

4th International Conference on Laser Peening and Related Phenomena

Assessment of laser peening induced effects on Ti6Al4V by non-destructive measurements

<u>S. Barriuso¹</u>, H. Carreón², J. A. Porro³, J. L. González-Carrasco^{1,4}, J. L. Ocaña³

¹ Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), Madrid, Spain
² Instituto de Investigaciones Metalúrgicas, Universidad de Michoacana, México
³ Centro Láser, Universidad Politécnica de Madrid, Spain
⁴ Centro de Investigación Biomédica en Red, Spain

cïber-bbn

Centro Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina

Material: Ti-6Al-4V

One of the most appropriate biomaterials for **load-bearing implants**:

- Good mechanical properties
- High corrosion resistance
- Good biocompatibility (Bioinert)

Biological response is regulated by the material / tissue interface

SURFACE MODIFICATIONS BASED ON SEVERE PLASTIC DEFORMATION

GRIT BLASTING (GB)

 Al_2O_3/ZrO_2

$$R_{a} \begin{cases} GB-AI_{2}O_{3} \approx 5.1 \ \mu m \\ GB-ZrO_{2} \approx 1.0 \ \mu m \end{cases}$$

SURFACE MODIFICATIONS BASED ON SEVERE PLASTIC DEFORMATION

GRIT BLASTING (GB)

Detrimental effects

- Surface contamination
- Stress concentrators
- Decreases fatigue resistance

LASER PEENING WITHOUT COATING

Alternative to achieve **compressive residual stress** at a **depth of 1 mm**, **avoiding stress concentrators**:

- Delaying the nucleation and propagation of cracks.
- Improving the fatigue resistance.

RELEVANT ITEMS

S U R F A C

F

S U B

S

U R

Α

C E Topography and surface roughness

Strong effect on biological response

compressive residual stress

+

grain refinement / precipitates

Strong effect on mechanical behaviour

RELEVANT ITEMS

S U R F A C F

Scanning Electron Microscopy (SEM)

X-Ray Diffraction (XRD)

Mechanical profilometry

cold work (hardening, texture)

grain refinement / precipitates

X-Ray Diffraction (XRD) Syncrotron X-Ray Diffraction Neutron Diffraction Hole Drilling (HD) Optical Microscopy (OM) Scanning Electron Microscopy (SEM) Transmission Electron Microscopy (TEM) Electron Backscatter Diffraction (EBSD) Vickers Microhardness (HV), ...

RELEVANT ITEMS

METHODS

SEEBECK PRINCIPLE: Thermoelectric property that causes the conversion of a

temperature difference into electricity.

Insensitive to the sample geometry and the surface roughness

METHODS

Hot tip method

Measuring time 1 s Accuracy ± 0.5%

Resolution 1 nV/K

• When a **closed loop** is made of two metals with a **temperature difference** at the joints between them, a **potential difference** (ΔV) is induced (Seebeck effect).

• The thermoelectric power (ΔS) of the sample (S_M) relative to the reference metal (S_{tip}) is given by the relation:

$$\Delta S = S_{M} - S_{tip} = \Delta V / \Delta T \qquad (nV/K)$$

METHODS

STRATEGY FOR EVALUATING THE POTENTIAL OF THE TEP MEASUREMENTS

Combination of LP with two standard heat treatments

1- Partial residual stress relief (595°C / 1h)

2- Total residual stress relief (710°C / 2h)

TOPOGRAPHY

As machined

TOPOGRAPHY

Ti6Al4V

710ºC / 2h

TOPOGRAPHY

Laser Peened

TOPOGRAPHY

595ºC/1h

TOPOGRAPHY

710ºC /2h

ROUGHNESS

595ºC/1h

710ºC /2h

 $R_{a} \begin{bmatrix} GB-AI_{2}O_{3} \approx 5.1 \, \mu m \\ GB-ZrO_{2} \approx 1.0 \, \mu m \end{bmatrix}$

TEP MEASUREMENTS: MICROSTRUCTURAL CHANGES

Hot tip method

LP induces less plastic deformation than GB

H. Carreón, S. Barriuso, M. Lieblich, J.L. González-Carrasco, J.A. Jimenez, F.G. Caballero. Materials Science and Engineering C 33 (2013) 1417–1422

TEP MEASUREMENTS: RESIDUAL STRESS

Magnetic method

LP might induce higher residual stress than GB

H. Carreón, S. Barriuso, M. Lieblich, J.L. González-Carrasco, J.A. Jimenez, F.G. Caballero. Materials Science and Engineering C 33 (2013) 1417–1422

• Laser Peening without coating is a good method to generate biocompatible surfaces with roughness of clinical interest.

• Thermoelectric Power measurements is a good method to evaluate in a fast, non destructive and qualitative way the laser peening induced effects.

• Laser peening induced effects on Ti6Al4V can be detected by TEP and the contribution of the residual stress can be distinguished from the microstructural changes.

• Strong support for these conclusions should be confirmed by **microstructural analyses** (SEM, TEM,...) and **residual stress measurements** (hole drilling, synchrotron).

4th International Conference on Laser Peening and Related Phenomena

THANK YOU FOR YOUR ATTENTION

Thank you to the Ministry's financing of the projects MAT2012-37782 and MAT2009-14695-C04-04 and CSIC for the scholarship JAE-I3P.

INSTITUTO DE INVESTIGACIONES METALÚRGICAS UNIVERSIDAD MICHOACANA, MÉXICO

Centro Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina