitly states that a client C and
a library L are changing machine states with respect to their own abstract states 𝑝𝑐
and 𝑝𝑙.

Similarly to the safe semantics of C(L), one can think of picking axioms along
transition traces of C(L) in a way required by internal safety and define a set of
internally safe traces, or a internally safe semantics 𝒮intJC(L)K(𝑝𝑐, 𝑝𝑙) w.r.t. to local
views 𝑝𝑐 and 𝑝𝑙. We omit an inductive definition of 𝒮intJC(L)K(𝑝𝑐, 𝑝𝑙) and present a
straightforward one.

Definition 10. Given a pair of valid abstract traces 𝑋# = {(𝛼𝑖, 𝑝𝑖, 𝑝𝑖+1)}𝑘𝑖=1 and
𝑌 # = {(𝛼′

𝑖, 𝑝
′
𝑖, 𝑝

′
𝑖+1)}𝑘𝑖=1 (𝑘 ≥ 0), we define the result of the operation 𝑋# ~ 𝑌 # to

be an abstract trace 𝑍# = {(𝛼′′
𝑖 , 𝑝𝑖 * 𝑝′𝑖, 𝑝𝑖+1 * 𝑝′𝑖+1)}𝑘𝑖=0 if the following requirement

is met:

∀𝑖. 1 ≤ 𝑖 ≤ 𝑛 =⇒ (𝛼𝑖 = 𝛼′
𝑖 = 𝛼′′

𝑖 ∈ AtomI) ∨
(𝛼𝑖 = skip ∧ 𝛼′′

𝑖 = 𝛼′
𝑖 ∈ AtomL) ∨ (𝛼′

𝑖 = skip ∧ 𝛼′′
𝑖 = 𝛼𝑖 ∈ AtomC).

17

The definition of ~ lifts the operation * from views to valid abstract traces
pointwise, but only when an additional requirement on commands is satisfied. The
meaning of it is to require that an abstract trace 𝑋# does not change its view, when
so does 𝑌 # and vice versa.

Definition 11 (Internally safe traces). For a program C(L) and views 𝑝𝑐, 𝑝𝑙 ∈ View,
the set of internally safe traces is defined as follows:

𝒮intJC(L)K(𝑝𝑐, 𝑝𝑙) , {(𝑍,𝑋#, 𝑌 #) | 𝑍 ∈ 𝒯 JC(L)K ∧𝑋# = (, 𝑝𝑐,) ∧
𝑌 # = (, 𝑝𝑙,) ∧ valid(𝑋#) ∧ valid(𝑌 #) ∧ 𝑍 ∈ 𝛾(𝑋# ~ 𝑌 #)}

The difference in representation of internally safe traces and safe traces is that for
the former we maintain two local abstract traces 𝑋# and 𝑌 # corresponding to view
changes by a client C and a library L. Whenever either of them performs a transition,
this is reflected in its local abstract trace, and for convenience of representation,
another component is assumed to stutter.

It is important that strongest views in abstract traces 𝑋# and 𝑌 # are chosen
independently. When a view 𝑝′𝑐 ∈ SP(𝛼, 𝑝𝑐) is chosen for a client’s transition in 𝑋#

and 𝑝𝑙 is a library’s view, a machine state 𝜎′ that is a result of a transition of C(L) is
checked against 𝑝′𝑐 *𝑝𝑙. Although 𝛼 {𝑝𝑐 *𝑝𝑙}{𝑝′𝑐 *𝑝𝑙} holds by the Frame Property,
in general case 𝑝′𝑐 * 𝑝𝑙 ∈ SP(𝛼, 𝑝𝑐 * 𝑝𝑙) may not hold. Thus, total views of C(L) in
internally safe semantics are not strongest, unlike views picked in safe semantics.

18

Chapter 5

Library abstraction

This chapter is dedicated to the definition of library abstraction and a justification
of its soundness, which is the Abstraction Theorem.

Projections of traces. Consider a trace 𝑋 ∈ 𝒯 JC(L)K of a program C(L). We
introduce client(𝑋) and lib(𝑋), which for a given trace return only those transitions
from it that are performed by client and library respectively (call and return tran-
sitions are considered to belong to both). Here follows the definition of client (the
definition of lib is analogous):

client((𝛼, 𝜎, 𝜎′)𝑍) =

{︃
(𝛼, 𝜎, 𝜎′) client(𝑍), if 𝛼 ∈ AtomC;

client(𝑍), otherwise

client(𝜀) = 𝜀.

We also define another projection: states : Traces → (Σ×Σ)* that omits atomic
commands from each transition in a trace, views : Traces# → (View × View)* that
does the same to abstract traces, and interface : Traces → AtomI

* that filters out
everything but interface actions:

states(𝜀) = 𝜀
states((, 𝜎, 𝜎′)𝑋) = (𝜎, 𝜎′) states(𝑋)

views(𝜀#) = 𝜀
views((, 𝑝, 𝑝′)𝑋#) = (𝑝, 𝑝′) views(𝑋#)

interface((𝛼, ,)𝑍) =

{︃
𝛼 interface(𝑍), if 𝛼 ∈ AtomI

interface(𝑍), otherwise

interface(𝜀) = 𝜀.

Library abstraction. Let us define a relation ⪯ ⊆ (View × View)*:

𝑉1 ⪯ 𝑉2 , 𝑉1 = 𝑉2 = 𝜀 ∨ ∃𝑛, 𝑝1, . . . , 𝑝𝑛+1, 𝑝
′
1, . . . , 𝑝

′
𝑛+1. 𝑛 ≥ 1 ∧

𝑉1 = (𝑝1, 𝑝2)(𝑝2, 𝑝3) . . . (𝑝𝑛, 𝑝𝑛+1) ∧ 𝑉2 = (𝑝′1, 𝑝
′
2)(𝑝

′
2, 𝑝

′
3) . . . (𝑝

′
𝑛, 𝑝

′
𝑛+1) ∧

∀𝑖. 1 ≤ 𝑖 ≤ 𝑛 + 1 =⇒ skip {𝑝𝑖}{𝑝′𝑖}.

19

We define the library abstraction relation, which states that for each pair of
concrete and abstract traces of L1 it is possible to find a corresponded pair of traces
of L2 with a weaker specification and identical behaviour on a machine level.

Definition 12. The library abstraction is a binary relation ⊑ on libraries that
is parametrised by 𝑝 ∈ View and is defined as follows:

L1 ⊑𝑝 L2 , safe(L1, 𝑝) ∧ safe(L2, 𝑝) ∧ ∀(𝑌1, 𝑌
#
1) ∈ 𝒮JL1K(𝑝).

∃(𝑌2, 𝑌
#
2) ∈ 𝒮JL2K(𝑝). (𝑌1, 𝑌

#
1) ⊑ (𝑌2, 𝑌

#
2).

where (𝑌1, 𝑌
#
1) ⊑ (𝑌2, 𝑌

#
2) , states(𝑌1) = states(𝑌2) ∧ views(𝑌 #

1) ⪯ views(𝑌 #
2) ∧

interface(𝑌1) = interface(𝑌2).

We now justify that the notion of library abstraction is sound by establishing
the Abstraction Theorem that justifies abstracting from an implementation of a
library with its specification while reasoning about its client. The theorem states
that internally safe executions of a client of a concurrent library are still reproducible
with another library, provided that libraries are in the library abstraction relation.

Theorem 13 (Abstraction). If libraries L1 and L2 are such that L1 ⊑𝑝𝑙 L2 hold,
then:

∀(𝑍1, 𝑋
#
1 , 𝑌 #

1) ∈ 𝒮intJC(L1)K(𝑝𝑐, 𝑝𝑙).∃(𝑍2, 𝑋
#
2 , 𝑌 #

2) ∈ 𝒮intJC(L2)K(𝑝𝑐, 𝑝𝑙).
client(𝑍1) = client(𝑍2) ∧ states(lib(𝑍1)) = states(lib(𝑍2)) ∧

𝑋#
1 = 𝑋#

2 ∧ 𝑌 #
1 ⪯ 𝑌 #

2 .

The Abstraction Theorem establishes a correlation between internally safe traces
of C(L1) and C(L2). However, while satisfying the purpose of specifying the contract
between the client and the library, in order to do so internally safe traces exhibit
details of interactions between the components, which might be redundant on prac-
tice. We further focus on encapsulating the required information about the contract
in the internal safety and provide similar results for less restrictive semantics.

In order to present the first corollary of the Abstraction Theorem, we have to
require more properties from axioms of the Views Framework.

Definition 14. We say that the set of best axioms of the Views Framework is closed
under Frame property, when the following holds:

∀𝑝, 𝑞, 𝛼. 𝑞 ∈ SP(𝛼, 𝑝) =⇒ 𝑞 * 𝑟 ∈ SP(𝛼, 𝑝 * 𝑟).

The property above strengthens the Frame Property of the axioms by requiring
each best axiom (𝑝, 𝛼, 𝑞) remain the best even if the view 𝑝 is extended with another
view 𝑟.

Definition 15. We say that the axioms of the Views Framework are generated from
semantics, if the following holds:

𝛼 {𝑝}{𝑞} ⇐⇒ ∀𝑟 ∈ View. 𝑓𝛼(⌊𝑝 * 𝑟⌋) ⊆ ⌊𝑞 * 𝑟⌋

20

Lemma 16. When best axioms of the View Framework are closed under Frame
property and are generated from semantics, given safeint(C(L), 𝑝𝑐, 𝑝𝑙), any abstract
trace 𝑍# of a trace 𝑍 can be overapproximated by local abstract traces 𝑋# and 𝑌 #:

safeint(C(L), 𝑝𝑐, 𝑝𝑙) =⇒ ∀𝑍,𝑍#. (𝑍,𝑍#) ∈ 𝒮JC(L)K(𝑝𝑐 * 𝑝𝑙) =⇒
∃𝑋#, 𝑌 #. (𝑍,𝑋#, 𝑌 #) ∈ 𝒮intJC(L)K(𝑝𝑐, 𝑝𝑙) ∧ views(𝑍#) ⪯ views(𝑋# ~ 𝑌 #)

Lemma 17. When best axioms of the View Framework are closed under Frame
property and are generated from semantics,

∀𝑍,𝑋#, 𝑌 #. (𝑍,𝑋#, 𝑌 #) ∈ 𝒮intJC(L)K(𝑝𝑐, 𝑝𝑙) =⇒ (𝑍,𝑋#~𝑌 #) ∈ 𝒮JC(L)K(𝑝𝑐*𝑝𝑙).

By using Lemmas 16 and 17 respectively before and after Theorem 13, we obtain
the result, in which correlation between safe traces is established.

Corollary 18. Assume that best axioms of the Views Framework are closed
under Frame property. If a client C and libraries L1 and L2 are such that
safeint(C(L1), 𝑝𝑐, 𝑝𝑙) and L1 ⊑𝑝𝑙 L2 hold, then:

∀(𝑍1, 𝑍
#
1) ∈ 𝒮J𝐶(𝐿1)K(𝑝𝑐 * 𝑝𝑙).∃(𝑍2, 𝑍

#
2) ∈ 𝒮J𝐶(𝐿2)K(𝑝𝑐 * 𝑝𝑙). 𝑍#

1 ⪯ 𝑍#
2 ∧

client(𝑍1) = client(𝑍2) ∧ states(lib(𝑍1)) = states(lib(𝑍2)).

Relating safe traces instead of internally safe ones allows to hide details of
checking the contract between components in semantics and encapsulate it into
safeint(C(L1), 𝑝𝑐, 𝑝𝑙). This result might be of use in order to apply the Abstraction
Theorem multiple times to programs consisting of more than two components. While
in the present work the application of Corollary 18 is restricted by the programming
language design, we intend to explore this direction in the future work.

The other consequence of the Abstraction Theorem is formulated for traces, in
the setting when the program executes in the absence of the environment. This
means that in transition traces of a closed program, states are not changed between
two consequent transitions no external environment is present in the execution,
which we formally formulate in the definition of closed semantics:

Definition 19. Closed semantics 𝒮closedJPK(𝑝) of a program P w.r.t. a view 𝑝 is:

𝒮closedJPK(𝑝) = {𝑍 | 𝑍 ∈ 𝒯 JPK ∧ ∃𝑛, {𝛼𝑖}𝑛𝑖=1, {𝜎𝑖}𝑛+1
𝑖=1 . 𝜎1 ∈ ⌊𝑝⌋ ∧

𝑍 = (𝛼1, 𝜎1, 𝜎2)(𝛼2, 𝜎2, 𝜎3) . . . (𝛼𝑛, 𝜎𝑛, 𝜎𝑛+1)} ∪ {𝜀}

In this case we are able to establish a correspondence between traces of closed
semantics of C(L1) and C(L2), which are effectively standard traces.

Corollary 20. If a client C and libraries L1 and L2 are such that
safeint(C(L1), 𝑝𝑐, 𝑝𝑙) and L1 ⊑𝑝𝑙 L2 hold, then:

∀𝑍1 ∈ 𝒮closedJC(L1)K(𝑝𝑐 *𝑝𝑙).∃𝑍2 ∈ 𝒮closedJC(L2)K(𝑝𝑐 *𝑝𝑙). client(𝑍1) = client(𝑍2)∧
states(lib(𝑍1)) = states(lib(𝑍2)).

21

Knowing that there is no environment in the execution allows to hide all informa-
tion about contracts from semantics. On practice this allows proving properties of
components interacting by means of shared memory, and applying standard meth-
ods like linearizability to prove properties of the other components, which do not
share memory with each other.

5.1 Proof outline

Stuttering and skip-mumbling. We present closure properties of safe semantics
that facilitate the proof of the Abstraction theorem.

Definition 21 (Stuttering). A set 𝑆 ⊆ Traces × Traces# is closed under stut-
tering, when for every trace (𝑋 𝑌,𝑋# 𝑌 #) ∈ 𝑆, view 𝑝′ and state 𝜎 such that
𝜎 ∈ ⌊𝑝′⌋ and 𝑝′ is such a view that 𝑋# = (, , 𝑝′) or 𝑌 # = (, 𝑝′,), a trace
(𝑋 (skip, 𝜎, 𝜎)𝑌,𝑋# (skip, 𝑝′, 𝑝′)𝑌 #) is also in 𝑆.

Definition 22 (skip-mumbling). A set 𝑆 ⊆ Traces × Traces# is closed under skip-
mumbling, when for every trace

(𝑋 (𝛼1, 𝜎1, 𝜎2) (𝛼2, 𝜎2, 𝜎3)𝑌,𝑋
(𝛼1, 𝑝1, 𝑝2) (𝛼2, 𝑝2, 𝑝3)𝑌

#) ∈ 𝑆

such that either of 𝛼1 or 𝛼2 is skip, it implies that

(𝑋 (𝛼2 ∘ 𝛼1, 𝜎1, 𝜎3)𝑌,𝑋
(𝛼2 ∘ 𝛼1, 𝑝1, 𝑝3)𝑌

#) ∈ 𝑆.

Proposition 23. 𝒮JPK(𝑝) is closed under stuttering and skip-mumbling.

We say that traces (𝑋,𝑋#) and (𝑌, 𝑌 #) are equal w.r.t. stuttering and skip-
mumbling, written (𝑋,𝑋#) =† (𝑌, 𝑌 #), if a finite number of stutterings and skip-
mumblings can be applied to both of them in order to obtain equal traces. We also
let 𝑋# =† 𝑌

, ∃𝑋, 𝑌 . (𝑋,𝑋#) =† (𝑌, 𝑌 #) ∧𝑋 ∈ 𝛾(𝑋#) ∧ 𝑌 ∈ 𝛾(𝑌).

Client-local semantics and composition. The proof structure of the Abstrac-
tion theorem requires us to give a client-local semantics to a client C in program
C(L). For that we consider the program C(·) which is obtained from C(L) by re-
placing interpretation of library’s methods with Lstub = 𝜆𝑚 ∈ Methods. skip. Since
the command skip can always be mumbled, it is possible to say that Lstub interprets
bodies of methods as empty commands.

Composition. Given two local executions of C(·) and L, we will be interested in
combining them into a safe execution of C(L). To achieve this we consider a set of
interleavings defined in a standard manner as follows:

𝜀 ‖ 𝜀 = {𝜀}
𝑋 (𝛼1, 𝜎1, 𝜎

′
1) ‖ 𝜀 = 𝜀 ‖ 𝑋 (𝛼1, 𝜎1, 𝜎

′
1) = {𝑍 (𝛼1, 𝜎1, 𝜎

′
1) | 𝑍 ∈ 𝑋 ‖ 𝜀 ∧ 𝛼1 ̸∈ AtomI}

22

𝑋 (𝛼1, 𝜎1, 𝜎
′
1) ‖ 𝑌 (𝛼2, 𝜎2, 𝜎

′
2) =

{𝑍 (𝛼1, 𝜎1, 𝜎
′
1) | 𝑍 ∈ 𝑋 ‖ 𝑌 (𝛼2, 𝜎2, 𝜎

′
2) ∧ 𝛼1, 𝛼2 ̸∈ AtomI} ∪

{𝑍 (𝛼2, 𝜎2, 𝜎
′
2) | 𝑍 ∈ 𝑋 (𝛼1, 𝜎1, 𝜎

′
1) ‖ 𝑌 ∧ 𝛼1, 𝛼2 ̸∈ AtomI} ∪

{𝑍 (𝛼1, 𝜎1, 𝜎
′
1) | 𝑍 ∈ 𝑋 ‖ 𝑌 ∧ 𝛼1 = 𝛼2 ∈ AtomI ∧ 𝜎1 = 𝜎′

1 = 𝜎2 = 𝜎′
2}

In the definition above, the result of parallel composition of two traces is set of such
interleavings of them, that checks if these two traces agree on interface transitions,
and is undefined, if not. We enhance this definition by considering abstract traces,
composition of which should be stating properties about resulting concrete traces.

Definition 24 (Safe composition). The safe composition of two pairs (𝑋,𝑋#) and
(𝑌, 𝑌 #) of concrete and abstract traces is:

(𝑋,𝑋#) ‖ (𝑌, 𝑌 #) , {(𝑍,𝑋
#
, 𝑌

#
) | 𝑍 ∈ 𝑋 ‖ 𝑌 ∧ 𝑍 ∈ 𝛾(𝑋

#
~ 𝑌

#
) ∧

𝑋# =† 𝑋
∧ 𝑌 # =† 𝑌

#}

Lemma 25 (Decomposition). If (𝑍,𝑋#, 𝑌 #) ∈ 𝒮intJC(L)K(𝑝𝑐, 𝑝𝑙), then there are

𝑋
#
, 𝑌

#
such that:

∙ (client(𝑍), 𝑋
#

) ∈ 𝒮JC(·)K(𝑝𝑐) and 𝑋# =† 𝑋
#
;

∙ (lib(𝑍), 𝑌
#

) ∈ 𝒮JLK(𝑝𝑙) and 𝑌 # =† 𝑌
#
; and

∙ (𝑍,𝑋#, 𝑌 #) ∈ (client(𝑍), 𝑋
#

) ‖ (lib(𝑍), 𝑌
#

).

Lemma 26 (Composition). If (𝑋,𝑋#) ∈ 𝒮JC(·)K(𝑝𝑐), (𝑌, 𝑌 #) ∈ 𝒮JLK(𝑝𝑙), then
(𝑋,𝑋#) ‖ (𝑌, 𝑌 #) ⊆ 𝒮intJC(L)K(𝑝𝑐, 𝑝𝑙).

Proof of Theorem 13. Let us take (𝑍1, 𝑋
#, 𝑌 #

1) ∈ 𝒮intJC(L1)K(𝑝𝑐, 𝑝𝑙) and let
𝑋 = client(𝑍1) and 𝑌1 = lib(𝑍1). By Lemma 25 (Decomposition), some identity

transitions can be omitted from 𝑋# and 𝑌 #
1 in order to obtain 𝑋

#
=† 𝑋

and

𝑌1
#

=† 𝑌
#
1 with the following properties:

∙ (𝑋,𝑋
#

) ∈ 𝒮JC(·)K(𝑝𝑐), and

∙ (𝑌1, 𝑌1
#

) ∈ 𝒮JL1K(𝑝𝑙), and

∙ (𝑍1, 𝑋
#, 𝑌 #

1) ∈ (𝑋,𝑋
#

) ‖ (𝑌1, 𝑌1
#

).

Since L1 ⊑𝑝𝑙 L2 holds, there is (𝑌2, 𝑌2
#

) ∈ 𝒮JL2K(𝑝𝑙) such that (𝑌1, 𝑌1
#

) ⊑ (𝑌2, 𝑌2
#

).
The latter particularly means that machine states and interface transitions in 𝑌1

and 𝑌2 are the same in correspondent transitions of these two traces. Knowing
that lib(𝑍1) = 𝑌1, we replace each library’s transition of 𝑍1 with a correspondent
transition from 𝑌2, obtaining a trace 𝑍2 as the result. Obviously, client(𝑍2) = 𝑋
and lib(𝑍2) = 𝑌2, and it is easy to see that 𝑍2 ∈ (client(𝑍2) ‖ lib(𝑍2)).

23

Consider 𝑌1
#

and 𝑌2
#

, transitions of which are related according to the

(𝑌1, 𝑌1
#

) ⊑ (𝑌2, 𝑌2
#

) relation. By construction, 𝑌 #
1 can be obtained from 𝑌1

#
by a

finite number of stutterings. Let us perform the same stutterings on 𝑌2
#

and obtain
𝑌 #
2 such that |𝑌 #

1 | = |𝑌 #
2 |. It is easy to see that according to such construction

𝑋# ~ 𝑌 #
2 is defined, given that so does 𝑋# ~ 𝑌 #

2 .
We argue that 𝑍2 ∈ 𝛾(𝑋# ~ 𝑌 #

2), when 𝑍1 ∈ 𝛾(𝑋# ~ 𝑌 #
1). Let us

take a look at each transition in 𝑍1, 𝑍2, 𝑋
~ 𝑌

1 and 𝑋# ~ 𝑌 #
2 , which are

(𝛼1, 𝜎, 𝜎
′), (𝛼2, 𝜎, 𝜎

′), (𝛼1, 𝑝
′
𝑐 * 𝑝′1, 𝑝

′
𝑐 * 𝑝′′1) and (𝛼2, 𝑝

′
𝑐 * 𝑝′2, 𝑝

′
𝑐 * 𝑝′′2) correspondingly,

when 𝛼1, 𝛼2 ∈ AtomL (the case of 𝛼1, 𝛼2 ∈ AtomC is analogous), 𝑝′𝑐 is a client’s
view and the others are library’s views. Since 𝑍1 ∈ 𝛾(𝑋# ~ 𝑌 #

1), it is the
case that 𝜎 ∈ ⌊𝑝′𝑐 * 𝑝′1⌋ and 𝜎′ ∈ ⌊𝑝′𝑐 * 𝑝′′1⌋ hold. Knowing from 𝑌 #

1 ⪯ 𝑌 #
2 that

skip {𝑝′1}{𝑝′2} and skip {𝑝′′1}{𝑝′′2}, which by the Frame Property of the axioms
implies ⌊𝑝′𝑐 * 𝑝′1⌋ ⊆ ⌊𝑝′𝑐 * 𝑝′2⌋ and ⌊𝑝′𝑐 * 𝑝′′1⌋ ⊆ ⌊𝑝′𝑐 * 𝑝′′2⌋, we conclude that 𝜎 ∈ ⌊𝑝′𝑐 * 𝑝′1⌋
and 𝜎′ ∈ ⌊𝑝′𝑐 * 𝑝′′1⌋ hold as well. Consequently, 𝑍2 ∈ 𝛾(𝑋# ~ 𝑌 #

2).
Overall we constructed a trace (𝑍2, 𝑋

#, 𝑌 #
2) with the following properties:

𝑍2 ∈ 𝑋 ‖ 𝑌2 ∧ 𝑍2 ∈ 𝛾(𝑋# ~ 𝑌 #
2) ∧𝑋

#
=† 𝑋

∧ 𝑌2
#

=† 𝑌
#
2

which means that (𝑍2, 𝑋
#, 𝑌 #

2) ∈ (𝑋,𝑋
#

) ‖ (𝑌2, 𝑌2
#

). We apply Lemma 26 (Com-

position) to traces (𝑋,𝑋
#

) and (𝑌2, 𝑌2
#

), according to which the following holds:

(𝑍2, 𝑋
#, 𝑌 #

2) ∈ (𝑋,𝑋
#

) ‖ (𝑌2, 𝑌2
#

) ⊆ 𝒮intJC(L2)K(𝑝𝑐, 𝑝𝑙)

Thus, we have shown that for any (𝑍1, 𝑋
#
1 , 𝑌 #

1) ∈ 𝒮intJC(L1)K(𝑝𝑐, 𝑝𝑙) we are able to
find (𝑍2, 𝑋

#
2 , 𝑌 #

2) ∈ 𝒮intJC(L2)K(𝑝𝑐, 𝑝𝑙) so that

(𝑋1, 𝑋
#
1) = (𝑋2, 𝑋

#
2), views(𝑌 #

1) ⪯ views(𝑌 #
2) and states(𝑌1) = states(𝑌2),

which concludes the proof. ⊓⊔

24

Chapter 6

Auxillary proofs for the
Abstraction theorem

6.1 Proof of the Decomposition Lemma

Lemma 25 (Decomposition). If (𝑍,𝑋#, 𝑌 #) ∈ 𝒮intJC(L)K(𝑝𝑐, 𝑝𝑙), then there are

𝑋
#
, 𝑌

#
such that:

∙ (client(𝑍), 𝑋
#

) ∈ 𝒮JC(·)K(𝑝𝑐) and 𝑋# =† 𝑋
#
;

∙ (lib(𝑍), 𝑌
#

) ∈ 𝒮JLK(𝑝𝑙) and 𝑌 # =† 𝑌
#
; and

∙ (𝑍,𝑋#, 𝑌 #) ∈ (client(𝑍), 𝑋
#

) ‖ (lib(𝑍), 𝑌
#

).

Proof. Consider an arbitrary (𝑍,𝑋#, 𝑌 #) ∈ 𝒮intJC(L)K(𝑝𝑐, 𝑝𝑙). We explain the

construction of an abstract trace 𝑋
#

=†𝑋
such that (client(𝑍), 𝑋

#
) ∈ 𝒮JC(·)K(𝑝𝑐),

and the construction of 𝑌
#

is analogous.
By Definition 11 of internally safe semantics 𝒮intJC(L)K(𝑝𝑐, 𝑝𝑙), 𝑍 ∈ 𝛾(𝑋# ~

𝑌 #), valid(𝑋#) and valid(𝑌 #) hold. When 𝑍 ∈ 𝛾(𝑋# ~ 𝑌 #), for each client’s
transition (𝛼, 𝜎, 𝜎′) in 𝑍 there is a corresponding (𝛼, 𝑝′𝑐, 𝑝

′′
𝑐) in 𝑋#, and for each

library’s transition in 𝑍 there is a corresponding (skip, 𝑝′′′𝑐 , 𝑝
′′′
𝑐). Let us consider 𝑋

#
,

which is obtained by omitting transitions from 𝑋# that are corresponding to library

transitions. It is easy to see that valid(𝑋
#

) holds whenever valid(𝑋#) does.

We further argue that 𝑍 ∈ 𝛾(𝑋#~𝑌 #) implies that client(𝑍) ∈ 𝛾(𝑋
#

). Consider
every transition (𝛼, 𝜎, 𝜎′) in client(𝑍). Since the latter projection is obtained by
omitting library transitions from 𝑍 and 𝑍 ∈ 𝛾(𝑋# ~ 𝑌 #), there is a transition
(𝛼, 𝑝′𝑐 * 𝑝′𝑙, 𝑝

′′
𝑐 * 𝑝′𝑙) in 𝑋# ~ 𝑌 # such that 𝜎 ∈ ⌊𝑝′𝑐 * 𝑝′𝑙⌋ and 𝜎′ ∈ ⌊𝑝′′𝑐 * 𝑝′𝑙⌋. By

Property 4, 𝜎 ∈ ⌊𝑝′𝑐⌋ and 𝜎′ ∈ ⌊𝑝′′𝑐⌋. Consequently, client(𝑍) ∈ 𝛾(𝑋
#

) holds.

Together with valid(𝑋
#

) this gives us that (client(𝑍), 𝑋
#

) ∈ 𝒮JC(·)K(𝑝𝑐).
It remains to show that (𝑍,𝑋#, 𝑌 #) ∈ (client(𝑍), 𝑋

#
) ‖ (lib(𝑍), 𝑌

#
). However,

it is easy to see that 𝑍 ∈ client(𝑍) ‖ lib(𝑍). Knowing that 𝑍 ∈ 𝛾(𝑋# ~ 𝑌 #), we

25

conclude that safe composition (client(𝑍), 𝑋
#

) ‖ (lib(𝑍), 𝑌
#

contains (𝑍,𝑋#, 𝑌 #)
by Definition 24. ⊓⊔

6.2 Proof of the Composition Lemma

Lemma 26 (Composition). If (𝑋,𝑋#) ∈ 𝒮JC(·)K(𝑝𝑐), (𝑌, 𝑌 #) ∈ 𝒮JLK(𝑝𝑙), then
(𝑋,𝑋#) ‖ (𝑌, 𝑌 #) ⊆ 𝒮intJC(L)K(𝑝𝑐, 𝑝𝑙).

Proof. Every trace (𝑍,𝑋
#
, 𝑌

#
) ∈ (𝑋,𝑋#) ‖ (𝑌, 𝑌 #) in order to be in

𝒮intJC(L)K(𝑝𝑐, 𝑝𝑙) has to satisfy the following:

∙ 𝑍 ∈ 𝒯 JC(L)K;

∙ 𝑍 ∈ 𝛾(𝑋
#
~ 𝑌

#
);

∙ valid(𝑋
#

) and valid(𝑌
#

).

It is easy to see that 𝑍 ∈ (𝑋,𝑋#) ‖ (𝑌, 𝑌 #) ⊆ 𝑋 ‖ 𝑌 ⊆ 𝒯 JC(L)K, from
which the first requirement follows. Also, by Definition 24 of safe composition,

𝑍 ∈ 𝛾(𝑋
#
~𝑌

#
) holds as well. It remains to show that abstract traces 𝑋

#
and 𝑌

#

are valid.
By the premise of the lemma, (𝑋,𝑋#) ∈ 𝒮JC(·)K(𝑝𝑐). Knowing that 𝑋

#
=† 𝑋

#

and that 𝒮JC(·)K(𝑝𝑐) is closed under stuttering and skip-mumbling, we conclude

that (, 𝑋
#

) ∈ 𝒮JC(·)K(𝑝𝑐). Consequently, valid(𝑋
#

) holds, and analogously does

valid(𝑌
#

). ⊓⊔

6.3 Proof of Corollary 18

The statement of Corollary 18 requires a strong property from the best axioms, which
tells that ∀𝑟. 𝑞 * 𝑟 ∈ SP(𝛼, 𝑝 * 𝑟) must hold whenever 𝑞 ∈ SP(𝛼, 𝑝) holds. Consider
𝑞 ∈ SP(𝛼, 𝑝) and let view 𝑞′ be such that 𝛼 {𝑝}{𝑞′} holds; then ⌊𝑞⌋ ⊆ ⌊𝑞′⌋ holds.
Let us take any 𝑟 ∈ View. By the Frame Property of axioms, 𝛼 {𝑝 * 𝑟}{𝑞′ * 𝑟}
holds. Since 𝑞 * 𝑟 ∈ SP(𝛼, 𝑝 * 𝑟), then ⌊𝑞 * 𝑟⌋ ⊆ ⌊𝑞′ * 𝑟⌋. Overall we obtained that if
𝑞 ∈ SP(𝛼, 𝑝) and 𝛼 {𝑝}{𝑞′}, then ∀𝑟. ⌊𝑞 * 𝑟⌋𝑞′ * 𝑟. Particularly, if 𝑞′ ∈ SP(𝛼, 𝑝) as
well, then ∀𝑟. ⌊𝑞 * 𝑟⌋ = ⌊𝑞′ * 𝑟⌋. We use this observation in further proofs.

Proposition 27. When best axioms of the View Framework are closed under
Frame property and are generated from semantics, if ∀𝑟. ⌊𝑝1 * 𝑟⌋ = ⌊𝑝2 * 𝑟⌋, then
safe(P, 𝑝1) ⇐⇒ safe(P, 𝑝2).

Proof. We prove that safe(P, 𝑝1) =⇒ safe(P, 𝑝2), and the proof in the other
direction is analogous. Let us assume that safe(P, 𝑝1) holds, i.e.:

∀𝛼,P′, 𝜎, 𝜎′. 𝜎 ∈ ⌊𝑝1⌋ ∧ ⟨P, 𝜎⟩ 𝛼
==⇒ ⟨P′, 𝜎′⟩ =⇒ ∃𝑝′. 𝑝′ ∈ SP(𝛼, 𝑝1) ∧ safe(P′, 𝑝′).

26

Consider any transition ⟨P, 𝜎⟩ 𝛼
==⇒ ⟨P′, 𝜎′⟩ so that 𝜎 ∈ ⌊𝑝1⌋. Then there exists

𝑝′ ∈ SP(𝛼, 𝑝1) and safe(P′, 𝑝′) holds. We further demonstrate that 𝑝′ ∈ SP(𝛼, 𝑝2)
holds. The following conditions should be met for that:

∙ 𝛼 {𝑝2}{𝑝′}; and

∙ ∀𝑞. 𝛼 {𝑝2}{𝑞} =⇒ ⌊𝑝′⌋ ⊆ ⌊𝑞⌋.

Note that since ∀𝑟. 𝑓𝛼(⌊𝑝2*𝑟⌋) = 𝑓𝛼(⌊𝑝1*𝑟⌋) ⊆ ⌊𝑝′*𝑟⌋ holds, the axioms 𝛼 {𝑝2}{𝑝′}
is generated from semantics, so the first condition is satisfied. Since 𝑝′ ∈ SP(𝛼, 𝑝1):

∀𝑞. 𝛼 {𝑝1}{𝑞} =⇒ ⌊𝑝′⌋ ⊆ ⌊𝑞⌋

It is easy to see that analogously to 𝑝′, for every view 𝑞, 𝛼 {𝑝1}{𝑞} if and only if
𝛼 {𝑝2}{𝑞}. Consequently, the second condition for 𝑝′ ∈ SP(𝛼, 𝑝2) holds as well.

Overall we have shown for any transition ⟨P, 𝜎⟩ 𝛼
==⇒ ⟨P′, 𝜎′⟩ so that 𝜎 ∈ ⌊𝑝1⌋ =

⌊𝑝2⌋, there exists 𝑝′ ∈ SP(𝛼, 𝑝1) and safe(P′, 𝑝′) holds. Consequently, by Definition 5,
safe(P, 𝑝2) holds. ⊓⊔

Lemma 28. If best axioms of the View Framework are closed under Frame property
and are generated from semantics, then:

safe(P, 𝑝) ∧ ((𝛼, 𝜎, 𝜎′)𝑍, (𝛼, 𝑝, 𝑝′)𝑍#) ∈ 𝒮JPK(𝑝) =⇒
∃P′. safe(P′, 𝑝′) ∧ (𝑍,𝑍#) ∈ 𝒮JP′K(𝑝′).

Proof. Let us take any trace ((𝛼, 𝜎, 𝜎′)𝑍, (𝛼, 𝑝, 𝑝′)𝑍#) ∈ 𝒮JPK(𝑝). By Definition 6
of safe semantics, there is a transition ⟨P, 𝜎⟩ 𝛼

==⇒ ⟨P′, 𝜎′⟩, and also 𝑝′ ∈ SP(𝛼, 𝑝)
𝜎 ∈ ⌊𝑝⌋ both hold. Let us unfold safe(P, 𝑝) by Definition 5:

∀𝛼,P′, 𝜎, 𝜎′. 𝜎 ∈ ⌊𝑝⌋ ∧ ⟨P, 𝜎⟩ 𝛼
==⇒ ⟨P′, 𝜎′⟩ =⇒ ∃𝑝′′. 𝑝′′ ∈ SP(𝛼, 𝑝) ∧ safe(P′, 𝑝′′).

The implication above holds of all possible transitions, so it must hold of ⟨P, 𝜎⟩ 𝛼
==⇒

⟨P′, 𝜎′⟩, since 𝜎 ∈ ⌊𝑝⌋. Consequently, we obtain that ∃𝑝′′. 𝑝′′ ∈ SP(𝛼, 𝑝)∧safe(P′, 𝑝′′).
Both 𝑝′ and 𝑝′′ are strongest postconditions from SP(𝛼, 𝑝), so ∀𝑟 ∈ View. ⌊𝑝′*𝑟⌋ =

⌊𝑝′′ * 𝑟⌋ necessarily holds. By Proposition 27, safe(P′, 𝑝′) holds then. ⊓⊔
Analogously, we formulate the same result for internal safety.

Lemma 29. If best axioms of the View Framework are closed under Frame property
and are generated from semantics, then:

safeint(P, 𝑝𝑐, 𝑝𝑙)∧((𝛼, 𝜎, 𝜎′)𝑍, (𝛼, 𝑝𝑐, 𝑝
′
𝑐)𝑋

#, (skip, 𝑝𝑙, 𝑝𝑙)𝑌
#) ∈ 𝒮intJPK(𝑝𝑐, 𝑝𝑙) =⇒

∃P′. safeint(P′, 𝑝′𝑐, 𝑝𝑙) ∧ (𝑍,𝑋#, 𝑌 #) ∈ 𝒮intJP′K(𝑝′𝑐, 𝑝𝑙), and

safeint(P, 𝑝𝑐, 𝑝𝑙)∧((𝛼, 𝜎, 𝜎′)𝑍, (skip, 𝑝𝑐, 𝑝𝑐)𝑋
#, (𝛼, 𝑝𝑙, 𝑝

′
𝑙)𝑌

#) ∈ 𝒮intJPK(𝑝𝑐, 𝑝𝑙) =⇒
∃P′. safeint(P′, 𝑝𝑐, 𝑝

′
𝑙) ∧ (𝑍,𝑋#, 𝑌 #) ∈ 𝒮intJP′K(𝑝𝑐, 𝑝′𝑙).

27

Proposition 30.

∀𝑍,𝑍#, 𝑋#, 𝑌 #.(𝑍,𝑍#) ∈ 𝒮JC(L)K(𝑝𝑐*𝑝𝑙)∧(𝑍,𝑋#, 𝑌 #) ∈ 𝒮intJC(L)K(𝑝𝑐, 𝑝𝑙) =⇒
views(𝑍#) ⪯ views(𝑋# ~ 𝑌 #)

Proof. The case of 𝑍 = 𝜀 is trivial. Let us prove the statement by induction on the
length 𝑛 of 𝑍𝑛. When 𝑛 = 1, 𝑍#

1 = (𝛼, 𝑝𝑐 * 𝑝𝑙, 𝑝′) and 𝑋#
1 ~𝑌 #

1 = (𝛼, 𝑝𝑐 * 𝑝𝑙, 𝑝′𝑐 * 𝑝′𝑙).
According to definitions of safe and internally safe semantics, 𝑝′ ∈ SP𝛼, 𝑝𝑐 * 𝑝𝑙 and
𝛼 {𝑝𝑐 * 𝑝𝑙}{𝑝′𝑐 * 𝑝′𝑙}. Since 𝑝′ is strongest postcondition, 𝑝′ ⪯ 𝑝′𝑐 * 𝑝′𝑙.

Now let us show induction step. Consider 𝑍#
𝑛+1 = 𝑍#

𝑛 (𝛼, 𝑝′, 𝑝′′) and 𝑋#
𝑛+1 ~

𝑌 #
𝑛+1 = 𝑋#

𝑛 ~𝑌 #
𝑛 (𝛼, 𝑝′𝑐 * 𝑝′𝑙, 𝑝′′𝑐 * 𝑝′′𝑙). By induction hypothesis, 𝑝′⪯ 𝑝′𝑐 * 𝑝′𝑙. According

to definitions of safe and internally safe semantics, 𝑝′′ ∈ SP𝛼, 𝑝′ and 𝛼 {𝑝′𝑐*𝑝′𝑙}{𝑝′′𝑐 *
𝑝′′𝑙 }. Note that 𝑝′⪯𝑝′𝑐*𝑝′𝑙 and 𝛼 {𝑝′𝑐*𝑝′𝑙}{𝑝′′𝑐 *𝑝′′𝑙 } together imply 𝛼 {𝑝′}{𝑝′′𝑐 *𝑝′′𝑙 }.
Since 𝑝′′ is a strongest postcondition for 𝛼 and 𝑝′, 𝑝′′⪯𝑝′′𝑐 *𝑝′′𝑙 holds, which concludes
the proof by induction. ⊓⊔

Lemma 16. When best axioms of the View Framework are closed under Frame
property and are generated from semantics, given safeint(C(L), 𝑝𝑐, 𝑝𝑙), any abstract
trace 𝑍# of a trace 𝑍 can be overapproximated by local abstract traces 𝑋# and 𝑌 #:

safeint(C(L), 𝑝𝑐, 𝑝𝑙) =⇒ ∀𝑍,𝑍#. (𝑍,𝑍#) ∈ 𝒮JC(L)K(𝑝𝑐 * 𝑝𝑙) =⇒
∃𝑋#, 𝑌 #. (𝑍,𝑋#, 𝑌 #) ∈ 𝒮intJC(L)K(𝑝𝑐, 𝑝𝑙) ∧ views(𝑍#) ⪯ views(𝑋# ~ 𝑌 #)

Proof. We prove the following statement by induction on 𝑛, which is the length of
traces 𝑍𝑛, 𝑍

#
𝑛 , 𝑋

#
𝑛 , 𝑌 #

𝑛 :

Φ(𝑛) = safeint(C(L), 𝑝𝑐, 𝑝𝑙) =⇒ ∀𝑍𝑛, 𝑍
#
𝑛 . (𝑍𝑛, 𝑍

#
𝑛) ∈ 𝒮JC(L)K(𝑝𝑐 * 𝑝𝑙) =⇒

∃𝑋#
𝑛 , 𝑌 #

𝑛 . (𝑍𝑛, 𝑋
#
𝑛 , 𝑌 #

𝑛) ∈ 𝒮intJC(L)K(𝑝𝑐, 𝑝𝑙) ∧ views(𝑍#) ⪯ views(𝑋# ~ 𝑌 #)).

In the base case of 𝑛 = 0, Φ(0) holds trivially: the statement about empty traces
follows straightforwardly. Let us prove the induction step Φ(𝑛) =⇒ Φ(𝑛 + 1).
Consider a trace (𝑍𝑛+1, 𝑍

#
𝑛+1) ∈ 𝒮JC(L)K(𝑝𝑐 * 𝑝𝑙) and let 𝑍𝑛+1 = 𝑍𝑛 (𝛼, 𝜎, 𝜎′) and

𝑍#
𝑛+1 = 𝑍#

𝑛 (𝛼, 𝑝′, 𝑝′′). By Φ(𝑛), there is (𝑍𝑛, 𝑋
#
𝑛 , 𝑌 #

𝑛) ∈ 𝒮intJC(L)K(𝑝𝑐, 𝑝𝑙).
Let P be a program, which is obtained by performing transitions of 𝑍𝑛. By

applying Lemma 28 𝑛 times to (𝑍𝑛, 𝑋
#
𝑛 , 𝑌 #

𝑛) ∈ 𝒮intJC(L)K(𝑝𝑐, 𝑝𝑙), we obtain that
safeint(P, 𝑝′𝑐, 𝑝′𝑙) holds, which means the following:

∀𝛼,P′, 𝜎, 𝜎′. 𝜎 ∈ ⌊𝑝′𝑐 * 𝑝′𝑙⌋ ∧ ⟨P, 𝜎⟩ 𝛼−−→ ⟨P′, 𝜎′⟩ =⇒
(𝛼 ∈ AtomC =⇒ ∃𝑝′′𝑐 . 𝑝′′𝑐 ∈ SP(𝛼, 𝑝′𝑐) ∧ safeint(P′, 𝑝′′𝑐 , 𝑝

′
𝑙))∧

(𝛼 ∈ AtomL =⇒ ∃𝑝′′𝑙 . 𝑝′′𝑙 ∈ SP(𝛼, 𝑝′𝑙) ∧ safeint(P′, 𝑝′𝑐, 𝑝
′′
𝑙)). (6.1)

A trace 𝑍𝑛 (𝛼, 𝜎, 𝜎′) from safe semantics is a transition trace, which according
to Definition 1 means that there is a transition ⟨P, 𝜎⟩ 𝛼

==⇒ ⟨P′, 𝜎′⟩. By Propo-
sition 30, views(𝑍#

𝑛) ⪯ views(𝑋#
𝑛 ~ 𝑌 #

𝑛) holds, and since 𝑝′, 𝑝′𝑐, 𝑝
′
𝑙 are the last

28

views in 𝑍#
𝑛 , 𝑋

#
𝑛 , 𝑌 #

𝑛 correspondingly, 𝑝′ ⪯ 𝑝′𝑐 * 𝑝′𝑙. Since 𝑍𝑛+1 in safe semantics,
𝑍𝑛 (𝛼, 𝜎, 𝜎′) ∈ 𝛾(𝑍#

𝑛 (𝛼, 𝑝′, 𝑝′′)), so 𝜎 ∈ ⌊𝑝′⌋ ⊆ 𝑝′𝑐 * 𝑝′𝑙. Altogether all these facts

give us that the premise of safeint(P, 𝑝′𝑐, 𝑝′𝑙) holds of transition ⟨P, 𝜎⟩ 𝛼
==⇒ ⟨P′, 𝜎′⟩.

Consequently:

(𝛼 ∈ AtomC =⇒ ∃𝑝′′𝑐 . 𝑝′′𝑐 ∈ SP(𝛼, 𝑝′𝑐)) ∧ (𝛼 ∈ AtomL =⇒ ∃𝑝′′𝑙 . 𝑝′′𝑙 ∈ SP(𝛼, 𝑝′𝑙))

It is easy to see that in cases of 𝛼 performed by a client and a library
correspondingly, (𝑍𝑛+1, 𝑋

#
𝑛 (𝛼, 𝑝′𝑐, 𝑝

′′
𝑐), 𝑌 #

𝑛 (skip, 𝑝′𝑙, 𝑝
′
𝑙)) ∈ 𝒮intJC(L)K(𝑝𝑐, 𝑝𝑙) and

(𝑍𝑛+1, 𝑋
#
𝑛 (skip, 𝑝′𝑐, 𝑝

′
𝑐), 𝑌

#
𝑛 (𝛼, 𝑝′𝑙, 𝑝

′′
𝑙)) ∈ 𝒮intJC(L)K(𝑝𝑐, 𝑝𝑙) holds. ⊓⊔

Lemma 17. When best axioms of the View Framework are closed under Frame
property,

∀𝑍,𝑋#, 𝑌 #. (𝑍,𝑋#, 𝑌 #) ∈ 𝒮intJC(L)K(𝑝𝑐, 𝑝𝑙) =⇒ (𝑍,𝑋#~𝑌 #) ∈ 𝒮JC(L)K(𝑝𝑐*𝑝𝑙).

Proof. By induction on the length of traces.

Φ(𝑛) = (∀𝑝, 𝑞, 𝛼. 𝑞 ∈ SP(𝛼, 𝑝) =⇒ 𝑞 * 𝑟 ∈ SP(𝛼, 𝑝 * 𝑟)) =⇒
∀𝑍𝑛, 𝑋

#
𝑛 , 𝑌 #

𝑛 . (𝑍𝑛, 𝑋
#
𝑛 , 𝑌 #

𝑛) ∈ 𝒮intJC(L)K(𝑝𝑐, 𝑝𝑙) =⇒
(𝑍,𝑋# ~ 𝑌 #) ∈ 𝒮JC(L)K(𝑝𝑐 * 𝑝𝑙)

Consider any traces 𝑍𝑛+1, 𝑋
#
𝑛+1, 𝑌

#
𝑛+1 of the length 𝑛 + 1 such that

(𝑍𝑛+1, 𝑋
#
𝑛+1, 𝑌

#
𝑛+1) ∈ 𝒮intJC(L)K(𝑝𝑐, 𝑝𝑙). By induction hypothesis, if its prefix is

(𝑍𝑛, 𝑋
#
𝑛 , 𝑌 #

𝑛), then (𝑍𝑛, 𝑋
#
𝑛 ~ 𝑌 #

𝑛) ∈ 𝒮JC(L)K(𝑝𝑐 * 𝑝𝑙). Let us consider the last
transitions (𝛼, 𝜎, 𝜎′), (𝛼, 𝑝′𝑐, 𝑝

′′
𝑐) and (skip, 𝑝′𝑙, 𝑝

′
𝑙) in 𝑍𝑛+1, 𝑋

#
𝑛+1 and 𝑌 #

𝑛+1 respectively
(which is the case of the client’s transition, and the other case is analogous). Since
𝑍𝑛+1 is internally safe, 𝜎 ∈ ⌊𝑝′𝑐 * 𝑝′𝑙⌋ and 𝑝′′𝑐 ∈ SP(𝛼, 𝑝′𝑐), so 𝛼 {𝑝′𝑐 * 𝑝′𝑙}{𝑝′′𝑐 * 𝑝′𝑙}
holds. Moreover, by Property 14, 𝑝′′𝑐 * 𝑝′𝑙 ∈ SP(𝛼, 𝑝′𝑐 * 𝑝′𝑙), which is sufficient for
(𝑍𝑛+1, 𝑋

#
𝑛+1 ~ 𝑌 #

𝑛+1) ∈ 𝒮JC(L)K(𝑝𝑐 * 𝑝𝑙) to hold. ⊓⊔

6.4 Proof of Corollary 20

Corollary 20. If a client C and libraries L1 and L2 are such that
safeint(C(L1), 𝑝𝑐, 𝑝𝑙) and L1 ⊑𝑝𝑙 L2 hold, then:

∀𝑍1 ∈ 𝒮closedJC(L1)K(𝑝𝑐 *𝑝𝑙). ∃𝑍2 ∈ 𝒮closedJC(L2)K(𝑝𝑐 *𝑝𝑙). client(𝑍1) = client(𝑍2)∧
states(lib(𝑍1)) = states(lib(𝑍2)).

Proof. Consider any 𝑍1 ∈ 𝒮closedJC(L1)K(𝑝𝑐 * 𝑝𝑙). We first show that
∃𝑋#

1 , 𝑌 #
1 . (𝑍1, 𝑋

#
1 , 𝑌 #

1) ∈ 𝒮intJC(L)K(𝑝𝑐, 𝑝𝑙). Specifically, we construct 𝑋#
1 and 𝑌 #

1

that satisfy the following:

∙ 𝑍1 ∈ 𝛾(𝑋#
1 ∘ 𝑌 #

1), and

∙ valid(𝑋#
1) and valid(𝑌 #

1) hold.

29

According to Definition 11 of internal safety:

∀𝛼,P, 𝜎, 𝜎′. 𝜎 ∈ ⌊𝑝𝑐 * 𝑝𝑙⌋ ∧ ⟨C(L), 𝜎⟩ 𝛼
==⇒ ⟨P, 𝜎′⟩ =⇒

(𝛼 ∈ AtomC =⇒ ∃𝑝′𝑐. 𝑝′𝑐 ∈ SP(𝛼, 𝑝𝑐) ∧ safeint(P, 𝑝′𝑐, 𝑝𝑙)) ∧
(𝛼 ∈ AtomL =⇒ ∃𝑝′𝑙. 𝑝′𝑙 ∈ SP(𝛼, 𝑝𝑙) ∧ safeint(P, 𝑝𝑐, 𝑝′𝑙)). (6.2)

When 𝑍1 = 𝜀, the statement of the theorem is trivial. Let 𝑍1 = {(𝛼𝑖, 𝜎𝑖, 𝜎𝑖+1)}𝑘𝑖=1,
where 𝑘 ≥ 1. Since 𝑍1 ∈ 𝒮closedJC(L)K(𝑝𝑐 * 𝑝𝑙), 𝜎1 ∈ ⌊𝑝𝑐 * 𝑝𝑙⌋ and ∃P. ⟨C(L), 𝜎⟩ 𝛼

==⇒
⟨P, 𝜎′⟩. The premise of (6.2) must hold of this transition, so:

(𝛼 ∈ AtomC =⇒ ∃𝑝′𝑐. 𝑝′𝑐 ∈ SP(𝛼, 𝑝𝑐) ∧ safeint(P, 𝑝′𝑐, 𝑝𝑙)) ∧
(𝛼 ∈ AtomL =⇒ ∃𝑝′𝑙. 𝑝′𝑙 ∈ SP(𝛼, 𝑝𝑙) ∧ safeint(P, 𝑝𝑐, 𝑝′𝑙)). (6.3)

Consider three cases: (a) 𝛼 ∈ AtomC ∖ AtomI, (b) 𝛼 ∈ AtomL ∖ AtomI and (c)
𝛼 ∈ AtomI. In the case (a), ∃𝑝′𝑐. 𝑝′𝑐 ∈ SP(𝛼, 𝑝𝑐) ∧ safeint(P, 𝑝′𝑐, 𝑝𝑙). We let the first
transition of 𝑋#

1 and 𝑌 #
1 be (𝛼, 𝑝𝑐, 𝑝

′
𝑐) and (skip, 𝑝𝑙, 𝑝𝑙). Note that 𝜎2 ∈ ⌊𝑝′𝑐 * 𝑝𝑙⌋,

because 𝛼 {𝑝𝑐 * 𝑝𝑙}{𝑝′𝑐 * 𝑝𝑙} holds by the Frame Property of the axiom and 𝜎2 ∈
𝑓𝛼(𝜎1) ⊆ 𝑓𝛼(⌊𝑝𝑐*𝑝𝑙⌋) ⊆ ⌊𝑝′𝑐*𝑝𝑙⌋. In the case (b), ∃𝑝′𝑙. 𝑝′𝑙 ∈ SP(𝛼, 𝑝𝑙)∧safeint(P, 𝑝𝑐, 𝑝′𝑙),
and we let the first transition of 𝑋#

1 and 𝑌 #
1 be (skip, 𝑝𝑐, 𝑝𝑐) and (𝛼, 𝑝𝑙, 𝑝

′
𝑙). Also, it

is easy to show that 𝜎2 ∈ ⌊𝑝𝑐 * 𝑝′𝑙⌋. Finally, in the case (c) we let the first transition
of 𝑋#

1 and 𝑌 #
1 be (𝛼, 𝑝𝑐, 𝑝𝑐) and (𝛼, 𝑝𝑙, 𝑝𝑙). Moreover, 𝜎2 ∈ ⌊𝑝𝑐 * 𝑝𝑙⌋ holds. By

continuing construction until the end of 𝑍1, we obtain 𝑋#
1 and 𝑌 #

1 satisfying the
requirements of internally safe semantics.

According to Theorem 13, the following holds:

∀(𝑍1, 𝑋
#
1 , 𝑌 #

1) ∈ 𝒮intJC(L1)K(𝑝𝑐, 𝑝𝑙).∃(𝑍2, 𝑋
#
2 , 𝑌 #

2) ∈ 𝒮intJC(L2)K(𝑝𝑐, 𝑝𝑙).

𝑍#
1 ⪯𝑋#

2 ~ 𝑌 #
2 ∧ client(𝑍1) = client(𝑍2) ∧ states(lib(𝑍1)) = states(lib(𝑍2)).

Let us take (𝑍2, 𝑋
#
2 , 𝑌 #

2) ∈ 𝒮intJC(L2)K(𝑝𝑐, 𝑝𝑙) from the formula above. Note that
client(𝑍1) = client(𝑍2) and states(lib(𝑍1)) = states(lib(𝑍2)), which means that con-
crete states are not changed by the environment in 𝑍2 as well as in 𝑍1. Consequently,
𝑍2 ∈ 𝒮closedJC(L)K(𝑝𝑐 * 𝑝𝑙). ⊓⊔

6.5 Proof of Proposition 8

Proposition 8. If safe(𝐶, 𝑝) holds, then safe semantics may be represented as a set
of pairs (𝑍,𝑍#) of valid abstract traces 𝑍# and their concretisations 𝑍:

𝒮JC(·)K(𝑝) = {(𝑍,𝑍#) | 𝑍 ∈ 𝒯 JC(·)K ∧ 𝑍# = (, 𝑝,) ∈ Traces# ∧
𝑍 ∈ 𝛾(𝑍#) ∧ valid(𝑍#)}.

Proof. Let 𝑆 : Prog × View → Traces × Traces# be such a function that 𝑆(P, 𝑝)
would be a set of traces (𝑍,𝑍#) satisfying the property:

𝑍 ∈ 𝒯 JC(·)K ∧ 𝑍# = (, 𝑝,) ∈ Traces# ∧ 𝑍 ∈ 𝛾(𝑍#) ∧ valid(𝑍#). (6.4)

30

We first prove that ∀P, 𝑝.𝒮JPK(𝑝) ⊆ 𝑆(P, 𝑝), and then do a proof in the opposite
direction. Consider any trace from 𝒮JC(·)K(𝑝). When a trace is empty, the statement
holds trivially, so we further let it be ((𝛼1, 𝜎1, 𝜎

′
1)𝑍, (𝛼1, 𝑝1, 𝑝2)𝑍

#). By unfolding
Definition 6, we get the following property of it (letting P1 = P and 𝑝1 = 𝑝):

∃P2. 𝜎1 ∈ ⌊𝑝1⌋ ∧ ⟨P1, 𝜎1⟩
𝛼1==⇒ ⟨P2, 𝜎

′
1⟩ ∧ 𝑝2 ∈ SP(𝛼1, 𝑝1) ∧ (𝑍,𝑍#) ∈ 𝒮JP2K(𝑝2)

Additionally, from 𝑝2 ∈ SP(𝛼1, 𝑝1) it can be deduced that 𝛼1(⌊𝑝1⌋) ⊆ ⌊𝑝2⌋. Given
that 𝜎′

1 ∈ 𝛼1(𝜎1) and 𝜎1 ∈ ⌊𝑝1⌋, we conclude that 𝜎′
1 ∈ ⌊𝑝2⌋. Since (𝑍,𝑍#) is a finite

trace of length |𝑍| = 𝑛, by unfolding further by definition, the following property of
the whole trace ({(𝛼𝑖, 𝜎𝑖, 𝜎

′
𝑖), (𝛼𝑖, 𝑝𝑖, 𝑝𝑖+1)}𝑛𝑖=1) is obtained:

∃P2, . . . ,P𝑛.∀𝑖. 1 ≤ 𝑖 ≤ 𝑛 =⇒ 𝜎𝑖 ∈ ⌊𝑝𝑖⌋ ∧ 𝜎′
𝑖 ∈ ⌊𝑝𝑖+1⌋ ∧ ⟨P𝑖, 𝜎𝑖⟩

𝛼𝑖==⇒ ⟨P𝑖+1, 𝜎
′
𝑖⟩ ∧

𝑝𝑖+1 ∈ SP(𝛼𝑖, 𝑝𝑖)

It is easy to see that {(𝛼𝑖, 𝜎𝑖, 𝜎
′
𝑖) ∈ 𝛾((𝛼𝑖, 𝑝𝑖, 𝑝𝑖+1)}𝑛𝑖=1), {(𝛼𝑖, 𝜎𝑖, 𝜎

′
𝑖) ∈ 𝒯 JPK and

valid((𝛼𝑖, 𝑝𝑖, 𝑝𝑖+1)}𝑛𝑖=1) all hold, which concludes the first part of the proof.
Now we show that 𝑆(P, 𝑝) ∈ 𝒮JPK(𝑝) holds. Consider a trace 𝑍 = {(𝛼𝑖, 𝜎𝑖, 𝜎

′
𝑖)}𝑛𝑖=1

and an abstract trace 𝑍#
𝑛 = {(𝛼𝑖, 𝑝𝑖, 𝑝𝑖+1)}𝑛𝑖=1 such that (𝑍,𝑍#) ∈ 𝑆(P, 𝑝). Since

𝑍 is a transition trace, there is a sequence of programs P1 = P,P2, . . . ,P𝑛+1 and
transitions ⟨P𝑖, 𝜎𝑖⟩

𝛼𝑖==⇒ ⟨P𝑖+1, 𝜎
′
𝑖⟩ (1 ≤ 𝑖 ≤ 𝑛).

Let (𝑍0, 𝑍
#
0) = (𝜀, 𝜀#). It is easy to see that (𝑍0, 𝑍

#
0) ∈ 𝒮JP𝑛+1K(𝑝𝑛+1).

Now consider (𝑍𝑘, 𝑍
#
𝑘) = ((𝛼𝑘, 𝜎𝑘, 𝜎

′
𝑘)𝑍𝑘−1, (𝛼𝑘, 𝑝𝑘, 𝑝𝑘+1)𝑍

#
𝑘−1), assuming that

(𝑍𝑘−1, 𝑍
#
𝑘−1) ∈ 𝒮JP𝑘K(𝑝𝑘). Since 𝑍 ∈ 𝛾(𝑍#) and valid(𝑍#), necessarily 𝜎𝑘 ∈ ⌊𝑝𝑘⌋

and 𝑝𝑘+1 ∈ SP(𝛼𝑘, 𝑝𝑘). We obtained that:

𝜎𝑘 ∈ ⌊𝑝𝑘⌋∧⟨P𝑘, 𝜎𝑘⟩
𝛼𝑘==⇒ ⟨P𝑘+1, 𝜎

′
𝑘⟩∧𝑝𝑘+1 ∈ SP(𝛼𝑘, 𝑝𝑘)∧(𝑍𝑘−1, 𝑍

#
𝑘−1) ∈ 𝒮JP𝑘+1K(𝑝𝑘+1),

which implies that (𝑍𝑘, 𝑍
#
𝑘) ∈ 𝒮JP𝑘K(𝑝𝑘) by definition. By constructing

𝑍0, 𝑍1, . . . , 𝑍𝑛 as described, we obtain that (𝑍,𝑍#) = (𝑍𝑛, 𝑍
#
𝑛) ∈ 𝒮JP1K(𝑝1) =

𝒮JPK(𝑝). ⊓⊔

31

32

Chapter 7

Conclusions and future work

In this work we suggested an approach to the library abstraction without assuming
any information hiding in the components. We defined the library abstraction rela-
tion that enables modular proofs about programs consisting of two components, the
client and the library, communicating via shared memory w.r.t. a certain contract.
We formalised the contract in the definition of the internal safety and internally safe
semantics, and in the Abstraction Theorem we demonstrated that internally safe
traces of the client using the library are can be reconstructed by the client using an
abstracted version of the library. This fact means that in a proof about the client
it is sound to replace a library with its specification.

Our work lays the foundation for future correctness proofs for implementations
of concurrent algorithms interacting on the shared memory. We intend to apply our
approach to examples such as Michael and Scott’s non-blocking queue algorithm
illustrated in Chapter 2 as the next step of development of this work. To be able to
deal with a wider class of examples, we also would like to extend our definitions to
deal with partial information hiding between components, when only a part of the
address space is being shared.

We also hope that it should be possible to develop a logic for establishing the
proposed notion of linearizability formally, based on existing logics for proving safety
properties generalised by the View Framework.

33

34

Bibliography

[1] Stephen Brookes. Full abstraction for a shared variable parallel language. In
LICS, pages 98–109, 1993.

[2] Thomas Dinsdale-Young, Lars Birkedal, Philippa Gardner, Matthew J. Parkin-
son, and Hongseok Yang. Views: compositional reasoning for concurrent pro-
grams. In POPL, 2013.

[3] M. Herlihy and N. Shavit. The art of multiprocessor programming. 2008.

[4] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a correctness con-
dition for concurrent objects. TOPLAS, 1990.

[5] Cliff B. Jones. Specification and design of (parallel) programs. In IFIP Congress,
pages 321–332, 1983.

[6] M. M. Michael and M. L. Scott. Simple, fast, and practical non-blocking and
blocking concurrent queue algorithms. In PODC, 1996.

[7] Peter O’Hearn. Resources, concurrency and local reasoning. TCS, 2007.

[8] R. K. Treiber. Systems programming: Coping with parallelism. Technical Report
RJ 5118, IBM Almaden Research Center, 1986.

35

