Generalized sampling in U-invariant subspaces

H. R. Fernández–Morales Departamento de Matemáticas, Universidad Carlos III de Madrid Madrid, España Email: hfernand@math.uc3m.es A. G. García Departamento de Matemáticas, Universidad Carlos III de Madrid Madrid, España Email: agarcia@math.uc3m.es M. A. Hernández–Medina Departamento de Matemática Aplicada, E.T.S.I.T., U.P.M., Madrid, España Email: miguelangel.hernandez.medina@upm.es

Abstract—In this work we carry out some results in sampling theory for U-invariant subspaces of a separable Hilbert space \mathcal{H} , also called atomic subspaces:

$$\mathcal{A}_a = \left\{ \sum_{n \in \mathbb{Z}} a_n U^n a : \left\{ a_n \right\} \in \ell^2(\mathbb{Z}) \right\},\,$$

where U is an unitary operator on \mathcal{H} and a is a fixed vector in \mathcal{H} . These spaces are a generalization of the well-known shiftinvariant subspaces in $L^2(\mathbb{R})$; here the space $L^2(\mathbb{R})$ is replaced by \mathcal{H} , and the shift operator by U. Having as data the samples of some related operators, we derive frame expansions allowing the recovery of the elements in \mathcal{A}_a . Moreover, we include a frame perturbation-type result whenever the samples are affected with a jitter error.

I. INTRODUCTION

Our work is motivated by the generalized sampling problem in shift-invariant subspaces of $L^2(\mathbb{R})$. Namely, assume that our functions (signals) belong to some shift-invariant space of the form:

$$V_{\varphi}^{2} := \overline{\operatorname{span}}_{L^{2}(\mathbb{R})} \left\{ \varphi(t-n), \ n \in \mathbb{Z} \right\},$$

where the generator function φ belongs to $L^2(\mathbb{R})$ and the sequence $\{\varphi(t-n)\}_{n\in\mathbb{Z}}$ is a Riesz sequence for $L^2(\mathbb{R})$. Thus, the shift-invariant space V_{φ}^2 can be described as

$$V_{\varphi}^{2} = \left\{ \sum_{n \in \mathbb{Z}} \alpha_{n} \ \varphi(t-n) : \left\{ \alpha_{n} \right\} \in \ell^{2}(\mathbb{Z}) \right\}.$$
(1)

On the other hand, in many common situations the available data are samples of some filtered versions $f * h_j$ of the signal f itself, where the average function h_j reflects the characteristics of the adquisition device.

Suppose that s convolution systems (linear time-invariant systems or filters in engineering jargon) $\mathcal{L}_j f = f * h_j$, $j = 1, 2, \ldots, s$, are defined on V_{φ}^2 . Assume also that the sequence of samples $\{(\mathcal{L}_j f)(kr)\}_{k \in \mathbb{Z}; j=1,2,\ldots,s}$, where $r \in \mathbb{N}$, is available for any f in V_{φ}^2 .

Mathematically, the generalized sampling problem consists of the stable recovery of any $f \in V_{\varphi}^2$ from the above sequence of samples, i.e., to obtain sampling formulas in V_{φ}^2 having the form

$$f(t) = \sum_{j=1}^{s} \sum_{k \in \mathbb{Z}} \left(\mathcal{L}_j f \right) (kr) S_j(t - kr), \quad t \in \mathbb{R}, \quad (2)$$

such that the sequence of reconstruction functions $\{S_j(\cdot - kr)\}_{k \in \mathbb{Z}; j=1,2,\ldots,s}$ is a frame for the shift-invariant space V_{φ}^2 (see, for instance, [3], [5], [6], [7], [9], [10], [15], [16], [17]).

In the present work we provide a generalization of the above problem in the following sense: Let $\{U^t\}_{t\in\mathbb{R}}$ denote a continuous group of unitary operators in \mathcal{H} containing our unitary operator U (see Section C) below). For a fixed $a \in \mathcal{H}$, we consider the subspace of \mathcal{H} given by

$$\mathcal{A}_a := \overline{\operatorname{span}} \{ U^n a, \ n \in \mathbb{Z} \} \,.$$

In case that the sequence $\{U^n a\}_{n \in \mathbb{Z}}$ is a Riesz sequence in \mathcal{H} (see, for instance, a necessary and sufficient condition in [13]) we have

$$\mathcal{A}_a = \left\{ \sum_{n \in \mathbb{Z}} \alpha_n U^n a : \left\{ \alpha_n \right\} \in \ell^2(\mathbb{Z}) \right\}.$$

On the other hand, for $b_j \in \mathcal{H}$, j = 1, 2..., s we consider the linear operators $x \in \mathcal{H} \mapsto \mathcal{L}_j x \in C(\mathbb{R})$ defined on \mathbb{R} as

$$(\mathcal{L}_j x)(t) := \langle x, U^t b_j \rangle_{\mathcal{H}}, \quad t \in \mathbb{R}.$$
 (3)

These operators \mathcal{L}_j can be seen as a generalization of the previous convolution systems.

II. GOALS AND PROCEDURE

Given $b_j \in A_a$, j = 1, 2..., s, our aim is to recover any $x \in A_a$, in a stable way, by means of the sequence of generalized samples

$$\left\{ \left(\mathcal{L}_{j}x\right) (kr) \right\}_{k \in \mathbb{Z}: \ j=1,2,\ldots,s}$$

obtained from (3) (here r denotes a fixed number in \mathbb{N}). In order to do this we only deal with the discrete group $\{U^n\}_{n\in\mathbb{Z}}$ completely determined by U, but we might be in presence of a time jitter error, and then, the study of the continuous group of unitary operators $\{U^t\}_{t\in\mathbb{R}}$ becomes essential. Having as data a perturbed sequence of samples

$$\left\{ \left(\mathcal{L}_j x \right) (kr + \epsilon_{kj}) \right\}_{k \in \mathbb{Z}: \ j=1,2,\dots,s},$$

with errors $\epsilon_{kj} \in \mathbb{R}$, again we want to recover $x \in \mathcal{A}_a$. In order to attack these problems we have proceeded in the following steps:

- (a) The study of when the sequence {U^{kr}b_j}_{k∈ℤ; j=1,2,...,s} is a complete system, a Bessel sequence, a frame or a Riesz basis for A_a.
- (b) In the frame case, search for a family of dual frames of the form $\{U^{kr}c_j\}_{k\in\mathbb{Z}:\ j=1,2,\ldots,s}$, where $c_j \in \mathcal{A}_a, \ j =$

 $1, 2, \ldots, s$, allowing to recover any $x \in A_a$ by means of and its related constants, the sampling formula

$$x = \sum_{k \in \mathbb{Z}} \sum_{j=1}^{s} \left(\mathcal{L}_{j} x \right) (kr) U^{kr} c_{j} \quad \text{in } \mathcal{H} \,. \tag{4}$$

(c) Using the standard perturbation theory of frames (see Ref. [4]) and the group of unitary operators theory [2], [18], to find a condition on the error sequence $\{\epsilon_{kj}\}$ allowing the recovery of any $x \in \mathcal{A}_a$ by means of a sampling expansion as

$$x = \sum_{j=1}^{s} \sum_{k \in \mathbb{Z}} \left(\mathcal{L}_{j} x \right) (kr + \epsilon_{kj}) C_{k,j}^{\epsilon} \quad \text{in } \mathcal{H}, \quad (5)$$

where the sequence $\{C_{k,j}^{\epsilon}\}_{k\in\mathbb{Z}; j=1,2,\ldots,s}$ is a frame for \mathcal{A}_a .

At stages (a) and (b) we have used some borrowed ideas from [13]; mainly related to the stationary properties of a sequence of the form $\{U^n b\}_{n \in \mathbb{Z}}$, $b \in \mathcal{H}$, and the spectral measure associated with the (auto)-covariance function of b.

III. MAIN RESULTS

A. The study of the sequence $\{U^{kr}b_j\}_{k\in\mathbb{Z};\ j=1,2,\ldots,s}$

If for every $j = 1, 2, \dots s$ the spectral measure in the integral representation of the (cross)-covariance function of the sequences $\{U^k a\}_{k \in \mathbb{Z}}, \{U^k b_i\}_{k \in \mathbb{Z}}$ has no singular part, we have the following representation

$$\langle U^k a, U^{nr} b_j \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i(k-rn)\theta} \phi_{a,b_j}(e^{i\theta}) d\theta.$$

where ϕ_{a,b_i} stands for the cross spectral density of the stationary correlated sequences $\{U^k a\}_{k \in \mathbb{Z}}$ and $\{U^k b_j\}_{k \in \mathbb{Z}}$. Consider the $s \times 1$ matrices of functions defined on the torus $\mathbb{T} := \{ e^{i\theta} : \theta \in [-\pi, \pi) \}$

$$\Phi_{a,b}(e^{i\theta}) := \begin{pmatrix} \phi_{a,b_1}(e^{i\theta}) \\ \phi_{a,b_2}(e^{i\theta}) \\ \vdots \\ \phi_{a,b_s}(e^{i\theta}) \end{pmatrix},$$

and

$$\Psi_{a,b}^{l}(e^{i\theta}) := (D_{r}S^{-l}\Phi_{a,b})(e^{i\theta}), \quad l = 0, 1, \dots, r-1,$$

where $D_r: L^2(\mathbb{T}) \to L^2(\mathbb{T})$ denotes the decimation operator

$$\sum_{k \in \mathbb{Z}} a_k e^{ik\theta} \xrightarrow{D_r} \sum_{k \in \mathbb{Z}} a_{rk} e^{ik\theta}$$

and $S: L^2(\mathbb{T}) \to L^2(\mathbb{T})$ denotes the (left) shift operator

$$\sum_{k\in\mathbb{Z}}a_ke^{ik\theta}\longmapsto\sum_{k\in\mathbb{Z}}a_{k+1}e^{ik\theta}\,.$$

Finally, defining the $s \times r$ matrix of functions on the torus \mathbb{T}

$$\Psi_{a,b}(e^{i\theta}) := \left(\Psi_{a,b}^{0}(e^{i\theta}) \ \Psi_{a,b}^{1}(e^{i\theta}) \ \dots \ \Psi_{a,b}^{r-1}(e^{i\theta})\right), \quad (6)$$

$$A_{\Psi} := \underset{\zeta \in \mathbb{T}}{\operatorname{ess\,inf}} \ \lambda_{\min} \left[\Psi_{a,b}^{*}(\zeta) \Psi_{a,b}(\zeta) \right];$$

$$B_{\Psi} := \underset{\zeta \in \mathbb{T}}{\operatorname{ess\,sup}} \ \lambda_{\max} \left[\Psi_{a,b}^{*}(\zeta) \Psi_{a,b}(\zeta) \right]$$
(7)

we have the following result:

Theorem 3.1: Let b_j be in \mathcal{A}_a for $j = 1, 2, \ldots, s$ and let $\Psi_{a,b}$ be the associated matrix given in (6) and its related constants (7). Then, the following results hold:

- i) The sequence $\{U^{rk}b_j\}_{k\in\mathbb{Z}; j=1,2,\dots s}$ is a complete system in \mathcal{A}_a if and only the rank of the matrix $\Psi_{a,b}(\zeta)$ is r a.e. ζ in \mathbb{T} .
- ii) The sequence {U^{rk}b_j}_{k∈ℤ; j=1,2,...s} is a Bessel sequence for A_a if and only the constant B_Ψ < ∞.
 iii) The sequence {U^{rk}b_j}_{k∈ℤ; j=1,2,...s} is a frame for A_a if and only if constants A_Ψ and B_Ψ satisfy 0 < A_Ψ ≤ $B_{\Psi}\,<\,\infty.$ In this case, A_{Ψ} and B_{Ψ} are the optimal
- frame bounds for $\{U^{rk}b_j\}_{k\in\mathbb{Z}; j=1,2,...s}$. iv) The sequence $\{U^{rk}b_j\}_{k\in\mathbb{Z}; j=1,2,...s}$ is a Riesz basis for \mathcal{A}_a if and only if it is a frame and s = r.

B. The frame expansion

Define the $r \times s$ matrix Γ of functions on \mathbb{T} as

$$\Gamma(e^{i\theta}) := \sum_{k \in \mathbb{Z}} \Gamma_k e^{ik\theta} = [\Psi_{a,b}^*(e^{i\theta})\Psi_{a,b}(e^{i\theta})]^{-1}\Psi_{a,b}^*(e^{i\theta}).$$
(8)

Note that $\Psi_{a,b}^{\dagger}(e^{i\theta}) := [\Psi_{a,b}^*(e^{i\theta})\Psi_{a,b}(e^{i\theta})]^{-1}\Psi_{a,b}^*(e^{i\theta})$ stands for the Moore-Penrose left-inverse. In case that condition iii) in Theorem 3.1 is satisfied, we can define,

$$\widetilde{a}_n := \begin{pmatrix} U^{nr}a \\ U^{nr+1}a \\ \vdots \\ U^{nr+r-1}a \end{pmatrix}$$

and

$$\begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_s \end{pmatrix} := \sum_{k \in \mathbb{Z}} \Gamma_k^\top \widetilde{a}_k \, .$$

Note that, under condition iii) in Theorem 3.1, the matrix $\Gamma(e^{i\theta})$ has entries in $L^{\infty}(\mathbb{T})$.

 $\{U^{kr}c_j\}_{k\in\mathbb{Z};\,j=1,2,\ldots,s}$ sequences Then, the and $\{U^{kr}b_i\}_{k\in\mathbb{Z};\ i=1,2,\ldots,s}$ are a pair of dual frames for \mathcal{A}_a . Hence we obtain the following recovery formula in A_a : For any $x \in \mathcal{A}_a$, the expansion

$$x = \sum_{j=1}^{s} \sum_{k \in \mathbb{Z}} \langle x, U^{kr} b_j \rangle U^{kr} c_j \quad \text{in } \mathcal{H}$$

holds

The analysis done provides a whole family of dual frames; in fact, everything works if we choose in (8) a matrix of the form

$$\Gamma_{\mathbb{U}}(e^{i\theta}) := \Psi_{a,b}^{\dagger}(e^{i\theta}) + \mathbb{U}(e^{i\theta}) \left[\mathbb{I}_s - \Psi_{a,b}(e^{i\theta}) \Psi_{a,b}^{\dagger}(e^{i\theta}) \right],$$

where $\mathbb{U}(e^{i\theta})$ denotes any $r \times s$ matrix with entries in $L^{\infty}(\mathbb{T})$, and $\Psi_{a,b}^{\dagger}$ the Moore-Penrose left pseudo-inverse.

Notice that if s = r, $\Psi_{a,b}^{\dagger} = \Psi_{a,b}^{-1}$ which implies that Γ is unique and we are in presence of a pair of dual Riesz basis.

Remark: In Theorem 3.1 we have assumed that b_j belongs to \mathcal{A}_a for each $j = 1, 2, \ldots, s$ since we want the sequence $\{U^{rk}b_j\}_{k\in\mathbb{Z}; j=1,2,\ldots s}$ to be contained in \mathcal{A}_a . In case that some $b_j \notin \mathcal{A}_a$, the sequence $\{U^{rk}b_j\}_{k\in\mathbb{Z}; j=1,2,\ldots s}$ is not necessarily contained in \mathcal{A}_a . However, whenever $0 < A_{\Psi} \leq B_{\Psi} < \infty$, the inequalities

$$A_{\Psi} \|x\|^2 \le \sum_{j=1}^s \sum_{k \in \mathbb{Z}} |\langle x, U^{rk} b_j \rangle|^2 \le B_{\Psi} \|x\|^2 \quad \text{for all } x \in \mathcal{A}_a$$

hold, and conversely. Hence, the sequence $\{U^{rk}b_j\}_{k\in\mathbb{Z}; j=1,2,\ldots s}$ is a pseudo-frame for \mathcal{A}_a (see Refs. [11], [12]).

Denoting by $P_{\mathcal{A}_a}$ the orthogonal projection onto \mathcal{A}_a , since for each $x \in \mathcal{A}_a$ we have

$$\langle x, U^{rk}b_j \rangle = \langle x, P_{\mathcal{A}_a}(U^{rk}b_j) \rangle, \ k \in \mathbb{Z} \text{ and } j = 1, 2, \dots, s,$$

and, as a consequence, Theorem 3.1 can be reformulated in terms $\{P_{\mathcal{A}_a}(U^{rk}b_j)\}_{k\in\mathbb{Z};\ j=1,2,\dots s}$, a sequence in \mathcal{A}_a .

C. The study of the time jitter error

In Sections A) and B) it is not strictly necessary to have a group of unitary operators $\{U^t\}_{t\in\mathbb{R}}$ to obtain the announced results. However, in order to deal with the time-jitter error this formalism becomes essential in our approach.

Let $\{U^t\}_{t\in\mathbb{R}}$ denote a continuous group of unitary operators in \mathcal{H} containing our unitary operator U, i.e., say for instance $U := U^1$. Recall that $\{U^t\}_{t\in\mathbb{R}}$ is a family of unitary operators in \mathcal{H} satisfying (see Ref. [2, vol. 2; p. 29]):

1) $U^t U^{t'} = U^{t+t'}$,

2) $U^0 = I_{\mathcal{H}}$,

3) $\langle U^t x, y \rangle_{\mathcal{H}}$ is a continuous function of t for any $x, y \in \mathcal{H}$. Note that $(U^t)^{-1} = U^{-t}$, and since $(U^t)^* = (U^t)^{-1}$, we have $(U^t)^* = U^{-t}$.

Classical Stone's theorem [14] assures us the existence of a self-adjoint operator T (possibly unbounded) such that $U^t \equiv e^{itT}$. This self-adjoint operator T, defined on the dense domain of \mathcal{H}

$$D_T := \left\{ x \in \mathcal{H} \text{ such that } \int_{-\infty}^{\infty} w^2 \, d \|E_w x\|^2 < \infty \right\},$$

admits the spectral representation $T = \int_{-\infty}^{\infty} w \, dE_w$ which means:

$$\langle Tx, y \rangle = \int_{-\infty}^{\infty} w \, d \langle E_w x, y \rangle$$
 for any $x \in D_T$ and $y \in \mathcal{H}$,

where $\{E_w\}_{w\in\mathbb{R}}$ is the corresponding resolution of the identity, i.e., a one-parameter family of projection operators E_w in \mathcal{H} such that

1)
$$E_{-\infty} := \lim_{w \to -\infty} E_w = O_{\mathcal{H}}, \quad E_{\infty} := \lim_{w \to \infty} E_w = I_{\mathcal{H}},$$

2) E_{w⁻} = E_w for every -∞ < w < ∞,
 3) E_u E_v = E_w where w = min{u, v}.

Recall that $||E_w x||^2$ and $\langle E_w x, y \rangle$, as functions of w, have bounded variation and define, respectively, a positive and a complex Borel measure on \mathbb{R} .

Furthermore, for any $x \in D_T$ we have that $\lim_{t\to 0} \frac{U^t x - x}{t} = iTx$ and the operator T is said to be the *infinitesimal generator* of the group $\{U^t\}_{t\in\mathbb{R}}$. For each $x \in D_T$, $U^t x$ is a continuous differentiable function of t. Notice that, whenever the self-adjoint operator T is bounded, $D_T = \mathcal{H}$ and e^{itT} can be defined as the usual exponential series; in any case, $U^t \equiv e^{itT}$ means that

$$\langle U^t x, y \rangle = \int_{-\infty}^{\infty} \mathrm{e}^{\mathrm{i}wt} d \langle E_w x, y \rangle, \quad t \in \mathbb{R},$$

where $x \in D_T$ and $y \in \mathcal{H}$.

The following result on frame perturbation, which proof can be found in [4, p. 354] has been used:

Lemma 3.2: Let $\{x_n\}_{n=1}^{\infty}$ be a frame for the Hilbert space \mathcal{H} with frame bounds A, B, and let $\{y_n\}_{n=1}^{\infty}$ be a sequence in \mathcal{H} . If there exists a constant R < A such that

$$\sum_{n=1}^{\infty} |\langle x_n - y_n, x \rangle|^2 \le R ||x||^2 \text{ for each } x \in \mathcal{H},$$

then the sequence $\{y_n\}_{n=1}^{\infty}$ is also a frame for \mathcal{H} with bounds $A(1-\sqrt{R/A})^2$ and $B(1+\sqrt{R/B})^2$. If $\{x_n\}_{n=1}^{\infty}$ is a Riesz basis, then $\{y_n\}_{n=1}^{\infty}$ is a Riesz basis.

Thus, we have the following result:

Theorem 3.3: Assume that for some $b_j \in D_T$, i.e., $\int_{-\infty}^{\infty} w^2 d \| E_w b_j \|^2 < \infty$ for each $1 \le j \le r$, the sequence $\{U^{kr} b_j\}_{k \in \mathbb{Z}; j=1,2,...,r}$ is a Riesz basis for \mathcal{A}_a with Riesz bounds $0 < A_{\Psi} \le B_{\Psi} < \infty$. For a sequence $\epsilon := \{\epsilon_{kj}\}_{k \in \mathbb{Z}, j=1,2,...,r}$ of errors, let R be the constant given by

$$R := \|\boldsymbol{\epsilon}\|^2 \max_{j=1,2,\dots,r} \left\{ \int_{-\infty}^{\infty} w^2 d \|E_w b_j\|^2 \right\},\,$$

where $\|\epsilon\|$ denotes the ℓ_s^2 -norm of the sequence ϵ .

If $R < A_{\Psi}$, then the sequence $\{U^{kr+\epsilon_{kj}}b_j\}_{k\in\mathbb{Z}; j=1,2,...,r}$ is a Riesz sequence in \mathcal{H} with Riesz bounds $A_{\Psi}(1-\sqrt{R/A_{\Psi}})^2$ and $B_{\Psi}(1+\sqrt{R/B_{\Psi}})^2$.

Next, we deal with the problem of the recovery of any $x \in A_a$ in a stable way from the perturbed sequence

$$\{(\mathcal{L}_j x)(kr + \epsilon_{kj})\}_{k \in \mathbb{Z}; j=1,2,\ldots,s},\$$

where $\epsilon := \{\epsilon_{kj}\}_{k \in \mathbb{Z}; j=1,2,...,s}$ denotes a sequence of real errors.

Taking into account the $L^2(0,1)$ functions

$$g_j(w) := \sum_{k \in \mathbb{Z}} \langle a, U^k b_j \rangle_{\mathcal{H}} e^{2\pi i k w}, \ j = 1, 2, \dots, s, \quad (9)$$

we can define the $s \times r$ matrix

$$\mathbb{G}(w) := \left[g_j\left(w + \frac{k-1}{r}\right)\right]_{\substack{j=1,2,\ldots,s\\k=1,2,\ldots,r}}$$

and its related the constants $\alpha_{\mathbb{G}}$ and $\beta_{\mathbb{G}}$ are given by

$$\alpha_{\mathbb{G}} := \underset{w \in (0, 1/r)}{\operatorname{ess \, inf}} \lambda_{\min}[\mathbb{G}^*(w)\mathbb{G}(w)],$$

$$\beta_{\mathbb{G}} := \underset{w \in (0, 1/r)}{\operatorname{ess \, sup}} \lambda_{\max}[\mathbb{G}^*(w)\mathbb{G}(w)].$$

It is worth to mention that in [9] was proved that the sequence $\{\overline{g_j(w)} e^{2\pi i r nw}\}_{n \in \mathbb{Z}; j=1,2,...,s}$ is a frame for $L^2(0,1)$ if and only if $0 < \alpha_{\mathbb{G}} \leq \beta_{\mathbb{G}} < \infty$. The idea is to consider the sequence $\{\overline{g_{m,j}(w)} e^{2\pi i r mw}\}_{m \in \mathbb{Z}; j=1,2,...s}$ as a perturbation of the above frame in $L^2(0,1)$, where

$$g_{m,j}(w) := \sum_{k \in \mathbb{Z}} \langle a, U^{k+\epsilon_{mj}} b_j \rangle_{\mathcal{H}} e^{2\pi i k w} , \ j = 1, 2, \dots, s.$$

For $|\gamma| < 1/2$, define the functions,

$$M_{a,b_j}(\gamma) := \sum_{k \in \mathbb{Z}} \max_{t \in [-\gamma,\gamma]} \left| \langle a, U^{k+t} b_j \rangle - \langle a, U^k b_j \rangle \right|,$$

and

$$N_{a,b_j}(\gamma) := \max_{k=0,1,\dots,r-1} \sum_{m \in \mathbb{Z}} \max_{t \in [-\gamma,\gamma]} \left| \langle a, U^{rm+k+t} b_j \rangle - \langle a, U^{rm+k} b_j \rangle \right|.$$

Notice that $N_{a,b_j}(\gamma) \leq M_{a,b_j}(\gamma)$ and for r = 1 the equality holds. Moreover, assuming that the continuous functions $\varphi_j(t) := \langle a, U^t b_j \rangle, \ j = 1, 2, \ldots, s$, satisfy a decay condition as $\varphi_j(t) = O(|t|^{-(1+\eta_j)})$ when $|t| \to \infty$ for some $\eta_j > 0$, we deduce that the functions $N_{a,b_j}(\gamma)$ and $M_{a,b_j}(\gamma)$ are continuous near to 0.

Theorem 3.4: Assume that for the functions g_j , $j = 1, 2, \ldots, s$, given in (9) we have $0 < \alpha_{\mathbb{G}} \leq \beta_{\mathbb{G}} < \infty$. For an error sequence $\epsilon := \{\epsilon_{mj}\}_{m \in \mathbb{Z}; j=1,\ldots,s}$, define the constant $\gamma_j := \sup_{m \in \mathbb{Z}} |\epsilon_{mj}|$ for each $j = 1, 2, \ldots, s$. Then the condition $\sum_{j=1}^{s} M_{a,b_j}(\gamma_j) N_{a,b_j}(\gamma_j) < \alpha_{\mathbb{G}}/r$ implies that there exists a frame $\{C_{m,j}^{\epsilon}\}_{m \in \mathbb{Z}; j=1,2,\ldots,s}$ for \mathcal{A}_a such that, for any $x \in \mathcal{A}_a$, the sampling expansion

$$x = \sum_{j=1}^{s} \sum_{m \in \mathbb{Z}} \langle x, U^{rm + \epsilon_{mj}} b_j \rangle_{\mathcal{H}} C^{\boldsymbol{\epsilon}}_{m,j} \quad \text{in } \mathcal{H}, \quad (10)$$

holds. Moreover, when r = s the sequence $\{C_{m,j}^{\boldsymbol{\epsilon}}\}_{m\in\mathbb{Z};\,j=1,2,\ldots,s}$ is a Riesz basis for \mathcal{A}_a , and the interpolation property $\langle C_{n,j}^{\boldsymbol{\epsilon}}, U^{rm+\boldsymbol{\epsilon}_{ml}}b_l \rangle_{\mathcal{H}} = \delta_{j,l} \,\delta_{n,m}$ holds.

Sampling formula (10) is useless from a practical point of view: it is impossible to determine the involved frame $\{C_{m,j}^{\epsilon}\}_{m\in\mathbb{Z}; j=1,2,...,s}$. As a consequence, in order to recover $x \in \mathcal{A}_a$ from the sequence of inner products $\{\langle x, U^{rm+\epsilon_{mj}}b_j \rangle_{\mathcal{H}}\}_{m\in\mathbb{Z}; j=1,2,...,s}$ we could implement a frame algorithm in $\ell^2(\mathbb{Z})$. Another possibility is given in the recent Ref. [1].

IV. CONCLUSION

By way of conclusion we may say that we have obtained a complete characterization of the sequence $\{U^{kr}b_j\}_{k\in\mathbb{Z}; j=1,2,...,s}$ in \mathcal{A}_a , where $b_j \in \mathcal{A}_a$, $1 \leq j \leq s$. We have found a necessary and sufficient condition ensuring

that it is a complete system, a Bessel sequence, a frame or a Riesz basis for A_a .

In the case that this sequence is a frame for A_a we can give an explicit family of dual frames allowing to recover any $x \in A_a$ by means of a sampling formula like (4).

Concerning the perturbation framework, we have found a condition related to the ℓ^2 -norm of $\epsilon = \{\epsilon_{kj}\}_{k \in \mathbb{Z}; j=1,2,...,s}$ and the $\max_{j=1,2,...,s} \left\{ \int_{-\infty}^{\infty} w^2 d \|E_w b_j\|^2 \right\}$ such that the sequence $\{U^{kr+\epsilon_{kj}}b_j\}_{k \in \mathbb{Z}; j=1,2,...,s}$ is a Riesz sequence in \mathcal{H} and we have obtained a sampling expansion allowing us to recover any $x \in \mathcal{A}_a$ in a stable way from the perturbed sequence of samples $\{(\mathcal{L}_j x)(kr+\epsilon_{kj})\}_{k \in \mathbb{Z}; j=1,2,...,s}$.

ACKNOWLEDGMENT

This work has been supported by the grant MTM2009– 08345 from the Spanish *Ministerio de Ciencia e Innovación* (MICINN).

REFERENCES

- B. Adcock and A. C. Hansen. Stable reconstructions in Hilbert spaces and the resolution of the Gibbs phenomenon. *Appl. Comput. Harmon. Anal.*, 32:357–388, 2012.
- [2] N. I. Akhiezer and I. M. Glazman. Theory of linear operators in Hilbert space. Dover Publications, New York, 1993.
- [3] A. Aldroubi and K. Gröchenig. Non-uniform sampling and reconstruction in shift-invariant spaces. SIAM Rev., 43:585–620, 2001.
- [4] O. Christensen. An Introduction to Frames and Riesz Bases. Birkhäuser, Boston, 2003.
- [5] O. Christensen and Y. C. Eldar. Oblique dual frames and shift-invariant spaces. Appl. Comput. Harmon. Anal., 17(1):48–68, 2004.
- [6] O. Christensen and Y. C. Eldar. Generalized shift-invariant systems and frames for subspaces. *Appl. Comput. Harmon. Anal.*, 11(3):299–313, 2005.
- [7] H. R. Fernández-Morales, A. G. García and G. Pérez-Villalón. Generalized sampling in $L^2(\mathbb{R}^d)$ shift-invariant subspaces with multiple stable generators. Multiscale Signal Analysis and Modeling, Lecture Notes in Electrical Engineering, Springer, New York, 2012.
- [8] H. R. Fernández-Morales, A. G. García, M. A. Hernández-Medina and M. J. Muñoz-Bouzo. Generalized sampling: from shift-invariant to Uinvariant spaces. Submitted 2013.
- [9] A. G. García and G. Pérez-Villalón. Dual frames in L²(0, 1) connected with generalized sampling in shift-invariant spaces. *Appl. Comput. Harmon. Anal.*, 20(3):422–433, 2006.
- [10] A. G. García, M. A. Hernández-Medina and G. Pérez-Villalón. Generalized sampling in shift-invariant spaces with multiple stable generators. *J. Math. Anal. Appl.*, 337:69–84, 2008.
- [11] S. Li and H. Ogawa. Pseudo-Duals of frames with applications. Appl. Comput. Harmon. Anal., 11:289–304, 2001.
- [12] S. Li and H. Ogawa. Pseudoframes for subspaces with applications. J. Fourier Anal. Appl., 10(4):409–431, 2004.
- [13] V. Pohl and H. Boche. U-invariant sampling and reconstruction in atomic spaces with multiple generators. IEEE Trans. Signal Process., 60(7), 3506–3519, 2012.
- [14] M. H. Stone. On one-parameter unitary groups in Hilbert spaces. Ann. Math., 33(3):643–648, 1932.
- [15] W. Sun and X. Zhou. Average sampling in shift-invariant subspaces with symmetric averaging functions. J. Math. Anal. Appl., 287:279–295, 2003.
- [16] M. Unser and A. Aldroubi. A general sampling theory for non ideal acquisition devices. *IEEE Trans. Signal Process.*, 42(11):2915–2925, 1994.
- [17] G. G. Walter. A sampling theorem for wavelet subspaces. *IEEE Trans. Inform. Theory*, 38:881–884, 1992.
- [18] J. Weidmann. Linear Operators in Hilbert Spaces Springer, New York, 1980.