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Abstract . We present a novel general resource analysis for logic pro­
grams based on sized types.Sized types are representations that incor­
porate structural (shape) information and allow expressing both lower 
and upper bounds on the size of a set of terms and their subterms at 
any position and depth. They also allow relating the sizes of terms and 
subterms occurring at different argument positions in logic predicates. 
Using these sized types, the resource analysis can infer both lower and 
upper bounds on the resources used by all the procedures in a program as 
functions on input term (and subterm) sizes, overcoming limitations of 
existing analyses and enhancing their precision. Our new resource analy­
sis has been developed within the abstract interpretation framework, as 
an extension of the sized types abstract domain, and has been integrated 
into the Ciao preprocessor, CiaoPP. The abstract domain operations are 
integrated with the setting up and solving of recurrence equations for 
both, inferring size and resource usage functions. We show that the anal­
ysis is an improvement over the previous resource analysis present in 
CiaoPP and compares well in power to state of the art systems. 

1 Introduction 
Resource usage analysis infers the aggregation of some numerical properties, like 
memory usage, time spent in computation, or bytes sent over a wire, throughout 
the execution of a piece of code. Such numerical properties are known as re­
sources. The expressions giving the usage of resources are usually given in terms 
of the sizes of some input arguments to procedures. 

Our starting point is the methodology outlined by [7,6] and [8], characterized 
by the setting up of recurrence equations. In that methodology, the size analysis 
is the first of several other analysis steps that include cardinality analysis (that 
infers lower and upper bounds on the number of solutions computed by a predi­
cate), and which ultimately obtain the resource usage bounds. One drawback of 
these proposals, as well as most of their subsequent derivatives, is that they are 
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only able to cope with size information about subterms in a very limited way. 
This is an important limitation, which causes the analysis to infer trivial bounds 
for a large class of programs. For example, consider a predicate which computes 
the factorials of a list: 

listfact([], []). fact(0,1). 
listfact([E|R],[F|FR]) :- fact(N,M) :- N1 is N - 1, 

fact(E, F ) , fact(N1, M1), 
listfact(R, FR). M i s N * M 1 . 

Intuitively, the best bound for the running time of this program for a list L is a+ 
EeeL (l3 + timefact(e)), where a and /3 are constants related to the unification 
and calling costs. But with no further information, the upper bound for the 
elements of L must be oo to be on the safe side, and then the returned overall 
time bound must also be oo. 

In a previous paper [21] we focused on a proposal to improve the size analysis 
based on sized types. These sized types are similar to the ones present in [22] for 
functional programs, but our proposal includes some enhancements to deal with 
regular types in logic programs, developing solutions to deal with the additional 
features of logic programming such as non-determinism and backtracking. While 
in that paper we already hinted at the fact that the application of our sized types 
in resource analysis could result in considerable improvement, no description was 
provided of the actual resource analysis. 

This paper is complementary and fills this gap by describing a new resource 
usage analysis with two novel aspects. Firstly, it can take advantage of the new 
information contained in sized types. Furthermore, this resource analysis is fully 
based on abstract interpretation, i.e., not just the auxiliary analyses but also the 
resource analysis itself. This allows us to integrate resource analysis within the 
PLAI abstract interpretation framework [16,19] in the CiaoPP system, which 
brings in features such as multivariance, fixpoints, and assertion-based verifica­
tion and user interaction for free. We also perform a performance assessment of 
the resulting global system. 

In Section 2 we give a high-level view of the approach. In the following section 
we review the abstract interpretation approach to size analysis using sized types. 
Section 4 gets deeper into the resource usage analysis, our main contribution. 
Experimental results are shown in Section 5. Finally we review some related 
work and discuss future directions of our resource analysis work. 

2 Overview of the Approach 

We give now an overview of our approach to resource usage analysis, and present 
the main ideas in our proposal using the classical append/3 predicate as a run­
ning example: 

append([], S, S). 
append([EIR], S, [E|T]) :- append(R, S, T). 



The process starts by performing the regular type analysis present in the CiaoPP 
system [23]. In our example, the system infers that for any call to the predicate 
append(X, Y, Z) with X and Y bound to lists of numbers and Z a free variable, 
if the call succeeds, then Z also gets bound to a list of numbers. The set of “list 
of numbers” is represented by the regular type “listnum,” defined as follows: 

listnum -> [] | .(num, listnum) 

From this regular type definition, sized type schemas are derived. In our 
case, the sized type schema listnum-s is derived from listnum. This schema 
corresponds to a list that contains a number of elements between a and /?, and 
each element is between the bounds 7 and 6. It is defined as: 

listnum-s ->• listnum(a'P(num^'^) 

From now on, in the examples we will use In and n instead of listnum and 
num for the sake of conciseness. The next phase involves relating the sized 
types of the different arguments to the append/3 predicate using recurrence 
(in)equations. Let sizex denote the sized type schema corresponding to argu­
ment X in a call append(X, Y, Z) (created from the regular type inferred by a 

previous analysis). We have that sizex denotes ln^ax^x(n^x
rf

x)). Similarly, 

the sized type schema for the output argument Z is ln^az^^(n^,z^z)), denoted 
by sizez. Now, we are interested in expressing bounds on the length of the 
output list Z and the value of its elements as a function of size bounds for the 
input lists X and Y (and their elements). For this purpose, we set up a sys­
tem of inequations. For instance, the inequations that are set up to express a 
lower bound on the length of the output argument Z, denoted az, as a function 
on the size bounds of the input arguments X and Y, and their subarguments 
(ax, fix, lx, 5X, aY, /3Y, 1Y, and 5Y) are: 

J ay if ax = 0 

(ax-l,Px-l,lx,Sx\ l + az { if ax > 0 
aY,l3Y,jY,SY J 

fax,l3x,jx,Sx,\ I / 
y ay ,I3Y,^Y,SY J ~ I 1 + az \ 

Note that in the recurrence inequation set up for the second clause of append/3, 
the expression ax - 1 (respectively fjx - 1) represents the size relationship that 
a lower (respectively upper) bound on the length of the list in the first argument 
of the recursive call to append/3 is one unit less than the length of the first 
argument in the clause head. 

As the number of size variables grows, the set of inequations becomes too 
large. Thus, we propose a compact representation. The first change in our pro­
posal is to write the parameters to size functions directly as sized types. Now, 
the parameters to the az function are the sized type schemas corresponding to 
the arguments X and Y of the append/3 predicate: 

(a 6 )/ (ix Sx)\\ (ay if ax = 0 
n X\X b!) I > < ln (ax-1'^ 
ln{aY'M(n (~<JvfY) ) l + a z ln (aY,pY)^\sl)^ if a * > ° 



In a second step, we group together all the inequalities of a single sized 
type. As we always alternate lower and upper bounds, it is always possible to 
distinguish the type of each inequality. We do not write equalities, so that we 
do not use the symbol =. However, we always write inequalities of both signs 
(> and <) for each size function, since we compute both lower and upper size 
bounds. Thus, we use a compact representation ^ for the symbols > and < that 
are always paired. For example, the expression: 

represents the conjunction of the following size constraints: 

ax > ei, Px < e2, 7x > e3, Sx < e4 

After setting up the corresponding system of inequations for the output ar­
gument Z of append/3, and solving it, we obtain the following expression: 

that represents, among others, the relation az >ax + aY (resp. /3Z < /3X + PY), 
expressing that a lower (resp. upper) bound on the length of the output list Z, 
denoted az (resp. pz), is the addition of the lower (resp. upper) bounds on 
the lengths of X and Y. It also represents the relation l z > min( 7 x ,7F) (resp. 
5Z < max(Jx , (V)), which expresses that a lower (resp. upper) bound on the 
size of the elements of the list Z, denoted lz (resp. 6Z), is the minimum (resp. 
maximum) of the lower (resp. upper) bounds on the sizes of the elements of the 
input lists X and Y. 

Resource analysis builds upon the sized type analysis and adds recurrence 
equations for each resource we want to analyze. Apart from that, when consid­
ering logic programs, we have to take into account that they can fail or have 
multiple solutions when executed, so we need an auxiliary cardinality analysis 
to get correct results. 

Let us focus now on cardinality analysis. Let sL and sv denote lower and 
upper bounds on the number of solutions respectively that predicate append/3 
can generate. Following the program structure we can infer that: 

sL ln{0'0)(n^xfx)),sizeY) > 1 

sL {ln (ax'l3x){n^xfx) ),sizeY\ > sL (ln (ax-1'l3x-1) (n (™fx) ) , sizeY) 

su (ln(ofi)(n^x
}'

Sx)),sizeY) < 1 

su (ln (ax'l3x\n (('<
x
)'

Sx) ),sizeY) < sv (ln (ax-1'l3x-1) (n^x
}'

Sx) ) , sizey) 

The solution to these inequations is (sL, sv) = (1,1), so we have inferred that 
append/3 generates at least (and at most) one solution. Thus, it behaves like 
a function. When setting up the equations, we have used our knowledge that 
append/3 cannot fail when given lists as arguments. If not, the lower bound in 
the number of solutions would be 0. 



Now we move forward to analyzing the number of resolution steps performed 
by a call to append/3 (we will only focus on upper bounds, r „ , for brevity). For 
the first clause, we know tha t only one resolution step is needed, so: 

ru (ln (0f0) n£1
Sx) ) (aYtPY) nf1fY) )) < 1 

The second clause performs one resolution step plus all the resolution steps 
performed by all possible backtrackings over the call in the body of the clause. 
This number of possible backtrackings is bounded by the number of solutions of 
the predicate. So the equation reads: 

ru (ln(ax-l3x\n^x
)'

Sx)),sizeY) < 1 + su (lv(ax~1^x~1){n^x^x)),sizeY\ 

x ru (ln (ax~1'Px~1)r(?x/x) ),sizeY) 

= 1 + ru (ln(ax~1'Px~1)(n((,x^x)),sizeY) 

Solving these equations we infer tha t an upper bound on the number of resolution 
steps is the (upper bound on the length) of the input list X plus one. This is 
expressed as: 

ru (ln (ax^x) n^x;Sx) )Jn (aY^) n ( 1 Y) )) </3x + l 

3 Sized Types Review 

As shown in the append example, the (bound) variables tha t we relate in our 
inequations come from sized types, which are ultimately derived from the regu­
lar types previously inferred for the program. Among several representations of 
regular types used in the literature, we use one based on regular term grammars, 
equivalent to [5] but with some adaptat ions. A type term is either a base type 
on (taken from a finite set), a type symbol n (taken from an infinite set), or a 
term of the form /(</>1 ; . . . , <j>n), where / is a n-ary function symbol (taken from 
an infinite set) and </>i,..., </>„ are type terms. A type rule has the form T ->• </>, 
where T is a type symbol and </> a type term. A regular term grammar Y is a set 
of type rules. 

To devise the abstract domain we focus specifically on the generic AND-OR 
trees procedure of [3], with the optimizations of [16]. This procedure is generic 
and goal dependent: it takes as input a pair (L, Ac) representing a predicate 
along with an abstraction of the call pat terns (in the chosen abstract domain) 
and produces an abstraction A0 which overapproximates the possible outputs . 
This procedure is the basis of the PLAI abstract analyzer present in CiaoPP [11], 
where we have integrated an implementation of the proposed size analysis. 

The formal concept of sized type is an abstraction of a set of Herbrand terms 
which are a subset of some regular type r and meet some lower- and upper-
bound size constraints on the number of type rule applications. A grammar for 
the new sized types follows: 



sized-type ::= a
bounds a base type 

| T
bounds (sized-args) r recursive type symbol 

J T-(sized-args) r non-recursive type symbol 
bounds ::= nob \ (n, m) n, m G N, m > n 

sized-args ::= e | sized- arg, sized-args 
sized-arg ::= sized-type ition 

position ::= e | (/, n) / functor, 0 < n < arity of / 

However, in our abstract domain we need to refer to sets of sized types which 
satisfy certain constraints on their bounds. For tha t purpose, we introduce sized 
type schemas: a schema is just a sized type with variables in bound positions, 
along with a set of constraints over those variables. We call such variables bound 
variables. We will denote sized(r) the sized type schema corresponding to a 
regular type r where all the bound variables are fresh. 

The full abstract domain is an extension of sized type schemas to several 
predicate variables. Each abstract element is a triple (t,d,r) such that : 

1. t is a set of v ->• (sized(r), c), where v is a variable, r its regular type and c 
is its classification. Subgoal variables can be classified as output, relevant, or 
irrelevant. Variables appearing in the clause body but not in the head are 
classified as clausal; 

2. d (the domain) is a set of constraints over the relevant variables; 
3. r (the relations) is a set of relations among bound variables. 

For example, the final abstract elements corresponding to the clauses of the 
listf act example can be found below. The equations have already been nor­
malized into their simplest form for conciseness: 

A; 
( L - > - (ln<-ai'l3l)(n<-'n'Sl)),rel.),FL^ (ln(°'2'M(n('12'S2)), out.)X \ 

{ax = l,/3i = l},{fa(c"2 ' ,32)(n(72 ' '52)) ^ln(1A)(nnob)} / 

!

L _> (In^1'13^ (n(~n'Sl)),rel.), FL -> (fa(c"2 ' /32)(n(72 ' ,52)), out.), } 
E ^ (n^3'S3\cl.),R-^ (ln(a*'M(n(~/*M),cl.), > 

i?_> (n^'^^cl.YFR^ (ln(a6'M(n^6'S6)\,cl.) J \ 
{ai >0,/3i > 0}, / 

C fa(«2,/32)('n (72,«2) ) < ^ ( a ' + l ^ ' + l ) / ( m i n ( 7 1 ! , 7 ' ) , m a x ( « 1 ! , « ' ) N ^ / 

| ln{a''[i'(n^''s,) ) <factlist(ln('ai~1^1~1) (n^1'Sl) )) \ 

4 The Resources Abstract Domain 

We take advantage of the added power of sized types to develop a better resource 
analysis which infers upper and lower bounds on the amount of resources used 
by each predicate as a function of the sized type schemas of the input arguments 



(which encode the sizes of the terms and subterms appearing in such input 
arguments). For this reason, the novel abstract domain for resource analysis that 
we have developed is tightly integrated with the sized types abstract domain. 

Following [17], we account for two places where the resource usage can be 
abstracted: 

- When entering a clause: some resources may be needed during unification 
of the call (subgoal) and the clause head, the preparation of entering that 
clause, and any work done when all the literals of the clause have been 
processed. This cost, dependent on the head, is called head cost, /3. 

- Before calling a literal: some resources may be used to prepare a call to a 
body literal (e.g., constructing the actual arguments). The amount of these 
resources is known as literal cost and is represented by 5. 

We first consider the case of estimating upper bounds on resource usages. 
For simplicity, assume also that we deal with predicates having a behavior that 
is close to functional or imperative programs, i.e., that are deterministic and do 
not fail. Then, we can bound the resource consumption of a clause 

C=p(x) : — qi(xi), .. ., </„(x„), 
denoted rUfiXaus(, using the formula: 

ru,ciause(C) < /3(p(x)) + £ t i (5(qi(Xi)) + ru^Mxi))) 

As in sized type analysis, the sizes of some input arguments may be explicitly 
computed, or, otherwise, we express them by using a generic expression, giving 
rise (in the case of recursive clauses) to a recurrence equation that we need to 
solve in order to find closed form resource usage functions. 

The resource usage of a predicate, rUtPred, depending on its input data sizes, 
is obtained from the resource usage of'the clauses defining it, by taking the 
maximum of the equations that meet the constraints on the input data sizes 
(i.e., have the same domain). 

However, in logic programming we have two extra features to take care of: 

- We may execute a literal more than once on backtracking. To bound the 
number of times a literal is executed, we need to know the number of solutions 
each literal (to its left) can generate. Using that information, the number 
of times a literal is executed is at most the product of the upper bound on 
the number of solutions, sv, of all the previous literals in the clause. We get 
then the relation: 

ru,clause (p(x) \ - <Jl (xi) , . . . , <J„ (xn)) 

(S(qi(xi)) + rUiPred(qi(xi))) 

- Also, in logic programming more than one clause may unify with a given 
subgoal. In that case it is incorrect to take the maximum of the resource 
usages of clauses when setting up the recurrence equations. A correct solution 
is to take the sum of every set of equations with a common domain, but the 
bound becomes then very rough. Finer-grained possibilities can be considered 
by using different aggregation procedures per resource. 



Lower bounds analysis is similar, but needs to take into account the possi­
bility of failure, which stops clause execution and forces backtracking. Basically, 
no resource usage should be added beyond the point where failure may happen. 
For this reason, in our implementation of the abstract domain we use the non-
failure analysis already present in CiaoPP. Also, the aggregation of clauses with 
a common domain must be different to that used in the upper bounds case. The 
simplest solution is to just take the minimum of the clauses. However, this again 
leads to very rough bounds. We will discuss lower bound aggregation later. 

Cardinality Analysis We have already discussed why cardinality analysis 
(which estimates bounds on the number of solutions) is instrumental in resource 
analysis of logic programs. We can consider the number of solutions as another 
resource, but, due to its importance, we treat it separately. 

An upper bound on the number of solutions of a single clause could be 
gathered by multiplying the number of solutions of all possible clauses: 

SU,clause (p(x) : - qi (*i ) , . . . , qn ( x n ) ) = FTj l l SU,pred(qi (x¯i)) 

For aggregation we need to add the equations with a common domain, to get a 
recurrence equation system. These equations will be solved later to get a closed 
form function giving an upper bound on the number of solutions. 

It is important to remark that many improvements can be added to this 
simple cardinality analysis to make it more precise. Some of them are discussed 
in [6], like maintaining separate bounds for the relation defined by the predicate 
and the number of solutions for a particular input, or dealing with mutually 
exclusive clauses by performing the max operation, instead of the addition oper­
ation when aggregating. However, our focus here is the definition of an abstract 
domain, and see whether a simple definition produces comparable results for the 
resource usage analysis. 

One of the improvements we decided to include is the use of the determi-
nacy analysis present in CiaoPP [14]. If such analysis infers that a predicate is 
deterministic, we can safely set the upper bound for the number of solutions to 
1, avoiding the setting up of recurrence equations. 

In the case of lower bounds, we need to know for each clause whether it 
may fail or not. For that reason we use the non-failure analysis already present 
in CiaoPP [4]. In case of a possible failure, the lower bound on the number of 
solutions is set to 0. 

The Abstract Elements The abstract elements are derived from sized type 
analysis by adding some extra components. In particular: 

1. The current variable for solutions, and current variable for each resource. 
2. A boolean element for telling whether we have already found a failing literal. 
3. Information about non-failure analysis, coming from its abstract domain. 
4. Information about determinacy analysis, coming from its abstract domain. 



We will denote the abstract elements by 

{(sL, 8u), vreatmrcea, failed?, d, r, nf, det) 

where (sL, sv) are the lower and upper bound variables for the number of so­
lutions, vresources is a set of pairs (rL,rv) giving the lower and upper bound 
variables for each resource, failed? is a boolean element (either true or false), 
d and r are defined as in the sized type abstract domain, and nf and det can 
take the values not_fails/fails and non_det/is_det respectively. 

In this analysis we assume that we are given the definition of a set of re­
sources, which are fixed throughout the whole analysis process. We have already 
mentioned three operations, but we need an extra one for having a complete 
algorithm. For each resource r we have: 

- Its head cost, /3r, which takes a clause head as parameter; 
- Its literal cost, Sr, which takes a literal as parameter; 
- Its aggregation procedure, Tr, which takes the equations for each of the 

clauses and creates a new set of recurrence equations from them; 
- The default upper Lr,u and lower _Lr,L bound on resource usage. 

To better understand how the domain works, we will continue with the analy­
sis of the listf act predicate that we started in the previous section. We assume 
that the only resource to be analyzed is the “number of steps,” so that we use 
the following values for the parameters of the resource analysis: 

/ 3 = 1 , (5 = 0, T r = + , (_LL,_L[r) = (0,0) 

E, U and _L We do not have a decidable definition for C or U, because there is 
no general algorithm for checking the inclusion or union of sets of integers defined 
by recurrence relations. Instead, we just check whether one set of inequations is 
a subset of another one, up to variable renaming, or perform a syntactic union 
of the inequations. This is enough for having a correct analysis. 

For _L we first generate new variables for each of the resources and the solu­
tion. Then, we add relations between them and the default cost for each resource. 
For an unknown predicate, the number of solutions could be any natural number, 
so we take it as [0, oo). We also assume that the predicate may fail. 

As mentioned before, the components for non-failure and determinacy come 
from the abstract domains for those analyses. 

For example, the bottom element for the “number of steps” resource will be 
(where _Ln/ and _Ldet are the bottom elements in the non-failure and determinacy 
domains respectively): 

{(sL, Su), {(nL, nu)}, true, 0, {(sL, sv) ^ (0, oo), (nL, nv) ^ (0, 0)}, _Ln/, ±det) 

Kail to I3entry In this operation we need to create the initial structures for 
handling the bounds on the number of solutions and resources. This implies the 
generation of fresh variables for each of them, and setting them to their initial 



values. In the case of the number of solutions, the initial value is 1 (which is 
the number of solutions generated by a fact, and also the neutral element of 
the product which appears in the corresponding formula). For a resource r, the 
initial value is exactly /3r. 

The addition of constraints over sized types when the head arguments are 
partially instantiated is inherited from the sized types domain. Finally, for the 
failed? component, we should s tar t with value false, as no literal has been 
executed yet, so it cannot fail. 

In the listf act example, the entry substitutions are: 

_ / (SL,I , I , sc/,i,i),{(nL,i,i,nc/,i,i)}, false, {ai =0,/3i = 0}, \ 
r y , 1 ~ \ { ( S L , I , I , S U , I , I ) ^ ( 1 , 1 ) , ( W L , I , I , W [ / , I , I ) ^(l,l)},not.fails,is.det/ 

_ / (sL,2,i,su,2,i), {(nL,2,i,nu,2,i)}, false, {ai > 0,/3i > 0}, \ 
r y ' 2 ~ \ { ( S L , 2 , I , S E 7 , 2 , I ) ^ (l,l),(nL,2,i,nc/,2,i) ^ (1,1)},not.fails, is.det / 

The Extend Operation In the extend operation we get both the current ab­
stract substi tution and the abstract substi tution coming from the literal call. We 
need to update several components of the abstract element. First of all, we need 
to include a call to the function giving the number of solutions and the resource 
usage from the called literal. 

Afterwards, we need to generate new variables for the number of solutions 
and resources, which will hold the bounds for the clause up to tha t point. New 
relations must be added to the abstract element to give a value to those new 
variables: 

- For the number of solutions, let sU}C be the new upper bound variable, sU}P 

the previous variable defining an upper bound on the number of solutions, 
and sUtX an upper bound on the number of solutions for the subgoal. Then 
we need to include an assignment: sUjC < sUjP x sUjX. 

In the case of lower bound analysis, there are two phases. First of all, we check 
whether the called literal can fail, looking at the output of the non-failure 
analysis. If it is possible for it to fail, we update the failed? component of 
the abstract element to true. If after this the failed? component is still 
false (meaning tha t neither this literal nor any of the previous ones may 
fail) we include a relation similar to the one for upper bound case: sLjC > 
sL,p x sL j A . Otherwise, we include the relation sLjC > 0, because failing 
predicates produce no solutions. 

- The approach for resources is similar. Let rUfi be the new upper bound 
variable, rUtP the previous variable defining an upper bound on tha t resource 
and rV,x an upper bound on resources from the analysis of the literal. The 
relation added in this case is rUfi < rUtP + sUtP x (6 + rUtX). 

For lower bounds, we have already updated the failed? component, so we 
only have to work in consequence. If the component is still false, we add a 
new relation similar to the one for upper bounds. If it is true, it means tha t 



failure may happen at some point, so we do not have to add tha t resource 
any more. Thus the relation to be included would be rLjC > rLjP. 

In our example, consider the extension of listf act after performing the analysis 
of the fact literal, whose resource components of the abstract element will be: 

/ (sL, su),{(nL,nu)}, false, {a, /3 > 0} \ 
\ {(sL,su) ^ (1,1), (nL,nu) ^ (a,/3)},not_fails, is.det / 

As this literal is known not to fail, we do not change the value of the failed? 
component of our abstract element for the second clause. Tha t means tha t it is 
still false, so we add complete calls: 

0 L , 2 , 2 , SE/,2,2), {(nL,2,2,nu,2,2)}, false, {... } 

\ {(nL,2,2,nu,2,2)$hi+nL,2,i,6i+nu,2,i)) I 
not_fails,is_det 

j3exit to A' After performing all the extend operations, the variables appearing 
in the number of solutions and resources positions will hold the correct value 
for their respective numerical properties. As we did with sized types, we follow 
now a normalization step, based on [6]: we replace each variable appearing in a 
expression with its definition in terms of other variables, in reverse topological 
order, s tart ing from the desired variables. Following this process, we should reach 
the variables in the sized types of the input parameters in the clause head. 

Going back to our listf act example, the final substitutions would be: 

X' / 

^e entry,2 

(sL,i,i,sc/,i,i),{(nL,i,i,nc/,i,i)}, false, {ai = 0, /3i = 0 } , 
{(SL, I , I ,SE7 , I , I ) ' ^ (l,l),(nL,i,i,n'c/,i,i) ^ (1,1)}, not.fails, is.det 

(SL,2,3,S[/ ,2,3) , {(nL,2,3,nc/,2,3)}, false, {ai > 0, /3i > 0}, 

SL 2 3 > 1 x listfactsoiL{ln{ai-1'l3l-1)(n{~nM)), 
8U23 < 1 x listfactZi'uiln^-^-^in^^)), 

nL 2 3 > 71 + listfactno st 'eps Llln^-^-^ln^'^)), 
nu,2,3<S1+Ustfactno.steps,L(ln^-1^-1\n^^)) 

not_fails,is_det 

Widening V and Closed Forms As mentioned before, in contrast to previous 
cost analyses, at this point we bring in the possibility of different aggregation 
operators. Thus, when we have the equations, we need to pass them to each of 
the corresponding T r per each resource r to get the final equations. 

This process can be further refined in the case of solution analysis, using the 
information from the non-failure and determinacy analyses. If the final output of 
the non-failure analysis is fails, we know tha t the only correct lower bound is 
0. So we can just assign the relation sL > 0 without further recurrence relation 
setting. Conversely, if the final output of the determinacy analysis is is_det, we 



can safely set the relation sv < 1, because at most one solution will be produced 
in each case. Furthermore, we can refine the lower bound on the number of 
solutions with the minimum between the current bound and 1. 

In the example analyzed above there was an implicit assumption while setting 
up the relations: that the recursive call in the body of listf act refers to the 
same predicate call, so we can set up a recurrence equation. This fact is implicitly 
assumed in Hindley-Milner type systems. But in logic programming it is usual 
for a predicate to be called with different patterns (such as different modes). 
Fortunately, the CiaoPP framework allows multivariance (support for different 
call patterns of the same predicate). For the analysis to handle it, we cannot just 
add calls with the bare name of the predicate, because it will conflate all the 
existing versions. The solution that we propose adds a new component to the 
abstract element: a random name given to the specific instance of the predicate 
we are analyzing, that is generated in the XcaU to l3entry. Then, in the widening 
step, all different versions of the same predicate name are conflated. 

Even though the analysis works with relations, these are not as useful as 
functions defined without recursion or calls to other functions. First of all, de­
velopers will get a better idea of the sizes if presented in such a closed form. 
Second, functions are amenable to comparison as outlined in [15], which is es­
sential for example in resource usage verification. There are several software 
packages that are able to get bounds for recurrence equations: computer algebra 
systems, such as Mathematica (which has been integrated to get a fully auto­
mated analysis) or Maxima; and specialized solvers such as PURRS [2] or PUBS 
[1]. In our implementation we apply this overapproximation operator after each 
widening step. For our example, the final abstract substitution is: 

, , _ / (sL, su),{(nL,nu)}, false, {ai, /3i > 0}, \ 
1 2 ~ \{(sL,su) ^ (1,1),(nL,nu) ^ ( a i 7 i , / 3 K 5 I ) } ,not.fails, is.det / 

5 Experimental results 

We have constructed a prototype implementation in Ciao by defining the ab­
stract operations for sized type and resource analysis that we have described in 
this paper and plugging them into CiaoPP’s PLAI implementation. Our objec­
tive is to assess the gains in precision in resource consumption analysis. 

Table 1 shows the results of the comparison between the new lower (LB) 
and upper bound (UB) resource analyses implemented in CiaoPP, which also 
use the new size analysis (columns New), and the previous resource analyses in 
CiaoPP [6,8,17] (columns Previous). We also compare (for upper bounds) with 
RAML’s analysis [12] (column RAML). 

Although the new resource analysis and the previous one infer concrete re­
source usage bound functions (as the ones in [17]), for the sake of conciseness 
and to make the comparison with RAML meaningful, Table 1 only shows the 
complexity orders of such functions, e.g., if the analysis infers the resource us­
age bound function <P, and <P G Q($), Table 1 shows &. The parameters of 



Table 1 . Experimental results. 

Program 

append 

appendA112 

coupled 

dyade 

erathos 

fib 
hanoi 

isort 

isortlist 

listfact 

listnum 

minsort 

nub 
partition 

zip3 

Resource Analysis (LB) 
New 

a a 
aia2Ci3 a\ 

n 0 
0.10.2 0.10.2 

a a 
^ ^ 
1 0 

a2 a2 

a2 a2 

a^j a 
y, y, 
a2 a 
a\ a\ 
a. a. 

min(ai) 0 

Previous 

+ 
+ 

+ 

+ 

+ 

+ 

Resource Analysis (UB) 
New 

13 
616263 

V 

/3i/32 

/32 

<t>v 

2V 

/32 

6262 

135 
V 

fi2 

b\b2 

13 
min(/3i) 

Previous 

13 
0 0 

0 0 

/3i/32 

/32 

<t>v 

0 0 

/32 

0 0 

0 0 

V 

fi2 

0 0 

13 
0 0 

— 

+ 
+ 
— 
— 
— 

+ 
— 

+ 
+ 
— 
— 

+ 
— 

+ 

RAML 

13 
616263 = 

V = 

I3il32 = 

S32 = 
infeasible + 
infeasible + 

S32 = 
Q-i Qo = = 

unknown ? 
unknown ? 

/32 = 
Q-i Qo = = 

13 
l33 + 

such functions are (lower or upper) bounds on input data sizes. The symbols 
used to name such parameters have been chosen assuming that lists of num­
bers Li have size ln^^(n^^), lists of lists of lists of numbers have size 
llln{-ai'hl(lln{-a2'h2(ln{-a-i'h3(n{-ai'h^))), and numbers have size n^-"). Table 1 
also includes columns with symbols summarizing whether the new CiaoPP re­
source analysis improves on the previous one and/or RAMVs: + (resp. - ) in­
dicates more (resp. less) precise bounds, and = the same bounds. The new size 
analysis improves on CiaoPP’s previous resource analysis in most cases. More­
over, RAML can only infer polynomial costs, while our approach is able to infer 
other types of cost functions, as is shown for the divide-and-conquer bench­
marks hanoi and fib, which represent a large and common class of programs. 
For predicates with polynomial cost, we get equal or better results than RAML. 

6 Related work 

Several other analyses for resources have been proposed in the literature. Some 
of them just focus on one particular resource (usually execution time or heap 
consumption), but i t seems clear that those analyses could be generalized. 

We already mentioned RAML [12] in Section 5. Their approach differs from 
ours in the theoretical framework being used: RAML uses a type and effect 
system, whereas our system uses abstract interpretation. Another important 
difference is the use of polynomials in RAML, which allows a complete method of 
resolution but limits the type of closed forms that can be analyzed. In contrast, 
we use recurrence equations, which have no complete decision procedure, but 
encompass a much larger class of functions. Type systems are also used to guide 
inference in [10] and [13]. 



In [18], the authors use sparsity information to infer asymptotic complexities. 
In contrast, we only get closed forms. Similarly to CiaoPP’s previous analysis, the 
approach of [1] applies the recurrence equation method directly (i.e., not within 
an abstract interpretation framework). [20] shows a complexity analysis based on 
abstract interpretation over a step-counting version of functional programs. [9] 
uses symbolic evaluation graphs to derive termination and complexity properties 
of logic programs. 

7 Conclusions and Future Work 

In this paper we have presented a new formulation of resource analysis as a 
domain within abstract interpretation and which uses as input information the 
sized types that we developed in [21]. We have seen how this approach offers 
benefits both in the quality of the bounds inferred by the analysis, and in the ease 
of implementation and integration within a framework such as PLAI/CiaoPP. 

In the future, we would like to study the generalization of this framework 
to different behaviors regarding aggregation. For example, when running tasks 
in parallel, the total time is basically the maximum of both tasks, but memory 
usage is bounded by the sum of them. Another future direction is the use of 
more ancillary analyses to obtain more precise results. Also, since we use sized 
types as a basis, any new research that improves such analysis will directly 
benefit the resource analysis. Finally, another planned enhancement is the use of 
mutual exclusion analysis (already present in CiaoPP) to aggregate recurrence 
equations in a better way. 
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