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Abstract A genetic algorithm (GA) is employed for the multi-objective shape opti-
mization of the nose of a high-speed train. Aerodynamic problems observed at high
speeds become still more relevant when traveling along a tunnel. The objective is
to minimize both the aerodynamic drag and the amplitude of the pressure gradient
of the compression wave when a train enters a tunnel. The main drawback of GA
is the large number of evaluations need in the optimization process. Metamodels-
based optimization is considered to overcome such problem. As a result, an explicit
relationship between pressure gradient and geometrical parameters is obtained.

1 Introduction

Importance of trains as a mean of transportation has notably grown in the last years
because of its energy efficiency. This situation has attracted much attention from
researchers to improve train aerodynamic performance. Efforts have been concen-
trated to the design of high-speed trains, exceeding over 300 km h−1, especially in
densely populated areas of Western Europe, Japan or South Korea [1]. Such evo-
lution has introduced aerodynamic problems that were neglected before, but are
remarkably significant nowadays. Examples of these are aerodynamic drag, aerody-
namic noise and vibration, or uprise of ballast. These problems become even more
complicated and serious when train travels at high speed through a gallery like a
tunnel.

Presence of tunnels is unavoidable in railways, and actually many reasons let
us conclude that there will be even more (environmental considerations in densely
populated areas or desire for straighter tracks for high-speed operation), [2]. Fur-
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thermore, in the near future, most of the new tunnels are planned to be double-tube
tunnels with only one rail per tube, driving to a reduction of the cross-sectional area
at the tunnel (and consequently a larger blockage ratio); and it is hoped to even in-
crease travel speed along the tunnel [3]. So, it is clear that aerodynamic optimization
involving high-speed trains running through a tunnel is of major interest.

The aerodynamic consequences of high-speed trains running in a tunnel are ba-
sically resumed in two correlated phenomena, the generation of pressure waves and
an increase in aerodynamic drag. Schetz [2] indicates that drag increase is more rel-
evant in long tunnels, while pressure pulses generated at the extremes of the gallery
cause the most problems in short length tunnels. Thus, high-speed train aerody-
namic optimization becomes a multi-objective optimization problem. The present
paper deals with the nose geometry optimization to reduce the pressure gradient of
the compression wave when the train enters the tunnel.

2 Phenomena description and optimization approach

The flow generated by a train moving along a tunnel is characterized by strong
unsteadiness because of the propagation and reflection of pressure waves. When
a train enters a tunnel, a compression wave is generated, which propagates along
the tunnel at approximately the speed of sound. Any discontinuity in the tunnel
cross-section drives to a new reflection of the pressure wave. In particular, at the
exit, part of the compression wave is reflected back as an expansion wave. The
rest of it, namely micro-pressure wave, is reflected outside as an impulsive noise
wave. The micro-pressure wave increases with the rate of change of the compression
wave, i.e., the pressure gradient (∂ p/∂ t), hence the effort to reduce the latter. The
amplitude of the pressure gradient of compression wave is also responsible for the
aural discomfort of train passengers.

The most relevant parameters affecting the pressure waves nature are blockage
ratio, nose length, nose and tail shape, train speed and others related to the tunnel
entrance design. Among them, a conscious description of the nose geometry of the
train is accepted as the most relevant countermeasure in reducing ∂ p/∂ t. The pres-
sure gradient as a function of the nose shape is the objective function to minimize.

Raghunathan, [4], gives an expression of the peak pressure of the impulse wave
as a function of the maximum pressure gradient in the compression wave front

∆ ppulse,max =
At

πra0

(
∂∆ p
∂ t

)
comp,max

(1)

being At the cross-section area of the tunnel, r a given distance away from the
sound source, and a0 the sound speed at atmospheric conditions.

Howe gives an expression for the maximum pressure gradient for a snub-nosed
train entering an unflanged circular cylindrical tunnel of radius R along the axis of
symmetry,
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being A the train cross-sectional area and v the train speed. Nonetheless, this
expression is independent of nose shape, whereas Matsuo, [5], proposes a formula
to determine the peak pressure gradient as(

∂∆ p
∂ t

)
comp,max

=
v

πkdt
∆ p (3)

with dt the train hydraulic diameter and ∆ p the pressure rise due to the train
entry in the tunnel. The coefficient k in equation 3 is a correction factor which con-
siders the nose-geometry effect on pressure gradient. A modified equation of Ozawa
approach is also included in [5] to determine ∆ p

∆ p =
1
2

γρM2

{
1−φ 2

φ 2 +(1−φ 2)M− γM2(1− φ2

2 )

}
(4)

where φ is defined as

φ = 1− A
At

(5)

Previous studies indicate that the optimal nose shapes have much blunter front
ends [6, 7]. This characteristic that is positive for reducing pressure gradient be-
comes a drawback when considering the drag coefficient. As drag coefficient causes
up to 80% of total resistance when train speed is close to 300 km h−1, this is the
other objective function to be optimized.

Optimization of aerodynamic properties of high-speed trains has been handled
as a trial-and-error procedure, which relies on engineers experience. Multiobjective
behaviour requires a compromise between the objective functions. Thus, a rigorous
numerical algorithm that is capable of analyzing a design space. To deal with this
problem, different optimization methods have been introduced and used int the aero-
dynamics research community. Two main groups are observed. Zero-order methods
based on direct evaluations of the objective function, among which Genetic Al-
gorithms (GA) stand out; and first-order methods based on gradient computation,
where Adjoint methods are considered as the most efficient proposal. Advantages
and disadvantages of each one have been pointed out. There is not a best one, and
the choice of each one depends on the problem to be faced. Regarding the nature of
the aerodynamics of train/tunnel systems, a three-dimensional, unsteady, turbulent,
compressible flow is observed. Unsteadiness and compressibility implies an extra
computational cost which needs to be limited in order to perform an efficient study.
For this, Adjoint methods are postulated as the best option, as the number of numer-
ical simulation required is inferior to the one involved in GA methods. However, the
adjoint solver implemented in any commercial CFD code does not permit unsteady
or compressible flow simulations yet, so the adjoint method option is discarded.
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GA, introduced by Holland and developed by Goldberg [8], are a technique that
mimic the mechanics of natural evolution. Once a population of potential solutions
is defined, it combines survival-of-the-fittest concept to eliminate unfit character-
istics and utilizes random information exchange, with exploitation of knowledge
contained in old solutions, to effect a search mechanism with power and speed2.
Iteratively, better results are obtained until a solution closer to globally optimal so-
lution is reached. However, the main drawback when using GA is their need of a
large number of evaluations of the objective function. Furthermore, this problem
is considerably more important when evaluations are computational cost-effective.
This number of simulations is defined by the number of design variables to repre-
sent any optimal candidate. Thus, the unsteady and compressible nature of the flow
to be simulated make us to propose a very simple parameterization of the train nose.
It is evident that the evaluation of each optimal candidate with the GA cannot be
done by a solver call. Instead, a metamodel is considered as essential for the global
search of the optimum. The metamodel technique chosen in this paper is the radial
basis function (RBF) network, which is possible to be fitted and trained indepen-
dently of the number of design variables used for the geometric parameterization.
More information of it is indicated in section 7.

3 Description of the geometric parameterization

It has been explained that it is necessary to propose a geometric parameterization
simple enough to make this optimization study affordable in terms of computational
cost. The parameterization here presented is based on a baseline geometry. This
reference geometry is called ‘generic train’, [9]. From it, one extra design variable
is introduced here to give more diversity to the design space and capture the nose
bluntness effect. Any optimal candidate is defined in terms of three design variables,
l1, l2 and R1. The nose length l1 controls the shrinking of the nose and, following
Raghunathan proposal [4], l1 varies from one to four times the train width. The
length l2 refers to the bluntness of the nose (top view), and its range of variation is
[ 1

6 w, 1
3 w], where w is the train width. Finally, radius R1 defines the A-pillar round-

ness and let us change the cross-sectional area of the train and the bluntness of the
nose tip. R1 varies from [ 1

6 w, 1
4 w]. This parameterization is sketched in figure 1.

Geometries are parametrically defined in CATIA R©. Height H and width w are set
constant for all the geometries. H is 3.850 m and w is 3.000 m. Nose tip height and
tip roundness are also the same for all the cases, with rt = 0.750 m. Clearance c
between the top of the rail and the bottom of the train is set to 0.250 m. The radius
that controls the connection between the nose and the rest of the car is rc = 0.750
m.

A three-dimensional ‘maximin’ Latin Hypercube design (LHD) of fifteen points
(size = 5n, where n is the dimensionality of the design space) is used to generate
the DoE. A database of the best designs of LHD is included in [10], from where the
design used here is obtained. In table 3 information of the fifteen geometries that
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define the initial DoE is presented. Values of the three design variables are given, and
geometrical characteristics to compare them are also included. The cross-sectional
area of the train and the corresponding blockage ratio is computed. A cross-sectional
area of the tunnel of At = 63 m2 is considered. It is observed that as the radius R1
becomes larger, the train frontal area reduces. This effect might lead to a mistaken
conclusion when comparing the aerodynamic drag among the proposed geometries,
since it is obvious that a smaller cross-sectional area produces a lower pressure drag.
However, range of variation of R1, is limited so that cross-sectional area changes
are negligible, which is emphasized regarding the blockage ratio. R varies between
0.176 and 0.180, what is assumed to be acceptable for further comparisons.

H

w
lnose

+

R1
rt

l2

L

+

+
rc

Fig. 1 Geometric parameterization used to define the optimal candidates.

4 Numerical set-up

The computational domain is composed of the tunnel and the tunnel entrance. As
the purpose of this study is to analyze the unsteady flow field at the tunnel entrance
to determine the pressure gradient when the train enters the tunnel, outside region
of the tunnel end is not included in the computation. This situation is also known as
infinite length tunnel. The train width is taken as the reference length. The tunnel is
100.0 (300.0 m) long, which is long enough to permit an investigation of the tran-
sient flow field at the tunnel entry, [5]. The railway is simple-tracked, so the train
body is placed at the center of the tunnel section. Figure ?? presents a front view
of the train and the tunnel. The train is 1.285 high and the clearance is 0.083 high.
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Geo # l1 [m] l2 [m] R1 [m] A [m2] R
1 3.000 0.679 0.607 11.195 0.178
2 3.643 0.929 0.571 11.270 0.179
3 4.286 0.643 0.732 11.090 0.176
4 4.929 0.893 0.696 11.134 0.177
5 5.571 0.536 0.536 11.304 0.179
6 6.214 0.786 0.500 11.335 0.180
7 6.857 0.500 0.661 11.175 0.177
8 7.500 0.750 0.625 11.215 0.178
9 8.143 1.000 0.589 11.252 0.179
10 8.786 0.714 0.750 11.067 0.176
11 9.429 0.964 0.714 11.112 0.176
12 10.071 0.607 0.554 11.287 0.179
13 10.714 0.857 0.518 11.320 0.180
14 11.357 0.571 0.678 11.155 0.177
15 12.000 0.821 0.643 11.195 0.178

Table 1 Design variable values and geometrical characteristics of the geometries included in the
initial design of space. A refers to the train cross-sectional area, while R is the blockage ratio.

At the beginning of the computation, the train should ideally be far from the tunnel.
Although this requires a great deal of computational time cost, as schematically il-
lustrated in figure 2, here an intermediate zone of 50.0 (150 m) long is considered
upstream the train nose before entering the tunnel. This is used to stabilize the nu-
merical simulation. In order to not consider the effect of the tail entering the tunnel,
an infinite length train is modeled. Actual length of the train model is 67.0 (200 m).
The surroundings of the entrance of the tunnel are dimensioned so that the domain
boundaries do not affect the flow close to the tunnel portal. The boundaries are 10.0
(30.0 m) far from the longitudinal symmetry axis of the train

Symmetry boundary condition
Non-reflective boundary condition
Wall boundary condition
Pressure outlet boundary condition

Sliding mesh

Train body Nose Intermediate
zone

v

Tunnel

No moving mesh

Fig. 2 Dimensions of the flow domain and boundary conditions for the numerical simulations.
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Simulations are run using ANSYS-FLUENT R© CFD software. A compress-
ible, unsteady, turbulent flow simulation is considered. The standard k− ε turbu-
lence model is used, with second order upwind momentum and time discretization
scheme. A train speed of v = 250 km h−1 is imposed. The simulation of a train
moving in a gallery involves the relative motion of the train with respect to the tun-
nel walls. This motion is modeled using the sliding mesh technique. Since the flow
is inherently unsteady, a time-dependent approach is required. A time step has to
be defined for that discrete steps. Here the time step ∆ t is 0.001. This time step
is sufficiently small to resolve unsteadiness in the flow field. The boundary layer
is captured all along the train surface and the ground, but not in the tunnel walls.
Wall functions are used, and y+ is fixed to 100. Boundary conditions are indicated
in figure 2.

5 Validation of the numerical results

In [?] and [?] a relation of the pressure rise ∆ p and train velocity for different
blockage ratios R = A

At
is given, with A the train cross-sectional area and At the

cross-sectional area of the tunnel. Experimental data for R = 0.216 at real tunnels
is included. These data are represented in figure 3, where the red dots refer to the
experimental data. This information is used to validate our numerical results. While
the numerical set up was validated from experimental data, the pressure rise values
obtained from the numerical simulations of the geometries of the initial DoE are
considered satisfactory as they are well agreed with the theoretical expression from
equation 4. In figure 3, blue dots refer to the pressure rise observed in our cases.

6 Discussion of the initial geometries performance and flow field
description

An analysis of the performance, in terms of pressure rise, maximum pressure gradi-
ent and drag coefficient, of the first fifteen geometries is developed before running
the actual optimization process. It is considered interesting to do it in order to yield
some insight into the nature of the design space.

Figure 4 shows the distribution of cross-sectional area of the train for the most
representative cases included in the initial design of experiments. To complete it,
distributions of an ellipsoid, a paraboloid and a conic nose are also plotted. The
paraboloid of revolution is considered as the optimal geometry, as it involves a con-
stant rate of change of cross-sectional area. However, Iida [6] proposes an optimal
nose shape which has a blunter front end and a slower increase of the cross-sectional
area in the middle section of the nose. All the geometries considered in this study
have a blunter front end that the paraboloid, and geometries #1 and #3 are still
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Fig. 3 Validation of the numerical results. It is represented in blue dots the pressure rise from the
numerical simulations.

blunter than Iida proposal. A zoom of the rate of change at the front end is used to
stress these differences.

Design variable l1, which directly affects the shrinking or slenderness ratio of the
nose, has little impact on the rate of change. Instead, l2 and R1 have an important
effect on the bluntness of the nose. This behaviour is stressed when comparing the
maximum pressure gradient for geometries of different nose lengths.

In figure 6, it is shown that the different design variables defining the nose
shape have little influence on the maximum pressure level. Differences in the cross-
sectional area of the train are evidenced in the different pressure rises, but these dif-
ferences are negligible as it was expected from the blockage ratio values. However,
the pressure evolution in time and the maximum pressure gradient are significantly
dependent on the nose shape. Among the fifteen cases simulated, the geometry #1
is found to be the best in terms of the intensity of maximum pressure gradient. This
conclusion is agreed with the observations of Maeda [?] or Kwon [11].

A reduction of the train nose accelerates the compression of the air. Conse-
quently, an abrupt pressure rise is observed as it is shown in figure 6.
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Fig. 4 Cross-sectional area distribution of the most representative geometries included in the initial
DoE.
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Fig. 5 Pressure rise at 75 m from the tunnel entrance result of the compression wave when the
train enters the tunnel for the most representative geometries included in the initial DoE.
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Fig. 6 Pressure gradient at 75 m from the tunnel entrance result of the compression wave when
the train enters the tunnel for the most representative geometries included in the initial DoE.

7 Metamodel construction

Let consider a set of N data points (xi, yi), i = 1 . . .N, where xi denotes an
n−dimensional vector of independent variables, (x1

i , x2
i , . . . xn

i ), and yi is the value
of the function at that point. Radial basis function (RBF) method is an interpolation
technique based on the idea that every known point i ‘influences’ its surroundings
the same way in all directions according to some assumed functional form φ(di),
such that the radial distance di is defined as di = |x− xi| from (i.e. centered at)
the point xi. The norm || is the Euclidean distance. φ(di) is called the radial basis
function, and RBF method uses a linear combination of m radial basis functions

ŷ(x) =
m

∑
i=1

ωiφ(|x−xi|) (6)

to approximate the response y(x). wi is the weight of radial basis function i in
the linear combination aforementioned. While equation 6 is linear in terms of the
weights ωi, the predictor ŷ can approximate highly non-linear responses. A typical
radial function is the Gaussian function

φ(di) = exp
(
− d2

i

2r2
i

)
= exp

(
−|x−xi|2

2r2
i

)
(7)

An unavoidable task when using RBF networks is the estimation of the different
parameters involved in its construction. Apart from setting the weights in equation 6,
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the number of hidden units m, the spread r and the centers xi are the other parameters
to be defined.

The choice of centers affects the complexity and performance of the metamodel.
If too few centers were used, the network may not be capable of generating a good
approximation to the target function. If all the input samples are used as a set of
centers of the network, the model may overfit the data and it may fit misleading
variations due to imprecise or noisy data. To avoid it, forward selection is commonly
used, [12]. The idea is to add new basis functions (or centers) until some chosen
criterion, such as GCV (generalized cross-validation) stops decreasing. In this study,
such strategy is not contemplated since the number of points in the DoE is not so
large as to outline a notable benefit to select a subset of centers from the larger set
of all the input samples. The number of neurons m is set equal to N, and the centers
do coincide with the sampling points xi. The spread is fixed for all basis functions,
and the value is first estimated by the relation r = dmax/

√
m, where dmax is the

maximum distance between any two centers. This rule of dumb is just considered as
the beginning of a parametric study of its effect on the performance of the network,
see figure 8(a).

Instead of forward selection, ridge regression is used to control the model sensi-
tivity. Ridge regression [12] is used to reduce the effective number of parameters,
and the resulting loss of flexibility makes the model less sensitive, controlling the
balance between bias and variance. A regularization parameter λ is introduced to
the sum-squared-error expression applied to determine the optimal weight vector
{ω}m

j=1. In [12], a parametric study to find the parameter λ is proposed, and this
strategy is also used in this paper. The model selection criteria used to find λ (and
r) are the prediction error sum of squares (PRESS)and the GCV, whose expressions
are given as

PRESS = σ̂
2
LOO =

yT P(diag(P))−2Py
N

(8)

based on the leave-one-out cross-validation method. P is called the projection
matrix, and y is the observation vector from the DoE. For a better understanding of
each variable, the reader is referred to Orr [12]. Generalized cross-validation (GCV)
is defined as

σ̂
2
GCV =

pyT P2y
(trace(P))2 (9)

In figures 8(a) and 8(b) it is shown the conclusions about the optimal value of
λ and r. While the spread is increased, the prediction error is reduced, but the co-
efficient R2 is lower than in the cases of smaller spread values. As the accuracy of
the model measured by R2 is still acceptable for the largest spread (r = 1.83), the
criteria of best prediction (minimal σLOO or σGCV ) is adopted as the model selection
criteria. In such situation, lowest prediction error is observed for a λ = 0.01, which
is considered as the regularization parameter. These coefficients do complete the
metamodel definition before using it for the surrogate-based optimization process.
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8 Surrogate-based optimization

Once the metamodel has been constructed, it is possible to carry out the actual op-
timization process. Here the MATLAB code implementation, included in the Opti-
mization Toolbox, is used for running the genetic algorithm. According to the the-
ory previously introduced, some operation parameters have to be fixed. Selection,
crossover and mutation operators, respective crossover and mutation probabilities
and population size are parameters that can strongly affect on the GA efficiency.
Therefore, a parametric study to determine which values allow a best performance
is necessary. Ten different population sizes (from 20 to 200 individuals per popula-
tion) are tested. Crossover probability is also studied, varying it from Pc = 0.25 up
to 1. Mutation probability is fixed to 0.01. Table 5 summarizes the most important
information from the algorithm applied.

Population size 20 - 200
Elitism Yes
# elite individuals 2
Selection function Tournament (4)
Scaling function Ranking
Crossover function Two-points
Pc 0.25 - 1
Mutation function Uniform
Pm 0.01
# max generations 300

Table 2 GA parameters values.

In this way, 160 tests are performed. The best combination of these parameters
is selected regarding at the optimal found by the algorithm. It is obtained when Pc
= 0.45 and the population size is 160. The optimal design results in the following
design variables values. After generation fifteen, no improvement is observed in the
best optimal candidate. The final result of the optimization process is a maximum
pressure gradient of 5201 Pa s−1.

Geo # l1 [m] l2 [m] R1 [m]
1 3.400 0.550 0.685

Table 3 Design variables of the optimal geometry resulting from the optimization process.

9 Conclusions

This paper shows the capabilities of Genetic Algorithms (GA) to solve an opti-
mization problem when the entry of a high-speed train in a tunnel is considered.
The nature of the flow, with a compressible, unsteady and turbulent behavior makes
necessary to limit the number of design variables in order to run an efficient op-
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timization resolution. In this paper a simple geometric parameterization based on
three design variables have been proposed.

The high computational cost of a simulation makes as well necessary to base
the optimization resolution on metamodels or surrogate models. Here a radial basis
function (RBF) network has been considered to substitute the expensive accurate
simulations by the evaluation of a very cheap model that helps speeding up the
optimization process. This metamodel introduces new parameters that need to be set.
The interest of using metamodels is based not only on accelearting the optimization
process, but also on yielding insight the nature or landscape of the design space.

The limititations because of the cost of an unsteady compressible flow simula-
tion result into a poor initial design of experiments, which directly affects the meta-
model. Even when the accuracy and prediction characteristics of the metamodel are
satisfactory, new simulations are required to enhance the model response.

This work is financed by Ministerio de Ciencia e Investigación (Eng. Ministry
of Science and Technology) under contract TRA-2010-20582, included in the VI
Plan Nacional de I+D+i 2008-2011. It is also part of the research project included
in Subprograma INNPACTO, from Ministerio de Ciencia e Innovación.
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(g) (h)

Fig. 7 Pressure fields at the train surface for the most characteristic trains. Geometries #1 (a), #2
(b),#3(c),#4(d),#5(e),#6( f ),#7(g),#10 (h)
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Fig. 8 Examples of three-dimensional shape parameterization and nose construction. Train bodies
are constructed with CATIA R©. Figure (a) corresponds to ICE 2.


