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Abstract

We consider a mathematical model related to the stationary regime of a plasma
magnetically confined in a Stellarator device in the nuclear fusion. The mathematical
problem may be reduced to an nonlinear elliptic inverse nonlocal two dimensional
free–boundary problem. The nonlinear terms involving the unknown functions of the
problem and its rearrangement. Our main goal is to determinate the existence and the
estimate on the location and size of region where the solution is nonnegative almost
everywhere (corresponding to the plasma region in the physical model).

1 Introduction

One of the main difficulties of plasma magnetic confinement for controlled nuclear fusion
is to determine conditions on the magnetic field and the current density which prevents
plasma from contacting the walls of the fusion camera. It is a very important to know
how is the plasma (its boundary) away from the walls of the reactor. To determinate an
estimate of this distance and to show some numerical simulation for a given mathematical
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model will be the aim of this work (see, e.g. [3] for the mathematical model, [5, 7] for
the estimate of the plasma and [10, 2] for some numerical analysis). We consider the two
dimensional inverse nonlocal free–boundary problem (with only one unknown) obtained
in [3] after to derivating the integral conditions over the level set that determinates the
magnetic surface. So, the problem is to find one weak solution u : Ω ⊂ R2 → R for

(P∗)
{
−∆u (x) = a (x)Gu (u (x)) +H (u (x) , b∗u) in Ω,

u (x)− γ ∈ H1
0 (Ω) on x ∈ ∂Ω

(1)

with Ω is an open regular set and where the real functions Gu and H (defined in the next
section) are, in particular, depending of the space, the solution u and of its rearrangement
(we introduce the notion and some properties of decreasing and relative rearrangement of
a function in the next section. For more details see e.g. [3] and its references, [6] and [9]).
The problem (P∗) is an inverse type, due to fact that the nonlinear term associated to
Gu(·) is an unknown which will be determined by the unknown function u.

The main goal of this paper is to obtain the existence and the estimate on the location
and size of plasma region Ωp = {x ∈ Ω : u (x) ≥ 0} and the vacuum region Ωv = {x ∈ Ω :
u (x) < 0} for the ideal Stellarator device. That is stated as follow:

Theorem 1 Let Ω be a bounded open regular subset of R2 (with C1 boundary ∂Ω) and
such that

∃ x0 ∈ Ω verifying Rp :=

 −4γ

Fv essinf
x∈Ω

a (x)

 1
2

< d (x, ∂Ω)

Assume that essinf
Ω

a > 0. Let u be a weak solution of (P∗) such that u has not flat region

and F ∈ W 1,∞(ess infx∈Ω u, ess supx∈Ω u). Then, if λ are small enough, we have that
ΩRp := {x ∈ Ω : d (x, ∂Ω) ≥ Rp} ⊂ Ωp = {x ∈ Ω : u (x) ≥ 0}.

In particular meas {x ∈ Ω: d (x, ∂Ω) ≥ Rp} ≤ |Ωp| (d denotes the Euclidean distance).

Analogously, we find a similar estimate for the location and size of the vacuum region
Ωv := {x ∈ Ω : u (x) < 0}:

Theorem 2 Let Ω be an open bounded regular (with C1 boundary ∂Ω) subset of R2 and
such that ∃ x0 ∈ Ω verifying Rp < d (x, ∂Ω), then there exists a positive number R̂ such that
0 < ρ < R̂ ≤ Rp+ρ for some ρ > 0 and that for any x̄ ∈ ∂Ω the segment x̄+rn, 0 < r ≤ R̂
belongs to Ω where n is the inward normal unit vector to ∂Ω. Let u be a weak solution of
(P∗) such that u has not flat region and F ∈ W 1,∞(ess infx∈Ω u, ess supx∈Ω u). Then, if λ

are small enough we have that
{
x ∈ Ω : d (x, ∂Ω) ≤ R̂− ρ

}
⊂ Ωv = {x ∈ Ω : u (x) < 0}.

In particular meas
{
x ∈ Ω: d (x, ∂Ω) ≤ R̂− ρ

}
≤ |Ωp|.
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The structure of the rest of the paper is as follows. In Section 2 we introduce the notion
of decreasing and relative rearrangement. We give some results proved in previous works
concerning to the existence of solutions for problem (P∗) and some a priori estimate of
solution. In Section 3 we prove the main results concerning to the existence and estimate
the location and size of plasma region and vacuum region and we show some numerical
results.

2 Previous results on the existence and a priori estimates
for the solution of problem (P∗)

We start recalling the notion of decreasing and relative rearrangement. Let Ω be a bounded
and connected open measurable set of R2 (we assume a 2d–setting motivated by the
physical modeling but the definitions and results that follows hold for any dimension
N > 1). Given a measurable function u : Ω → R, the distribution function of u is given
by mu (σ) :=meas{x ∈ Ω : u (x) > σ} (the Lebesgue measure of the set {x ∈ Ω : u (x) > σ}
will be denoted by |u > σ|). It is well–know that the function mu (·) is decreasing and
right semicontinuous. We shall say that u has a flat region at the level σ if meas{x ∈
Ω : u (x) = σ} (denoting by |u = σ|) is strictly positive. The generalized inverse of mu is
called the decreasing rearrangement of u with respect to x and it is defined as the function
u∗ : [0, |Ω|] → R̄ such that u∗ (s) := inf{σ ∈ R : mu (σ) ≤ s} for all s ∈ Ω∗, where
Ω∗ :=]0, |Ω|[ (see e. g. [3], [6] and [9] for more details about its definition and properties).
We recall some properties: u∗ is decreasing, u∗ (0) = ||u+||L∞(Ω) =esssupx∈Ω u (x), u∗ and
u are equimeasurable, and the mapping u ∈ Lp (Ω) to u∗ ∈ Lp (Ω∗) is a contraction for
1 ≤ p ≤ +∞. Moreover, if u has not flat regions, then mu and u∗ are continuous and
u∗ (mu (σ)) = σ (that is, u−1

∗ = mu). On the other hand, if u ∈ W 1,p (Ω), 1 ≤ p ≤ +∞,
then u∗ ∈W 1,p

loc (Ω∗).

Figure 1: Numerical approximations of the decreasing rearrangement [8]

Given a measurable function u : Ω→ R, and b ∈ Lp(Ω) with 1 ≤ p ≤ ∞, we define the
function w : Ω∗ → R as

w (s) =

∫
b (x) dx

{x∈Ω:u(x)>u∗(s)}

+

s−|u(·)>u∗(s)|∫ (
b|{x∈Ω:u(x)=u∗(s)}

)
∗ (σ) dσ.

0

The relative rearrangement of b with respect to u is the function b∗u ∈ Lp (Ω∗) defined by
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b∗u(s) := dw(s)
ds = lim

σ→0

(u+σb)∗(s)−u∗(s)
σ for all s ∈ Ω∗. Notice that by this definition, if u has

not flat regions (implying s−|u > u∗ (s) | = 0) then b∗u(s) := d
ds

∫
{x∈Ω:u(x)>u∗(s)} b (x) dx for

all s ∈ Ω∗. Also, for any measurable function u, the mapping b ∈ Lp (Ω) to b∗u ∈ Lp (Ω∗)
is a contraction for 1 ≤ p ≤ +∞ and in particular ||b∗u||L∞(Ω∗) ≤ ‖b‖L∞(Ω) (further details
on the decreasing and relative rearrangement can be found, for instance, in [3], [6] and [9]
and their references). See e. g. [10] and [2] for numerical approximations of the decreasing
and relative rearrangement.

Before starting the results concerning to existence and a priori estimates of the solution
of problem (P∗), we introduce the following useful convex cone V (Ω) := {v ∈ H1 (Ω) :
∆v ∈ L∞ (Ω) , v|∂Ω ≤ 0}. Given u ∈ V (Ω), the function Gu is defined as

Gu (s) :=

[
F 2
v − 2

∫ s+

0
p′ (r) b∗u (|u > σ|) dσ

] 1
2

+

(2)

In order to simplify the notation, we set

Gu (u (x)) =
[
F 2
v − F1 (x, u (x) , b∗u)

] 1
2

+
(3)

where

F1(x, u (x) , b∗u):= 2

∫ |u>u+(x)|

|u>0|
[p (u∗) ]′ (σ) b∗u (σ) dσ. (4)

Notice that the real functión Gu is a map from V (Ω) to real functión on R, so it is also
depending of u. We recalling the existence result and some a priori estimates given in [3]
about the solution of problem (P∗).

Theorem 3 Suppose that γ ≤ 0 and infΩ |a| > 0. Then there exist Λ1,Λ2 > 0 such that
if λ‖b‖L∞(Ω) < Λ1 and Λ2 < inf

Ω
|a|Fv. Then, there exists u ∈ V (Ω) weak solution of the

non local problem

(P∗)
{
−∆u (x) = a (x)Gu (u (x)) +H (u (x) , b∗u) in Ω,

u (x)− γ ∈ H1
0 (Ω) on x ∈ ∂Ω

(5)

satisfying also that meas{x ∈ Ω : ∇u(x) = 0} = 0; where the function H is given by

H(u (x) , b∗u) := p′ (u (x)) [b (x)− b∗u (|u > u (x) |)]. (6)

Remark 4 We can verify that if s ≤ 0 then Gu (s) = Fv > 0 (it comes from (2)).
If u (x) ≤ 0 then Gu (u (x)) = Fv (from (3) and (4)) and H(u (x) , b∗u) = 0 from the
definition of H and the hypotheses on p.

Notice that, in the existence Theorem 3, assuming Λ1 small enough (from λ small
enough) we can define the positive number ν such that

ν :=
λ|Ω|oscΩb

4π
< 1 (7)
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(with oscΩb = ess supx∈Ω b − ess infx∈Ω b). The existence of solution was proved in [3] by
using a Galerkin type methods. In particular, recalling some result given in [3] and [7]
and considering the fact that the current–carrying in an ideal Stellarator is j ≡ 0, we have
the that the solution found in this way, it is such that verifies ([7] and its references) the
following

Proposition 5 For Λ1,Λ2 > 0 small enough, there exists a solution u of problem (P∗)
given by Theorem 3 such that

‖u+‖L∞(Ω) ≤
|Ω|
4π

‖a‖L∞(Ω)Fv

(1− ν)
:= S, ‖∆u‖L∞(Ω) ≤

‖a‖L∞(Ω)Fv

1− ν
=

4π

|Ω|
S,∥∥∥∥du+∗

ds

∥∥∥∥
L∞(Ω∗)

≤ 1

4π

‖a‖L∞(Ω)Fv

1− ν
=

1

|Ω|
S

where ν is a positive number given by (7).

Corollary 6 Given a solution u of problem (P∗) as in Proposition 5 we have that 0 ≤
F1 (x, u (x) , b∗u) ≤ 2λ ‖b‖L∞(Ω) S, |H (u, b∗u) | ≤ λoscΩbS and thus 0 ≤ Gu (u (x)) ≤

Fv, G2
u (u (x)) ≥

[
F 2
v − 2λ ‖b‖L∞(Ω) S

]
+
.

Corollary 7 For this solution u, assuming λ small enough in order to have

F 2
v − 2λ ‖b‖L∞(Ω) S > 0, (8)

we have that Gu (s) > 0 for all s ∈ [infΩ u, supΩ u] and Gu (s) is Lipschitz, i.e. there exists
a positive number C (λ) only dependents of λ, such that |Gu (s)−Gu (σ) | ≤ C (λ) |σ − s|
for all s, σ ∈ [infΩ u, supΩ u]. Moreover C (λ) goes to zero when λ goes to zero. On the
other had there exist d

dsGu (s) and for all x ∈ Ω,∣∣∣∣12 (G2
u (u (x))

)′∣∣∣∣ ≤ λ ‖b‖L∞(Ω) S, |a (x)Gu (u (x)) + 1
2

(
G2
u (u (x))

)′
+ b (x) p′ (u (x)) | ≤ K

with K := ||a||L∞(Ω)Fv + 2λ||b||L∞(Ω)S. Finally,

H(u (x) , b∗u) = 1
2

(
G2
u (u (x))

)′
+ b (x) p′ (u (x)) .

3 Estimate on the location and size of the plasma region
and the vacuum region.

We consider the following approach (see [5, 7]): (i) to give a condition for the existence
of the free–boundary (i.e. Ωp 6= ∅), (ii) to verify that the solution u is supersolution for
an auxiliary problem in a test balls in Ω, (iii) to give a suitable local subsolution u for
this auxiliary problem satisfying the hypotheses of the comparison principle in the sense
of Hopf [4] and finally (iv) to compare u with u.
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Lemma 8 Let B ⊂ R2 and open ball of radius R centred at the origin and assume â ∈
L∞ (B) be radially symmetric (i.e. â (x) = ã (|x|) a.e. x ∈ B). Then, unique solution
u ∈W 2,p (B), p ∈ [1,∞), to problem

(PB)

{
−∆u = â in B
u = γ on ∂B

satisfies: if

∫ R

0

(
1

r

∫ r

0
sã (s) ds

)
dr+γ = 0, then u (0) = 0,if

∫ R

0

(
1

r

∫ r

0
sã (s) ds

)
dr+γ <

0, then u (0) < 0 and if

∫ R

0

(
1

r

∫ r

0
sã (s) ds

)
dr + γ > 0, then u (0) > 0. Moreover, if∫ r

0 sã (s) ds ≥ 0 ∀r ∈ (0, R] then u decreases along the radius r = |x|.

Proof. The existence, regularity and uniqueness of u, solution of (PB) is a well–known
result (see for instance [1]). Moreover, u is a radial symmetric function in B (i.e. , so,
u (x) = ũ (|x|) x ∈ B) and is the unique solution to ordinary differential equation −

1

r

∂

∂r

(
r
∂

∂r
ũ

)
= ã (r) in 0 < r < R,

ũ (R) = γ ũ (0) = 0.

By integration, we obtain the exact solution for previous ordinary differential equation

ũ (r) =

∫ R

0

(
1

r

∫ r

0
sã (s) ds

)
dr+γ, r ∈ [0, R] and from this and the fact that u (x) = ũ (|x|)

x ∈ B, we prove the lemma. �

Proof of Theorem 1. Let x0 ∈ Ω such that d (x0, ∂Ω) ≥ Rp with Rp =
(

−4γ
Fv essinfx∈Ω a

) 1
2

and B0 := BRp (x0) = {x ∈ Ω : d(x, x0) < Rp}. Since u is a solution of problem (P∗),
fromthe last identity of Corollary 7, u verifies the equation

0 = −∆u (x)− a (x)Gu (u (x))− 1

2

(
G2
u (u (x))

)′ − b (x) p′ (u (x)) in Ω.

Now, by the properties of b, p′, we have that b (x) p′ (u (x)) ≥ 0 a.e. x ∈ Ω and by estimates
on
(
G2
u (u (x))

)′
and u (see Corollary 7) and the fact that u has not flat region, we have

that 0 ≤ −∆u (x)− aGu (u (x)) + 2λ ‖b‖L∞(Ω) u+ (x) in Ω. Then

−∆u+ f (x, u) ≥ 0 in B0 (9)

where f : Ω × R → R+ is defined by f (x, τ) = −aGu (τ) + 2λ ‖b‖L∞(Ω) τ+.Notice that
f (x, ·) is non–decreasing in τ since Gu is a non–increasing function. So we can apply
the comparison principle for quasi–linear problems (see e.g. [4]). Now, we consider the
solution u given in Lemma 8 with B = B0 = BRp (x0) and â := Fv essinf

x∈Ω
a (x). So, u is

verifies

(PB)

{
−∆u (x) = Fv essinf

x∈Ω
a (x) in B0,

u (x) = γ on ∂B0

6
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and by property of Rp, u (x) < 0 for all x ∈ B0 \ {x0}. Notice that, by integration, the
exact solution u is given by u (x) = γ +Fv

(
Rp − |x− x0|2

)
essinf
x∈Ω

a (x) for all x ∈ B0 and

u (x0) = γ + FvRp essinf
x∈Ω

a (x) = 0 from the definition of Rp. On the other hand

f (x, u) ≤ −a (x)Fv − Fv essinf
Ω

a < 0 a.e. in B0 (10)

from the assumption of theorem. So, we get that

−∆u+ f (x, u) < 0 ≤ −∆u+ f (x, u) in B0,

u (x) = γ ≤ u (x) on ∂Ω

form (9), (10) and the property u ≥ γ in Ω. By the comparison principle, we conclude
that u ≥ u in B̄0 ⇒ u (x0) ≥ u (x0) = 0. Since the solution u has not flat region, we can
deduce that u > 0 a.e. in {x ∈ Ω : d (x, ∂Ω) ≥ Rp} and thus {x ∈ Ω : d (x, ∂Ω) ≥ Rp} ⊂
Ωp := {x ∈ Ω : u (x) > 0}. �

Proof of Theorem 2. Let ρ =
(

2S
K

)1/2
be the positive constant introduced in Theorem

2 with K the bound obtained in Corollary 6. Then Rv := R̂ −
(

2S
K

)1/2
. We take a point

x1 ∈ Ω such that d (x, ∂Ω) = Rv and a point x̄1 ∈ ∂Ω such that d (x1, ∂Ω) = d (x1, x̄1).
Then x1 = x̄1 +Rvn and {x : x = x̄1 + rn, 0 ≤ r ≤ R̂} ⊂ Ω̄. On this segment, u satisfies
the nonlinear equation

−u′′ (r) = a (r)Gu (u (r)) +
1

2

(
G2
u (u (r))

)′
+ b (r) p′ (u (r))

for 0 < r < R̂ (here, for a given function h : Ω → R, we use the notation h (r) :=
h (x̄1 + rn)). From Corollary 7, −u′′ (r) ≤ K. Moreover u (0) = u (x̄1) = γ and
u(R̂) = u(x̄1 + R̂n) ≤ ‖u+‖L∞(Ω) . As in the proof of Theorem 1, we can to find a bound

for the right hand side and u verifies the equations −u′′ (r) ≤ K in (0, R̂), u (0) = γ
and u(R̂) ≤ ‖u+‖L∞(Ω) ≤ S. Notice that u ≥ γ and γ < 0, thus if u(R̂) ≤ 0 then

u(R̂) ≤ ‖u+‖L∞(Ω); and if u(R̂) > 0 then u(R̂) = u+(R̂) ≤ ‖u+‖L∞(Ω). Now, we consider

the real function v (r) := S − 1
2K(R̂ − r)2 for r ∈ [0, R̂]. Then, by definition of v, on has

that v(R̂) = S, v (Rv) = S − 1
2K(R̂ − Rv)2 = 0 and since v is increasing in (0, R̂) then

v (r) ≤ 0 in (0, Rv). One the other hand, v is the unique solution to the linear boundary
problem

(BP )

{
−v′′ (r) = K in (0, R̂),

v (0) = γ, v(R̂) = S.

Thus, u (r) ≤ v (r) in (0, R̂). Moreover, v (Rv) = 0 > v (r) ≥ u (r) for any r ∈ [0, Rv).
In particular for all 0 < r < Rv, one has that u (x̄1 + rn) < 0 and then the segment
{x = x̄1 + rn, 0 < r < Rv} ⊂ Ωv = {x ∈ Ω : u (x) < 0}. Thus {x ∈ Ω : d (x, ∂Ω) ≤
R̂− ρ} ⊂ Ωv = {x ∈ Ω : u (x) < 0}. �

Considering the estimates given by the Theorem 1 and Theorem 2 joint the numerical
result of [2] we can check theobtained results thanks to the numerical simulation. On the
other hand, we can considers these results as a test for the numerical approach.
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Figure 2: the plasma region, u > 0 in blue bold line) joint to the estimate for the distance
form the free bounday of the plasma region to the plasma region to the boundary of
domain (square in red color).
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