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Abstract 
We aim at understanding the multislip behaviour of metals subject to 
irreversible deformations at small-scales. By focusing on the simple shear of 
a constrained single-crystal strip, we show that discrete Dislocation Dynamics 
(DD) simulations predict a strong latent hardening size effect, with smaller 
being stronger in the range [1.5/xm, 6/xm] for the strip height. We attempt 
to represent the DD pseudo-experimental results by developing a flow theory 
of Strain Gradient Crystal Plasticity (SGCP), involving both energetic and 
dissipative higher-order terms and, as a main novelty, a strain gradient extension 
of the conventional latent hardening. In order to discuss the capability of the 
SGCP theory proposed, we implement it into a Finite Element (FE) code and 
set its material parameters on the basis of the DD results. The SGCP FE code is 
specifically developed for the boundary value problem under study so that we 
can implement a fully implicit (Backward Euler) consistent algorithm. Special 
emphasis is placed on the discussion of the role of the material length scales 
involved in the SGCP model, from both the mechanical and numerical points 
of view. 

(Some figures may appear in colour only in the online journal) 

1. Introduction 

This work focuses on the multislip behaviour of a single-crystal metal strip sheared between 
two bodies impenetrable to dislocations. On the basis of this benchmark, we analyze the 
capability of a Strain Gradient Crystal Plasticity (SGCP) model to reproduce the fundamental 
features of the strip behaviour by comparison with the pseudo-experimental results obtained 
from two-dimensional discrete Dislocation Dynamics (DD) simulations. We are particularly 
interested in analyzing the effect of the strip size on its mechanical response. 



systems. 

The details of theDD code here employed are reported in [1,2]4. The SGCP model consists 
of an extension of the model developed in [5-7] (see also Gurtin etal [8,9]): it is of the higher-
order and work-conjugate type (see, e.g., [10] and references therein) and it involves both 
energetic and dissipative higher-order terms; in the limit of vanishing material length scales, 
the SGCP model particularizes to the crystal viscoplasticity model of Peirce etal[ 11], within 
the small strain range5. Within the strain gradient plasticity framework, rate-dependence 
provides two benefits: (i) it is not necessary to impose higher-order boundary conditions on 
the internal boundaries between elastic and plastic regions, and (ii) more efficient algorithms 
can be developed to obtain numerical solutions. Moreover, viscoplasticity particularizes to the 
rate-independent case for an appropriate limit choice of a rate sensitivity material parameter. 

In this work, the results obtained from DD and SGCP are analyzed and discussed with 
particular emphasis on the role of the material length scales involved in the latter. 

First, the effect of the strip height has been analyzed by means of DD simulations 
for a crystal endowed, in each material point, with a single couple of active slip systems 
symmetrically inclined with respect to the applied shear direction (see figure 1). We observe a 
size effect in the mechanical behaviour for strip heights in the range 1.5-6 //m. The size effect 
consists of an increase in strain hardening with diminishing size, without strengthening (i.e. an 
increase in what is recognized as the initial yield stress). This effect can be reproduced both 
qualitatively and quantitatively by using the SGCP model with the energetic material length 
scale set to I = 0.6 //m. 

Second, the latent hardening has been studied by introducing a further couple of active 
slip systems symmetrically inclined, with respect to the applied shear direction, by a larger 
angle than that characterizing the first couple. The DD results show a much stiffer response 
in the crystals endowed with two pairs of systems at a strain larger than about twice the strain 
corresponding to the initial yield stress, the latter still being independent of the size. This 
indicates a large latent hardening with related the size of effect 'smaller being stronger'. In 

4 Among the seminal works on DD let us mention those of Kubin and co-workers (see, e.g., [3]) and van der Giessen 
and Needleman [4], 
5 Borg [12] also extended the conventional crystal plasticity of Peirce et al [11] to the strain gradient case, but, 
contrary to the modelling proposed here, without including the energetic higher-order terms and by maintaining the 
conventional equations for the latent hardening. 



order to describe this effect by means of SGCP, we propose a strain gradient extension of the 
conventional latent hardening of Peirce et a I [11]6. This constitutes a further source of coupling 
between the extended Schmid equations governing the flow on the slip systems, with respect 
to the coupling provided in our SGCP by the definition of a defect energy as a function of 
Nye's dislocation density tensor (Nye [15], Fleck and Hutchinson [16], Gurtin [17], Bardella 
and Giacomini [7]). 

Currently, the prediction of the strain hardening on the basis of the interaction among slip 
systems is one of the most relevant problems in small-scale plasticity (see, for instance, the 
DD analyses of Devincre et al [18]). 

In order to compare discrete DD and SGCP, we have implemented the SGCP theory 
proposed here. In particular, we have developed a specific Finite Element (FE) algorithm for 
the simple shear benchmark of interest, for which a unidimensional finite element is adequate 
because of the chosen symmetry in the slip systems configuration. The FE degrees of freedom 
are the displacement and the plastic slips and the time integration consists of a fully implicit 
Backward Euler scheme. The SGCP model is implemented into a user element subroutine 
(uel ) for the commercial FE code ABAQUS [19]. 

Brief literature survey of recent papers on SGCP, its comparison with DD, and its 
implementation. Among other SGCP theories, we find it worth mentioning the backstress-
basecl SGCP theories developed by Yefimov et al [20] and Geers, Brekelmans, and co-workers 
[21-24], These theories are characterized by the introduction into the Schmid law of a 
backstress contribution dependent on evolution equations for the dislocation densities, based on 
dislocation mechanics. Hence, these theories are closer to DD than the work-conjugate SGCP 
theory developed here; however, typically, the backstress-based SGCP theories only consider 
energetic strain gradient terms and when the interaction among slip systems is accounted for 
(see, e.g., [22]), which is central in this paper, it is uncertain whether or not such theories are 
compatible with thermodynamics (see [10,25,26]). 

Yefimov et al [20,27] verified that their backstress-based SGCP theory can represent the 
results obtained from DD simulations for a few meaningful boundary value problems in which 
the crystal is assumed to deform in single slip. 

Among earlier comparisons between DD and SGCP we mention the works of Bittencourt 
et al [28] and Nicola et al [29], both concerned with testing Gurtin's 2002 SGCP theory [17]; 
such a theory involves only energetic higher-order terms and neglects the latent hardening. 
Nicola et al [29] exploited the problem of a thin strip on a semi-infinite substrate subject to 
thermal loading to identify the most appropriate form of the defect energy in Gurtin's 2002 
model [17]. They considered a single couple of symmetric slip systems and concluded that 
the defect energy should be proportional, through appropriate material parameters, to the sum 
of the squared gradients of the plastic slips. Here, we choose to define the defect energy as 
a function of Nye's tensor (as originally proposed by Gurtin [17]), as this provides a natural 
source of interaction among slip systems, as pointed out in [7], More recently, this higher-
order coupling has been investigated also by Bargmann et al [30] within the context of a finite 
deformation SGCP theory. Regarding the numerical solution of the related boundary value 
problems, Bargmann et al [30] propose a dual-mixed FE implementation characterized by a 
mixed implicit-explicit time integration. 

Reddy et al [31] propose an FE implementation of Gurtin's 2002 SGCP theory [17], 
assuming the defect energy proposed by Nicola et al [29], thus without interactions among 

6 Among the fundamental studies on the conventional latent hardening we mention those of Franciosi et al [13] and 
Havner [14], and references therein. 



slip systems. Other features of this SGCP model are its rate independence with standard 
linear, isotropic hardening. Reddy et al [31] develop a weak formulation in which the 
primal unknowns are the displacements, the plastic slips, and the backstress related to the 
microstress (that is, the vectorial higher-order stress [32]). The algorithm associated with the 
weak formulation has the objective of designing efficient general purpose finite elements. 

Wulfinghoff and Bohlke [33] propose a higher-order, work-conjugate SGCP theory 
involving, as an exclusive unconventional primal (kinematic) variable, the gradient of the 
sum of the plastic slip rates taken in modulus. They also consider a standard latent hardening 
into a Perzyna-like viscoplasticity framework. About the FE implementation, Wulfinghoff 
and Bohlke [33] write the variational statement in such a way as to impose in a weak form, 
through the use of a scalar micromorphic-like variable, the equality between a scalar Lagrange 
parameter and the microstress divergence7. This allows the addition of one sole extra degree 
of freedom, with respect to those involved in standard crystal viscoplasticity. 

Other investigators (see, e.g., [10,20,35] and references therein) have developed staggered 
solution schemes with explicit time integration for general purpose finite elements having as 
nodal degrees of freedom the displacement plus some plasticity measure appropriate to the 
SGCP of concern. 

Another strategy to obtain a robust general purpose FE algorithm for higher-order gradient 
plasticity consists of resorting to a discontinuous Galerkin scheme, as proposed by Ostien and 
Garikipati [36] in order to implement the phenomenological (i.e. neglecting the crystal lattice) 
gradient plasticity involving the plastic spin due to Gurtin [37], The nonlinear problem is 
relaxed by defining some primal plasticity unknowns in average on the finite element, instead 
of defining them as nodal degrees of freedom. It is here of some relevance to note that Gurtin's 
2004 gradient plasticity [37] has been shown to be the phenomenological theory closest to 
crystal plasticity when multislip occurs [38,39], 

Notation. We use lightface letters for scalars. For first-, second-, and third-order tensors 
we use boldface letters, with some exceptions where the use of indices makes the equations 
clearer. ' • ' represents the scalar product (for instance, for vectors: s = m • n = rnjnj, 
while, for second-order tensors: T = A N = AJJ^JJ); ' x ' is adopted for the vector product 
(t = m x n = , m :iii, = tj, with e,^- the alternating symbol); ' <g> ' is employed for 
the tensor product of vectors (S = m ® n = iiijtij = Sjj). For a a second-order tensor 
and n a vector: t{> = an = a^nj = f-1; for L a fourth-order tensor and e a second-order 
tensor: a = he = Lijk,£k, = Ojj. VM EE duj/dxj = i i j j , div a = a^j, curl 7 EE ejk,Yu,k, and 
sym S = ( S j j + Sjj) / 2 designate, respectively, the gradient of the vector field u, the divergence 
of the second-order tensor a , the curl of the second-order tensor 7 , and the symmetric part 
of the second-order tensor S. The number of slip systems available in the crystal is A and 
they are labeled with lowercase Greek indices. The underline is used to indicate a vector of 
dimension A (e.g. y collects all the plastic slips). 

The benchmark. We focus on the boundary value problem sketched in figure 1, consisting 
of the simple shear of a crystalline strip constrained between two bodies in which dislocations 
cannot penetrate, unbounded along x\ and of height H along the ^-direct ion. This 
benchmark has been one of the most exploited in the literature to evaluate the capability 
of various models to describe the behaviour of miniaturized metals. In fact, it allows the 

7 Earlier, a similar technique was proposed by Shu et al [34] within the context of the Toupin-Mindlin strain 
gradient theory. The relaxed version of the Principle of Virtual Work obtained by Shu et al [34] allowed them to use 
C°-continuous finite elements. 



reproduction of one of the most fundamental deformation modes in small-scale plasticity 
in a very simple way. The crystal is characterized by (i) isotropic linear elasticity, with 
Young's modulus equal to 70 MPa and Poisson's ratio equal to 0.33, so that the shear modulus 
[x = 26315 MPa, and (ii) B couples of slip systems (the total number of systems is then 
A = 2B), each couple /9 consisting of two possible glides symmetrically oriented with respect 
to any plane of constant x2 by an angle Op. The strip is sheared by applying to the plane 
X2 = H a uniform displacement equal to FH along the x\ -direction (so that T is called the 
applied shear). The conventional boundary conditions are given in terms of displacement u 
and read 

Ul(x2 = 0) = 0; u i (xi = H) = r H, (1.1) 

«2(*2 = 0) = 0; U2(X2 = H) = 0. (1.2) 

Outline of the paper. In section 2 we describe the DD simulations and discuss their results. 
Section 3 is devoted to presenting the equations governing the SGCP model in the general 
three-dimensional case, and to its particularization to the benchmark of interest here. The 
consistent and implicit FE algorithm of this benchmark is described in detail in section 4. 
The results obtained with DD and SGCP are compared and discussed in section 5. Some 
concluding remarks and open issues are given in section 6. 

2. Discrete Dislocation Dynamics simulations of the constrained simple shear 

The DD results have been obtained by means of the code developed as described in Segurado 
et al [1] (see also [2]). The method has been formerly established by Kubin and co-workers 
(see, e.g., [3]) and van der Giessen and Needleman [4]. The model basically describes plasticity 
as the irreversible motion of dislocations into a linear elastic crystal. Dislocation glide, in our 
plane strain benchmark, is governed by 

Vp = 
B, drag 

l \ — + > rr!. + " 9
 11 sin(20g) + I <712 + ) cos(2^) 

J V 

in which v'p is the velocity of the i dislocation on the ft slip system, b is the Burgers vector 
magnitude, Bdrag is the drag coefficient, a ' is the stress field exerted by the i dislocation in an 
unbounded medium, and a is the stress due to both the applied load and the image tractions 
applied at the boundary to make up for the use of the dislocation stress fields of the unbounded 
medium. At each time step along the loading history, a is obtained by means of a linear elastic 
FE analysis. 

A random distribution of sources is set in the strip such that in any source a dislocation 
dipole nucleates when the resolved shear stress reaches the nucleation stress for a certain 
minimum lapse of time, called the nucleation time. Dislocations of opposite sign gliding on 
the same slip system are annihilated when they are closer than the so-called annihilation 
length. Dislocation pinning by obstacles is accounted for by a random distribution of 
obstacles where dislocations get blocked if their driving shear stress is lower than the obstacle 
strength. 

The parameters involved in the simulation are set as follows: b = 0.25 nm, Bdrag = 
l.E — 4 N s i r r 2 , source density = 42 / / i r r 2 , obstacle density = 126/ / i r r 2 , nucleation 
stress = 25 MPa (with a standard deviation of 5 MPa), nucleation time = 0.01 //s, mean 
nucleation distance = 0.0625 //m, obstacle strength = 300 MPa, annihilation length = 6b 
and slip system spacing = 100b. Such values agree with those used in previous DD 
simulations [40,41], 



Applied shear r 

Figure 2. Results of DD simulations on a constrained crystalline strip with a single couple of 
symmetric slip systems. 

The inclination angles of the two couples of slip systems considered, with respect to the 
applied shear direction, are ±7t/8 and ± t t / 5 . 

The total time of the simulation is 1 .E — 5 s, while the time integration step is 5.E — 11 s, 
so that each analysis involves 2.E + 5 integration steps. 

The length of the strip is 10/ / /3 , in such a way that the results be marginally affected by 
the behaviour at the boundaries orthogonal to the shear direction, where dislocations are free 
to exit the strip. Longer strips would require too large of a computational effort. 

2.1. The results ofDD simulations 

The results of the DD analyses are reported in figures 2-A. Each plot is obtained by the 
average of three analyses run with the same initial data, but different realization, e.g., in terms 
of position of sources and obstacles (the results may also slightly differ because of the chaotic 
behaviour inherent to discrete DD). 

Varying the total time of the analysis (the explored range is [5.E - 6 s, 2.E - 5 s]) has 
given a negligible effect on the stress averages we are interested in, so that we conclude that 
DD simulations are quite rate insensitive. 

In the case in which one sole couple of slip systems is considered the results of figure 2 show 
that, within the range of about T e [0, 0.01], decreasing the height H leads to an increase in 
strain hardening, while no strengthening is observed. All the analyses are run until the applied 
strain is T = 2%, with the exception of the analysis for the largest strip (H = 6 [xm), ended 
at a strain of about 1.26% because the DD simulation is too much expensive for such a large 
sample. The applied shear amplitude considered is well representative of the relevant results 
obtainable by means of the DD here employed; in fact, soon after the maximum applied shear 
considered, the DD response reaches an almost steady-state behaviour, corresponding to the 
maximum (plateau) value of dislocations present in the strip. 



Figure 3. Results of DD simulations on a constrained crystalline strip with two couples of 
symmetric slip systems. 

Figure 4. Results of DD simulations on a constrained crystalline strip of size H = 3 /im endowed 
with either one couple or two couples of symmetric slip systems. 



The minimum strip height considered here is H = 1.5 //m. As pointed out by Nicola 
et al [29] and Segurado and Llorca [41], the origin of the hardening predicted by DD in smaller 
specimens may be nucleation controlled to a large extent. Such a phenomenon would be out 
of the description capability of the SGCP model considered in this investigation. 

The addition of a second couple of systems, see figure 3, provides an extremely high latent 
hardening, as, for each size H, the stress-strain curve is higher than that with one sole couple 
for about the whole range of applied shear T, as shown in figure 4 for the case H = 3 [xm. This 
means that the compliance introduced by the possibility of further slip given by the second 
couple of systems is overcome by the obstruction to glide provided on the first (less inclined) 
couple of systems by dislocations nucleating on the second couple. 

Since the analyses with two couples of slip systems are numerically more expensive than 
those in which the crystallography consists of a single couple of systems, the biggest strip in 
the case of two couples has H = 4.5 //m, smaller that the biggest strip with one sole couple. 
Also the analysis for the biggest strip endowed with two couples ended before T reached the 
value of 2%. 

The slight softening behaviour observable within a small strain range after the yield stress 
is reached may be ascribed to the sudden and simultaneous activation of several sources, to 
which a conspicuous plastic strain and a stress decay correspond. Then, dislocations start 
to pile up at the impenetrable boundaries and only a few sources remain (or become) active, 
leading to what is macroscopically recognized as hardening, until a maximum plateau stress 
is reached, corresponding to a steady-state dislocation density. 

3. The Strain Gradient Crystal Plasticity (SGCP) model 

The SGCP model here presented, aiming at describing the behaviour observed in the DD 
simulations, is an extension of the model developed in Bardella [5,6], Gurtin et al [8,9], and 
Bardella and Giacomini [7], The resulting SGCP model can also be seen as a strain gradient 
extension of the classical crystal viscoplasticity of Peirce et al[ 11] particularized to the small 
strain regime. 

3.1. Governing equations for general three-dimensional boundary value problems 

In the general case, we are concerned with the mechanical response of a single crystal occupying 
a space region £2, whose external surface S, of outward normal n, consists of two couples of 
complementary parts: the first couple consists of St, where the conventional tractions t{> are 
known, and Su, where the displacement M" is known, whereas the second couple consists of 
Sfls, where dislocations are free to exit the body, and where dislocations are blocked. 
S = S, U Su = Sfls U The crystal is free from body forces. 

We limit the theoretical part to the presentation of the compatibility, balance, and 
constitutive equations. The constitutive equations (given in section 3.1.3) include the novel 
latent hardening strain gradient extension. For the derivation of and more insight on the other 
governing equations presented next, the reader is referred to [5-7,9,39], 

3.1.1. Compatibility equations. 

Field equations, s is the total strain, defined in terms of the displacement u as 

e = symVw. 



The plastic part of the displacement gradient (i.e. the plastic distortion) reads 

A A 

7 = J2v { f l ] ™ { f l ] ® n ( / " = ( 3 - 1 } 

(S=1 (S=1 

in which, for its system p, is the plastic slip, and are unit vectors defining the 
slip direction and the slip plane normal, respectively, and = ® is the Schmid 
tensor. 

& = sym 7 = 
(S=1 

is the plastic strain, where = symS1^' . Nye's dislocation density tensor a (Nye [15]) 
is a representation of Geometrically Necessary Dislocations (GNDs)8 such that ctjj is the 
/-component of the resultant Burgers vector related to GNDs of line vector j . Nye's tensor 
represents the incompatibility of the plastic deformation field, dependent on densities of excess 
dislocations, i.e. GNDs. A definition suitable for developing a mechanical theory within a 
continuum mechanics framework (Fleck and Hutchinson [16]) reads: 

a = curl 7 . (3.2) 

After inserting definition (3.1) into (3.2), one obtains Nye's dislocation density tensor in terms 
of the slip gradients in the slip direction (interpretable as a density oipure edge dislocations 

= V y ^ ' • m (P ] lying along the transverse direction = m (P ] x and in the 
transverse direction (corresponding to a density of pure screw dislocations p-f ' = -
lying along the slip direction): 

a = ® ( p f t ^ + p f m ^ ) . 
p=1 

By defining the third-order tensor 

= ® (m[fS) ® - ® 

Nye's tensor can also be written by singling out its dependence on the plastic slip gradient [5]: 

«J = £ Y l M 8 -
p=\ 

We also define the projection of the plastic slip gradient onto the normal to the slip plane as 

Kinematic boundary conditions. 

u = u° on Su and y(fS) = 0 V/3 on S f s . 

8 About the role of GNDs in small-scale plasticity, see. e.g.. Ashby [42], Fleck and Hutchinson [16], Arsenlis and 
Parks [43], Needleman and Sevillano [44], and Kysar et al [45], 



3.1.2. Balance equations. 

Field equations. The absence of body forces allows the standard balance equation to be 
written as 

div a = 0 in £2 

with a the Cauchy stress. The unconventional (higher-order) balance equations read: 

- T</*> - d i v £ ( / f ) = 0 V/9 in £2, (3.3) 

where 

r " " = <r V ' 1 

is the resolved (Schmid) stress, 

ft - "wA^v + >«, - G>o h + ni VP U-4) 
is the so-called microstress [7,17], in which d is the defect stress, conjugate to Nye's tensor 
in the internal work, is the slip resistance, conjugate to the plastic slip rate in the 
internal work, and o J f \ o}Gfcoffi are higher-order dissipative stresses, conjugate to the rates 
p f \ p - f , p ^ , respectively, in the internal work. 

It is important to notice that the definition of dissipative higher-order stresses o j f ] 

work-conjugate to p f ] ( / = _L, O, N) is known to deliver the capability to describe some 
strengthening accompanied with diminishing size [5], Here, even though the DD results 
presented in section 2 show a negligible strengthening, we still consider a SGCP theory 
involving the dissipative higher-order stresses cof\ In fact, this provides a few benefits to 
the modelling. First, it allows the use of each plastic slip component as a primal (kinematic) 
variable, with corresponding nodal degrees of freedom in the FE formulation. Otherwise, the 
exclusive inclusion of Nye's tensor as higher-order primal variable would make the definition 
of the higher-order boundary conditions more convoluted (see [5,46]) and, consequently, the 
FE formulation also. Second, the presence of dissipative higher-order stresses mitigates the 
problems of convergence of the FE implicit algorithm; of course, in order to represent the 
DD results, we will appropriately choose the relevant material parameters: this will turn out 
in 'dissipative length scales' significantly smaller than the 'energetic length scale', the latter 
governing the influence of the defect stress. 

Static boundary conditions. 
an = t° on S, and n = 0 V/3 on S?is (3.5) 

3.1.3. Constitutive equations (including the latent hardening strain gradient extension). The 
Cauchy stress reads 

cr = L(e — sp) 
in which L is the elastic stiffness, henceforth assumed to be isotropic. The defect stress ensues 
from a power-law defect energy (already exploited in [39] in the context of phenomenological 
strain gradient plasticity): 

d = n?2(t\a\)M-la, (3.6) 

where I is an energetic length scale, cr and d are all the stresses coming from the free energy. 
In order to satisfy the 2nd law, the remaining (dissipative) stresses must be such that 

A 

Y , { s m Y ' P ) + < o f p f + c o f p f + c o f p f ) > 0 V(y, p(?), pN) ± (0, 0 ,0, 0). (3.7) 
P=i 



The choice presented next (see, e.g., [6,9]), extending the standard framework of crystal 
viscoplasticity, respects condition (3.7). Let us first define 

s « » = g « » a ) ( Z i L ) (3.8) 
V Yo / Yo 

where9 

involves three positive dissipative length scales L 0 , LN), y0 is a positive reference rate, 
N > 0 is a rate sensitivity parameter, and g^\X) is the resistance to dislocation glide, for 
which we put forward a strain gradient dependence, as follows. 

Slip gradient dependent latent hardening. The resistance to dislocation glide (X) is here 
given by the following extension of the latent hardening proposed in Peirce et al [11], in 
which the gradient dependence enters through both y which is quite natural, and the term 
highlighted by the horizontal brace, involving the new gradient-dependent variable or, defined 
below: 

A 

gifS)(X) = H(X) 

= mx) 

s j K = l l 

(K ) 
lYeff ' ( l - < 7 ) K e f f 

grad. extension 

n r ) e o +5 
q + (1 - q)SpK 

• U) 
Keff gifS)a = 0 ) = TO, ( 3 . 9 ) 

grad. extension 

= r . < Y 
(K) 

K = 1 

A 

E 
K = 1 

(1 - ^ ) N R m y 

A 

D 
=1 

+ (3.10) 

In the above equations (3.9)—(3.10), H(X) is the self-hardening function, T0 is a positive 
reference stress, 5pK is the Kronecker delta, q is the conventional latent hardening parameter 
(typically, q e [1.2, 1.4] in standard crystal plasticity [11]), and np and e0 are further (new) 
material parameters governing the gradient extension of the latent hardening proposed here1". 
The self-hardening Ti(X) is here conventionally defined as 

hoX 
Ti(X) = h0 sech" 

— T0 

with HO a positive hardening rate and TS > T0 the saturation stress [11], 

(3.11) 

i/p 

9 A more general expression for the effective slip rate is 

Ke'ff = ( L ^ ' L " + \LLPT\p + \Lopf\p
 + \LMPT\P) " V/3. 

Here, we choose p = 2. However, p oo. which should mostly lead to a larger strengthening prediction [7], has 
been proposed for phenomenological plasticity by Evans and Hutchinson [47] on the basis of the comparison with 
experimental results, and within this context, has been shown by Reddy [48] to correspond to a Tresca-like criterion on 
the maximum magnitude of the microstresses. As for most of the material parameters involved in the dissipative part 
of the constitutive prescriptions proposed here, even more dissipative length scales might be involved in the modelling 
by associating different lengths L ^ to different systems /}. 
10 Note that one of the three material parameters involved in the latent hardening gradient extension is redundant. 
Hence, we have chosen to take as material length scale the same parameter i involved into definition (3.6) of the defect 
energy. 



The latent hardening strain gradient extension proposed here accounts, on a given slip 
system f}, for the dislocation densities developed on the other slip systems (i.e. different from ft) 
through a^K In the presence of slip gradients, this gives a significant contribution to the latent 
hardening even when the plastic slips are very small, and this allows the qualitative description 
of what happens at the boundary layers, where dislocations pile up. This further source of 
higher-order coupling between slips, with respect to that provided by the defect energy (3.6) 
defined as a function of Nye's tensor, seems to be necessary to represent the DD results [49], 
Moreover, in our investigation we have found that there is the need, in the SGCP modelling, of 
an irreversible contribution to the slip resistance as that provided by incrementally 
related to GNDs. This vaguely agrees with the modelling of Gurtin and Ohno [26], who have 
developed a higher-order work-conjugate SGCP theory in which, in fact, the primal variable 
governing the defect energy consists of the integral along the loading history of the modulus 
of the dislocation density rate. Note that the model of Gurtin and Ohno [26], like that studied 
here, has the purpose of describing the interactions among slip systems. 

The dissipative higher-order stresses are defined as 

COF = T()L] ( ) £L_ with / = J., o , N. 
\ Yo J Yo 

With reference to this constitutive choice for the higher-order dissipative terms, let us remark 
that the substitution of the constant reference stress T0 with in order to have a 
constitutive prescription closer to equation (3.8) for would not make any substantial 
quantitative difference for the present study because the representation of the DD results 
requires us to set L / I , V/ = _L, O, N. 

3.1.4. The flow rule in terms of the plastic slips. For the sake of completeness, we rewrite 
the higher-order balance equation (3.3) in terms of displacement and plastic slips, through the 
relevant kinematic and constitutive equations provided above: 

i f i ) l ' eff \ / 

YO 

where 

Yo 
~roDf 

<0K N-1 
Yett 
YO Yo ^ f x y x 1 

dissipative hardening 
A 

K = 1 

M^L A 
AS) 
''kpl 

1 (fi) = 2////,: UiJ 

energetic backstress 

P = 1 A 

i m (f>) 

Equation (3.12) assumes, in the SGCP theory, the role of the flow rule. 

(3.12) 

3.2. Simple shear of a constrained strip with multiple symmetric double slips 

In the boundary value problem described in section 1, within the context of crystal plasticity 
and contrary to the DD analyses, all the fields are independent of both x\ and and, for 
each couple p of slip systems, the two slips are equal and we call both of them y^K The sole 



non-vanishing components of the plastic strain and Nye's tensor are, respectively: 

B B 

(3.13) 
8 = 1 

where the symbol ' denotes a partial derivative computed with respect to x2 and a23 is the 
density of the Burgers vector component in the -direction due to geometrically necessary 
edge dislocations lying along 

The conventional balance equation states that both a1 2 and a2 2 must be spatially uniform. 
Then, the boundary conditions (1.2) imply that u2 (and a22) must be null everywhere, so that 
the problem is essentially unidimensional and henceforth we will simplify the notation by 
dropping some indices, as follows: 

x = x2 p = cP e' = e 12 a = a2i 11 = 111 a = a \2 d = d 23 

The sole non-trivial component of the standard constitutive law reads 

B 

11' -2YV^cos (26B) = -
U 12 

while the higher-order balance equation (3.12) (i.e. the unconventional flow rule) becomes 
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where Lp collects the two dissipative length scales, L ± and LN, relevant to this problem: 

Lfi = y (L± sin 6fs)2 + (LN cos dp)2 

and the definition of effective slip rate which turns out to be 

About the latent hardening, equations (3.9)—(3.11) hold with 

K = l 1 
g ^ = H ( X ) T \ q y ^ (!-?>>& — J fo (3.14) 
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K = l 
X = Y j
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in which the particularization of equation (3.9) (first equation) into equation (3.14) for the 
symmetric simple shear has been accomplished just by substituting A with B. This means that 
we do not account for the interaction between any two systems within the same couple, where, 
in fact, glide starts simultaneously in each system. 



The higher-order boundary conditions, essential to impose that dislocations are blocked 
when they reach the strip edges, in the case in which L± > 0 or LN > 0 are11 

Y
(fS)(x2 = 0) = 0; y(fS)(x2 = H) = 0 V/3 = 1 B. (3.16) 

Actually, in the FE implementation presented below in section 4 we exploit the 
symmetries/antisymmetries of the problem and model only half of the strip region, with x e 
[0, H/2] and the boundary conditions (first equations in (1.1), (1.2), (3.16)), supplemented by 

u\(x2 = H/2) = TH/2, 

u2(x2 = H/2) = 0, 

£ P \ X 2 = H/2)=0 VJ8 = 1 B, 

the last boundary condition being a static higher-order condition of the type (3.5) (second 
equation). 

Finally, we note that the SGCP model proposed here, particularized to the simple shear 
problem and in the case of one sole couple of active systems (B = 1) without any conventional 
hardening (i.e. = T0 V/9), is totally analogous to the uniaxial strain gradient plasticity 
model studied by Anand et al [50], Anand et a I [50] implemented their model into an FE 
implicit algorithm and pointed out some numerical problems concerned with the implicit 
implementation. In the next section we report how we have addressed the analogous numerical 
issues we have encountered. 

4. FE implementation of the SGCP model for the simple shear problem 

4.1. Weak form of the balance equations 

The starting point for developing the FE algorithm is the Principle of Virtual Work, which 
can be split into two equations as it must hold for any independent variation of the primal 
(kinematic) variables u and y, which constitute the B + 1 nodal degrees of freedom: 

rHe, 
/ aSu'dx = 0, (4.1) 

Jo 

fHe, 
2 / {[s(f!)-acos(2ep)]Sy{fS)+ (dsm2ep+oj{f!))S(y{f!))'}dx = 0 V/3, (4.2) 

Jo 

where is the combination of (o ^ and o)^ which turns out to be work-conjugate with y1 ' 
(see, e.g., [7]) and He\ is the finite element length. 

4.1.1. FE approximation. We employ two-noded isoparametric linear elements, both for 
the displacement u and the slips y. The facts that the kinematic relation between u and y is 
enforced in a weak form and that only first-order derivatives of u and y appear in the equations 
to be solved, allows the use of C"-shape functions both for the displacement and the plastic 
slips12. Hence, the balance equations (4.1)-(4.2) can be rewritten in the intrinsic coordinate r, 

11 Otherwise, for the case of no dissipative higher-order terms (i.e. L± = LM = 0), see [5.46], 
12 Also. Evers et al [21] employed C°-continuous finite elements in order to implement their backstress-based SGCP 
theory. A study on the best plane strain finite element formulation for higher-order SGCP. within the large deformation 
regime, has been carried out by Kuroda [35] (see also the references therein). 
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where w/, y ^ and iV/(r), with / = A, B, are the nodal values of displacement and plastic 
slips and the interpolation functions, respectively. 

4.1.2. Numerical time integration. We indicate with and Af the value of the variable f at 
the beginning of the time step and its increment within the step, respectively. By accounting 
for the chosen FE interpolation, we have: 

1 - r 1 +r 
Kt = Ktk — - — + KtB — — , 

1 — r 1 + r 
Af = A fx - I- A£b ^ 

in terms of the nodal values ^B, At;A and At;B. 
Hence, we adopt the generalized trapesodial integration scheme, in which the relevant 

quantities are evaluated at 

St + 

with v e [0, 1] (v = 1 corresponding to the Backward-Euler scheme). By defining the rate 
within the time step At as 

S At 
we obtain the following expressions for the stresses: 
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The above expressions for the stresses have to be substituted into equations (4.3)—(4.4) to 
obtain the residual to be implemented in the ue l . The residual is defined as the opposite of 
the left-hand sides of equations (4.3)-(4.4) differentiated with respect to the nodal degrees of 
freedom variations SuA, Sy SuB, and 5 y n . 

—A —B 

4.1.3. The consistent jacobian. The consistent jacobian to be implemented in the u e l is 
defined as the opposite of the residual differentiated with respect to the nodal degrees of 
freedom increments AuA, Ay AuB , and Ay^ . The element stiffness matrix K_ has the 
dimension 2{B + 1) x 2{B + 1) and the expressions for all its components are given in the 
appendix. Here, with reference to the appendix, we note that K_ turns out to be unsymmetric, 
e.g., because of the integrals left unsolved in equation (6.2). Also, many numerical issues 
have to be addressed in order to obtain an efficient code. Among them, we remark that some 
contributions of the consistent jacobian, for the relevant range of the rate sensitivity parameter 
N e (0., 1.), become numerically very large for a very small amount of plasticity (that is, for 
Aye

(
ff' ->- 0). This unfavourable behaviour is emphasized as N approaches zero (i.e. as the 

model tends to be rate independent). 
Also, for a given the number of degrees of freedom, the FE model is more efficient if the 

mesh is finer where dislocations pile up (and slip gradients are maximum). 
Our numerical tests showed that the most efficient time integration scheme is Backward 

Euler, obtained by setting v = 1 in the generalized trapesoidal rule. The results presented in 
the following section refer to this choice. 

5. Comparison between DD and SGCP results 

The comparison between the results obtained from DD and SGCP is documented in figures 5-8, 
which also report, as reference, the prediction of the conventional crystal plasticity (obtainable 
in the limit of vanishing material length scales). The SGCP model is characterized by 
the following set of material parameters: n 26316MPa, T0 = 12MPa, Ts = 20MPa, 
h0 = 500MPa, y0 = 2 . E - 6 S " 1 , q = 0 .6 ,n p = 0.15, e0 = l . E - 4 s _ 1 , N = 0.165, M = 1, 
I = 0.6 [xm and L± = LN = 0.12 //m. Note that yo and e0 scale linearly with the total time 
of the analysis, in this case equal to l.E - 5 s. 
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Figure 5. Comparison between DD and SGCP results on a constrained crystalline strip with a 
single couple of symmetric slip systems. 

The quality of the numerical results obtained with the SGCP FE code has been checked 
by refining the mesh until stabilization of the results. The finest mesh employed consists of a 
72 000 element discretizing half strip. The element size decreases from the middle of the strip 
to the boundary by a ratio of 0.9999 between two consecutive elements, so that the element 
having a node on the boundary has length of about 7.5E - 4 the length of the element having 
one node in the strip middle plane. 

The comparison given in figures 5-8 is overall quite satisfactory from the quantitative point 
of view if judged in terms of a global increase in hardening accompanied with diminishing size. 
In fact, note that the material parameters above have not been set by exploiting any specific 
identification method: they have been instead obtained by a lengthy trial and error procedure. 
Hence, we expect room for improvement in the match between DD and SGCP results. However, 
this is beyond the scope of this article, in which we mainly wish to point out the huge size 
effect on the latent hardening predicted by DD, which seems to require, to be described by 
higher-order work-conjugate SGCP theory, a strain gradient extension of the conventional 
latent hardening. Let us further note that, just after yielding, the difference between the DD 
and SGCP results is mainly due to two causes: (i) the SGCP here employed is not endowed 
with a softening law able to represent the sudden and simultaneous activation of several sources 
leading, in DD, to a stress decay after the first yielding; (ii) in order to reach convergence, 
the SGCP implicit algorithm has required the introduction, through appropriate choice of the 
material parameters, of an amount of rate dependence and higher-order dissipation, actually 
larger than that exhibited by DD, raising the stress—strain curve predicted by SGCP. The 
comparison between figures 5 and 6 shows that the SGCP model seems to be able to predict an 
interesting peculiarity of the DD response: the size effect is quite small for strips larger than 
about H = 3 [xm in the case of two couples of slip systems (suggesting a sort of exhaustion of 
the size effect for strips a bit larger), while this is not the case for the strip endowed with one 
sole couple of systems. 
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Figure 6. Comparison between DD and SGCP results on a constrained crystalline strip with two 
couples of symmetric slip systems. 

The value of the energetic length scale I = 0.6 \ im has been set just by trying to reach 
the best match between DD and SGCP results. It is lower than the values identified by Nicola 
et al [29], ranging from 1.5 and 4.5 \im depending on the chosen form of the defect energy13. 
However, as derived by Groma and coworkers (see, e.g., [52]), the material length should be 
related to the average Statistically Stored Dislocations spacing, which can be estimated by 
the square root of the strip area divided by the total number of dislocations, which, in our 
benchmark, reaches a plateau at about the end of DD analyses with r = 2%; by taking the 
plateau value for the total number of dislocations, we obtain a lower bound for the length 
of about s»0.1 [xm, in fact smaller than that identified by comparing DD with SGCP. Of 
course, contrary to the dislocation density-based modelling developed in [52], our SGCP 
modelling does not account for the dependence of the material length scale on the dislocation 
density. 

Note that, for what concerns the conventional self-hardening parameters, Peirce etal[ 11] 
suggest ho = 8.9T0 and Ts = 1.8T0. Our identification based on the DD results for a strip with 
zero-inclined slip systems (see the black plots in figures 5 and 6) provides T S / T 0 « 1.7, while 
HO/T 0 42. About the value q = 0 . 6 of the conventional latent hardening parameter, we note 
that a value larger than «al makes the plastic slip y(2) (x) numerically vanish. However, q does 
not have a big influence on the predictions of the SGCP model, in which y[2](x) mostly affects 
the results through its gradient. In the standard crystal plasticity case (see the brown plots in 
figures 5-8), q = 0.6 is large enough to make the stress-strain curves for B = 1 and B = 2 
almost identical (that is, in the case B = 2, y[2](x) is negligible with respect to y ( 1 ) U ) ) . 

Among the many possible sources of discrepancy in the material length scale as identified by Nicola et al [29] and 
by us. let us here mention the different choice of some parameters in the DD simulations: Nicola et al [29] chose 
(see. e.g.. Nicola and van der Giessen [51]) source density = 60/.im~2, obstacle strength = 150MPa. and obstacle 
density = 60 /.im~2, while in this work those parameters are set to 42 /.im~2, 300 MPa. and 126 /.im~2, respectively. 
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Figure 7. Comparison between DD and SGCP results on a constrained crystalline strip of size 
H = 1.5 / im endowed with either one couple or two couples of symmetric slip systems. 

Since DD results are quite rate insensitive, we set N as small as possible, compatibly 
with the algorithm efficiency (decreasing N makes convergence more difficult). Note that in 
order to represent the DD results with SGCP we found that smaller the parameter N larger the 
parameter e0. 

For the case H = 1.5 /im with two couples of slip systems, figure 9 compares the SGCP 
predictions provided by the use of (i) the novel gradient dependent latent hardening, (ii) the 
standard latent hardening of Peirce etal[l 1] and (iii) no latent hardening at all. As reference, 
in figure 9 we have also plotted the stress-strain curves provided by standard crystal plasticity 
and by SGCP for the case of one sole couple of slip systems. The absence of the novel 
gradient dependent latent hardening leads to stress-strain curves which coincide with that 
for one sole couple of slip systems until the gradient term div£ (2) becomes large enough to 
require a significant plastic slip yl2] to satisfy the unconventional balance equation (3.3) for 
the second couple of slip systems. This is further documented by figure 10, where the plastic 
slips are plotted as functions of the applied shear for the SGCP model with conventional latent 
hardening. After the second couple becomes active, the difference between the two SGCP 
models with no latent hardening at all or standard latent hardening is small (see figure 9), the 
latter having latent hardening coefficient (q = 0.6) such that the activation of the second couple 
makes the response more compliant. This analysis shows the phenomenological reason why 
there is the need for a slip gradient dependent latent hardening, which allows a quite small 
plastic slip (y{2]) to strongly influence the stress-strain response just after the first yielding. 
For the case H = 3 /x m, a similar analysis shows that the stress-strain curves provided by the 
two SGCP models with no latent hardening at all or standard latent hardening coincide with the 
stress-strain curve for one sole couple of slip systems within the whole range Y e [0, 0.02]; 
this is due to the fact that for this larger strip the gradient term div £(2) is less important so that 
the second couple of slip systems remains substantially inactive. 
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Figure 8. Comparison between DD and SGCP results on a constrained crystalline strip of size 
H = 3 /im endowed with either one couple or two couples of symmetric slip systems. 

In figures 11-15 we further analyze the results of the SGCP model. From figures 11 and 12 
one easily obtains, through equation (3.13) (first equation), that the plastic strain diminishes 
with the strip height H . Regarding the negative value of y (2 ) (x) shown in figures 10 and 12, we 
note that it is due to the coupling of the higher-order balance equations (3.3)—(3.4) provided 
by the use of Nye's tensor as a primal higher-order variable governing the defect energy. 
Figure 13 demonstrates this by showing yi2\x) along the strip height for various combinations 
of the latent hardening terms implemented: the most negative yi2\x) is obtained assuming no 
dissipative latent hardening at all, where the coupling of the higher-order balance equations is 
provided by the defect stress only. 

Also, our numerical results show that for values of the applied shear T lower than about 
0.01, yl2\x) > 0 V„r; then, there is an inversion in the evolution of yl2\x), which is not a 
monotonic function of the applied load, at least in most of the strip. This is due to the fact that, 
in most of the strip, y (1 ) 'U :) is not a monotonic function of the applied load. 

The material parameter M governing the defect energy (3.6) has been set equal to 1, so that 
the defect energy employed is quadratic, as formerly proposed by Gurtin [17]. With respect to 
previous studies of phenomenological strain gradient plasticity [39], our numerical tests have 
confirmed that as M goes from 1 to 0 as the strengthening component of the energetic size effect 
increases, whereas strain hardening variation decreases. Hence, M < 1 is inappropriate to 
describe the DD results we have obtained. We also found that, for the boundary value problem 
here concerned, for M > 1, increasing M makes the effect of the plastic slip gradient too 
weak. Of course, before proposing the unconventional latent hardening as in equations (3.9)-
(3.10), we attempted to describe the DD results by exploiting only the coupling provided by 
the defect energy and by the conventional latent hardening; we could not find any satisfactory 
combination of the relevant material parameters (basically, M and q, for quite small N—see, 
e.g., Bardella and Segurado [49]): in that case, to appreciate some strain hardening increase 
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Figure 9. Comparison among SGCP results on a constrained crystalline strip of size H = 1.5 /im, 
endowed with either one couple or two couples of symmetric slip systems, for different latent 
hardening laws. 'Ext LH'. 'Std LH'. and 'no LH' refer to the novel strain gradient extended 
latent hardening, the conventional latent hardening of Perice et al [11], and the absence of latent 
hardening, respectively. 

with diminishing size, we needed too large of a rate sensitivity parameter N combined with 
an unrealistic value of q 30. 

Figures 14 shows the increase in the GND density accompanied with diminishing size for 
the case B = 2, whereas figure 15 compares the GND density for the cases B = 1 and B =2. 

6. Concluding remarks 

We have investigated the behaviour of a crystalline strip deforming under multislip, within the 
small strain regime, while sheared between two bodies impenetrable by dislocations. We have 
focused our attention on the effect of the strip size on the mechanical response; to this purpose 
we have varied the strip height within the range [1.5 /xm, 6 /x m]. 

First, we have obtained pseudo-experimental results by means of discrete Dislocation 
Dynamics (DD) simulations, which have revealed a very conspicuous size effect on the latent 
hardening, consisting of an increase in the strain hardening accompanied with diminishing 
size. DD simulations predict almost no strengthening, that is, the stress recognized as the 
initial yield stress is unaffected by the strip size. 

Second, we have developed a higher-order, work-conjugate Strain Gradient Crystal 
Plasticity (SGCP) theory with the purpose of discussing and describing the DD results. The 
SGCP model able to represent the DD results to some extent consists of a strain gradient 
extension of the standard crystal plasticity model of Peirce et al [11], In particular, the SGCP 
model is based on the theories developed in [5-9], involves both energetic and dissipative 
unconventional terms, and, as a main novelty, puts forward a strain gradient extension of the 
standard latent hardening of Peirce et al [11], 
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Figure 10. Plastic slips as functions of the applied shear T predicted by the SGCP model with the 
conventional latent hardening of Perice et al [11] (no strain gradient extension), for a constrained 
crystalline strip of size H = 1.5 /im endowed with two couples of symmetric slip systems. 
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Figure 11. SGCP results in terms of plastic slip on a constrained crystalline strip endowed 
with two couples of symmetric slip systems, with applied shear T = 0.02. 

Hence, our main conclusion, numerically proved by means of DD simulations, is that 
there exists a very large size effect influencing the latent hardening within the size range in 
which SGCP applies. In order to describe such a size effect by using SGCP we found the need 
to put forward a (further) strain gradient dependence involved in the latent hardening law. 



Figure 12. SGCP results in terms of plastic slip y<2) on a constrained crystalline strip endowed 
with two couples of symmetric slip systems, with applied shear T = 0.02. 

Further DD analyses shall be designed in the future in order to obtain more pseudo-
experimental results, on the basis of which it should be possible to obtain better insight on the 
most appropriate constitutive ingredients of the SGCP model, among those proposed in the 
literature (e.g., Gurtin and Ohno [26]) and our present contribution. For instance, the definition 
of a non-convex potential able to describe the dislocation patterning might be important; 
this might be obtained by either a non-convex conventional latent hardening (e.g., Ortiz and 
Repetto [53] as employed by Yalginkaya et al [24]) or a non-convex defect energy, or both. 

Even for the specific boundary value problem considered here there is still room for 
much work, for instance, by considering different relative orientations among slip systems. 
Investigating the cyclic behaviour would be very important and might allow the comparison 
between DD and SGCP in terms of plastic strain, a priori undefined in DD; this would also 
constitute an important test for the latent hardening strain gradient extension proposed here. 
Also, the implementation of a specific identification procedure for the material parameters of 
the SGCP model would be quite important. 
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Figure 13. SGCP results in terms of plastic slip y<2) on a constrained crystalline strip endowed 
with two couples of symmetric slip systems, with applied shear T = 0.02: effect of different 
latent hardening laws. 'Ext LH'. 'Std LH'. and 'no LH' refer to the novel strain gradient extended 
latent hardening, the conventional latent hardening of Perice et al [11], and the absence of latent 
hardening, respectively. 

Appendix. The consistent jacobian 

Here, we provide explicit expressions for the components of the consistent jacobian K_. 
Its components solely related to the displacement read 
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v / i ^ d r = ( - l ) 1 + i » - j -
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where, here and henceforth, the capital letters I and J may assume values A or B depending 
on the node considered, 5// = 1 if I = J or 5// = 0 if I ^ J. The second equality 
in equation (6.1) follows from the chosen element interpolation and from the choice of a 
Gaussian full integration scheme. 

The components of K_ coupling displacement and plastic slips read 

K (/> i 
"lYf 

= Ktn,n = -2v/x cos Yj «I {29fl) f 1 
dNj(r(x)) ^ 

Nj(r)—dr = -v/i cos(20^)r/, 
d x 2 

where r/ is the intrinsic coordinate of the node I (rA = - 1 , rB = 1). 
The components of K_ solely related to the slips read 

K fp) <«.-> = 2 
YI YJ i : 

3 j«/»» da 

18 Ay j 
3d 

dAy (k) cos(20p) Ni(r) 

dAy U) sin" Op + 
3 coW 

dAy U) 
dNjU-jx))}^ 

dx J 2 
dr. 



0.5 

0.4 

I 
IS 

'55 0 . 3 o 

o-o e t̂/8, e2=7i/5, H=4.5 ixm 

• — • e i=7i/8, e2=7i/5, H = 3. |xm 
O—O e i=7i/8, e2=7i/5, H=1.5 ixm 

0.2 

0.1 

0.000 0.003 0.006 0.009 
GND density a23 [|xm1] 

0.012 0.015 

Figure 14. SGCP results in terms of GND density on a constrained crystalline strip endowed with 
two couples of symmetric slip systems, with applied shear T = 0.02. 

Figure 15. SGCP results in terms of GND density on a constrained crystalline strip endowed with 
either one couple or two couples of symmetric slip systems, with applied shear T = 0.02. 



The relevant derivatives of the Cauchy and defect stresses are simple, so that we obtain 
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