Generalized sampling in U-invariant subspaces

H. R. Fernández-Morales
Departamento de Matemáticas,
Universidad Carlos III de Madrid Madrid, España
Email: hfernand@math.uc3m.es

A. G. García
Departamento de Matemáticas, Universidad Carlos III de Madrid Madrid, España
Email: agarcia@math.uc3m.es

M. A. Hernández-Medina
Departamento de Matemática Aplicada,
E.T.S.I.T., U.P.M.,
Madrid, España
Email: miguelangel.hernandez.medina@upm.es

Abstract

In this work we carry out some results in sampling theory for U-invariant subspaces of a separable Hilbert space \mathcal{H}, also called atomic subspaces: $$
\mathcal{A}_{a}=\left\{\sum_{n \in \mathbb{Z}} a_{n} U^{n} a:\left\{a_{n}\right\} \in \ell^{2}(\mathbb{Z})\right\},
$$ where U is an unitary operator on \mathcal{H} and a is a fixed vector in \mathcal{H}. These spaces are a generalization of the well-known shiftinvariant subspaces in $L^{2}(\mathbb{R})$; here the space $L^{2}(\mathbb{R})$ is replaced by \mathcal{H}, and the shift operator by U. Having as data the samples of some related operators, we derive frame expansions allowing the recovery of the elements in \mathcal{A}_{a}. Moreover, we include a frame perturbation-type result whenever the samples are affected with a jitter error.

I. Introduction

Our work is motivated by the generalized sampling problem in shift-invariant subspaces of $L^{2}(\mathbb{R})$. Namely, assume that our functions (signals) belong to some shift-invariant space of the form:

$$
V_{\varphi}^{2}:=\overline{\operatorname{span}}_{L^{2}(\mathbb{R})}\{\varphi(t-n), n \in \mathbb{Z}\}
$$

where the generator function φ belongs to $L^{2}(\mathbb{R})$ and the sequence $\{\varphi(t-n)\}_{n \in \mathbb{Z}}$ is a Riesz sequence for $L^{2}(\mathbb{R})$. Thus, the shift-invariant space V_{φ}^{2} can be described as

$$
\begin{equation*}
V_{\varphi}^{2}=\left\{\sum_{n \in \mathbb{Z}} \alpha_{n} \varphi(t-n):\left\{\alpha_{n}\right\} \in \ell^{2}(\mathbb{Z})\right\} . \tag{1}
\end{equation*}
$$

On the other hand, in many common situations the available data are samples of some filtered versions $f * h_{j}$ of the signal f itself, where the average function h_{j} reflects the characteristics of the adquisition device.
Suppose that s convolution systems (linear time-invariant systems or filters in engineering jargon) $\mathcal{L}_{j} f=f * \mathrm{~h}_{j}$, $j=1,2, \ldots, s$, are defined on V_{φ}^{2}. Assume also that the sequence of samples $\left\{\left(\mathcal{L}_{j} f\right)(k r)\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots, s}$, where $r \in \mathbb{N}$, is available for any f in V_{φ}^{2}.
Mathematically, the generalized sampling problem consists of the stable recovery of any $f \in V_{\varphi}^{2}$ from the above sequence of samples, i.e., to obtain sampling formulas in V_{φ}^{2} having the form

$$
\begin{equation*}
f(t)=\sum_{j=1}^{s} \sum_{k \in \mathbb{Z}}\left(\mathcal{L}_{j} f\right)(k r) S_{j}(t-k r), \quad t \in \mathbb{R} \tag{2}
\end{equation*}
$$

such that the sequence of reconstruction functions $\left\{S_{j}(\cdot-\right.$ $k r)\}_{k \in \mathbb{Z} ; j=1,2, \ldots, s}$ is a frame for the shift-invariant space V_{φ}^{2} (see, for instance, [3], [5], [6], [7], [9], [10], [15], [16], [17]).

In the present work we provide a generalization of the above problem in the following sense: Let $\left\{U^{t}\right\}_{t \in \mathbb{R}}$ denote a continuous group of unitary operators in \mathcal{H} containing our unitary operator U (see Section C) below). For a fixed $a \in \mathcal{H}$, we consider the subspace of \mathcal{H} given by

$$
\mathcal{A}_{a}:=\overline{\operatorname{span}}\left\{U^{n} a, n \in \mathbb{Z}\right\} .
$$

In case that the sequence $\left\{U^{n} a\right\}_{n \in \mathbb{Z}}$ is a Riesz sequence in \mathcal{H} (see, for instance, a necessary and sufficient condition in [13]) we have

$$
\mathcal{A}_{a}=\left\{\sum_{n \in \mathbb{Z}} \alpha_{n} U^{n} a:\left\{\alpha_{n}\right\} \in \ell^{2}(\mathbb{Z})\right\} .
$$

On the other hand, for $b_{j} \in \mathcal{H}, j=1,2 \ldots, s$ we consider the linear operators $x \in \mathcal{H} \mapsto \mathcal{L}_{j} x \in C(\mathbb{R})$ defined on \mathbb{R} as

$$
\begin{equation*}
\left(\mathcal{L}_{j} x\right)(t):=\left\langle x, U^{t} b_{j}\right\rangle_{\mathcal{H}}, \quad t \in \mathbb{R} . \tag{3}
\end{equation*}
$$

These operators \mathcal{L}_{j} can be seen as a generalization of the previous convolution systems.

II. Goals and procedure

Given $b_{j} \in \mathcal{A}_{a}, j=1,2 \ldots, s$, our aim is to recover any $x \in \mathcal{A}_{a}$, in a stable way, by means of the sequence of generalized samples

$$
\left\{\left(\mathcal{L}_{j} x\right)(k r)\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots, s}
$$

obtained from (3) (here r denotes a fixed number in \mathbb{N}). In order to do this we only deal with the discrete group $\left\{U^{n}\right\}_{n \in \mathbb{Z}}$ completely determined by U, but we might be in presence of a time jitter error, and then, the study of the continuous group of unitary operators $\left\{U^{t}\right\}_{t \in \mathbb{R}}$ becomes essential. Having as data a perturbed sequence of samples

$$
\left\{\left(\mathcal{L}_{j} x\right)\left(k r+\epsilon_{k j}\right)\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots, s}
$$

with errors $\epsilon_{k j} \in \mathbb{R}$, again we want to recover $x \in \mathcal{A}_{a}$. In order to attack these problems we have proceeded in the following steps:
(a) The study of when the sequence $\left\{U^{k r} b_{j}\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots, s}$ is a complete system, a Bessel sequence, a frame or a Riesz basis for \mathcal{A}_{a}.
(b) In the frame case, search for a family of dual frames of the form $\left\{U^{k r} c_{j}\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots, s}$, where $c_{j} \in \mathcal{A}_{a}, j=$
$1,2 \ldots, s$, allowing to recover any $x \in \mathcal{A}_{a}$ by means of the sampling formula

$$
\begin{equation*}
x=\sum_{k \in \mathbb{Z}} \sum_{j=1}^{s}\left(\mathcal{L}_{j} x\right)(k r) U^{k r} c_{j} \quad \text { in } \mathcal{H} . \tag{4}
\end{equation*}
$$

(c) Using the standard perturbation theory of frames (see Ref. [4]) and the group of unitary operators theory [2], [18], to find a condition on the error sequence $\left\{\epsilon_{k j}\right\}$ allowing the recovery of any $x \in \mathcal{A}_{a}$ by means of a sampling expansion as

$$
\begin{equation*}
x=\sum_{j=1}^{s} \sum_{k \in \mathbb{Z}}\left(\mathcal{L}_{j} x\right)\left(k r+\epsilon_{k j}\right) C_{k, j}^{\epsilon} \quad \text { in } \mathcal{H} \tag{5}
\end{equation*}
$$

where the sequence $\left\{C_{k, j}^{\epsilon}\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots, s}$ is a frame for \mathcal{A}_{a}.
At stages (a) and (b) we have used some borrowed ideas from [13]; mainly related to the stationary properties of a sequence of the form $\left\{U^{n} b\right\}_{n \in \mathbb{Z}}, b \in \mathcal{H}$, and the spectral measure associated with the (auto)-covariance function of b.

III. Main results

A. The study of the sequence $\left\{U^{k r} b_{j}\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots, s}$

If for every $j=1,2, \ldots s$ the spectral measure in the integral representation of the (cross)-covariance function of the sequences $\left\{U^{k} a\right\}_{k \in \mathbb{Z}},\left\{U^{k} b_{j}\right\}_{k \in \mathbb{Z}}$ has no singular part, we have the following representation

$$
\left\langle U^{k} a, U^{n r} b_{j}\right\rangle=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i(k-r n) \theta} \phi_{a, b_{j}}\left(e^{i \theta}\right) d \theta .
$$

where $\phi_{a, b_{j}}$ stands for the cross spectral density of the stationary correlated sequences $\left\{U^{k} a\right\}_{k \in \mathbb{Z}}$ and $\left\{U^{k} b_{j}\right\}_{k \in \mathbb{Z}}$. Consider the $s \times 1$ matrices of functions defined on the torus $\mathbb{T}:=\left\{e^{i \theta}: \theta \in[-\pi, \pi)\right\}$

$$
\Phi_{a, b}\left(e^{i \theta}\right):=\left(\begin{array}{c}
\phi_{a, b_{1}}\left(e^{i \theta}\right) \\
\phi_{a, b_{2}}\left(e^{i \theta}\right) \\
\vdots \\
\phi_{a, b_{s}}\left(e^{i \theta}\right)
\end{array}\right)
$$

and

$$
\Psi_{a, b}^{l}\left(e^{i \theta}\right):=\left(D_{r} S^{-l} \Phi_{a, b}\right)\left(e^{i \theta}\right), \quad l=0,1, \ldots, r-1
$$

where $D_{r}: L^{2}(\mathbb{T}) \rightarrow L^{2}(\mathbb{T})$ denotes the decimation operator

$$
\sum_{k \in \mathbb{Z}} a_{k} e^{i k \theta} \stackrel{D_{r}}{\longmapsto} \sum_{k \in \mathbb{Z}} a_{r k} e^{i k \theta}
$$

and $S: L^{2}(\mathbb{T}) \rightarrow L^{2}(\mathbb{T})$ denotes the (left) shift operator

$$
\sum_{k \in \mathbb{Z}} a_{k} e^{i k \theta} \stackrel{S}{\longmapsto} \sum_{k \in \mathbb{Z}} a_{k+1} e^{i k \theta} .
$$

Finally, defining the $s \times r$ matrix of functions on the torus \mathbb{T}

$$
\begin{equation*}
\Psi_{a, b}\left(e^{i \theta}\right):=\left(\Psi_{a, b}^{0}\left(e^{i \theta}\right) \Psi_{a, b}^{1}\left(e^{i \theta}\right) \ldots \Psi_{a, b}^{r-1}\left(e^{i \theta}\right)\right), \tag{6}
\end{equation*}
$$

and its related constants,

$$
\begin{align*}
& A_{\Psi}:=\underset{\zeta \in \mathbb{T}}{\operatorname{essinf}} \lambda_{\min }\left[\Psi_{a, b}^{*}(\zeta) \Psi_{a, b}(\zeta)\right] ; \\
& B_{\Psi}:=\underset{\zeta \in \mathbb{T}}{\operatorname{ess} \sup } \lambda_{\max }\left[\Psi_{a, b}^{*}(\zeta) \Psi_{a, b}(\zeta)\right] \tag{7}
\end{align*}
$$

we have the following result:
Theorem 3.1: Let b_{j} be in \mathcal{A}_{a} for $j=1,2, \ldots, s$ and let $\Psi_{a, b}$ be the associated matrix given in (6) and its related constants (7). Then, the following results hold:
i) The sequence $\left\{U^{r k} b_{j}\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots . s}$ is a complete system in \mathcal{A}_{a} if and only the rank of the matrix $\Psi_{a, b}(\zeta)$ is r a.e. ζ in \mathbb{T}.
ii) The sequence $\left\{U^{r k} b_{j}\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots s}$ is a Bessel sequence for \mathcal{A}_{a} if and only the constant $B_{\Psi}<\infty$.
iii) The sequence $\left\{U^{r k} b_{j}\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots s}$ is a frame for \mathcal{A}_{a} if and only if constants A_{Ψ} and B_{Ψ} satisfy $0<A_{\Psi} \leq$ $B_{\Psi}<\infty$. In this case, A_{Ψ} and B_{Ψ} are the optimal frame bounds for $\left\{U^{r k} b_{j}\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots s}$.
iv) The sequence $\left\{U^{r k} b_{j}\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots s}$ is a Riesz basis for \mathcal{A}_{a} if and only if it is a frame and $s=r$.

B. The frame expansion

Define the $r \times s$ matrix Γ of functions on \mathbb{T} as

$$
\begin{equation*}
\Gamma\left(e^{i \theta}\right):=\sum_{k \in \mathbb{Z}} \Gamma_{k} e^{i k \theta}=\left[\Psi_{a, b}^{*}\left(e^{i \theta}\right) \Psi_{a, b}\left(e^{i \theta}\right)\right]^{-1} \Psi_{a, b}^{*}\left(e^{i \theta}\right) \tag{8}
\end{equation*}
$$

Note that $\Psi_{a, b}^{\dagger}\left(e^{i \theta}\right):=\left[\Psi_{a, b}^{*}\left(e^{i \theta}\right) \Psi_{a, b}\left(e^{i \theta}\right)\right]^{-1} \Psi_{a, b}^{*}\left(e^{i \theta}\right)$ stands for the Moore-Penrose left-inverse. In case that condition iii) in Theorem 3.1 is satisfied, we can define,

$$
\widetilde{a}_{n}:=\left(\begin{array}{c}
U^{n r} a \\
U^{n r+1} a \\
\vdots \\
U^{n r+r-1} a
\end{array}\right)
$$

and

$$
\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{s}
\end{array}\right):=\sum_{k \in \mathbb{Z}} \Gamma_{k}^{\top} \widetilde{a}_{k}
$$

Note that, under condition iii) in Theorem 3.1, the matrix $\Gamma\left(e^{i \theta}\right)$ has entries in $L^{\infty}(\mathbb{T})$.
Then, the sequences $\left\{U^{k r} c_{j}\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots, s} \quad$ and $\left\{U^{k r} b_{j}\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots s}$ are a pair of dual frames for \mathcal{A}_{a}. Hence we obtain the following recovery formula in \mathcal{A}_{a} : For any $x \in \mathcal{A}_{a}$, the expansion

$$
x=\sum_{j=1}^{s} \sum_{k \in \mathbb{Z}}\left\langle x, U^{k r} b_{j}\right\rangle U^{k r} c_{j} \quad \text { in } \mathcal{H}
$$

holds.
The analysis done provides a whole family of dual frames; in fact, everything works if we choose in (8) a matrix of the form

$$
\Gamma_{\mathbb{U}}\left(e^{i \theta}\right):=\Psi_{a, b}^{\dagger}\left(e^{i \theta}\right)+\mathbb{U}\left(e^{i \theta}\right)\left[\mathbb{I}_{s}-\Psi_{a, b}\left(e^{i \theta}\right) \Psi_{a, b}^{\dagger}\left(e^{i \theta}\right)\right],
$$

where $\mathbb{U}\left(e^{i \theta}\right)$ denotes any $r \times s$ matrix with entries in $L^{\infty}(\mathbb{T})$, and $\Psi_{a, b}^{\dagger}$ the Moore-Penrose left pseudo-inverse.
Notice that if $s=r, \Psi_{a, b}^{\dagger}=\Psi_{a, b}^{-1}$ which implies that Γ is unique and we are in presence of a pair of dual Riesz basis.
Remark: In Theorem 3.1 we have assumed that b_{j} belongs to \mathcal{A}_{a} for each $j=1,2, \ldots, s$ since we want the sequence $\left\{U^{r k} b_{j}\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots s}$ to be contained in \mathcal{A}_{a}. In case that some $b_{j} \notin \mathcal{A}_{a}$, the sequence $\left\{U^{r k} b_{j}\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots s}$ is not necessarily contained in \mathcal{A}_{a}. However, whenever $0<A_{\Psi} \leq B_{\Psi}<\infty$, the inequalities
$A_{\Psi}\|x\|^{2} \leq \sum_{j=1}^{s} \sum_{k \in \mathbb{Z}}\left|\left\langle x, U^{r k} b_{j}\right\rangle\right|^{2} \leq B_{\Psi}\|x\|^{2} \quad$ for all $x \in \mathcal{A}_{a}$
hold, and conversely. Hence, the sequence $\left\{U^{r k} b_{j}\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots s}$ is a pseudo-frame for \mathcal{A}_{a} (see Refs. [11], [12]).

Denoting by $P_{\mathcal{A}_{a}}$ the orthogonal projection onto \mathcal{A}_{a}, since for each $x \in \mathcal{A}_{a}$ we have
$\left\langle x, U^{r k} b_{j}\right\rangle=\left\langle x, P_{\mathcal{A}_{a}}\left(U^{r k} b_{j}\right)\right\rangle, k \in \mathbb{Z}$ and $j=1,2, \ldots, s$,
and, as a consequence, Theorem 3.1 can be reformulated in terms $\left\{P_{\mathcal{A}_{a}}\left(U^{r k} b_{j}\right)\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots s}$, a sequence in \mathcal{A}_{a}.

C. The study of the time jitter error

In Sections A) and B) it is not strictly necessary to have a group of unitary operators $\left\{U^{t}\right\}_{t \in \mathbb{R}}$ to obtain the announced results. However, in order to deal with the time-jitter error this formalism becomes essential in our approach.
Let $\left\{U^{t}\right\}_{t \in \mathbb{R}}$ denote a continuous group of unitary operators in \mathcal{H} containing our unitary operator U, i.e., say for instance $U:=U^{1}$. Recall that $\left\{U^{t}\right\}_{t \in \mathbb{R}}$ is a family of unitary operators in \mathcal{H} satisfying (see Ref. [2, vol. 2; p. 29]):

1) $U^{t} U^{t^{\prime}}=U^{t+t^{\prime}}$,
2) $U^{0}=I_{\mathcal{H}}$,
3) $\left\langle U^{t} x, y\right\rangle_{\mathcal{H}}$ is a continuous function of t for any $x, y \in \mathcal{H}$.

Note that $\left(U^{t}\right)^{-1}=U^{-t}$, and since $\left(U^{t}\right)^{*}=\left(U^{t}\right)^{-1}$, we have $\left(U^{t}\right)^{*}=U^{-t}$.

Classical Stone's theorem [14] assures us the existence of a self-adjoint operator T (possibly unbounded) such that $U^{t} \equiv$ $\mathrm{e}^{\mathrm{i} t T}$. This self-adjoint operator T, defined on the dense domain of \mathcal{H}

$$
D_{T}:=\left\{x \in \mathcal{H} \text { such that } \int_{-\infty}^{\infty} w^{2} d\left\|E_{w} x\right\|^{2}<\infty\right\}
$$

admits the spectral representation $T=\int_{-\infty}^{\infty} w d E_{w}$ which means:
$\langle T x, y\rangle=\int_{-\infty}^{\infty} w d\left\langle E_{w} x, y\right\rangle \quad$ for any $x \in D_{T}$ and $y \in \mathcal{H}$,
where $\left\{E_{w}\right\}_{w \in \mathbb{R}}$ is the corresponding resolution of the identity, i.e., a one-parameter family of projection operators E_{w} in \mathcal{H} such that

1) $E_{-\infty}:=\lim _{w \rightarrow-\infty} E_{w}=O_{\mathcal{H}}, \quad E_{\infty}:=\lim _{w \rightarrow \infty} E_{w}=I_{\mathcal{H}}$,
2) $E_{w^{-}}=E_{w}$ for every $-\infty<w<\infty$,
3) $E_{u} E_{v}=E_{w}$ where $w=\min \{u, v\}$.

Recall that $\left\|E_{w} x\right\|^{2}$ and $\left\langle E_{w} x, y\right\rangle$, as functions of w, have bounded variation and define, respectively, a positive and a complex Borel measure on \mathbb{R}.

Furthermore, for any $x \in D_{T}$ we have that $\lim _{t \rightarrow 0} \frac{U^{t} x-x}{t}=\mathrm{i} T x$ and the operator T is said to be the infinitesimal generator of the group $\left\{U^{t}\right\}_{t \in \mathbb{R}}$. For each $x \in D_{T}, U^{t} x$ is a continuous differentiable function of t. Notice that, whenever the self-adjoint operator T is bounded, $D_{T}=\mathcal{H}$ and $\mathrm{e}^{\mathrm{i} t T}$ can be defined as the usual exponential series; in any case, $U^{t} \equiv \mathrm{e}^{\mathrm{i} t T}$ means that

$$
\left\langle U^{t} x, y\right\rangle=\int_{-\infty}^{\infty} \mathrm{e}^{\mathrm{i} w t} d\left\langle E_{w} x, y\right\rangle, \quad t \in \mathbb{R}
$$

where $x \in D_{T}$ and $y \in \mathcal{H}$.
The following result on frame perturbation, which proof can be found in [4, p. 354] has been used:
Lemma 3.2: Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a frame for the Hilbert space \mathcal{H} with frame bounds A, B, and let $\left\{y_{n}\right\}_{n=1}^{\infty}$ be a sequence in \mathcal{H}. If there exists a constant $R<A$ such that

$$
\sum_{n=1}^{\infty}\left|\left\langle x_{n}-y_{n}, x\right\rangle\right|^{2} \leq R\|x\|^{2} \quad \text { for each } x \in \mathcal{H}
$$

then the sequence $\left\{y_{n}\right\}_{n=1}^{\infty}$ is also a frame for \mathcal{H} with bounds $A\left(1-\sqrt{R / A}^{2}\right.$ and $B(1+\sqrt{R / B})^{2}$. If $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a Riesz basis, then $\left\{y_{n}\right\}_{n=1}^{\infty}$ is a Riesz basis.
Thus, we have the following result:
Theorem 3.3: Assume that for some $b_{j} \in D_{T}$, i.e., $\int_{-\infty}^{\infty} w^{2} d\left\|E_{w} b_{j}\right\|^{2}<\infty$ for each $1 \leq j \leq r$, the sequence $\left\{U^{k r} b_{j}\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots, r}$ is a Riesz basis for \mathcal{A}_{a} with Riesz bounds $0<A_{\Psi} \leq B_{\Psi}<\infty$. For a sequence $\epsilon:=$ $\left\{\epsilon_{k j}\right\}_{k \in \mathbb{Z}, j=1,2, \ldots, r}$ of errors, let R be the constant given by

$$
R:=\|\boldsymbol{\epsilon}\|^{2} \max _{j=1,2, \ldots, r}\left\{\int_{-\infty}^{\infty} w^{2} d\left\|E_{w} b_{j}\right\|^{2}\right\}
$$

where $\|\boldsymbol{\epsilon}\|$ denotes the ℓ_{s}^{2}-norm of the sequence $\boldsymbol{\epsilon}$.
If $R<A_{\Psi}$, then the sequence $\left\{U^{k r+\epsilon_{k j}} b_{j}\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots, r}$ is a Riesz sequence in \mathcal{H} with Riesz bounds $A_{\Psi}\left(1-\sqrt{R / A_{\Psi}}\right)^{2}$ and $B_{\Psi}\left(1+\sqrt{R / B_{\Psi}}\right)^{2}$.
Next, we deal with the problem of the recovery of any $x \in$ \mathcal{A}_{a} in a stable way from the perturbed sequence

$$
\left\{\left(\mathcal{L}_{j} x\right)\left(k r+\epsilon_{k j}\right)\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots, s}
$$

where $\boldsymbol{\epsilon}:=\left\{\epsilon_{k j}\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots, s}$ denotes a sequence of real errors.
Taking into account the $L^{2}(0,1)$ functions

$$
\begin{equation*}
g_{j}(w):=\sum_{k \in \mathbb{Z}}\left\langle a, U^{k} b_{j}\right\rangle_{\mathcal{H}} \mathrm{e}^{2 \pi \mathrm{i} k w}, j=1,2, \ldots, s \tag{9}
\end{equation*}
$$

we can define the $s \times r$ matrix

$$
\mathbb{G}(w):=\left[g_{j}\left(w+\frac{k-1}{r}\right)\right]_{\substack{j=1,2, \ldots, s \\ k=1,2, \ldots, r}}
$$

and its related the constants $\alpha_{\mathbb{G}}$ and $\beta_{\mathbb{G}}$ are given by

$$
\begin{aligned}
& \alpha_{\mathbb{G}}:=\underset{w \in(0,1 / r)}{\operatorname{ess} \inf } \lambda_{\min }\left[\mathbb{G}^{*}(w) \mathbb{G}(w)\right], \\
& \beta_{\mathbb{G}}:=\underset{w \in(0,1 / r)}{\operatorname{ess} \sup } \lambda_{\max }\left[\mathbb{G}^{*}(w) \mathbb{G}(w)\right] .
\end{aligned}
$$

It is worth to mention that in [9] was proved that the sequence $\left\{\overline{g_{j}(w)} \mathrm{e}^{2 \pi \mathrm{i} r n w}\right\}_{n \in \mathbb{Z} ; j=1,2, \ldots, s}$ is a frame for $L^{2}(0,1)$ if and only if $0<\alpha_{\mathbb{G}} \leq \beta_{\mathbb{G}}<\infty$. The idea is to consider the sequence $\left\{\overline{g_{m, j}(w)} \mathrm{e}^{2 \pi \mathrm{i} r m w}\right\}_{m \in \mathbb{Z} ; j=1,2, \ldots s}$ as a perturbation of the above frame in $L^{2}(0,1)$, where

$$
g_{m, j}(w):=\sum_{k \in \mathbb{Z}}\left\langle a, U^{k+\epsilon_{m j}} b_{j}\right\rangle_{\mathcal{H}} \mathrm{e}^{2 \pi \mathrm{i} k w}, j=1,2, \ldots, s
$$

For $|\gamma|<1 / 2$, define the functions,

$$
M_{a, b_{j}}(\gamma):=\sum_{k \in \mathbb{Z}} \max _{t \in[-\gamma, \gamma]}\left|\left\langle a, U^{k+t} b_{j}\right\rangle-\left\langle a, U^{k} b_{j}\right\rangle\right|
$$

and

$$
\begin{aligned}
& N_{a, b_{j}}(\gamma):= \\
& \max _{k=0,1, \ldots, r-1} \sum_{m \in \mathbb{Z}} \max _{t \in[-\gamma, \gamma]}\left|\left\langle a, U^{r m+k+t} b_{j}\right\rangle-\left\langle a, U^{r m+k} b_{j}\right\rangle\right| .
\end{aligned}
$$

Notice that $N_{a, b_{j}}(\gamma) \leq M_{a, b_{j}}(\gamma)$ and for $r=1$ the equality holds. Moreover, assuming that the continuous functions $\varphi_{j}(t):=\left\langle a, U^{t} b_{j}\right\rangle, j=1,2, \ldots, s$, satisfy a decay condition as $\varphi_{j}(t)=O\left(|t|^{-\left(1+\eta_{j}\right)}\right)$ when $|t| \rightarrow \infty$ for some $\eta_{j}>0$, we deduce that the functions $N_{a, b_{j}}(\gamma)$ and $M_{a, b_{j}}(\gamma)$ are continuous near to 0 .

Theorem 3.4: Assume that for the functions $g_{j}, j=$ $1,2, \ldots, s$, given in (9) we have $0<\alpha_{\mathbb{G}} \leq \beta_{\mathbb{G}}<\infty$. For an error sequence $\epsilon:=\left\{\epsilon_{m j}\right\}_{m \in \mathbb{Z} ; j=1, \ldots, s}$, define the constant $\gamma_{j}:=\sup _{m \in \mathbb{Z}}\left|\epsilon_{m j}\right|$ for each $j=1,2, \ldots, s$. Then the condition $\sum_{j=1}^{s} M_{a, b_{j}}\left(\gamma_{j}\right) N_{a, b_{j}}\left(\gamma_{j}\right)<\alpha_{\mathbb{G}} / r$ implies that there exists a frame $\left\{C_{m, j}^{\epsilon}\right\}_{m \in \mathbb{Z} ; j=1,2, \ldots, s}$ for \mathcal{A}_{a} such that, for any $x \in \mathcal{A}_{a}$, the sampling expansion

$$
\begin{equation*}
x=\sum_{j=1}^{s} \sum_{m \in \mathbb{Z}}\left\langle x, U^{r m+\epsilon_{m j}} b_{j}\right\rangle_{\mathcal{H}} C_{m, j}^{\epsilon} \quad \text { in } \mathcal{H} \tag{10}
\end{equation*}
$$

holds. Moreover, when $r=s$ the sequence $\left\{C_{m, j}^{\epsilon}\right\}_{m \in \mathbb{Z} ; j=1,2, \ldots, s}$ is a Riesz basis for \mathcal{A}_{a}, and the interpolation property $\left\langle C_{n, j}^{\epsilon}, U^{r m+\epsilon_{m l}} b_{l}\right\rangle_{\mathcal{H}}=\delta_{j, l} \delta_{n, m}$ holds.

Sampling formula (10) is useless from a practical point of view: it is impossible to determine the involved frame $\left\{C_{m, j}^{\epsilon}\right\}_{m \in \mathbb{Z} ; j=1,2, \ldots, s}$. As a consequence, in order to recover $x \in \mathcal{A}_{a}$ from the sequence of inner products $\left\{\left\langle x, U^{r m+\epsilon_{m j}} b_{j}\right\rangle_{\mathcal{H}}\right\}_{m \in \mathbb{Z} ; j=1,2, \ldots, s}$ we could implement a frame algorithm in $\ell^{2}(\mathbb{Z})$. Another possibility is given in the recent Ref. [1].

IV. Conclusion

By way of conclusion we may say that we have obtained a complete characterization of the sequence $\left\{U^{k r} b_{j}\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots, s}$ in \mathcal{A}_{a}, where $b_{j} \in \mathcal{A}_{a}, 1 \leq j \leq s$. We have found a necessary and sufficient condition ensuring
that it is a complete system, a Bessel sequence, a frame or a Riesz basis for \mathcal{A}_{a}.

In the case that this sequence is a frame for \mathcal{A}_{a} we can give an explicit family of dual frames allowing to recover any $x \in \mathcal{A}_{a}$ by means of a sampling formula like (4).

Concerning the perturbation framework, we have found a condition related to the ℓ^{2}-norm of $\epsilon=\left\{\epsilon_{k j}\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots, s}$ and the $\max _{j=1,2, \ldots, s}\left\{\int_{-\infty}^{\infty} w^{2} d\left\|E_{w} b_{j}\right\|^{2}\right\}$ such that the sequence $\left\{U^{k r+\epsilon_{k j}} b_{j}\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots, s}$ is a Riesz sequence in \mathcal{H} and we have obtained a sampling expansion allowing us to recover any $x \in \mathcal{A}_{a}$ in a stable way from the perturbed sequence of samples $\left\{\left(\mathcal{L}_{j} x\right)\left(k r+\epsilon_{k j}\right)\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots, s}$.

ACKNOWLEDGMENT

This work has been supported by the grant MTM200908345 from the Spanish Ministerio de Ciencia e Innovación (MICINN).

References

[1] B. Adcock and A. C. Hansen. Stable reconstructions in Hilbert spaces and the resolution of the Gibbs phenomenon. Appl. Comput. Harmon. Anal., 32:357-388, 2012.
[2] N. I. Akhiezer and I. M. Glazman. Theory of linear operators in Hilbert space. Dover Publications, New York, 1993.
[3] A. Aldroubi and K. Gröchenig. Non-uniform sampling and reconstruction in shift-invariant spaces. SIAM Rev., 43:585-620, 2001.
[4] O. Christensen. An Introduction to Frames and Riesz Bases. Birkhäuser, Boston, 2003.
[5] O. Christensen and Y. C. Eldar. Oblique dual frames and shift-invariant spaces. Appl. Comput. Harmon. Anal., 17(1):48-68, 2004.
[6] O. Christensen and Y. C. Eldar. Generalized shift-invariant systems and frames for subspaces. Appl. Comput. Harmon. Anal., 11(3):299-313, 2005.
[7] H. R. Fernández-Morales, A. G. García and G. Pérez-Villalón. Generalized sampling in $L^{2}\left(\mathbb{R}^{d}\right)$ shift-invariant subspaces with multiple stable generators. Multiscale Signal Analysis and Modeling, Lecture Notes in Electrical Engineering, Springer, New York, 2012.
[8] H. R. Fernández-Morales, A. G. García, M. A. Hernández-Medina and M. J. Muñoz-Bouzo. Generalized sampling: from shift-invariant to U invariant spaces. Submitted 2013.
[9] A. G. García and G. Pérez-Villalón. Dual frames in $L^{2}(0,1)$ connected with generalized sampling in shift-invariant spaces. Appl. Comput. Harmon. Anal., 20(3):422-433, 2006.
[10] A. G. García, M. A. Hernández-Medina and G. Pérez-Villalón. Generalized sampling in shift-invariant spaces with multiple stable generators. J. Math. Anal. Appl., 337:69-84, 2008.
[11] S. Li and H. Ogawa. Pseudo-Duals of frames with applications. Appl. Comput. Harmon. Anal., 11:289-304, 2001.
[12] S. Li and H. Ogawa. Pseudoframes for subspaces with applications. J. Fourier Anal. Appl., 10(4):409-431, 2004.
[13] V. Pohl and H. Boche. U-invariant sampling and reconstruction in atomic spaces with multiple generators. IEEE Trans. Signal Process., 60(7), 3506-3519, 2012.
[14] M. H. Stone. On one-parameter unitary groups in Hilbert spaces. Ann. Math., 33(3):643-648, 1932.
[15] W. Sun and X. Zhou. Average sampling in shift-invariant subspaces with symmetric averaging functions. J. Math. Anal. Appl., 287:279-295, 2003.
[16] M. Unser and A. Aldroubi. A general sampling theory for non ideal acquisition devices. IEEE Trans. Signal Process., 42(11):2915-2925, 1994.
[17] G. G. Walter. A sampling theorem for wavelet subspaces. IEEE Trans. Inform. Theory, 38:881-884, 1992.
[18] J. Weidmann. Linear Operators in Hilbert Spaces Springer, New York, 1980.

