Accuracy estimates based on multifield variational principles

F. J. BELTRAN and E. ALARCON *

ApsTrRACT. — Recent developments to fit the so called Free Formulation inte a variational framework have
suggested the possibility of introducing a new category of error estimates for finite element computations. Such
error estimates are based on differences between certain multifield functionals, which give the same value for
the true solution. In the present paper the formulation of some estimates of this kind is introduced for elasticity
and plate bending problems, and several examples of their performance are discussed.

The observed numerical behavior of the new accuracy measures seems to be accepiable from an engineering
point of view, However, further numerical experimentation is still needed to establish practical tolerance levels
for real problems.

1. Introduction

After a history of more than thirty years, the finite element method has become a
widely used engineering tool, particularly in Structural and Solid Mechanics. At the
present stage, the role of @ posteriori accuracy estimates for finite element computations
is considered essential; since engineers with little or no knowledge of the foundations of
the numerical tool can now use finite elements to model a structure and produce results.
In this situation, the accuracy estimates provide the analyst with objective measures of
quality. They allow the setting up of tolerance levels to consider a particular solution as
acceptable. A natural consequence is that whenever the estimated accuracy is not enough,
the discretization will have to be improved until the selected measure meets the standard.
If the finite element method tends to be used as a “black box™ (e, g. within integrated
CADJFEAJ/CAM packages) the importance of developing automatic solution improve-
ment processes becomes apparent. This is the idea behind adaptative procedures and it
must be realized that the key element of such methods is a reliable accuracy estimate.

The importance of developing reliable and economical accuracy {(or error) estimates
has been recognized by a large number of researchers during the past decade. A good
survey of their work can be found in [Babuska er /., 1986], though this reference should
be completed by more recent papers [Zienkiewicz & Zhu, 1987]. The same ideas have
also been applied to other numerical methods [Alarcon & Reverter, 1986]. The error
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estimates proposed in the literature geénerally fall into one of the following wide categories:

1} Estimates computed from the residuals corresponding to the finite element sclution
[Kelly et al., 1983; Zienkiewicz et al., 1983; Kelly, 1984},

2) Estimates based on the extrapolation of successive approximate solutions [Szabo,
1986).

3) Estimates that take advantage of the differences between the finite element stress
field (stress in a generalized sense) and a smoothed or projected stress field, that is
considered to have a higher order of accuracy [Z & Z, 19871,

Estimates within the first category were introduced before the others [Babuska, 1975),
The residuals result from inserting the finite element solution into the differential equa-
tions that govern the problem. Generally, their numerical computation is very expensive
and, for that reason, the estimates based on the residuals often require an out of
proportion computational effort. However, very reliable accuracy estimates can be obtai-
ned.

In order to compute the estimates of the second category, it is assumed that the energy
norms of the approximate solutions converge to the exact energy norm in a predetermined
way. Thus, if a number of finite element solutions are known, extrapolation can be used
to make a prediction of the true energy norm. The practical drawback is precisely the
need of computing several solutions, but the method is very well suited for adaptative
processes with complete refinement.

Estimates in the third category have been infroduced more recently and they are easily
implemenied within the usnal structore of a finite element code. The main difficulty in
this case is {0 obtain the “smooth” stress field in a way consistent with the assumption
that it has a higher degree of accuracy.

On the other hand, recent developments by Felippa [Felippa, 1989 g; Felippa, 1983 5,
Felippa, 1989 ¢] to fit the Free Formulation of Bergan and Nygard [Bergan & Nygard,
1984} in a variational framework, have suggested the possibility of introducing a new
category of error estimates. The main concept is as follows. 1f a particular problem can
be solved using a family of variational principles derived one from another by the
Lagrange multiplier method, then all the asgociated functionals yield the same value af
the exact solution of the problem [Courant & Hilbert, 1953]. This important property
suggests that, given an approximate solution, a certain difference between functionals
might be used as an estimafe of the accuracy. The difficulty is to identify such a
difference, so that it is easily computed within the usual structure of a finite element
cade and it gives a reliable estimate, at least from an engineering point of view. In this
sense, the classical dual analysis principle [Fraeijs de Veubeke, 19651, as a method to
compute upper and lower bounds, is not allowed, since it involves two completely
different finite element models, even though it yields a very reliable error estimate. The
goal is to develop estimates usable within a single finite element approach. This will lead
to the use of mixed or hybrid ¢lements.

The authors have worked in the above direction, looking for error estimates for
elasticity problems (C” problems) and plate bending problems (C' problems) [Beltrin,
1990], although the idea c¢an probably be generalized to any problem with a variational
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foundation. The estimates within the proposed new category are difficult to implement
if elements formulated in the standard way (variational principle with only one indepen-
dent field) are used. However, it must be noted that nowadays the research effort to
develop new elements, mainly shell and plate elements, is strongly based on technigues
associated implicity or explicity with multifield variational principles, Examples of that
are the Free Formulation itself or the Assumed Natural Strain [MacNeal, 1978; Park &
Stanley, 1986; Bathe & Dworkin, 1985; Simd & Hughes, 1986] and the Assumed
Natural Deviatoric Strain [Militello & Felippa, 1989] formulations. It is in this context
where the proposed estimates would be useful.

In the following paragraphs the work the authors in elasticity and plate bending
problems is summarized. In both cases the proposed error estimate is introduced and
the main aspects of the elements developed to be used with it are described. Also, in
order to give an idea of the numerical behavior of these accuracy esiimates, some
examples with known analytical solution are presented.

2. Elasticity

2.1, NOTATION

In order to set the notation, the linear elasticity problem is stated here.

Consider a linearly elastic body under static loading that occupies a domain Q < R.
The boundary of the body is a surface S, §=8,J8§,. The outward unit normal on S
isn.

On S, the displacements d are known, whereas surface tractions t are imposed on S,.
The volume force field b in Q is also given. The unknowns of the problem are: the
displacement field w in €, the infinitesimal strain field e in Q and the stress field ¢ in Q.

When variational principles are used 1o solve the problem, two types of fields are
involved: independent or primary fields, which are subject to variations, and secondary
or derived fields, which are obtained from primary fields. The solution is determined by
taking variations with respect to the independent fields. In the present work the notation
from Felipa [F. 1989 ¢} will be adopted to distinguish between dependent and independent
fields. An independently varied field will be denoted by a tilde “~"" over its symbol,
e.g. 6, .. For a dependent field the dependence will be identified by writing the
independent field symbol as a superscript. For example:

g} e'= %(V+V‘)ﬁ and c'=De"

where V represents the gradient operator and D is the tensor of elastic constants. In this
notation the symbols without tilde or superscript u, e, ¢ are reserved for the ezact
solution fields.
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The writing of volume and surface integrals will be abbreviated by placing the integrand
between domain-subscripted parentheses and square brackets respectively:

2) (Na= J. fdQ. UIS,EJ fds
o 5
If f and g are tensor functions, the following notation is defined:
3 (t, g)nEJ frgdQ
0

and similarly for surface integrals, in which case square brackets are used.

2.2, VARIATIONAL APPROACH

The most commeon variational principle in solving the elasticity problem is the Principle
of Minimum Potential Energy. It states that from all the displacement fields ii satisfying
the kinematical boundary condition =4 on S, the solution u of the problem is the one
that makes the fotal potential energy 11,

@ 1, () =%(a", 9~ b, D[, il

be a minimum.

The Principle of Minimum Potential Energy can be gencralized using the Lagrange
multiplier method [C & H, 1953; Jones, 1964; Washizu, 1974]. The application of this
technique to a variational principle allows the suppression of constraints for the primary
field (s) in the associated functional by introducing new ficlds: the Lagrange multipliers.
Starting from the Principle of Minirnum Potential Energy, a whole family of derived
varational principies can be obtained. In general, the solution of the elasticity problem
makes the functionals associated to those principles siationary (not necessarily a minimum
Oor a maximum).

One of the most general principles that can be derived in the way described above is
the Hu-Washizu principle [W, 19741, It states that the soluiion fields u, e, 0, t, where € is
the surface tractions field on 8,, make the functional:

o oo L x o w " S 5
(5 Oy @, &, 6, t):i((;f? &t (8, e'—&)p—(b, U)p—|t, “]s,"'ﬁ: d—i,

stationary without any constraint for the four independent fields.

In the functional 11y, fields € can be introduced that are not independent but devived
from the primary sivess fields & through the tensor of elastic constants:

©) e=e°=D"'& in Q
Also, the fields & and  can be related using:

) {=t"=&n on §,
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Introducing (6) and (7) into (5) yields the functional:
P 1 ~ o =~ 1 = T o ~ 3 £
8a) Iy (@, &)= 5 (6, %)+ {6, )q— (b, i)o—1t, &g+ [6n, d—ii;,

The displacement fields @i can be taken in a way they meet the boundary condition
ii=d on §,, so that the functional [Ty is written as:

I _
(85) Ny ® &)= "3 (8, €%+ (8, ) — (b, U)o —t, U,

and then the solution fields u, ¢ make (8 b) stationary if the functional is defined on
fields @ satisfying the boundary condition on S, This is the variational principle of
Hellinger-Reissner [Reissner, 1950].

Note that the total potential energy functional (4) and the Hellinger-Reissner functional
(8 b) are special cases of the following parametrized form:

©) I, @ &)= —y) e (@) +y g (8, §)
1 1 .
=({1- “{)5 (0%, &)y 3 (8, €+ 7(8, e)g— (b, li)o—[t, G,

with yeR, 0=y =1,

Then, it is conceivable a parametrized variational principle intermediate between the
Minimum Potential Energy Principle and the Hellinger-Reissner Principle: the solution
fields u, ¢ will make stationary the functional (9) if primary displacement fields i satisfy
i=don S,

Parametrized functionals of the kind of (9) were introduced by Felippa [F, 1989 ¢].
For elasticity, variational principles associated with functionals including up to three
independent parameters can be stated [Felippa & Militello, 1989). If these principles are
used to obtain approximate solutions by the finite element method, it is likely that certain
combinations of the parameters yield better results than the classical principles. In fact,
parametrized principles are being used successfully in the formulation of high performance
elements [F & M, 1989).

2.3. ERROR ESTIMATE

All functionals presented in the previous paragraphs vield the same value when the
exact solution fields u, o, ¢, t arc introduced into them. This is a general property of the
Lagrange multiplier method [C & H, 1953]. Hence, it can be written:

(10) O (u) =1l (u, 6, ¢, =1 (u, 6) =11 (v, 6)=11

where I1 is the exact potential for the problem.

The question is to find out whether the differences between the functionals for
approximate solutions can be used as estimates of the discretization error.
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As & first step, the measure of the discretization error to be estimated should be
defined. When the solution of an elasticity problem is approximated using the Minimum
Potential Energy Principle, there is only one unknown field: the displacement field. Then,
a field of errors er can be defined as:

{i1) er=i—u

where @i represents the approximate solution for the displacements and u is the true
solution.

The magnitude of the error field er is usuvally measured by its energy norm [K et af,,
1983]: .

(12) ||ex||®>= (o, e}

and, in most cases, this norm is the one that conventional error estimates try to
approximate. On the other hand, it is a kinematically admissible field:

(13) fi=d on 5,

then [F, 1989 ¢; B, 1990];
_ 1
(14) T, @)~ IT=ler |

that is, the magnitude of the error field er, represented by s energy norm, can be
obiained as a difference between the exact potential and the approximate functional.

In a stmilar way, when muitifield variational principles are used, e. g. the one associated
with [T (#i, &), the error magitude can be defined as the difference IT (i1, &)— I between
the value of the functional for the approximate solution and the potential. The difference
IIp (i) — T between the total potential and the true potential can still be utilized in this
case. The error measures defined by those differences are the values to be approximated
by an estimate.

It is proposed as an estimate of the discretization error the value:
(15) e=Il, (@—11, (@, &)

associated with the approximate fields @t y &, where @ is a kinematically admissible field.

Note that the presence of two independent fields @i, & in (15) will generally force the
use of mixed formulations, so that the two fields are available for computing the estimate.
However, the difference (15) is relatively easy to compute since:

(16) Hp(@)—1IL,(u, 6)

1 I o y
=£(6u= e!‘)g_i(l _'Y) (Gu’ eu)§2+57(0: € )ﬂ)Y(G: € )ﬂ

1 1 | 1
="v{a", ")t -7 (G, "~ ey~ —v(T, e')y=-v(c"— &, e*—¢°
2'Y( ) 2'Y( Yo 2"/( N 2":’( o
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if the reciprocity relationship (&, €*)o = (6", €°), is taken into account,
That is, it suffices an integration over the domain Q: integration thay can be performed
by adding the contributions from the subdomains or elements €, into which Q is divided:

. .
{7 8=28i22-2~’\((6"-"&, e —e%)g,

The contributions &; are estimates for the local error. In a finite element discretization
the valnes:

&
(18} = —
vol,

where vol; is the volume of element 7, represent error densities that can be used as
indicators of the elements in the mesh where a refinement would be more profitable.

Finally, it must be noted that, according to (16), if the stress-strain relationship is
positive definite and the parameter v is y>0, then the proposed estimate g is £ 0.

2.4, FINITE ELEMENT DISCRETIZATION

The implementation of the error estimate introduced in the previous section is relatively
easy when the variational principle associated to the parametrized functional 11, (&, ) is
used to obtain an aproximate solution. If the procedure is the finite element method,
that implies the use of elements based on the parametrized variational principle. In the
present work, the choice has been to develop first such elements since, once they are
available, the computation of the error estimate is immediate. In the following paragraphs
the guidelines of the element formulation and the requirements for obtaining acceptable
estimates are given. The details can be found in {B, 1990].

Following standard practice in finite element literature, the components of stresses and
strains are arranged as column vectors, whereas the elastic coefficients are arranged as a
square symmetric matrix; i. e. 6, e will represent column vectors from this point onwards,
and D will be a square symmetric matrix.

If the domain Q is considered to be divided into a number of subdomains or elements
Q,, the basic finite elements assumption is that the displacement field @i and the stress
field & within an element can be expressed as a linear combination of displacement
modes and stress modes respectively:

(19 i=Nq in G and
(20) 6=Aa in &,
where matrices N and A collect generalized-displacement shape functions and internal

stress modes, and column vectors q and a gather generalized displacements and stress
mode amplitudes.

In the present work, the number of internal displacement modes (i. e. the number of
vector g components) should be equal to the number » of external (nodal) degrees of
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freedom in the element. The vector that gathers these n nodal displacements will be
denoted by v. The kinematical relationship between the amplitudes of internal displace-
ment modes, ¢, and the nodal displacements, v, is easily obtained collocating (19) for
each node: ’

21) v=0Gq

where G is a square matrix of order n.

Internal displacement modes in N should be linearly independent, so that matrix G
has an inverse H:

(22) q=Hv

The fields derived from i@ y & are:

23) e“=%(V+V’)Nq=Bq in
(24) ¢'=DBq in &, and
(25) e’=D"1'e=D"'Aa in Q,

If (19), (20) and (23) to (25) are introduced into the parametrized functional (9), its
discrete or algebraic form is obtained:

i
(26) I, &)= Hy,.=§(1 ~1)2.4'(B'DB)qo,q
ﬂéyzar(ArD—i A)ﬂl_a+yzat(A!B)ﬂtqg Z(th)nfq_ Z [E'N]Stiq

where g and a are the displacement and stress amplitodes within element i

It should be noted that the computation of the functional Il as a sum of vaJues T1,,
corresponding to the subdomains ©; (Eq. (26)) assumes implicity that fields & and ¢" are
finite on interclement boundaries. In this sense, (26) is written assuming that the field @
is continuous across those boundaries.

If the following definitions are introduced to represent the integrals in (26):

= (Rt ={(AIT~ 1
on { K,=(B'DB),, C=(A'D 'A)

Q'=({A'B),, = N)g, fi={tN],
the fraction of the functionzl corresponding to a generic element is:

o 1
(28) 1L, (g, a)=5(1*V)q‘KurEva‘Caﬂa‘Q‘q*f‘qq*fiq
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And making TI, stationary for the variations of q and a yields the two following
matrix equations;
Gl
»—B=0 {equilibrium)
@9 D dq
(I-7K,q+yQa—1,—£=0
1L, : o
—= =0 (internal compatibility)
30) 2) da
Ca=Q'q

From (29) and (30), using also (22), it can be stated:
(31) {-PHEH+yBQCTQH}v=H(f,+{)

where the matrix between brackets on the left hand side is the conventional element
stiffhess matrix; and the vector on the right hand side is the element load vector.

In the discretization of the parametrized variational principle described above, the
displacement modes in N and the stress modes in A should meet some requirements. In
addition to the continuity of the displacement field ii across interelement boundaries and
to the availability of constant stress and rigid body movement modes, the limitation
principle of Fraeijs de Veubeke [F, 1965] should be taken into account. This principle
applies when the modes DB corresponding to the derived siress field o*;

(32) ¢“=DBgq

can be obtained as a linear combination of the stress modes A used to represent the
independent stress field &. In such cases the limitation principle states that the approxima-
tion to the stress field given by & can not be better than the one obtained in ¢”, even
though the same or more modes have been used to construct the former [F, 19894} It
can be seen then [B, 1990] that the clement stiffness matrix in (31) becomes independent
of vy and the proposed error estimate is always zero.

2.5. DeVELOPED ELEMENTS

Following the lines presented in the previous paragraphs, four elements for two-
dimensional elasticity have been developed ( Fig. 1). In those elements the internal dis-
placement modes N are divided into three categories:

(33) N=[N, N, Ny

where:
N,=rigid body movement modes.

N,,=complete polynomials up to order m (m depends on the particular element,
1€mz4).

N, =incomplete polynomials of order greater than m.
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B Movement and geometry /loading interpolation
O Geometry /loading interpolation
h ® Mavemnent interpolation

Fig. 1. — Elements formulated for 2D elasticity,

The latter modes are introduced so that the number of internal degrees fo freedom in
q equals the number of nodal degrees of freedom in v.

This partition of the internal displacement modes leads to a parallel partition of the
strain modes B:

39 ::% (V+V)N=[0 B, B,

where the columns corresponding to N, are zero.
The field ¢* will be then:

(35) ¢=DBqg=D[B, B,]q
For the independent stress modes in A, it is formally taken:
(36) A=DB,,

choice that avoids the consequences of the limitation principle.
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A substantial simplification is gained if the strain modes in B,, are orthogonal with
respect to the energy norm:

k¥)) (B, DB,),.= | B! DB, dQ=diagonal matrix
m i

&
and if, besides, the modes in B, are orthogonal to the modes in B,

(38) (B, DB, )o, = f B, DB, d2=0

Q;

= and N, will not satisfy (37) and (38), but the internal
displacement modes can be modified element by element applying a Gram-Schmidt
orthogonalization process to the strain modes B,,, B, [B, 1990]. The verification of (37)
has some additional advantages when p-adaptive processes are implemented using these
elements {B, 1990].

In general, the election of N

With the above development, the element stiffness matrix is:
(39) K=H_ K, H,+(1-yHK,H,=K,+K, where:
H=[H, H, H)] K, =(8,DB,)g, K,=(B,DB,),

Note that the stiffness matrix is obtained as a sum of a basic matrix K,, independent
of ¥, and a higher order matrix K,, dependent on v.

The proposed error estimale has the expression:
Y
(40) A Z &= ), 5 9, K g,
t i

g; represents the clastic energy associated to the higher order strain modes B, multiplied
by the parameter y. In this sense ¢; is similar to the heuristic estimate introduced by
Melosh and Marcal [Melosh & Marcal, 1977].

2.6. NUMERICAL EXAMPLE

A numerical example is presented here to illustrate the behavior of the error estimate
proposed in the previous paragraphs. Necessarily, a simple problem has to be chosen, as
the real error measures should be known in order to compare with the estimate.
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Fig. 2. — Example 1. Plate with quadratic stresses.

Figure 2 shows a squarc plate under quadratic tractions on its boundaries. Double
symmetry allows to study only one quarter of the plate. The example bas been solved
using a k-adaptive process and, also, a p-adaptive techmque with complete refinement.
In both cases the base mesh is formed with a single N4 element, which s the element of
lowest order among the four developed. For the / refinement more N4 elements are
used, whereas in the p refinement the order of the interpolation in the element is
antomatically increased using successively elements W8 and W12. The element N12 gives
the exact solution, as its formulation includes complete cubic polynomials for displace-
ment approximation.

In Figure 3 the base mesh and the evolufion of /4 refinement is represented. The
refinement is controlied by the iocal error indicators defined in (18): the rule has been to
divide the elements in which the indicator was higher. Note that eventually an optimal
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Fig. 3. — Exarﬁple 1. H refinement.

Plate with quadratic stresses
GCamma parameter =
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P convergence
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gg * i

Fig. 4. — Example 1. Horizonta} displacement at corner,
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Pilate with guadratic stresses
Gamma pesrameter = B.30
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Fig, 5. — Example 1. Horizontal stress at corner.
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Fig. 6. — Example 1. Brror estimate evolution (1),
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Fig. 7. — Example 1. Error estimate evolution (TI).
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Fig. 8. — Example 1. Error estimate evolution (IL).
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mesh is veached, in the sense that the indicators have approximately the same value in
all elemenis. The behavior of this local measure seems to be good and it does not vary
significantly for other values of the parameter.

Figures 4 and 5 show the computed horizontal displacement u, and the horizonial
stress o, at the plate corner during the 4 and p refinements. Note the power of p
refinement; it yiclds the true solution with only 16 degrees of freedom.

The evelution of the proposed error cstimate has been studied for different values of
the parameter y. Figures 6 to 8 summarize the results obtained during the 4 refinement.
In these figures “error I’ means the absolute value of the difference between the true
potential IT and the parametrized functional IT,. “Error 2” means the difference between
the total potential 1T, and the exact potential IL. The values of the estimate, efror | and
error 2 are represented against the number of degrees of freedom. It can be seen how
the evolution of the estimate and that of the error 2 (II,—1II) are very similar in all
cases.

The values of v has an important influence not only in the magnitude of the errors
but also in the relative magnitude of the estimate with respect to the errors. Low values
of vy (less than 0.20) produce a parametrized functional IT, not very different from the
total I, thus approximate solutions of the same sort as those given by conventional
clements can be expected. The proposed estimate understates the errors, though it has
their same tendency (Fig. 6).

For y=0.30 (Fig. 7), amazingly low values of the difference |IL, —TI| are obtained.
However, note that this difference not always diminishes when the number of degrees of
freedom is increased. In this case the proposed estimate slightly underestimates the
difference I1,—II (error 2).

Finally, for values of v above 0.50 (Fig. 8) the proposed estimate has an excellent
behavior, as it takes values slightly greater than both errors and it has their same
tendency. On the other side, note that the magnitude of the errors is higher than for
lower values of vy, at least when the number of degrees of freedom is small.

3. Plate bending

3.1. NoraTioN

The statement of the plate bending problem according to the hypotheses of Kirchhoff
{Timoshenko & Woinowski-Krieger, 1959 will serve to introduce the notation.

Consider a plate with thickness & (Fig. 9). A reference system is used whose X and Y
axes are on the midplane of the plate, while the Z axis is normal to it. The lateral surface
of the plate is supposed to be cylindrical, i.e. parallel to Z axis. The midplane of the
plate is a domain P < R? with boundary C=C,{ C,. The outward unit normal on C is
n=(n,, n,). On C, the movements d (Fig. 10) are given, whereas on C, the stress resultant
(forces and moments) per unit length m (Fig. 11) are known. It is also known the field ¢
of distributed normal load per unit area in P.
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h s AN midplane P

boundary C

Fig. 9. — Reference system for a plate.

midplane P

& 7

Fig. 16. — Midplane movements in plate bending.

In the classical theory of plate bending the unknowns are the field of transverse
displacements or deflections ® in P, the field of moments or generalized stresses M iy p

and the field of curvatures or generalized strains % in P. Note the general paralleligm
with the elasticity problem.

Along the following paragraphs the previous notation to distinguish between primary
and secondary fields will be used. A field that can be varied independently will e
denoted with a tilde “~” over its symbol: in the dependent fields the dependence will he
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Vi

midplane P

Fig. t1. — Boundary stress resultants per unit length.

identified by setting as a superscript the symbol of the primary field. For example:

u‘n.':#éz__o:}_ Km*_-:wa_z_o_) ne = 620)
@n o Y Taxdy
MO=Dxe

where D is a tensor of elastic constants,

The writing of surface and line integrals will be generally abbreviated by placing the
integrand between domain-subscripted parentheses and sguare brackets respectively.

3.2, VARIATIONAL APPROACH

The bending of a plate is nothing more than an elasticity problem. X some assumptions
on the displacements, stresses or strains are made, the dimension of the problem can be
reduced from three to two, and the problem is restricted to the study of the midplane.
Thus, the conventional variational principles for plate bending problems can be obtained
from the principles used in elasticity by integration through the thickness.

The mintmum Potentiai Energy principle for plate bending can be siated as that the
solution field ® for the deflections makes the functional:

“2) I, (@%{Mﬁn W= (g, Bp— (@, W),

a minimum when it is defined amongst the fields @ that satisfy the kinematical boundary
conditions; ®=4d en C,. In (42) the vector field & is;

(43) @ =], b2, 07)
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where, according to Kirchhoffs hypo;uheses:

2 o

@4 po=— 22 gu= "

oy

From this principle of Minimum Potential Energy the other conventional variational
principles (Hu-Washizu, Hellinger-Reissner...) can be derived using the Lagrange multi-
plier method, as it has been done in the sections devoted to elasticity problems.

Consider now the domain P < R? of the midplane of the plate divided into a number
of subdomains P; (Fig. 12 C,\U C, is the exterior boundary of P, while C; will represent
the interior boundaries of the subdomains. Let @Y’ be a field of movements defined in
P; independently from other similar fields defined in the rest of subdomains. All these
fields @Y will constitute a global field @ defined over the whole domain P.

Consider also a field of movements d defined only on the external and internal
boundaries C=C,\J C, J C, If the following conditions are satisfied:

a) The field @Y is continuous and single-valued within the domain P,

by The field @Y takes the same values as the field d on the boundary of the domain
P,
c) The field d is kinematically admissible, 7. e. d=d on C,.

then the total potential energy can be written as:
- i | R i -
(45) e (@) = ZHPJ (&)= Z { E(M s % )Pjg (g, mm)pj* [m, mm]crj}
¥ 7

The condition b above can be introduced into the functional (45) by means of a
Lagrange multiplier field & defined on the generalized boundary C. Thus, the fields d y
®" would be independent from each other. Variational principles in which the relation
d=é is not forced a priori on C, are known as displacement generalized or d-generalized
principles [F, 1989 5]

The d-generalized potential energy functional is then:
= X 1 0 = (j = J % -~ (f
CONMN Y A9ES) {2(M %Y~ (g, )~ [, T, +17, d—mw]c,}
J

where C; represents the boundary of the subdomain P;.

The solution of the plate bending problem wiil be obtained by making the functional
T4 (®, d, %) stationary, with the restriction d=d on C,. If the associated Euler equations
and the natural boundary conditions are obtained, the Lagrange multiplier field X can
be identificd with a field m of stress resultants (moments and forces) per unit length on
the generalized boundary C [B, 1990]. Thus, the d-generalized total potential IT¢ is:

@) NG 4 m=Y { % M, %), — (g, &), — [, Fg, +1i, I— &V, }
J. K
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Fig, 12, — P domain subdivision.

Other d-generalized variational principles can be found in recent papers of Felippa [F,
1989¢; F & M, 19891 For our purposes, it has a particular interest a d-generalized
Heliinger-Reissner principle. The associated functional is in this case:

(48) Hf; (6)1 av M) = z {'_ % (Ma xM)Pj + (Me Rm)l’j- (CI: G)(j))l’}ﬁ {l’il, ﬁ](,‘,, _+ WI;:’ a - &)U)]C}}
7 i

where M is an independent field of moments and M, is the vector field of stress resultants
per unit length on C;, derived from M. The solution fields make IT§ stationary if this
functional is defined over fields d with =4 on C,.

in a way absolutely similar to the ideas exposed above for elasticity problems, note
that the functionals ITs and 1§ are special cases of the parametrized functional:

(9) M@, &, M= - IG, d, M)t y11E (@, d, M)

1 .
= Z {%(1 - 'Y) (Mm’ xm)Pj — 5,}, (M, ”M)Pj+ ¥ (M, “’m)Pj

@ )y~ fin, A, +I9,, ﬁ—c’b“’]cj}
yeR, 0=y=!
and the solution fields make TIY stationary when it is defined over fields d such that
d=d on C,.
3.3. ERROR ESTIMATE

As in the case of elasticity, all the functionals introduced above for plate bending
problems take the same value I1 when the exact solution fields w, M, %, d are introduced
into them.
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Again, the question of the possibility of using some difference between functionals as
an energy error estimate is arigsen. Following the same reasoning as before, it turns out
that if IT§ and H$ are the values of the potential energy functional and the parametrized
functional for an approximate solution of the problem, then the differences |IIf—II|
and |TT¢—II| are energy measures of the discretization error magnitude.

As an estimate of those energy measures, the diference:
(30) e=T1} (&, 4, M,)— 1T (&, d, M)

is proposed.

In this case three fields are needed to compute the estimate. Two of them (& and M)
defined over the domain P and the other defined on the generalized boundary C. If the
three fields are available (e.g. in a hybrid formulation) the difference (50) is evalnated
casily since:

i 1~ o
(5]-) £= ZSJ'= Z{E'Y(Mm) xm)Pj+ "Z“IY(M’ J'Kfl“‘i)l"j_,y(Ma M‘m)Pj}
i

J

%Z (MM, »°— uM)pj }

with j from 1 to the number of subdomains P;.

The contributions g; are, at the same time, indicators of the local error. Each g;, once
divided by the area of the subdomain P, is an “error density” and those error densities
can be used to guide the refinement in an adaptive scheme. Note on the other hand that
if the relationship between moments and curvatures is positive definite and y=0, then
the estimate ¢ is also 0.

The similitude of (51) and the expression (16) for clasticity problems is apparent. In
both cases the estimate is associated with the differences in energy between two primary
fields within the parametrized functional.

3.4, FINITE ELEMENT DISCRETIZATION

As in the elasticity case, the implementation of the proposed estimate is easy if the
principle associated with the parametrized functional T (&, d, M) is used. This principle
yields hybrid finite elements whose connecting variables are the nodal movements. In
the present work the formulation of such clements has been established introducing an
additional kinematical constraint between the fields @ and d. The resultant clements
satisfy the patch test a priori and the Free Formulation of Bergan [B & N, 1984] turns
out to be a particular case of the development. The main points of the elements’s
formulation are presented in the following paragraphs; the details can be found in [B,

1990].
In the usnal way, the three components of the field of moments M are arranged into

a ‘column vector. The same is done with the three curvatures in %. The tensor D of
elastic coefficients becomes a symmetric square matrix.
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Fig. 13. — Elements formulated for plate bending.

The assumption on which the finite element discretization is based is that the field of
movemenis & and the field of moments M can be wriiten within each element or

subdomain P; as:

& ®
(52) o= {-& , = {67 =Nq in P, and
®,, Oy
M.,
(53) M= {M,} =Aa inP,
M

Xy

It is assumed also that the field of boundary movements d can be obtained on the
element boundary as:

(54) d= {8, =Vv on C,
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T

E » 100.000 )
d7=0.20 I

thickness = 0.15

Fig. 14. — Example 2. Circular plate under concentrated load.

Now the continuity of the internal movements @ across the element boundaries is not
required. Hence, the modes in N can be chosen with freedom from conformity require-
ments. On the other hand, the interface movement field d should be continuous on the
generalized boundary C=C,JC,\JC,

The total number of internal movement modes (i.e. the number of components of
vector q) is taken the same as the number of interface movement modes (i, e. the number
of components of vector v). The secondary fields derived from & and M are:

62
- 0 0
dx?
7 .
(55) ne= _ﬁ 0 0\Ng=Bq in P
2
2 d 0 0
Jdx dy /
(56) M*=DBq in P;

(57) #=D"'Aa in P,
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The Eq. (52) to (57) can be used to produce the discretized form of the parametrized
functional:

(s8) I, (& M, &)=} 1,

J

4

1 1 -
- 2{5(1 ~ )4 (BDB)e 4= - 72 (D~ A)ya
+Tax(AtB)P‘,-‘l”(PtN)yjqﬁ[ﬁ]tV]c,jV

AL V] v—at [A:,N,Jc,.q}

whete p'=[g00] is the vector of loads per unit surface; matrix A, is:

[ 2 2 ( o @
Ry— 2~ iy~ tH,
A ax ay ay dx
g n2 1y ~2n,n,
—n.n, A, (n2—n2)
and matrix N, is:
r ¢ 0
N,=<¢0 n, —n;:N
0 n, n
If the following matrices are defined:
) { K,=(BDB), C=(A'D'A), Q'=(AB),
L'=[A Ve, P=ANL, {(=0N)y, =@V

the fraction of the functional that corresponds to a particular element is:
1
(60) I, = %(1 -NgK,q— Eya‘C:H-ya‘ Qq+ta’lv—a'Pq-i q—1f,v

Making (60) stationary yields three matrix equations per clement:

% =0 (compatibility)
eH 1 fa
—vCa+yQiq—P'q+Liv=0
G =9 {(domain and external boundary equilibrium)
(62} 2) aq

(1-v)K,q+yQa—-Pa=f,
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v

=0 (internal boundaries equilibrium
63) 3) av ( q )

La=f,

Equations (61} to (63} are the discrete form of the stationarity condition. From this
system the internal degrees of freedom a and ¢ should be eliminated in order to obtain a
stiffness matrix utilizable within a conventional assembly process.

If a and q are simply statically condensed in (61}-(63), a y independent stiffness matrix
is produced. Then, the solution for the fields M and M® is the same in all elements and
the proposed estimate it always zero: it is a situation similar to that described when the
Limitation Principle was discussed in the section devoted to elasticity.

The above difficulty disappears if the degrees of freedom in q are eliminated using an
additional kinematical constraint:

(64} [M,, d*(?)]Qi:O
IY
0.006
0.033 Gamma parameters ¢.50 .
0.014
Element - P9
True elastic energy = 0.23122 0.03
X
starting mesh. {(gdl) refinement’. 1 184gdl)
0.0085 0.006 $.006
0,015 0.014 0.0t
. 0.005\
0_031___\ .00, 0-005\\ 008 0.007_ Q007
™ 0.032 ¢ 0.031
~L S
retinemént 2 {11gdD refinemént” 3 (15¢gd1} refinemént - 4 {18 gdi)

Fig. 15. — Example 2, H refinement evolution.

that imposes weak compatibility on fields d and @& along the boundary C; of the element.

In discrete terms, constraint (64) is satisfied if the modes in N, V, A are chosen so
that:

(65) M,, d- &l =a'{A, Vle,y—a'[A[N,Jc.q=0  or
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(66) : T oA Liv—a'Pilq=0
condition that is fulfilled if:
(67) L'v=P'q

Eq. (67) requires that if the mode amplitudes v and q are linearly related by a matrix
H:
(68) g=Hyv
then the matrix H should be:
(69 P'H=~L!

In practice the path is reversed: relations {68) and {69) are imposed so that (67) is
verified automatically. The way of constructing mairix H numerically 1s presented in {B,
1990).

With all the above, static condensation of a in (61)-(63) together with the use of (68)
and (69) to eliminate q, yields:

(70) {(1-7HEKH+yH QC Q' H}v=HI{, +f,

where the matrix between brackets on the left hand side is the element stiffness matrix
and the vector on the right hand side is the element load vector. The formal similitude
with (31) is apparent. :

3.5. DEVELOPED ELEMENTS

When elements based on the formulation presented above are to be developed, it scems
appropriate to take as external or connecting degrees of freedom v the movements of
nodes located on the element boundary. Thus, if the nodal values are used to interpolate
the field 4, this field will be the same along the common side of any two elements.

During the present work three Kirchhoff plate bending elements have been formulated
(Fig. 13). As in the elasticity case, the internal movement modes have been divided into
three categories:

(71) N=[N, N, Ny

where N,, N,, and N, have the same meaning as before. In this case the value m (maximum
order of the complete polynomials present in the interpolation of the deflections &)
varies between 2 and 4, depending on the particular element. The partition of internal
movement modes leads to a parallel partition of curvature modes:

(72) | B=(0 B, B]
The field M" will be then:
(73) M*=DBq=DI[B, B,]q
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Circular plate under concentrated load
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Fig, 16. — Example 2. Maximum deflection evolution.

For the independent moment modes it is formally taken:
(74) A=DB,

Two orthogonality conditions for the curvature modes are forced using a Gram-
Schmidt process:

(75) (B, DB, ) = J B!, DB, ¢ P=diagonal matrix, and:
Py
(76) (B, DB,), = f B! DB, dP=0
s

If {71) to (74) are then introduced into the element stiffness matrix given in (70), it
turns out that the stiffness matrix is formally identical to the one derived for elasticity
elements:

(77) K"__H:nKum Hm+ (1 - FY) H?: Kuh Hh With:
H'=H H,H)] K, =(B,DB,), K,=B,DB,);,
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Circular plate under concentrated load
h / p convergence ~ Gamma parameter = #.15

gt

1™

Elantic energy
(1a?

estimate

g™

g

1 3 4 "'"".'.ﬂ + L] s'ii'j-vrliga H 3

Uegrees of fresdom

Fig. 17. — Example 2. Error estimate evolution (1).

The resultant expression of the proposed estimate is:
(78) &= Zgjz Z%qfth;hqh
i i

value that represents the elastic energy associated with the higher order curvature modes
B, multiplied by the parameter v.

3.6. NUMERICAL EXAMPLE

Figure 14 illustrates a clamped circular plate that is loaded with a 10 unit force at the
center. The analytical solution of this problem is known [T & W, 1959] and it displays a
singularity in the moments at the application point of the force. The symmetry allows to
study only one guarter of the plate and characteristic values of the exact solution are
the maximum deflection (0.1697 units) and the strain energy (0.2122 units for 1/4 of the
plate).

The problem has been approached combining a selective h-adaptive process with a
complete p refinement. The £ process starts from a very coarse mesh (two curved
triangles) and, using low order elements P9, produces a mesh adequate to start the p



MULTIFIELD VARIATIONAL PRINCIPLES

Circular plate-under‘ concentrated load
h / p convergence - Gamma parameter = #.30
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Fig. 18. — Example 2. Error estimate evolution (II),

refinement. This p refinement has two steps, the first with elements P12 and the second
with elements P18.

Fligure 15 shows the evolution of the mesh during the A refinement, including the
values of the error densities, when the parameter v is 0.50. The error densities {(error
indicators) “point” to the singularity at the center of the plate. For other values of v the
behavior of these indicators is very similar, they lead to the same results when they are
used to “guide” the refinement.

The mesh with 18 degrees of freedom was considered appropriate to be the base mesh
for the p refinement. Figure 16 shows the evolution of the maximum deflection during
the A-p process. Note the convergence acceleration due to the p refinement.

Figures 17 to 20 present the variation of the proposed error estimate in the /-p process
for different values of the parameter v. The variation of the differences lIIu-Hﬂ {error 1)
and |TI—TI¢| (error 2) is also represented to compare with the estimate. It is apparent
in all the figures the strong acceleration of convergence when p refinement is introduced.
The best behavior of the estimate occurs for high values of v (0.50, 0.80), where it follows
closely the true energy errors. However, it must be pointed out that the errors are lower
for smaller values of vy, though their evolution is more unpredictable,
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Circular plate under concentrated load
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Fig. 19. — Example 2. Error estimate evolution (I1I).

4. Conclusions

Due to the great progress in computing hardware, the finite element method shows a
tendency to become a “black box” from which novice users can take results without a
clear understanding of the foundations of the numerical tool. At this stage, the iniroduc-
tion of reliable accuracy estimates is considered essential if the quality of approximate
solutions is going to be controiled in a systematic and objective way, even by non expert
users.

In the present paper the theoretical basis, numerical formulation and practical evalu-
ation of a new category of error estimates for elasticity (C®) and plate bending (C?)
problems have been presented. The estimates are computed as a difference between two
multifield functionals, one- of them parametrized. The main advantage of the new
estimates is that they are computed element by element, and for each element only the
imformation corresponding to that element is needed. This feature makes the new estimates
very suited fo parallel processing and avoids the difficulties associated to natural disconti-
nuities (e. g. stress jumps) in the conventional error estimation procedures.

The observed numerical behavior of the proposed estimate seems to be acceptable
from an engineering point of view. However, numerical experimentation is still needed
to establish some practical tolerance levels for real problems.
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Circular platé under zorcentrated load
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Fig, 20. — Example 2. Error estimate evelution (IV}.

The idea on which the proposed estimates are based, . e. the difference between two
functionals that have the same value for the true solution, is quite general, Estimates of
this kind could be obtained for any problem amenable to treatment by multifield
functionals.
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