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AnsTRACT. - Re{;ent developments to fit the so called Free Formulation into a variational framework have 
suggested the possibility of introducing a new category of error estima tes for finite element computations. Such 
error estimates are based on differences between certain multifield functionals, which give the same value for 
the true solution. In the present paper the formulation of sorne estimates of this kind is introduced for elasticity 
and plate bending problems, and severa! examplcs of their performance are discussed. 

The observed numerical behavior of the new accuracy measures seems to be acceptablc from an engineering 
point ofview. However, further m1merical experimentation is still needed to establish practica! tolerance levels 
for real problems. 

l. Introduction 

After a history of more than thirty years, the finite element method has become a 
widely used engineering tool, particularly in Structural and Solid Mechanics. At the 
present stage, the role of a posteriori accuracy estimates for finite element computations 
is considered essential; since engineers with little or no knowledge of the foundations of 
the numerical tool can now use finite elements to model a structure and produce results. 
In this situation, the accuracy estimates provide the analyst with objective measures of 
quality. They allow the setting up of tolerance levels to consider a particular solution as 
acceptable. A natural consequence is that whenever the estimated accuracy is not enough, 
the discretization will have to be improved until the selected measure meets the standard. 
If the finite element method tends to be used as a "black box" (e. g. within integrated 
CAD/FEA/CAM packages) the importance of developing automatic solution improve­
ment processes becomes apparent. This is the idea. behind adapta ti ve procedures and it 
must be realized that the key element of such methods is a reliable accuracy estímate. 

The importance of developing reliable and economical accuracy (or error) estimates 
has been recognized by a large number of researchers during the past decade. A good 
survey of their work can be found in [Babuska et al., 1986], though this reference should 
be completed by more recent papers [Zienkiewicz & Zhu, 1987]. The same ideas have 
also been applied to other numerical methods [Alarcón & Reverter, 1986]. The error 
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estimat~s proposed in the literature géneraHy fall into one of the following wide categories: 

1) Estimates computed from the residuals corresponding to the finite e1ement solutíon 
[Kelly et al., 1983; Zienkiewicz et al., 1983; Kelly, 1984]. 

2) Estimates based on the extrapolation of successive approximate solutions [Szabo, 
1986]. 

3) Estimates that take advantage of the differences between the finite element stress 
field (stress in a generalized sense) and a smoothed or projected stress field, that is 
considered to have a hígher order of accuracy [Z & Z, 1987]. 

Estimates within the first category were introduced before the others [Babuska, 1975]. 
The residuals result from inserting the finite element solution into the differential equa­
tions that govern the problem. Generally, their numerical computation is very expensive 
and, for that reason, the estimates based on the residuals often require an out of 
proportion computational effort. However, very reliable accuracy estimates can be obtai­
ned. 

In order to compute the estima tes of the second category, it is assumed that the energy 
norms of the approximate solutions converge to the exact energy norm in a predetermined 
way. Thus, if a number of finite element solutions are known, extrapolation can be used 
to make a prediction of the true energy norm. The practica! drawback is precisely the 
need of computing several solutions, but the method is very well suited for adaptative 
processes with complete refmement. 

Estimates in the third category have been introduced more recently and they are easily 
implemented within the usual stn1eture of a finite element code. The main diffículty in 
this case is to obtain the "smooth" stress fieid in a way consistent with the assumption 
that it has a higher degree of accuracy. 

On the other hand, recent developments by Felippa (Felippa, 1989 a; Felippa, 1989 b; 
Felíppa, 1989 e) to fit the Free Formulation of Bergan and Nygard [Bergan & Nygard, 
1984J in a variational framework, have suggested the possibility of introducing a new 
category of error estimates. The main concept is as follows. If a particular problem can 
be solved using a family of variational principies derived one from another by the 
Lagrange multiplier method, then all the associated functionals yield the same value at 
the exact solution of the problem [Courant & Hilbert, 1953}. This important property 
suggests that, given an approximate solution, a certain difference between functionals 
might be used as an estímate of the accuracy. The difficulty is to identify such a 
difference, so that it is easily computed within the usual structure of a finite element 
code and it gives a reliable estimate, at least from an engineering point of view. In this 
sense, the classical dual analysis principie [Fraeijs de Veubeke, 19651, as a rnethod to 
compute upper and lower bounds, is not allowed, since it involves two completely 
different finite element models, even though it yields a very reliable error estimate. The 
goal is to develop estimates usable within a single finite element approach. This willlead 
to the use of mixed or hybrid elements. 

The authors have worked in the above direction, looking for error estirnates for 
elasticity problems (C0 problems) and plate bending problems (Cl problems) [Beltrán, 
1990], although the idea can probably be generalized to any problem with a variational 
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foundation. The estimates within the proposed new category are difficult to iroplement 
if elements formulated in the standard way (variational principie with on1y one indepen­
dent field) are used. However, it must be noted that nowadays the research effort to 
develop new elements, main1y shell and plate elements, is strong1y based on techniques 
associated implicity or explicity with multifield variational principies. Examples of that 
are the Free Formulation itself or the Assumed Natural Strain [MacNeal, 1978; Park & 
Stanley, 1986; Bathe & Dvorkin, 1985; Simó & Hughes, 19861 and the Assumed 
Natural Deviatoric Strain [Militello & Felippa, 1989] formulations. It is in this context 
where the proposed estimates would be useful. 

In the following paragraphs the work the authors in elasticity and plate bending 
problems is summarized. In both cases the proposed error estímate is introduced and 
the main aspects of the elements developed to be used with it are described. Also, in 
arder to give an idea of the numerical behavior of these accuracy estimates, sorne 
examples with known analytical solutíon are presented. 

2. Elasticity 

2. l. NoTATION 

In arder to set the notation, the linear elasticity problem is stated here. 

Consider a linearly elastic body under static loading that occupies a domain O e IR3
• 

The boundary of the body is a surface S, S= S a U Sr. The outward unit normal on S 
isn. 

On Sd the displacements d are known, whereas surface tractions t are imposed on S1. 

The volume force field b in Q is also given. The unknowns of the problem are: the 
displacement field u in O, the infinitesimal strain field e in Q and the stress field u in Q. 

When variationa1 principies are used to solve the problem, two types of fie1ds are 
involved: independent or primary fields, which are subject to variations, and secondary 
or derived fields, which are obtained from primary fields. The solution is determined by 
taking variations with respect to the independent fields. In the present work the notation 
from Fe1ipa [F. 1989 e) will be adopted to distinguish between dependent and independent 
fields. An independently varied field will be denoted by a tilde "~" over its symbol, 
e. g. íi', ü ... For a dependent field the dependence will be identified by writing the 
independent fíeld symbol as a superscript. For examp1e: 

(1) and 

where V represents the gradíent operator and D is the tensor of elastic constants. In this 
notation the symbols without tilde or superscript u, e, cr are reserved for the exact 
solution fields. 



F. J. BELTRAN ANDE. ALARCON 

The writing ofvolume and surface integrals will be abbreviated by placing the integrand 
between domián-subscripted parentheses and square brackets respectively: 

(2) u1s,~ r jds Js, 
If f and g are tensor functions, the following notation is defined: 

(3) (f, g)n=' L f:gdQ. 

and similarly for surface integrals, in which case square brackets are used. 

2. 2. V ARIATIONAL APPROACH 

The most common variational principie in solving the elastícity problem is the Principie 
of Mínimum Potential Energy. It states that from all the displacement fields ñ satisfying 
the kinematical boundary condition ñ = d on Sd, the solution u of the problem is the one 
that makes the total potential energy llp: 

(4) 

be a minimum. 

The Principie of Mínimum Potential Energy can be generalized using the Lagrange 
multiplier method [C & H, 1953; Jones, 1964; Washizu, 1974]. The application of this 
technique to a variational principie allows tbe suppression of constraints for the primary 
field (s) in the associated functional by introducing new fields: the Lagrange multipliers. 
Starting from the Principie of Minimmn Potential Energy, a whole family of derived 
variational principies can be obtained. In general, the solution of the elasticity problem 
makes the functionals associated to those principies stationary (not necessarily a minimmn 
or a maximum). 

One of the most general principies that can be derived in the way described above is 
the Hu-Washizu principie {W, 1974]. It states that the solution fields u, e, u, t, where t is 
the surface tractions field on S4, make the functional: 

stationary without any constraint for the four independent fields. 

In the functional Ilw, fields e can be introduced that are not independent but derived 
from the primary stress fields ~ through the tensor of elastic constants: 

(6) e=e"=D- 1 ~ in Q 

Also, the fields <r and t can be related using: 

(7) 
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Introducing (6) and (7) into (5) yields the functional: 

The displacement fields ü can be taken in a way they meet the boundary condition 
ü = d on Sd, so that the functional rrR is written as: 

(8b) 

and then the solution fields u, G make (8 b) stationary if the functional is defined on 
fields ü satisfying the boundary condition on Sd. This is the variational principie of 
Hellinger~Reissner [Reissner, 1950]. 

Note that the total potential energy functional (4) and the Hellinger-Reissner functional 
(8 b) are special cases of the following parametrized form: 

(9) rrr (ü, éJ) = (1- y) Ilp (ü) +y IIR (ü, éJ) 

=(1-y)~(Gu, eu)n-y~(éJ, e")íl.+y(&, eu)r.-(b, Ü)n-(t, Ü]s 
2 2 .. l 

with y E IR, o 2: y 2: L 

Then, it is conceivable a parametrized variational principie interrnediate between the 
Mínimum Potential Energy Principie and the Hellinger-Reissner Principie: the solution 
fields u, G will make stationary the functional (9) if primary displacement fields ü satisfy 
ü=d on sd. 

Parametrized functionals of the kind of (9) were introduced by Felippa [F, 1989 e]. 
For elasticity, variational principies associated with functionals induding up to three 
independent parameters can be stated [Felippa & Militello, 1989]. If these principies are 
used to obtain approximate solutions by the finite element method, it is likely that certain 
combinations of the parameters yíeld better results than the classical principies. In fact, 
parametrized principies are being used successfully in the formulation of high performance 
elements [F & M, 1989]. 

2. 3. ERROR ESTIMA TE 

All functionals presented in the previous paragraphs yield the same value when the 
exact solution fields u, a, e, t are introduced into them. This is a general property of the 
Lagrange multiplier method [C & H, 1953]. Hence, it can be written: 

(lO) 

where n ís the exact potential for the problem. 

The question is to find out whether the differences between the functionals for 
approximate solutions can be used as estimates of the discretization error. 
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As ¡¡_ first step, the measure of ·the discretization error to be estimated should be 
defined. When the solution of an elasticity problem is approximated using the Mínimum 
Potential Energy Principie, there is only one unknown field: the displacement field. Then, 
a field of errors er can be defined as: 

(11) er=ñ-u 

where íl represents the approximate solution for the displacements and u is the true 
solution. 

The magnitude of the error field er is usually measured by its energy norm [K et al., 
1983]: 

(12) 

and, in most cases, this norm is the one that conventíona1 error estimates try to 
approximate. On the other hand, ií is a kinematically admissible field: 

(13) 

then [F, 1989 e; B, 1990]: 

(14) Ilp(ü)- rr=! iier w 
2 

that is, tb.e magnitude of tb.e error fie\d er, represented by its energy norm, can be 
obtained as a difference between the exact potential and the approximate functional. 

In a similar way, when multifield variational principies are used, e. g. the one associated 
with I1

1 
(ii, ó), the error magitude can be defined as the difference IIr (ü, ir)- II between 

the value of the functional for the approximate solution and the potentiaL The difference 
llp (ü)- II between the total poten tia! and the true poten tia! can still be utilized in this 
case. The error measures defined by. those differences are the values to be approximated 
by an estímate. 

It is proposed as an estímate of the discretization error the value: 

(15) a= IIp (ñ)- IT
1 

(ií, a) 

associated with the approximate fields ñ y a, where ü is a kinematically admissible field. 

Note that the presence of two independent fields íl, crin (15) will generally force the 
use of mixed formulations, so that the two fields are available for computing the estímate. 
However, the difference (15) is relatively easy to compute since: 

(16) rrp (ü)- nl' (ü, <r) 

1 1 1 - -=l(t1u, eu)0 - 2y -y)( o-u, e")0 +ly(a, ecr)n-y(a, e")n 

=~y (a", e")n +1r (u, e"- e)n -~y (u, e")n=~y (t1"- a, e- e")n 
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if the reciprocity relationship (cr, eu)0 =(O"u, e")0 is taken into account. 

That is, it suffices an integration over the domain Q: integration thay can be performed 
by adding the contributions from the subdomains or elements n, into which Q is divided: 

E = 2;: E; = I. ~'Y (O" u - & , e~ ~ e")n; 

' ' 
(17) 

The contributions e; are estimates for the local error. In a finite element discretization 
the values: 

(18) 
E· 

í(;=-' 
vol; 

where vol; is the volume of element i, represent error densíties that can be used as 
indicators of the elements in the mesh where a refinement would be more profitable. 

Finally, ít must be noted that, according to (16), if the stress-strain relationship is 
positive definite and the parameter y is y>O, then the proposed estímate E is E~Ü. 

2. 4. FTNITE ELEMENT DISCRETIZATION 

The implementation of the error estímate introduced in the previous sectíon is relatively 
easy when the variational principie associated to the parametrízed functional n.,. (ií, tr) is 
used to obtain an aproxímate solution. If the procedure is the finite element method, 
that implies the use of elements based on the parametrized variational principie. In the 
present work, the choice has been to develop first such elements since, once they are 
available, the computation of the error estima te is immediate. In the following paragraphs 
the guidelines of the element formulation and the requirements for obtaining acceptable 
estimates are given. The details can be found in [B, 1990]. 

Following standard practice in finíte element literature, the components of stresses and 
strains are arranged as column vectors, whereas the elastic coefficients are arranged as a 
square symmetric matrix; i. e. a, e will represent column vectors from this point onwards, 
and D will be a square symmetric matrix. 

If the domain n is considered to be divided into a number of subdomains or elements 
!l;, the basic finite elements assumption is that the displacement field ü and the stress 
fie]d ir within an element can be expressed as a linear combination of displacement 
modes and stress modes respectively: 

(19) 

(20) 

ü=Nq in ni 
ir=Aa in n, 

and 

where matrices N and A collect generalized-dísplacement shape functions and internal 
stress modes, and column vectors q and a gather generalized displacements and stress 
mode amplitudes. 

In the present work, the number of interna! displacement modes (i. e. the number of 
vector q components) shouJd be equal to the number n of externa} (nodal) degrees of 
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freedom in the element. The vector that gathers these n nodal displacements will be 
denoted by v. The kinernatical relationship between the amplitudes of interna! displace­
ment modes, q, and the nodal displacements, v, is easily obtained collocating (19) for 
each.node: 

(21) v=Gq 

where G is a square matrix of order n. 

Interna! displacement modes in N should be linearly índependent, so that matrix G 
has an inverse H: 

(22) q=Hv 

The fields derived from ií y i1 are: 

1 
(23) eu =-(V+ V1

) N q = B q in .0¡ 
2 

(24) Gu=DBq in .0¡ and 

(25) ea= D -l G = D- 1 A a in Q 1 

If (19), (20) and (23) to (25) are introduced into the parametrized functional (9), its 
discrete or algebraic form is obtained: 

(26) ll1 (u, iJ) = ¿;: IIy¡ =-
2

1 
(1- y)~ q1 (B1 DB)n; q 

' ' 
1 

- 2 r~:>t(AtD-
1 A)n;a+y~a1 (A1 B)0;q- ~WN)n;q- ~[fN]s11 q 

l f l f 

where q anda are the displacement and stress amplitudes withín element i. 

It should be noted that the computation of the functional nr as a sum of values lly
1 

corresponding to the subdomains .0; (Eq. (26)) assumes implicity that fields 6- and Gu are 
finite on interelement boundaries. In this sense, (26) is written assuming that the field íi 
is continuous across those boundaries. 

If the following definitions are introduced to represent the integrals in (26): 

(27) 

the fraction of the functional corresponding to a generíc element is: 

(28) 
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And making IIYr stationary for the variations of q and a yields the two following 
matrix equations: 

(29) 1) 

(30) 2) 

l 
oiiy. 
-'=0 (equilibrium) oq 

(I -y) K. q +y Q a- fq- f, =O 

---O (interna1 compatibility) o a l Dill'i _ 

From (29) and (30), using also (22), it can be stated: 

(31) 

where the matrix between brackets on the left hand side is the conventional element 
stiffness matrix; and the vector on the right hand side is the element load vector. 

In the discretization of the parametrized variational principie described above, the 
displacement modes in N and the stress modes in A should meet some requirements. In 
addition to the continuity of the dispJacement field ü across interelement boundaries and 
to the availability of constant stress and rigid body movement modes, the limitation 
principie of Fraeijs de Veubeke [F, 1965] should be taken into account. This principie 
applies when the modes DB corresponding to the derived stress field O"": 

(32) <T"=DBq 

can be obtained as a linear combination of the stress modes A used to represent the 
independent stress field 6. In such cases the limitation principie states that the approxima­
tion to the stress field given by ii can not be better than the one obtained in O"", even 
though the same or more modes have been used to construct the former [F, 1989 a]. It 
can be seen then [B, 1990] that the element stiffness matrix in (31) becomes independent 
of y and the proposed error estima te is always zero. 

2 . 5. DEVELOPED ELEMENTS 

Following the lines presented in the prevíous paragraphs, four elements for two­
dimensíonal elasticity have been developed (Fig. 1). In those elements the internal dis­
placement modes N are divided into three categories: 

(33) 

where: 

N,= rigid body movement modes. 

N m= complete polynomials up to arder m (m depends on the particular element, 
l~m~4). 

Nh =in complete polynomials of arder greater than m. 
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N12 

N4 NS 

L
l 

xl 

y 

• Movement nrd geometry /londing interpolntion 

D Geornetry /loading interpolot ion 

• Movement interpolntion 

Fig. l. ~ Elemcnts formulated for 20 elasticity. 

The latter modes are introduced so that the number of interna! degrees fo freedom in 
q equals the number of nodal degrees of freedom in v. 

This partition of the interna! displacement modes leads to a parallel pa.rtition of the 
strain modes B: 

(34) 

where the columns corresponding to N, are zero. 

The field tru will be then: 

(35) 

Por the independent stress modes in A, ít is formally taken: 

(36) 

choice that avoids the consequences of the limitation principie. 
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A substantial simplification is gained if the strain modes in Bm are orthogonal with 
respect to the energy norm: 

(37) (B~ DB,)o.; = { B!n DB, dQ =diagonal matrix Jn; 

and if, besides, the modes in Bm are orthogonal to the modes in Bh: 

(38) (B~ DB¡,)o.; = l B~, DBh dQ =O J!l¡ 

In general, the election of N, and Nh will not satisfy (37) and (38), but the interna{ 
displacement modes can be modified element by element applying a Gram-Schmidt 
orthogonalization process to the strain modes B,, B1, [B, 1990]. The verification of (37) 
has sorne additional advantages when p-adaptive processes are implemented using these 
elements [B, 1990]. 

With the above development, the element stiffness matrix is: 

(39) where: 

Note that the stiffness matrix is obtained as a sum of a basic matrix Kb, independent 
of y, anda higher order matrix Kh, dependent on y. 

The proposed error estimate has the expression: 

(40) 

E; represents the elastic energy associated to the higher order strain modes Bh multiplied 
by the parameter y. In this sense E; is similar to the heuristic estimate introduced by 
Melosh and Marcal [Melosh & Marcal, 1977]. 

2. 6. NUMERICAL EXAMPLE 

A numerical example is presented here to illustrate the behavior of the error estimate 
proposed in the previous paragraphs. Necessarily, a simple problem has to be chosen, as 
the real error measures should be known in order to compare with the estímate. 
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1 
1 

1 
---- ------t- - --- -

E= l.OO l 
.1.): 0.00 
thk~I'I~$S: 1.00 

Stresses 
U,= 2 xi 
G:= 2 xz 2 . 1 

<u=o 

1 
) 

1 
1 

2 .()() 

displocem~nts 

elastic energy= - 1-6 -
SE 

Fig. 2. - Example l. Plate with quadratíc stresses. 

Figure 2 shows a square plate under quadratic tractions on its boundaries. Double 
symmetry allows to study only one quarter of the plate. The example has been solved 
using a h-adaptive process and, also, a p-adaptive technique with complete re:finement. 
In both cases the base mesh is formed with a single N4 element, which is the element of 
lowest arder among the four developed. For the h refinement more N4 elements are 
used, whereas in the p refinement the order of the interpolation in the element is 
automatically increased using successively elements NS and N12. The element N12 gives 
the exact solution, as its formulation includes complete cubic polynomials for displace­
ment approximation. 

In Figure 3 the base mesh and the evolution of h refinement is represented. The 
refinement is controlled by the local error indicators defined in (18): the rule has been to 
divide the elements in which the indicator was higher. Note that eventually an optimal 
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Gammll parameter 
• 0.30 

Elem~nts N~ 

lrue elastíc erwrgy 
• o. 80 

starting mesh {4gdl) refinemet 1 (12gdf) 

0.049 0.056 

0.049 
>t-.;..;..:+::.::..;+:..c:..:.,..-f==t-- 0.039 

refinement 2(24 gdl) refinement 3(40 gdl) refinemont ·4 (60 gdl) 

Fig. 3. - Example l. H refinemcnt. 

Plale with quadratic stresses 
§ Gamma aremeter 0.30 
~,_~~--~~~----------~--L-~--~----------~------------------~ 
,¡ 

.. 
~4---------------------~--~----------------------------------------~ ,¡ 

.. .. 
L1l 

._ & " ., ... 113 

H convergehce 
P convergehce 
.. T " .. Ul6 

o~s•a~~ of ~reedpm 

Fig. 4. - Example l. Horizontal displacement at comer. 
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Plale ~ith ouadratic stresses 
~ Gamma ~rame~er 0.30 
~,-----------------------------~--------------------------------------------~ 

§~------------------------------------------------------------------1 
"' 

H convergence 
P conve_rgenc:.e 

.... " •• jj:J •• 1.118 
o~sr~e~ of freedom 

Fig. 5. Example l. Horizontal stress at corner. 

Plate with quadratic etresses 
H conver ence- Gamma arame~er 0.15 

.... _ ---., .................. ,, 
·. \ 

· .. ',error 2 

... r.-cr J. 

estimale 

5 .. ., •• 11! 1.01!1 

Fig. 6. ~ Example l. Error estimate evolution (I). 
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P1ate ~ith ~uadratic stresses 
H ~onver en~e Gam~a arame~er 0.30 

' 

--- ..... -- ~\ 

\ 

\ 
\ err+or 2 
\~sllmale 

"'~·-------.----~-.~<~.~.~., • .-,ll------~---.--.,-~.-..-r.,.~.rr------~---c--,.~.~.~.~.~.~ 
A l(!J:j 

Fig. 7. ~ Examplc l. Error estímate evolution (!!). 

Plate with ~uadratic stresses 
H conver ence Gamma arame~er 0.80 

\ 
\ 

' \ 
' \ 

' \ 

" 'lii ., 'J • • lB 

" ' ' 
esl:..imal:..e 

. 'e-r-ror 2 
·. •. ~error 1 

... .. .. '1' ... 10'8" 

Oegrcea of fraadom 

Fig. 8. - Example l. Error estimate evolution {Ill). 
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mesh is reached, in the sense that thé indicators have approximately the same value in 
all elements. The behavior of this local measure seems to be good and it does not vary 
significantly for other values of the parameter. 

Figures 4 and 5 show the computed horizontal displacement u1 and the horizontal 
stress cr 1 at the plate comer during the h and p refinements. Note the power of p 

refinement; it yields the true solution with only 16 degrees of freedom. 

The evolution of the proposed error estimate has been studied for different values of 
the parameter y. Figures 6 to 8 summarize the results obtained during the h refinement. 
In these figures "error 1" means the abso]ute value of the difference between the true 
potential II and the parametrized functional II1 . "Error 2" means the difference between 
the total potential IIP and the exact potential II. The values of the estímate, error 1 and 
error 2 are represented against the number of degrees of freedom. It can be seen how 
the evolution of the estima te and that of the error 2 (llp- 11) are very similar in all 
cases. 

The values of y has an important influence not only in the magnitude of the errors 
but also in the relative magnitude of the estímate with respect to the errors. Low values 
of y (less than 0.20) produce a parametrized functional rrr not very different from the 
total Ilp, thus approximate solutions of the same sort as those given by conventional 
elements can be expected. The proposed estimate understates the errors, though it has 
their same tendency ( Fig. 6). 

For y= 0.30 (Fig. 7), amazingly low values of the difference 1 II
1

- TI 1 are obtained. 
However, note that this difference not always diminishes when the number of degrees of 
freedom is increased. In this case the proposed estimate slightly underestimates the 
difference llp- TI (error 2). 

Finally, for values of y above 0.50 (Fig. 8) the proposed estímate has an excellent 
behavior, as it tak:es values slightly greater than both errors and it has their same 
tendency. On the other side, note that the magnitude of the errors is higher than for 
lower values of y, at least when the number of degrees of freedom is small. 

3. Plate hending 

3. l. NüTATION 

The statement of the plate bending problem according to the hypotheses of Kirchhoff 
[Timoshenko & Woinowski-Krieger, 1959] will serve to introduce the notation. 

eonsider a plate with thickness h (Fig. 9). A reference system is used whose X and Y 
axes are on the midplane of the plate, while the Z axis is normal to it. The lateral surface 
of the plate is supposed to be cylindrical, i. e. parallel to Z axis. The midplane of the 
plate is a domain Pe IR2 with boundary e= ed U e 1• The outward unit normal on e is 
n""(nx, ny). On ed the movements d (Fig. 10) are given, whereas on e 1 the stress resultant 
(forces and moments) per unit length m (Fig. 11) are known. It is also known the field q 

of distributed normal load per unit area in P. 
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Fig. 9. - Refercnce system for a plate. 

Fig. 10. - Midplane movements in plate bending. 

In the classical theory of plate bending the unknowns are the field of transverse 
displacements or deflections w in P, the field of moments or generalized stresses M in p 
and the field of curvatures or generalized strains ~ in P. Note the general parallelism 
with the elasticity problem. 

Along the following paragraphs the previous notation to distinguish between primary 
and secondary fields will be used. A field that can be varied independently will be 
denoted with a tilde ""'" over its symbol: in the dependent fields the dependence will be 
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y 

midplane P 

z 
Fíg. 11. - Boundary stress resultants per unit length. 

identified by setting as a superscript the symbol of the primary field. For example: 

(41) 

az {j) 
'lot~y= ~ ayz, 

Mro=Dx."' 

where D is a tensor of elastic constants. 

The writing of surface and line integrals will be generally abbreviated by placing the 
integrand between domain-subscripted parentheses and square brackets respective! y. 

3. 2. VARIATIONAL APPROACH 

The bending of a plate is nothing more than an elasticity problem. If some assumptions 
on the displacements, stresses or strains are made, the dimension of the problem can be 
reduced from three to two, and the problem is restricted to the study of the midplane. 
Thus, the conventional variational principies for plate bending problems can be obtained 
from the principies used in elasticity by integration through the thickness. 

The mínimum Potentíal Energy principle for plate bending can be stated as that the 
solution field m for the deflections makes the functional: 

(42) 

a minimum when it is defined amongst the fields ro that satisfy the kinematical boundary 
conditíons: fu= d en Cd. In ( 42) the vector field fu is: 

(43) 
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where, according to Kirchhoffs hypotheses: 

(44) 9"'=- a& 
X ay' 

9"'= a& 
y ax 

From this principie of Minimum. Potential Energy the other conventional variational 
principies (Hu-Washízu, Hellinger-Reíssner. .. ) can be derived using the Lagrange multi­
plier method, as it has been done in the sections devoted to elasticity problems. 

Consider now the domain P e IR2 of the midplane of the plate divided into a number 
of subdomains Pi (Fig. 12): Cd U Cr is the exterior boundary of P, while C1 will represent 
the interior boundaries of the subdomains. Let ó)Ul be a field of movements defined in 
Pi independently from other similar fields defined in the rest of subdomains. All these 
fields &(il will constitute a global field ro defined over the whole domain P. 

Consider also a field of movements a defined only on the external and internal 
boundaries e= cd u et u e,. If the following conditions are satisfied: 

a) The fíeld &(í) is continuous and single-valued within the domain Pi. 

b) The field &Ul takes the same values as the field a on the boundary of the domain 

Pr 
e) The field a is kinematically admissible, i. e. a= d on e d. 

then the total potential energy can be written as: 

(45) TI (&) = ~TI (&Ul) = ~ {~(M"' xro) - (q &Ul) -[m éJJlil] } 
P L;- Pj f:- l ' Pj ' Pj > C¡j 

J } 

The condition b abo ve can be introduced into the functional ( 45) by means of a 
Lagrange multiplier field t. defined on the generalized boundary C. Thus, the fields d y 
&(il would be independent from each other. Variational principies in which the relation 
d = & is not forced a priori on e, are known as displacement generalized or d-generalized 
principies [F, 1989 b]. 

The d-generalized potential energy functional is then: 

(46) 

where Ci represents the boundary of the subdomain Pi. 

The solution of the plate bending problem will be obtained by making the functional 
TI~(&, a, 5:::) stationary, with the restriction d = d on ed. If the associated Euler equations 
and the natural boundary conditions are obtained, the Lagrange multiplier field 5:: can 
be identífied with a field fu of stress resultants (moments and forces) per unit length on 
the generalized boundary C [B, 1990]. Thus, the d-generalized total potential TI~ is: 

(47) rrd(~ -d -)- ~{ 1 (M(l) '") -( ~(j)) -[- -d] +[- -d- -(j)] } P ro, , m - i..J - , x P. q, ro f>· m, e m, m e· 
j 2 J J tj J 
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n 

Fig. 12. - P domain subdivision. 

Other d-generalized variational principies can be found in recent papers of Felippa [F, 
1989 e; F & M, 1989]. For our purposes, it has a particular interest a d-generalized 
Hellinger-Reissner principie. The associated functional is in this case: 

48) nd (- ~d M-) - " {- 1 (M- M) (M~ '") - ( - (j)) - [- '"'~] [M- -d ~ - (j)] } ( ~>..ro,, -¡_. - ,x p.+ ,x P· q,m P· m,oc,+ '" m e· 
j 2 ) ) ) j ) 

where Misan independent field of moments and M" is the vector field of stress resultants 
per unit length on Ci' derived from M. The solution fields make II~ stationary if this 
functional is defined over fields a with d = d on e d. 

In a way absolutely similar to the ideas exposed above for elasticity problems, note 
that the functionals rrt and rr~ are special cases of the parametrized functional: 

(49) IT~(cñ, d, M)=(l-y)IT~(cñ, d, ~)+yiT~(&, d, M) 

= I { ~ (1 -Y )(M ro, x"')p.- ~y (M, xM)p. +y (M, X00)p. 
j 2 J 2 J J 

- (q &íil) -[m -d] +[M d- ffiUlJ } 
' Pj ' C¡j n> Cj 

'Y E IR, o ;:;; 'Y ~ 1 

and the solution fields make IT~ stationary when it :is defined over fields d such that 
d=d on cd. 

3. 3. ERROR ESTfMATE 

As in tbe case of elasticity, all the functionals introduced above for plate bending 
problems take the same value II when the exact solution fields ro, M, x, d are introduced 
into them. 
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Again, the question of the possibility of using sorne difference between functionals as 
an energy error estímate is arisen. Following the same reasoning as befare, it turns out 
that if rr; and rr~ are the values of the potential energy functional and the parametrized 
functional for an approximate solution of the problem, then the differences 1 rr;- rr 1 

and 1 II~- II 1 are energy measures of the discretization error magnítude. 

As an estimate of those energy measures, the díference: 

(50) 

ís proposed. 

In thís case three fields are needed to compute the estímate. Two of them (& and M) 
defmed over the domain P and the other defined on the generalized boundary C. lf the 
three fields are available (e. g. in a hybrid formulation) the difference (50) is evaluated 
easily since: 

~ {1 1 - - } (51) ¡;= ~,foj= t ly(M"', x,<»)pj + ly(M, x,M)Pj -y (M, x,ro)Pj 

= ~ ¿;: {(M"'-M, )({J)- x.M)Pj} 
1 

with j from 1 to the number of subdomaíns Pi. 

The contributions si are, at the same time, indicators of the local error. Each si, once 
dívided by the area of the subdomain Pi, ís an "error densíty" and those error densities 
can be used to guide the refinement in an adaptive scheme. Note on the other hand that 
if the relationshíp between moments and curvatures is posítive definite and y;?; O, then 
the estímate s is also s ;?; O. 

The similitude of (51) and the expression (16) for elastícity problems is apparent. In 
both cases the estímate is associated with the differences in energy between two primary 
fields within the parametrized functional. 

3. 4. FINITE ELEMENT DISCRETIZATION 

As in the elastidty case, the implementation of the proposed estimate is easy if the 
principie associated with the parametrízed functional II~ (&, d, M) is used. This principie 
yields hybrid finite elements whose connecting variables are the nodal movements. In 
the present work the formulation of such elements has been established introducing an 
additional kinematical constraint between the fields & and d. The resultant elements 
satisfy the patch test a priori and the Free Formulation of Bergan [B & N, 1984] turns 
out to be a particular case of the development. The main points of the elements's 
formulation are presented in the following paragraphs; the details can be found in [B, 
1990]. 

In the usual way, the three components of the field of moments M are arranged into 
a -column vector. The same is done wíth the three curvatures in M.. The tensor D of 
elastic coefficíents becomes a symmetric square matrix. 
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Fig. 13. - Elements formulated for plate bendlng. 

The assumption on which the finite element discretization is based is that the field of 
movements ro and the field of moments M can be written within each element or 
subdomaín Pi as: 

(52) and 

(53) 

It is assumed also that the field of boundary movements tí can be obtained on the 
e1ement boundary as: 

(54) 
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E • 100.000 
J.J = 0.20 

thickness • 0.15 
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Fig. 14. - Example .2. Circular plate under concentrated load. 

Now the continuity of the internal movements ro across the element boundaries is not 
required. Hence, the modes in N can be chosen with freedom from conformity require­
ments. On the other hand, the interface movement field d should be continuous on the 
generalízed boundary C = Ct U Cd U C;. 

The total number of internal movement modes (i. e. the number of components of 
vector q) is taken the same as the number of interface movement modes (i. e. the number 
of components of vector v). The secondary fields derived from ro and M are: 

(55) ){"'= 

(56) 

(57) 

¡p 

8x2 

¡¡z 

ayz 
¡p 

2-­
axay 

o o 

o O Nq=Bq in P1 

o o 

M"'=DBq in P. . . J 
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The Eq. (52) to (57) can be Úsed to produce the discretized form of the param.etrized 
functíonal: 

(58) lly(&, M, d)= ¿n.Yj 
j 

+r at (N B)pjq ~ (p1 N)pjq -[m1 V!c,j v 

+a1 [A~VJciV-a1 [A~Nn]ciq} 

where p1 = [q O OJ is the vector of loads per unit surface; matrix A» is: 

o o -(n ~+n ~) n- n-
;<ax y ay X OY y 0X 

A= A n nz nz - 2nxny X )1 

-nxny nxny (nz- n2) y X. 

and matrix Nn is: 

o 

If the following matrices are defined: 

(59) { 
Ku= (BtDB)p., C=(ND- 1 A)p., Q1=(AtB)p. 

J 1 J 

V= [A~ V]cr pt =(A~ NnJci' f~= (p1 N)pi' f~= (lñ 1 VJc1j 

the fraction of the functional that corresponds to a particular element is: 

(60) 

Making (60) stationary yields three matrix equations per element: 

(61) 1) 

(62) 2) l anr· __ J=O 
aq 

1 

oiT1 . 
--

1 =O (compatibility) 
Ba 

-y Ca+yQ1q- P 1q+ Vv=O 

(domain and external boundary equilibrium) 
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(63) 3) l anrj =O 

av 
(internal boundaries equilibrium) 

Equations (61) to (63) are the discrete fonn of the stationarity condition. From this 
system the internal degrees of freedom a and q should be eliminated in order to obtain a 
stiffness matrix utilizable within a conventional assembly process. 

If a and q are simply statically condensed in (61)-(63), a y independent stiffness matrix 
is produced. Then, the solution for the fields M and M"' is the same in all elements and 
the proposed estimate it always zero: it is a situation similar to that described when the 
Limitation Principie was discussed in the section devoted to elasticity. 

The above difficulty disappears if the degrees of freedom in q are eliminated using an 
additional kinematical constraint: 

(64) 

starting mesh· ( lgdl) 

0.031 

refinemént 2 { 11 gdll 

--X 

Gamma parameter•Q.SO 

ElemeM P9 

True elastic energy o 0.2122 

retinement 3 (1Sgdl) 

0.006 

0.007 

0.031 

Fig. 15. - Example 2. H refinement evolution. 

refiMme:Jt'. 1 l8gdl) 

refinem~nt · 4 11 8 gdl) 

that imposes weak compatibility on fields a and ro along the boundary cj of the element. 

In discrete terms, constraint (64) is satisfied if the modes in N, V, A are chosen so 
that: 

(65) or: 
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(66) 

condition that is fulfilled if: 

(67) 

Eq. (67) requíres that if the mode amplitudes v and q are linearly related by a matrix 
H: 

(68) q=Hv 

then the matrix H should be: 

(69) 

In practice the path is reversed: relations (68) and (69) are imposed so that (67) is 
verified automatically. The way of constructing matrix H numerically is presented in [B, 
1990]. 

With all the above, static condensation of a in (61)-(63) together with the use of (68) 
and (69) to eliminate q, yields: 

(70) 

where the matrix between brackets on the left hand side is the element stiffness matrix 
and the vector on the right hand side is the element load vector. The formal similitude 
with (31) is apparent. 

3 . 5. DEVELOPED ELEMENTS 

When elements based on the formulation presented above are to be developed, it seems 
appropriate to take as external or connecting degrees of freedom v the movements of 
nades located on the element boundary. Thus, if the nodal values are used to interpolate 
the field d, this field will be the same along the common side of any two elements. 

During the present work three Kirchhoff plate bending elements ha ve been formulated 
(Fig. 13). As in the elasticity case, the internal movement modes have been divided into 
three categories: 

(71) 

where N,, Nm and N" ha ve the same meaning as befare. In this case the value m (maximum 
arder of the complete polynomials present in the interpolation of the deflections &) 
varies between 2 and 4, depending on the particular element. The partition of interna] 
movement modes leads to a parallel partition of curva tu re modes: 

(72) 

The field M"' will be then: 

(73) 
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Circular plate under concentraled 
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Fig. 16. - Example 2. Maximum deflection evolution. 

For the independent moment modes it is formally taken: 

(74) 

Two orthogonality conditions for the curvature modes are forced using a Gram­
Schmidt process: 

(75) 

(76) 

(B!n DBm)P/'' f B~ DBm dP =diagonal matrix, and: JPj 

(B~ DBh)Pj =: Í B:U DBh dP =O 
JPj 

If (71) to (74) are then introduced into the element stiffness matrix given in (70), it 
turns out that the stiffness matrix is formally identical to the one derived for elasticíty 
elements: 

(77) with: 
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Fig. 17. ~ Example 2. Error estímate evolution (1). 

The resultant expression of the proposed estímate is: 

(78) 

value that represents the elastic energy associated with the higher order curvature modes 
Bñ multíplied by the parameter y. 

3. 6. NUMERICAL EXAMPLE 

Figure 14 illustrates a clamped circular plate that is l.oaded with a 10 unit force at the 
center. The analytical solution of this problem is known [T & W, 1959] and it displays a 
singularity ín the moments at the application point of the force. The symmetry allows to 
study only one quarter of the plate and characterístic values of the ex.act solution are 
the maximum deflection (0.1697 units) and the strain energy (0.2122 units for 1/4 of the 
plate). 

The problem has been approached combining a selective h-adaptive process with a 
complete p refinement. The h process starts from a very coarse mesh (two curved 
triangles) and, using low order elements P9, produces a mesh adequate to start the p 
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Circular plate under concentrated load 
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Fig. 18. - Example 2. Error estimate evolution (Il). 

refinement. This p refinement has two steps, the first with elements P12 and the second 
with elements P18. 

Figure 15 shows the evolution of the mesh during the h refinement, including the 
values of the error densities, when the parameter y is 0.50. The error densities (error 
indicators) "poínt" to the singularity at the center of the plate. For other values of y the 
behavior of these indicators is very similar, they lead to the same results when they are 
used to "guide" the refinement. 

The mesh wíth 18 degrees of freedom was consídered appropriate to be the base mesh 
for the p refinement. Figure 16 shows the evolution of the maximum deflection during 
the h-p process. Note the convergence acceleration due to the p refinement. 

Figures 17 to 20 present the variation of the proposed error estimate in the h-p process 
for different values of the parameter y. The variation of the differences 1 Il- II~ 1 (error 1) 
and 1 IT- IT~ 1 (error 2) is also represented to compare with the estímate. It is apparent 
in all the figures the strong acceleration of convergence when p refinement is introduced. 
The best behavior of the estímate occurs for high values of y (0.50, 0.80), where it foJlows 
closely the true energy errors. However, it must be pointed out that the errors are lower 
for smaller values of y, though their evolutíon is more unpredictable. 
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Circular plate under concentrated load 
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Fig. 19. - Example 2. Error estimate evolution (III). 

Due to the great progress in computíng hardware, the finite element method shows a 
tendency to become a "black box" from which novice users can take results without a 
clear understanding of the foundations of the numerical tooL At this stage, the introduc~ 
tion of reliable accuracy estimates is considered essential if the quality of approximate 
solutions is going to be controlled in a systematic and objective way, even by non expert 
users. 

In the present paper the theoretical basis, numerica1 formulation and practical evalu­
ation of a new category of error estimates for elasticity (C0) and plate bending (C1) 

problems have been presented. The estimates are computed as a difference between two 
multifield functionals, one of them parametrized. The main advantage of the new 
estimates is that they are computed element by element, and for each element only the 
information corresponding to that element ís needed. This feature makes the new estima tes 
very suited to parallel processing and avoids the difficulties assodated to natural disconti­
nuíties (e. g. stress jumps) in the conventional error estimation procedures. 

The observed numerical behavior of the proposed estimate seems to be acceptable 
from an engineering point of view. However, numerical experimentation ís still needed 
to establish sorne practica] tolerance levels for real problems. 
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Fig. 20. - Example 2. Error estímate evo1ution (IV). 

The idea on which the proposed estimates are based, i. e. the difference between two 
functionals that have the same value for the true solution, is quite general. Estimates of 
this kind could be obtaíned for any problem amenable to treatment by multifield 
functionals. 
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