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Abstract—In this work we carry out some results in sampling
theory for U-invariant subspaces of a separable Hilbert space #,
also called atomic subspaces:

Aa = {ZanUna : {an} S KQ(Z)}7

nez

where U is an unitary operator on # and a is a fixed vector
in 7. These spaces are a generalization of the well-known shift-
invariant subspaces in L?(R); here the space L*(R) is replaced
by H, and the shift operator by U. Having as data the samples of
some related operators, we derive frame expansions allowing the
recovery of the elements in A,. Moreover, we include a frame
perturbation-type result whenever the samples are affected with
a jitter error.

I. INTRODUCTION

Our work is motivated by the generalized sampling problem
in shift-invariant subspaces of L?(IR). Namely, assume that our
functions (signals) belong to some shift-invariant space of the
form:

Vj = spaan(R){go(t —n), n€ZL},

where the generator function ¢ belongs to L?(R) and the
sequence {¢(t —n)}nez is a Riesz sequence for L?(RR). Thus,
the shift-invariant space Vg can be described as

VZ={Y an ¢t —n) : {on} € @)}

ne”Z

6]

On the other hand, in many common situations the available
data are samples of some filtered versions fxh; of the signal f
itself, where the average function h; reflects the characteristics
of the adquisition device.

Suppose that s convolution systems (linear time-invariant
systems or filters in engineering jargon) L;f = f * hj,
j = 1,2,...,s, are defined on Vj. Assume also that the
sequence of samples {(L; f)(kr)}rez; j=1,2,..,s , Where 7 € N,
is available for any f in V2.

Mathematically, the generalized sampling problem consists of
the stable recovery of any f € Vg from the above sequence
of samples, i.e., to obtain sampling formulas in Vg having the
form

f(t) = ZS:Z (L;f)(kr)S;(t—kr), teR, (2

j=1kezZ

such that the sequence of reconstruction functions {S;(- —
kr)}rez; j=1,,..s is a frame for the shift-invariant space Vj
(see, for instance, [3], [S], [6], [7], [9], [10], [15], [16], [17]).
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In the present work we provide a generalization of the
above problem in the following sense: Let {U'};cr denote
a continuous group of unitary operators in H containing our
unitary operator U (see Section C) below). For a fixed a € H,
we consider the subspace of H given by

Ag = spW{U"a, n e Z}.

In case that the sequence {U"a}necz is a Riesz sequence in
‘H (see, for instance, a necessary and sufficient condition in
[13]) we have

Ay = {ZanU”a {an} € KZ(Z)}.

On the other hand, for b; € H, j = 1,2...,s we consider
the linear operators « € H +— L;x € C(R) defined on R as

(L;z)(t) := (z, U'b;)n, 3)

These operators £; can be seen as a generalization of the
previous convolution systems.

teR.

II. GOALS AND PROCEDURE

Given b; € A,, j = 1,2...,s, our aim is to recover
any ¢ € A,, in a stable way, by means of the sequence of
generalized samples

{ (ﬁjz) (kr) }keZ; G=1,2,..,8°

obtained from (3) (here r denotes a fixed number in N). In
order to do this we only deal with the discrete group {U" },,cz
completely determined by U, but we might be in presence of a
time jitter error, and then, the study of the continuous group of
unitary operators {U®};cr becomes essential. Having as data
a perturbed sequence of samples

{(ﬁjf) (kr + Gk]')}keZ;j:lQ,“.,s J

with errors €;; € R, again we want to recover x € A,.

In order to attack these problems we have proceeded in the

following steps:

kry .

(a) The study of when the sequence {U b]}kez;j:1,2,...,s
is a complete system, a Bessel sequence, a frame or a
Riesz basis for A,.

(b) In the frame case, search for a family of dual frames of

k -
the form {U ch}k:EZ;jZI,Z...,s’ where ¢; € A, j =
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1,2...,s, allowing to recover any x € A, by means of
the sampling formula

=YY

keZ j=1

J(kr)U*"c; inH. 4)

(c) Using the standard perturbation theory of frames (see Ref.
[4]) and the group of unitary operators theory [2], [18],
to find a condition on the error sequence {ey;} allowing
the recovery of any x € A, by means of a sampling
expansion as

T = Z Z (L) (kr + exy) C 5

j=1kez

mH, (5)

where the sequence {C,jj}kez;j:1727___7s is a frame for

A,
At stages (a) and (b) we have used some borrowed ideas from
[13]; mainly related to the stationary properties of a sequence
of the form {U"b},cz, b € H, and the spectral measure
associated with the (auto)-covariance function of b.

III. MAIN RESULTS
A. The study of the sequence {Ukrbj}ker:l o s

If for every j = 1,2,...s the spectral measure in the
integral representation of the (cross)-covariance function of
the sequences {U*a}rez, {U*b;}rez has no singular part,
we have the following representation

nr 1 " k—rn)6 0
(U*a, U™ b;) = %/ ih=rmf g b, (€7)df.
where ¢, stands for the cross spectral density of the
stationary correlated sequences {U*a}rez and {U*b;}iez.
Consider the s x 1 matrices of functions defined on the torus

T:={e" :0¢€[-mmn)}
Pa,b, (€7)
B p(e”) = ¢>a,b2.(eze) ;
G ()
and
Ul () = (DS ) (), 1=0,1,...,r—1,

where D, : L?(T) — L?(T) denotes the decimation operator
Z ageikd Dry Z a, e
= keZ
and S : L?(T) — L?(T) denotes the (left) shift operator
Z et NN Z ak+1eik0
keZ kez
Finally, defining the s x r matrix of functions on the torus T

Wap(e) o= (W0 (") Wh () ... W), (6)

and its related constants,

Aw 1= essinf A [W,0(O Vs (O):

N 7
By := esssup Amax [\I/a’b(()\lla,b(g)} )
CeT
we have the following result:
Theorem 3.1: Let b; be in A, for j = 1,2,...,s and let

U, be the associated matrix given in (6) and its related
constants (7). Then, the following results hold:

i) The sequence {U““bj}kez.j:1 , , is a complete sys-
tem in 4, if and only the rank of the matrix U, 5(C) is
rae. (inT.

ii) The sequence {U"b; }keZ 1o, i5 a Bessel se-
quence for A, if and only the constant By < 0.

iii) The sequence {Urkb }keZ =12, is a frame for A,
if and only if constants Ay and By satisfy 0 < Ay <
By < oo. In this case, Ay and By are the optimal
frame bounds for {Ukaj}kEZ;jzl,Z...s'

iv) The sequence {U™b;}, . ., , _ isa Riesz basis for
A, if and only if it is a frame and s = 7.

B. The frame expansion
Define the r x s matrix I' of functions on T as
Zrke o p (€)W (€))L ().
kEZ
+ | ®
Note that W}  (e') := [W} (€)W, ()] 7107 (e') stands

for the Moore-Penrose left-inverse. In case that condition iii)
in Theorem 3.1 is satisfied, we can define,

U a
Unr+1a
Ay 1=
Unr+r—1a
and
01
E Fk‘ ar .
keZ
Cs

Note that, under condition iii) in Theorem 3.1, the matrix
I'(e") has entries in L>°(T).

Then, the sequences {U’"cj}kez; G=1,2,...8 and
{Ukaj}]gez;j:LQ)“_S are a pair of dual frames for A,.
Hence we obtain the following recovery formula in .4,: For
any z € A,, the expansion

=YY

j=1keZ

LU D)\ UM e;  in H

holds.

The analysis done provides a whole family of dual frames;
in fact, everything works if we choose in (8) a matrix of the
form

Ty(e’) =Wl () + U(e") [Is — Wau ()W ()],



where U(e?) denotes any r x s matrix with entries in L>(T),
and \IlT ., the Moore-Penrose left pseudo-inverse.

Notice that if s = r, \Ila b= \I/;}) which implies that T" is
unique and we are in presence of a pair of dual Riesz basis.

Remark: In Theorem 3.1 we have assumed that b; belongs
to A, for each j = 1,2,...,s since we want the sequence
{U”“b }keZ, j=12..6 10 be contamed in A,. In case that some
bj ¢ A, the sequence {U™;} ez, i—1.2,.., i nOt necessarily
contalned in A,. However, whenever 0 < Ay < By < 00,
the inequalities

Agllz® <D [, U™ ;) < Byllz||® forall z € A,

j=1keZ
hold, and conversely. Hence, the sequence
{U T’“b }k i=12. is a pseudo-frame for A, (see

Refs. [1 1], [12])
Denoting by P4, the orthogonal projection onto A,, since
for each z € A, we have

(z, Urkbj> = <:r,PAa(Ukaj)>, k€Z and j=1,2,...,s,

and, as a consequence, Theorem 3.1 can be reformulated in

terms {PAQ (Urkb )}keZ j=1.2,.¢ & sequence in Ag.

C. The study of the time jitter error

In Sections A) and B) it is not strictly necessary to have a

group of unitary operators {U'};cr to obtain the announced
results. However, in order to deal with the time-jitter error this
formalism becomes essential in our approach.
Let {U'}4cr denote a continuous group of unitary operators
in H containing our unitary operator U, i.e., say for instance
U := U'. Recall that {U"};cg is a family of unitary operators
in H satisfying (see Ref. [2, vol. 2; p.29]):

) UtUY =Ut,

2) U =1,

3) (Ulx,y)s is a continuous function of ¢ for any z,y € H.
Note that (U')~! = U~?, and since (U?)* = (U')~!, we
have (UY)* =U"".

Classical Stone’s theorem [14] assures us the existence of a
self-adjoint operator 7' (possibly unbounded) such that U =
e!*T', This self-adjoint operator 7', defined on the dense domain

of H

o0

Dr = {aj € ‘H such that / w? d||Ew33||2 < OO} )

— 00

admits the spectral representation T =
means:

(Tx,y) = /_Oo wd(Eyx,y)

where {E,, }er is the corresponding resolution of the iden-
tity, i.e., a one-parameter family of projection operators F,,
in H such that

1) E_:=

=5 wdE, which

for any x € Dp and y € H,

w—r 00

lim FE, = Iy,
w—r— 00

2) E,- = E, for every —oco < w < o0,

3) E, E, =E, where w = min{u, v}.
Recall that |E,z||?> and (E,z,y), as functions of w, have
bounded variation and define, respectively, a positive and a
complex Borel measure on R.

Furthermore, for any = S Dr we have that
. Ulz—z . .
}111’(1)7 =iTz and the operator T is said to be
-y

the infinitesimal generator of the group {U'};cg. For each
x € Dp, Utz is a continuous differentiable function of .
Notice that, whenever the self-adjoint operator 7' is bounded,
Dy = H and €' can be defined as the usual exponential
series; in any case, U? = €7 means that

({U'a,y) =/_Z

where © € Dr and y € H.

d(Byx,y), teR,

The following result on frame perturbation, which proof can
be found in [4, p. 354] has been used:

Lemma 3.2: Let {z,}52, be a frame for the Hilbert space
‘H with frame bounds A, B, and let {y,}5%, be a sequence
in H. If there exists a constant R < A such that

Z €

then the sequence {yn}S2, is also a frame for H with bounds

A(l—+/R/A ) and B(1+ \/R/B) If {z,,}5°, is a Riesz

basis, then {y,}52, is a Riesz basis.

— Y, 2)|? < R||z||* for each x € H,

Thus, we have the following result:

Theorem 3.3: Assume that for some b; € Dr, ie.,
J75 w?d||[Eybj||? < oo for each 1 < j < r, the sequence
{U*"b;}kez; j=1,2,..r is a Riesz basis for A, with Riesz
bounds 0 < Ay < By < oo. For a sequence € :=

{€rj}trez, j=1,2,...r of errors, let R be the constant given by

oo
2 max {/ w?d| Euby |}
j=12,...,r oo

where ||€|| denotes the £2-norm of the sequence €.
If R < Ay, then the sequence {U* *%ib,}rcz. j=10,. ,isa
Riesz sequence in H with Riesz bounds Aq,(l — \/R/A\I,)2

and By (1 + \/R/Bq/>2.

Next, we deal with the problem of the recovery of any x €
A, in a stable way from the perturbed sequence

{(ﬁjx) (kr + ij)}kel;jzl,Z ..... s

where € := {ex;}rez; j=12,.s denotes a sequence of real
errors.
Taking into account the L?(0, 1) functions

g5(w) ==Y (a,U*b;)x

keZ

R:= e

2k 192 s, (9)

we can define the s X r matrix

G(w) == {gj (w + k;l)L



and its related the constants o and (g are given by

ag := essinf Apin[G*(w)G(w)],

6= esind A (G (0)G(w)]
B = esssup Apmax[G*(w)G(w)] .
we(0,1/r)

It is worth to mention that in [9] was proved that the sequence
{gj(w)ezﬂ"”w}nez;j:l,g,m’s is a frame for L2(0,1) if and
only if 0 < ag < fBg < oo. The idea is to consider the
sequence {gm,j(w)e2”i7'mw}m€zj:1 , , as a perturbation
of the above frame in L?(0, 1), where

Gm,; (W) = Z<a’ Uktemib )y ™0 5 =12 .. s.
kEZ

For || < 1/2, define the functions,

Ma,bj (’7) = ter[n_;{{)f’y] |<CL, Uk+tbj> - <aa Ukbj>| ,
kEZ
and
Na,bj () =
max max |{a, U™ ET,) — (a, U™ Fb,)]| .

k=0,1,....r—1 te[—,
el [=v]

Notice that N, (v) < My, () and for r = 1 the equal-
ity holds. Moreover, assuming that the continuous functions
0;i(t) :=(a,U';), j =1,2,...,s, satisfy a decay condition
as ¢;(t) = O(|t|~(1+m)) when [t| — oo for some n; > 0,
we deduce that the functions N, (v) and Mgy, () are
continuous near to 0.

Theorem 3.4: Assume that for the functions g;, j =
1,2,...,s, given in (9) we have 0 < ag < fg < oo.
For an error sequence € := {€y,;}mez; j=1,.,s, define the
constant 7; := sup,, ¢y, |€m;| for each j = 1,2,...,s. Then
the condition Zj‘:1 Mo, (V) Nay, (7;) < ag/r implies that
there exists a frame {C’fn’j}mez;jzm,_,’s for A, such that,
for any = € A,, the sampling expansion

T = Z Z <£E, grmtems b]>7'l Cfn,j

j=1mez

in#H, (10)
holds. Moreover, when 7~ = s the sequence
{Cfmj}mez;j:l,?,...,s is a Riesz basis for A,, and the
interpolation property (Cf ;, U™+ mby). = ;1 6, holds.

n,j7

Sampling formula (10) is useless from a practical point
of view: it is impossible to determine the involved frame
{Cyen’j}mEZ;j:l,?,‘..,s- As a consequence, in order to re-
cover € A, from the sequence of inner products
{<xvUrmﬁmjbj>H}mez;j:1,2,..,,s we could implement a
frame algorithm in ¢2(Z). Another possibility is given in the
recent Ref. [1].

IV. CONCLUSION

By way of conclusion we may say that we have
obtained a complete characterization of the sequence
k . .
{U Tbj}keZ;j:lJ,.ws in A,, where l.)j € Aa,. .1 <j<s
We have found a necessary and sufficient condition ensuring

that it is a complete system, a Bessel sequence, a frame or a
Riesz basis for A,.

In the case that this sequence is a frame for .4, we can
give an explicit family of dual frames allowing to recover any
x € A, by means of a sampling formula like (4).

Concerning the perturbation framework, we have found a
condition related to the ¢?-norm of € = {erjtrez; j=1,2,. s

o0
and the max {/ w2d||Ewij2} such that the sequence
7=1,2,...,s o
kr+er;p . : : H
{U ki b]}kez;j:172,m7s is a Riesz sequence in H and we

have obtained a sampling expansion allowing us to recover
any x € A, in a stable way from the perturbed sequence of

samples {(L;z)(kr + €x;) }oez; j=1,2,....s -
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