
On-the-fly Dynamic Reprogramming Mechanism for Increasing 
the Energy Efficiency and Supporting Multi-Experimental 

Capabilities in WSNs 
Gabriel Mujica, Victor Rosello, Jorge Portilla, Teresa Riesgo 

Abstract—Remote reprogramming capabilities are one of 
the major concerns in WSN platforms due to the 
limitations and constraints that low power wireless nodes 
poses, especially when energy efficiency during the 
reprogramming process is a critical factor for extending 
the battery life of the devices. Moreover, WSNs are based 
on low-rate protocols in which as greater the amount of 
data is sent, the more the possibility to lose packets during 
the transmitting process is. In order to overcome these 
limitations, in this work a novel on-the-fly reprogramming 
technique for modifying and updating the application 
running on the wireless sensor nodes is designed and 
implemented, based on a partial reprogramming 
mechanism that significantly reduces the size of the files to 
be downloaded to the nodes, therefore diminishing their 
power/time consumption. This powerful mechanism also 
addresses multi-experimental capabilities because it 
provides the possibility to download, manage, test and 
debug multiple applications into the wireless nodes, based 
on a memory map segmentation of the core. Being an on-
the-fly reprogramming process, no additional resources to 
store and download the configuration file are needed. 

Keywords — Wireless Sensor Networks, Hardware-Software co-
design, dynamic reprogramming, energy efficiency. 

I. INTRODUCTION 

Remote reprogramming capabilities for in-field WSN are 
key aspects in the maintainability and operability of the nodes 
in order to achieve the autonomy of the network, even more 
when wireless sensor devices are deployed in very remote 
places or there are difficulties getting physical access to them. 
Moreover, being able to modify or update the application 
running in a node or even in a set of nodes in a fast and reliable 
way can led important reductions on time, energy and cost of 
maintenance. These updates can cover application parameter 
changes (e.g. acquisition times), add or modify some 
functionalities to a full new application code, or replacing the 
old application code with a new one. However, reprogramming 
remotely wireless sensor nodes implies several challenges and 
limitations due to the inherent features of a WSN. First of all, 
the low data rate of these networks poses some constraints 
because the network is not prepared to handle a great amount 
of data, therefore the likelihood of losing packets during the 
runtime reprogramming process is higher. In this context, the 
more number of hops among the network the data packets need 
to do, the more the probability for the reprogramming process 
is to fail. Following this concept, is clear that as long as the 

configuration file is greater, the number of data packets that 
will be lost is higher. Moreover, as the amount of information 
is bigger, the power/time that the radio has to consume in order 
to send/receive data becomes more important, taking into 
account that the communication module of a wireless sensor 
node is commonly a key factor on the power consumption of 
the device, thus their autonomy might be penalized. 

One solution to reduce the risk of failures during the remote 
reconfiguration process is to implement a collaborative 
reprogramming mechanism in which the configuration file to 
be downloaded into the node is divided in several blocks that 
are temporarily stored in near nodes so that the integrity of the 
program is assured by stages. After the cooperative nodes 
receive the portion of the programs, these are sent to the final 
device to be reprogrammed. This technique could be useful in 
large scale deployments in which the number of hops to raise 
the target is high. However, this requires a dynamic assignment 
of collaborative groups of nodes depending on the location of 
the final target as well as keeps some data memory space in 
each node to save the fragment of the configuration file. Those 
factors increase the complexity of the reprogramming 
algorithm whereas the method is time and power consuming, 
even more when the number of nodes to be updated is 
important. 

An alternative to update the node functionalities is to 
change partially the running program depending on the type of 
modification to be carried out. In this way, the work here 
proposed aims to define a complete reprogramming 
architecture within the wireless nodes in order to optimize not 
only the reconfiguration mechanism of the device (based on 
having lower power consumption and less consuming wireless 
network wideband), but also to provide an efficient way to 
handle the hardware/software resources of the node by 
combining relocation of functional blocks and libraries into the 
program memory with the concept of multi-application 
programming. This approach is mainly focused on providing a 
remote reprogramming mechanism in which users can code, 
download and update their custom applications without being 
necessary to recompile and resend the whole programming file 
to the remote node, so that partial reprogramming is fully 
supported. This technique is especially powerful when more 
than one independent application has to be downloaded into the 
node (i.e. testbeds and debugging scenarios). 

The remote reprogramming mechanism is an on-the-fly 
process, which means that the partial programming files are 
sent over-the-air to the final nodes and, at the same time, saved 
into the program memory, so that additional resources, 
mechanisms and time to store/download data are not needed. 



II. PROPOSED APPROACH & APPLICATION SCENARIOS 

In [1] node reprogramming scenarios are classified 
according to the size of the update, frequency and 
optimization. The concept and implementation proposed in 
this work aims to be included as a major contribution to two 
main application scenarios: 

A. Wireless sensor network testing platform (WSN Testbeds) 

As part of the WSN research lines, the Center of Industrial 
Electronics (CEI) is working on developing a complete 
infrastructure for supporting experiments in a real 
environment under test [2]. The main goal is to provide a fully 
controlled wireless sensor network based on an Ethernet/Wi-Fi 
backchannel interface that allows users to debug and maintain 
the deployed devices without interfering in the main wireless 
communication, so that the reliability of the nodes, runtime 
performance, fidelity of protocols and the efficiency of the 
network can be tested and, therefore, properly optimized 
according to experimental results and real measurements 
obtained from the testbed platform. 

In this way, the Cookie-based WSN testbed (called 
CookieLab) has to provide the possibility to reprogram 
remotely every node through the backchannel interface, 
allowing users to download configuration files as well as 
preprogramming experiments, so that different tests can run 
and/or be updated at the same time. In order to implement 
properly this powerful feature, the remote reprogramming 
technique proposed in this work provides a complete memory 
map architecture of the functional blocks that control and 
support the hardware infrastructure and the debugging tasks 
(that is called static-support segment), the linking mechanism 
to correlate the user dynamic applications with the supporting 
blocks (that is called linking segment) and the multi-
experiment segment in which users can create, download and 
update their custom algorithms and experiments by using the 
supporting blocks (that is called dynamic application 
segment). More than one application could be downloaded 
into the nodes in order to be run under test, so an experiment 
support chooser must also be included in the architecture 
(called schedule segment). 

B. Final application (in-field reprogramming scenarios) 

During In-field application deployments, nodes must have 
the possibility to be updated in case their behavior needs to be 
modified or some special algorithms/functional blocks should 
be replaced, so the remote reprogramming mechanism must be 
assured, increasing then the autonomy of the network. Due to 
the fact that the memory map allows changing specific blocks 
or segment without reprogramming the whole system, the 
decrease of the time/power consumption during the 
reconfiguration process is also highlighted. Moreover, if new 
functional blocks of the static-support segment need to be 
added in order to enhance additional specific features, support 
over-the-air debugging tasks, or fit specific application-
dependent requirements, it is possible to manage the memory 
map structure to include them without modifying the rest of 
the functionalities. 

This dynamic programming platform allows users to code 
their Cookie-based algorithms and high level application 
functionalities without including full libraries of the platform 
into their projects. They can use the provided HW-SW support 
platform from a high abstraction level, so that the memory 
map structure and the multi-experiment features will be 
handled transparently. 

As it is well known, most of the wireless sensor network 
applications are so far based on commercial nodes such as 
TelosB or MicaZ, which are intended to be used together with 
TinyOS or other operating systems. In contrast, this work 
proposes to take advantage of the modularity and flexibility of 
the Cookie based hardware-software platform [3] to increase 
the dynamism of functionalities and its runtime performance. 

As explained in [4], the Wireless Sensor Cookie Node 
structure includes a microcontroller as the main processing 
element within the platform. Furthermore, the processing 
layers that have been designed up to now are based on the very 
well-known 8051 architecture (such as the ADuC841 from 
analog Devices [5] or the C8051F930 from Silicon Lab [6]), 
hence, the implementation carried out and described in the 
following lines has been made under this technology, but the 
concept is fully portable to other architectures by changing 
low level functionalities. Both of them include 64KB flash 
program memory as well as 4KB extended data memory. The 
complete multi-experimental support platform is based on 
these two main resources; nevertheless the mechanism concept 
to relocate and distribute the functional blocks as well as the 
partial reprogramming is not fully technology dependent. 

III. REMOTE REPROGRAMMING IN THE STATE OF THE ART 

During the last years many works have been focused on 
providing remote programming capabilities, covering aspects 
such as reduce or optimize the size of the code, dynamic 
linking in nodes, data delivery, node resources usage, etc. 

Deluge [7] is the base reference for wireless sensor 
reprogramming, which is the main TinyOS reprogramming 
technique. It is mainly a delivery mechanism in which the 
main goal is to disseminate large objects into the whole 
network in a quick and reliable way. During the object 
dissemination the received packets are stored in the flash 
memory, once the full image has been properly stored, Deluge 
calls the bootloader and the new application is loaded from the 
flash to the program memory. It is intended to be used for 
reprogramming the whole memory of the node, hence the new 
application must contain the Deluge component in order to be 
able to reprogram again. It focuses its best effort on a fast data 
delivery but not on the size of the object, and only supports 
monolithic TinyOS image reprogramming. 

On the side of size optimization there are mechanisms that 
are based on calculate the difference between the previous and 
the new application to be downloaded (INP[8], Zephyr [9], 
among others). In this case, instead of updating full programs, 
scripts are created off-line, which contain operations that must 
be performed in the program memory to create the new 
application, based on the current application that is running in 
the node. These works are focused mainly on obtaining the 



best mechanism to optimize the size of the script and usually 
have hardware dependencies because they operate from a low 
level, even if they are designed for specific operating systems. 
Furthermore, this method also has an intensive flash memory 
use, because it needs at least three different components stored 
in the external memory: the application base, the updated 
script and the new application, Zephyr adds an extra area for 
the reprogramming control application. In some cases, if the 
difference between the old ad the new application are too big, 
the scrip size is similar to the whole application object. 

Some techniques support dynamic linking of applications, 
such as the ContikiOS Run-time dynamic linking mechanism 
[10]. This is an in-node run-time dynamic linker, in which the 
loader and the reallocate mechanism are implemented and 
integrated in ContikiOS. Object files are read using the 
Contiki file system, which makes the dynamic linker unaware 
of the physical location of the file. The object files for the 
application updates use the standard ELF [11], and C-ELF 
(compact ELF). Reallocation depends on the CPU architecture 
so it is not fully portable and must be ported if the hardware 
platform is not included in the Contiki distribution. This 
method supports reprogramming at any level of the software, 
from the core to the application and does not require re­
building elements that will not be modified. However, the size 
of the updates is usually bigger than the previous technique 
due to the indirection tables that have to be included. Another 
important reprogramming technique is the modularization of 
the applications, where only new modules are sent and these 
replace or join the current application running in the node. A 
good example of this technique is the solution presented in 
[12]. This work adds a level of modularity to TinyOS based 
applications. The modularity is achieved by dividing the 
applications in two parts, one of them static and the other 
exchangeable. The last one is intended to be updated remotely. 
One of the main drawbacks is that for starting-up correctly the 
application and due to fact that different TinyModules have 
different sizes, the reset vector handler must be changed 
dynamically every time a new module is applied. This requires 
modifying the bootloader that depends on the hardware 
architecture. At present, there are commercial WSN solutions 
that support remote reprogramming, such as Waspmote [13]. 
This platform uses different code dissemination techniques for 
the different communications available. On the node side it 
supports the storage of several applications on the external 
memory (SD card) using the file management system of the 
software platform. This technique supports multi-application 
capabilities but The SD must be validated before being fully 
compliant with the file management of the platform. It is not 
designed to support partial updates. 

According to these relevant works, it is important to 
highlight that the solution presented in this work does not 
require any operating system supports for its implementation, 
although it is platform oriented and a network protocol to 
reach the destination nodes is needed. In contrast to [12], not 
only the application can be updated but also support libraries 
and drivers can be exchanged, so the approach is fully focused 
on modularity. Moreover, the reprogramming engine is 

integrated into the bootloader segment, so that loading a 
reprogramming into the program memory each time, such as 
in [9] is not required, nor increase the size of the new 
application with the reprogramming component such as in [7]. 

IV. ON-THE-FLY REPROGRAMMING MECHANISM 

In contraposition to other solutions found in the state of the 
art that are based on saving the whole programming files into 
an external memory before reprogramming the node's core, in 
this work an on-the-fly reprogramming technique is proposed. 
This poses important advantages towards reducing the 
complexity of the remote reprogramming mechanism because 
the reconfiguration process is done in runtime whenever it is 
needed, without wasting additional data space and power 
consumption within the nodes. However, some constraints 
must be taken into account, because using low rate wireless 
sensor communication for reprogramming remotely the nodes 
could cause failures during the on-the-fly process, hence 
producing malfunction of the devices. Moreover, the remote 
reprogramming process must be compliant with several 
standard interfaces and formats that are defined as follows. 

A. Communication interface 

From the processing element point of view, the 
configuration file will be received through the standard 
interface that is used to control the communication module, 
which is typically a serial protocol. In figure 1 the main 
communication layers that are implemented in the Cookie 
platform are summarized, with their corresponding protocol to 
establish the connection to the processing layer. 

Ethernet (SPI Interface) IEEE 802.15.4 (SPIInterf.ce) WI-FI (UART lnterf.ce) ZigBee (UflRT Interface) 

Figure 1. Cookie Communication layers 

B. Configuration file 

In order to standardize the node reprogramming process, 
the format of the configuration file to be downloaded into the 
core has to be the Intel HEX [14], which is widely used to 
program microcontrollers, EEPROMS and other 
programmable chips. As the format of the HEX file is based 
on ASCII code, the corresponding conversion into bytes must 
be done afterwards the code is received character by character 
through the serial interface, especially because the format 
spends 2 bytes, i.e. "75", for coding 0x75. Nevertheless, in 
order to reduce much more the amount of data to be 
transferred-received, a pseudo Hex code format could be used 
(directly code in bytes). 

C. Flash memory writing 

The 8051-based microcontrollers included in the Cookie 
platform are based on 64 KB flash memory, divided in 1024 
pages of 64 bytes each. The read process of the flash memory 
is the same as the data memory access. However, due to the 
fact that the program memory is writing protected, a specific 

http://SPIInterf.ce
http://lnterf.ce


procedure to update it must be carried out. First, the ULOAD 
configuration mode that allows users to refer to the program 
memory when the addressing mode commands are used must 
be enabled. Second, the specific address that will be modified 
must be specified in two bytes following by erasing the 
corresponding byte. Finally, the byte to be updated is written. 
This procedure must be followed in order to avoid failures or 
erratic behavior during the configuration process. 

According to these three main standard features the 
fundamental structure of the programmable processing core 
architecture were defined in order to assure the correct remote 
reconfiguration/updating of the application running on the 
wireless node, in which two main areas have been delimited. 
One of them is the dynamic area, in which the new program 
will be downloaded, and the second one is the static/protected 
area, in which the bootloader support is saved. This definition 
prevents to block the microcontroller during the 
reprogramming process in case the configuration file is not 
properly received, hence having the protected part as a 
recovery mechanism. This bootloader support platform 
(defined as a fully compliant Cookie-based library) includes 
the configuration of the serial protocols to receive the 
programming file, the HEX format decoder and the writing 
procedure to access and update the flash memory. 

Due to the fact that the configuration file is byte by byte 
remotely received and directly stored into the flash memory in 
runtime, there are two main parallel mechanisms in order to 
detect and prevent possible errors during the on-the-fly 
reprogramming process. First of all, to prevent the lost packets 
effects during the configuration process, a checksum 
calculation is performed after finishing the reprogramming 
process. In case the configuration file is not properly received, 
the bootloader requests a second attempt to receive it, so the 
application will not run until the checksum is validated. 

The second mechanism that is running at the same time 
with the configuration process is the Cookie-defined Watch­
dog block, which detects connectivity problems to the 
network, radio signal problems or power supply problems. A 
specific timeout could be specified as a threshold in order to 
trigger the Cookie-watch-dog functionalities. The 
bootloader/recovery segment is protected so it cannot be 
corrupted. In case of malfunctions or failures when the user 
application is running, the Cookie-watch-dog or specific 
debugging tasks can launch the recovery segment in order to 
update or restore the reprogramming file remotely. The 
general architecture of the remote reprogramming structure 
and the bootloader/recovery segment is shown in figure 2. 

Memory Map Segments cc 
Bootloader/Recovery blocks connection 
Communication layer connection 

Figure 2. Remote reprogramming architecture. 

V. MEMORY SEGMENTATION & MULTI-EXPERIMENT PLATFORM 

The on-the-fly reprogramming technique proposed is a 
powerful and less resource consuming mechanism to 
download remotely the configuration file into the main 
processing element of the Cookie platform. Once the 
reconfiguration process has been defined, it is important to 
remind that as the configuration file size grows, the 
time/power consumed by the nodes increases, thus the 
autonomy could be penalized. This is the main reason why an 
alternative approach to reduce the amount of data transmitted 
to the nodes in order to modify or change their configuration 
file has been taken into account. As it is defined in [3], the 
CookieLibs platform provides a complete support of the 
Cookie nodes in order to manage and control their behavior 
and functionalities within the wireless network, which means 
that the functional blocks and drivers that are part of the 
platform must be considered as an integral part of the system. 
Moreover, the Cookie-based testbed infrastructure is fully 
supported by this set of functionalities in order to debug, 
maintain and experiment with the under-test pre-deployed 
network. The SW support platform has to be allocated into the 
node as a fundamental part for operation of the applications; 
hence the CookieLibs are preinstalled in the node before being 
deployed. This means that in case the application running on 
the nodes has to be changed or updated, the support platform 
could be unaltered, so the reprogramming file to be 
downloaded will be much smaller. If a CookieLibs functional 
block should be modified or new ones have to be added, it is 
not necessary to send the full set of libraries again. 

In this context, the solution proposed in this work defines a 
complete memory map architecture in which the program code 
is reallocated in modular segments so that a partial 
reprogramming of the Cookie Nodes can be performed 
remotely, reducing the time and the energy cost during the 
remote reprogramming process. When a complete application 
is programmed from a high abstraction level, the compiler is 
in charge of managing and handling the processing 
architecture in order to allocate the functional blocks in 
different areas as much optimized as possible. However, 
partial reprogramming requires low level optimizations and 
specific directives in order to achieve the segmentation, 
flexibility and modularity of the functional blocks without 
impacting the performance and the resource consumption 
within the processing element. In this way, the memory map 
architecture has been divided into five main segments: four of 
them for supporting the HW-SW platform as well as the 
organization and optimization of the memory map structure; 
and a dynamic segment in which users can load their customs 
applications without enter in low abstraction level details, so 
that fast prototyping and debugging is also enhanced. This 
modularity allows users to modify specific functionalities or 
even segments partially without changing the rest of the 
system. Each segment is described as follows. 

A. Static Support Segment 

Both the protected part (bootloader support segment) and 
the CookieLibs functionalities and drivers are allocated in this 



segment. In this way, there are two main distribution 
possibilities: the first one aiming to be applied to final 
functionalities. In this case, the final versions of functional 
blocks are reallocated, from a specific memory address, one 
after the other in order to optimize as much as possible the 
resources of the program memory. The second option is 
attended to functional blocks that can be modified (add or 
optimize its structure) so their size could increase along the 
time. In this case, each functionality has its memory address 
and space assigned in order to prevent overlapping, so 
optimizations could carry out up to certain point (preliminary 
support functions to be tested before final versions). Libraries 
for controlling communication layers, peripherals, 
analog/digital data processing functions, among others are 
included in this segment. Furthermore, low level directives 
and addressing configurations are managed by this segment. 

B. Linking Segment 

This segment establishes the correlation between the user 
dynamic segment and the static segment, working as a router. 
From the point of view of the dynamic segment, each function 
has its own fixed address within the memory map. The 
management of these addresses is done by the linking 
segment, which assigns a relative address to all of the 
functional blocks. When a function is called from the 
application segment, the linker correlates the relative address 
called with the corresponding address where the functional 
block is placed. The functionality is then called and executed. 
In case a library is replaced in the static segment, this is a 
transparent process for user applications, because the relative 
addresses are always the same. Therefore, it is possible to 
change any particular block or driver without being needed for 
users to change their specific applications. 

C. Dynamic application segment 

This is the part of the memory map structure in which 
users can download their own specific applications. More than 
only one application could be allocate in this segment, 
allowing the possibility to save several configuration profiles 
or, in case of the testbed infrastructure, configuring different 
experiments to be executed at different stages of a test. Due to 
the fact that the static segment and the linking segment are 
part of the pre-deployed HW-SW support platform, users only 
need to include the linking segment information to their 
application project as a system file. In this way, one of the 
greatest advantages of this memory map segmentation is that 
users can code their specific application using the CookieLibs 
support platform without being necessary to include the whole 
library objects into the projects they are working on. The link 
segment information provided by the platform is enough to 
use the functional blocks and the Cookie controllers in their 
custom applications. Developers can work independently 
programming their experiments or final applications without 
interfering with the rest of the memory architecture. 

D. Schedule segment 

In order to provide multi-application support, an additional 
segment for scheduling and selecting applications has been 

implemented. There are mainly two ways of selecting the 
application to run. The first one is the asynchronous 
assignment, in which a selection request can be performed 
remotely from the server application in order to switch from 
one application to another. This request, as an asynchronous 
interruption, will execute the scheduler, suspend the current 
application running and then execute the selected one or 
receive and download a new programming file, if needed. The 
second possibility is the Synchronous or pre-programmed 
assignment, which is intended to be used for scheduling 
application time-slots so that predefined experiments could 
run during a specific and reserved period of time. This feature 
allows users, for instance, to download tree different 
application prototypes and schedule their execution, then 
conforming a multi-experimental scenario for testing. 

The overall architecture of the memory map segments and 
their correlations is shown in figure 3. 

64 KB Memory Map Organization 

User Application (Dynamic Segment) 
ndependent 1 

Projects 1 

1 
¡ 

emote H L M 
access É É ^ f l 

Schedule Segment & interrupt handler 

Linking Segment ^ L 

Libraries (Static Support Segment) 

Application Support ^M-~ 

Controllers & Drivers 

Bootloader & recovery segment 

Figure 3. General view of the Memory Map Segmentation. 

VI . EXPERIMENTAL RESULTS & TESTS 

In order to verify the proposed on-the-fly reprogramming 
strategies and the memory map architecture for partial 
reprogramming of wireless nodes, real validation scenarios 
were set up and carried out. The main goal was to validate the 
whole implementation by using a wide number of functional 
blocks and controllers through a custom application. One of 
these scenarios was to perform Wi-Fi-based experimental tests 
in order to download remotely the reprogramming file, by 
using the Low-Power Wi-Fi module included in a Cookie 
communication layer. Three main configurations were set-up 
in order to test the remote reprogramming mechanism and the 
multi-application features. The first program downloaded 
remotely into the Cookie node was focused on the connection 
to an access point of the CEI, being necessary to configure all 
the related parameters such as type of authentication (WEP, 
WPA, WPA2) and password, DHCP to get a dynamic IP from 
the server, network mask and channel mask, gateway ID, etc. 
After the node is already connected to the local network, a 
TCP communication is established from a remote PC to the 
device (by using a configured port) in order to update the 
application running on the device with a new user code. 

The second application is related to connect the node with 
an Ad-hoc network created by other wireless Cookie node, and 



after establishing the communication the new application will 
send LDR measurements every two seconds and enter in low 
power consumption every five seconds. The reprogramming 
file is executed, the new configuration of the Wi-Fi is set-up 
and the sensor measurements are received properly from the 
remote nodes. The third Wi-Fi-based experiment was related 
to send the sensor measurements to a web server provided by 
the manufacture of the Wi-Fi module. Once again, the 
reprogramming mode command is sent remotely and the 
configuration process is launched. After the node is properly 
configured and connected to the network, the LDR value can 
be monitored by using the HTTP interface. 

Table 1 shows the results regarding the size of the partial 
reprogramming file. In these scenarios the total amount of data 
that has to be sent through the network in case of 
reprogramming the whole memory is 34 KB. Instead, the 
application code transmitted to the sensor node is reduced to 
only 3 KB when the memory map structure is applied, thus 
reducing the power/time consumption of the node during the 
reprogramming process. 

TABLE I. REMOTE REPROGRAMMING SCENARIOS. 

Experimental 
Scenarios 

Ad-Hoc network 

Access Point connection 

HTTP configuration 

ZigBee-Wi-Fi network 

Over-the-air data sent/received 

Whole reprogramming 

37 KB 

36 KB 

34 KB 

42 KB 

Partial 
reprogramming 

2.21 KB 

2.65 KB 

1.81 KB 

5 KB 

As a part of test and validation of the proposed 
implementation an additional application scenario was taken 
into account. The experiment has been related to the use of a 
Cookie-based gateway that implements both the high 
performance Wi-Fi communication and the low rate ZigBee 
communication. The main idea was to send remotely the 
communication file to the Cookie Gateway by using a TCP 
connection, and then retransmit it to the final ZigBee node, as 
shown in figure 4. Nodes were updated with a new version of 
the user application in which temperature, humidity and light 
intensity parameters were monitored in real time from the 
remote base station connected to the Cookie gateway. 

' ~ Wi-Fi-ZigBee 
¿V\ Gttenray ? ZiiBeeNode 

Figure 4. Wi-Fi - ZigBee remote reprogramming. 

In terms of timing saving, Table 2 shows the comparison of 
the experimental results of the reprogramming technique 
applied to two different Cookie node processing platforms, in 
which the whole reprogramming and the segmentation 
architecture were implemented and tested. The partial 
reprogramming provides an important reduction of the 
reprogramming process time (almost 30 times less), which has 
therefore a big impact of the total amount of energy saved. 

TABLE II. EXPERIMENTAL COMPARISONS OF THE PROPOSED TECHNIQUE. 

VII. CONCLUSIONS AND CONTRIBUTIONS 

As verified in the experimental scenarios, the memory map 
segmentation capabilities reduce the amount of data that has to 
be sent through the low-rate wireless network, so that two 
major features are improved. First, by reducing the 
configuration file sent to the remote node the risks of losing 
data-packets is much slower, so the effectiveness of the 
reprogramming procedure is higher (avoiding then the need of 
wasting time/power resending information). Second, a 
reduction of the configuration time implies an improvement of 
the power consumption of the nodes because the energy spent 
during the transfer/reception process is much less. In terms of 
the Cookie HW/SW platform usability with the proposed 
technique, the multi-experimental method allows users to 
implement their custom applications and experiments in an 
easy but reliable way from a high abstraction level, without 
being aware of the low level details of the platform. Moreover, 
CookieLibs functionalities can be used without including their 
full objects into the user projects. 

REFERENCES 

[I] A. Dunkels, N. Finne, J. Eriksson, and T. Voigt, "Run-time dynamic 
linking for reprogramming wireless sensor networks," in Proceedings of 
SenSys, 2006, p. 15. 

[2] G. Mujica, J. Portilla, T. Riesgo, "Poster Abstract: A Reliable Support 
Tool for Monitoring, Testing and Debugging Wireless Sensor Cookie 
Nodes", in EWSN'13, Ghent, february 2013. 

[3] G. Mujica, V. Rosello, J. Portilla, T. Riesgo, "Hardware-Software 
Integration Platform for a WSN Testbed Based on Cookies Nodes", in 
Procedings of ECON'12, Montreal, november 2012. 

[4] J. Portilla, A. de Castro, E. de la Torre, T. Riesgo, "A Modular 
Architecture for Nodes in Wireless Sensor Networks", JUCS, vol. 12, n° 
3, pp. 328-339, March 2006. 

[5] ADuC841 Microcontroller, Analog Devices, http://www.analog.com/ 
[6] C8051F930 Microcontroller, Silicon Labs, http://www.silabs.com/ 

[7] J. W. Hui and D. Culler, "The Dynamic Behavior of a Data 
Dissemination Protocol for Network Programming at Scale Categories 
and Subject Descriptors," Data Management. 

[8] D. Culler, "Incremental Network Programming for Wireless Sensors", 
IEEE SECON 2004., pp. 25-33. 

[9] R. K. Panta, S. Bagchi, and S. P. Midkiff, "Efficient incremental code 
update for sensor networks," ACM Transactions on Sensor Networks, 
vol. 7, no. 4, pp. 1-32, Feb. 2011. 

[10] A. Dunkels, "Contiki Resources and Support," 2004. Available: 
http://www.contiki-os.org/support.html. [Accessed: 30-Apr-2013]. 

[II] "Tool Interface Standard (TIS) Executable and Linking Format 
(ELF) Specification." Available: 

[12] M. Gauger, P. J. Marrón, C. Niedermeier, "TinyModules: code module 
exchange in TinyOS," in Procedings of INSS'09, Jun. 2009. 

[13] Libelium, "Waspmote Technical guide." [Online]. Available: 
http://www.libelium.com/uploads/2013/02/waspmote-
technical_guide_eng.pdf. 

[14] ARM Technical Support, "Intel Hex File Format". [Online]. Available: 
http://www.keil.com/support/docs/1584. 

http://www.analog.com/
http://www.silabs.com/
http://www.contiki-os.org/support.html
http://www.libelium.com/uploads/2013/02/waspmotetechnical_guide_eng.pdf
http://www.libelium.com/uploads/2013/02/waspmotetechnical_guide_eng.pdf
http://www.keil.com/support/docs/1584

