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A method that provides a three-dimensional representation of the basin of attraction of a
dynamical system from experimen tal data was applied to the problem of dynamic balance 
restoration. The method is based on the density of the data on the phase space of the sys- 
tem under study and makes use of modeling and numerical curve fitting tools. For the 
dynamical system of balance restora tion, the shape and the size of the basin of attractio n
depend on the dynamics of the postural restoring mechanisms and contain important 
information regarding the biomechanical, as well as the neuromuscular condition of the 
individual. The aim of this work was to examine the ability of the method to detect,
through the observed changes in the shape and/or the size of the calculated basins of
attraction, (a) the inherent differences between different systems (in the current app lica- 
tion, postural restoring systems of different individuals) and (b) induced chan ges in the 
same system (the postural restoring system of an individual). The results of the study con- 
firm the validity of the method and furthermore justify its robustness.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction 

1.1. Obtaining the basin of attraction of a dynamica l system 

The problem of estimating the geometry of the basin of attraction of a dynamical system from experimental data is fun- 
damental and challenging both from the theoretical and the applied point of view.

Analytical methods can be found in the literature, obviously limited to dynamical systems described by known, analyt- 
ically manageable functiona l forms [1–10]. Numerical procedures have also been proposed for the calculation of the basin 
boundaries from first principles [9,11,12]. Methods such as the so-called cell mapping method [13] have been used. There 
has also been work on estimating the basin of attraction from experimental data [14–16] however in general such studies 
are concerned with the determination of the basin’s lower/uppe r limits or its boundari es [17].

An interesting method for numerically determining the basin of attraction from experimental data can be found in [2].
Using as application a driven two-well magneto-mech anical oscillator , the basins of attractions for the system are obtained 
by an ensemble of initial conditions generated by switching between stochastic and deterministic excitation.

In our previous work [18], we presented a method of numerica lly estimating the shape and the size of the basin of attrac- 
tion from the density of the experimental data. This method uses numerica l optimization and data modeling tools to obtain 
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analytical curves that describe both the contours and the boundary of the basin. Finally a three-dimensio nal function 
describing the basin of attraction is calculated .

The present work presents.

� a modification of the previous method [18], providing the three-dimens ional basin of attraction in the form of a three- 
dimensional potential well and 
� results of the application of the modified method to the study of the detection of changes in the geometry of the basin of

attraction.

1.2. The application: the dynamic process of balance restoration after perturbation from the vertical 

Given a sufficiently small perturbation , the human body has the ability to regain balance, following a complicated path 
back to the position of quiet vertical stance [19,20]. For vertical balance to be maintain ed, a variety of possible dynamics 
across different joints and body parts is recruited and a number of motor and sensory pathways contribute to its control 
[21]. Quiet stance and the maintenance of vertical balance is therefore an important motor function in humans.

The postural restoring response is a function of body morphology , muscular strength, and neurological condition; it can 
be affected by a number of factors, such as for example age, specific training, medication, impaired cognition, visual impair- 
ment, or even nutritional deficiencies. Injuries can also importantly affect balance, as the movement patterns leading to bal- 
ance are changed so as to protect the injured area [22].

Quiet stance is rather a dynamic than a static phenomeno n [23,24], as balance in quiet vertical stance does not imply 
motionless stability. The body’s center of gravity oscillates spontaneously and continuously at low amplitud e, a phenomeno n
known as postural sway [19,25,26 ]. Postural sway, still a matter of scientific discussion, is indistinguishab le from correlated 
noise [27]. It has been suggested [23] that it is the body’s clever strategy to maintain balance in vertical stance, instead of the 
result of an ‘‘imperfectness’’ of the biologica l system.

Although there is a lot of discussion, the integration of several mechanis ms have been proposed, examples being vestib- 
ular sensing of head movement and gravitational orientati on, visual sensing of self-movemen t, and propriocept ive sensing of
ankle movement [21,28]. Two distinct re-stabilizat ion mechanism s have been introduced, together with their combination:
the ‘‘ankle strategy’’ and the ‘‘hip strategy’’ [23,24,29–33]. It seems that the postural system reduces the unknown, high 
number of the degrees of freedom of the stabilizing mechanis ms by compress ing them into these two muscular synergies 
at the neuromus cular level [24,32]. Static stability regions with respect to ankle and hip joints have been proposed [34],
while the authors in [35] used a concept based on the mechanical limit of vertical stance with respect to the angles of
the ankle and the hip, called stability cone [18].

Tools from non linear dynamics have been found to be very useful in understanding the complex behavior of vertical bal- 
ance [18–20,22,24,25,36] . It has been furthermore shown that the relative motion of the ankles and the hips in postural oscil- 
lations exhibit typical hallmarks of dynamical systems, including relaxation time after perturbation [24,37]. From the point 
of view of dynamical systems, the difficult task of understand ing the complex mechanism of the recuperation and mainte- 
nance of vertical balance can be facilitated by reducing the system’s dimensio nality [18,24,25].

The present study is based on a dynamical systems model [18,22,24 ,36] that does not make use of the individual com- 
ponents of the human body, or the non-linear interactions between them. Instead, it considers the process of dynamically 
regaining balance as movement inside a basin of attraction [18,22,24] that corresponds to the set of the correctable angles 
that an individual can lean to and still and reverse the motion so as to regain vertical stance (prevent falling). The important 
question of how best to stabilize the vertical position is this way transformed into the question of how to achieve a wider 
basin of attraction, with a stronger attractor at vertical stance.

The method [18] numerically calculates the basin of attraction that corresponds to an individual from experimental data,
with the aim to demonstrate that the biomechanical differenc es and acquired asymmetr ies in the body’s alignment are 
reflected as differences in the shape and the size of the basin of attraction of human balance. The method used in the present 
study can be used as an important and fundamental tool for the detection of changes of the dynamics of the system under 
study [18,22,24,36] and has potential applicati ons that are not limited to the area of human balance, but can be extended to
any other dynamical system where an estimation of its basin of attraction from experimental data is desired.

2. Theory/calculati on

In what follows we provide a brief introduction to the model previously presented in [18,24], see also [22,36]:

2.1. The model on the phase space of ðhx; hyÞ

Denoting as Fz the vertical component of the resultant ground reaction force and Fx; Fy its components on the x (antero-
posterior) and y (mediolateral) directions respectivel y, then the model [24] assumes as only variables the two angles 
ðhx; hyÞ 2 � p

2 ;
p
2

� �
, where hx � tan�1ðFx=FzÞ and hy � tan�1ðFy=FzÞ.



Fig. 1. The features of the model on the phase space of ðhx; hyÞ. The attracting region A around ð0;0Þ corresponds to vertical stance, the attracting circle 
ff ðhx; hyÞ models failure to regain vertical balance and the critical curve fcðhx; hyÞ separates their basins of attraction. This figure shows an idealized critical 
curve.
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The phase space of ðhx; hyÞ includes a region where postural balance can be maintained . On this region vertical stance can 
be represented [24] as an attracting fixed point at ðhx ¼ 0; hy ¼ 0Þ, see Fig. 1. The set of sufficiently small ‘‘critical’’ angles hc

x

and hc
y such that, for 0 6 hx 6 hc

x and 0 6 hy 6 hc
y vertical stance can be regained after an initial perturbation away from the 

vertical, constitutes the ‘‘critical curve’’, which has been modeled as a repelling set of fixed points. Beyond a certain level of
initial perturbation , humans are ‘‘attracted’’ to falling: the subject will abandon the specified foot position resulting in
actions such as falling or taking a step to prevent falling. On the phase space of ðhx; hyÞ this condition is represented as an
attracting circle h2

x þ h2
y ¼ ðp=2Þ2, see Fig. 1. The critical curve can be viewed as the boundary between the two basins of

attraction, that contain either vertical stance or horizontal failure [18,22,24 ,36] . Any muscle imbalanc es or asymmetrie s
often cause deformations in the size or the shape [22,36] of this critical curve.

The dynamical system [24] of dynamic upright posture restoration described on the phase space of ðhx; hyÞ is governed by
the following set of coupled ordinary differential equation s:
_hx ¼ �faxðhx; hyÞfcðhx; hyÞff ðhx; hyÞ;

_hy ¼ �fayðhx; hyÞfcðhx; hyÞff ðhx; hyÞ;
where the functions faxðhx; hyÞ and fayðhx; hyÞ control the attractor at vertical state,
faxðhx; hyÞ ¼ �ðahx þ ghyÞ; f ayðhx; hyÞ ¼ �ðchx þ jhyÞ
the function fcðhx; hyÞmodels the repelling critical curve (see below) and the function ff ðhx; hyÞmodels the attracting circle of
failure to regain vertical stance,
ff ðhx; hyÞ ¼
p2

4
� h2

x � h2
y :
It should be noted here that a linear stability analysis of the model regarding movement on the phase space of ðhx; hyÞ has
been performed [24], and a modification of the model has been presente d and analyzed [22] to account for rotated and/ 
or skewed movement patterns. Furthermore, a detailed method of the derivation of the critical curve fcðhx; hyÞ from exper- 
imental data has been presented, see [36].

The present study goes one step forward by taking into account the existence of body sway at quiet vertical stance. This 
way the attractor at ð0;0Þ is not considered here as a point but rather as a small attracting region around the vertical [18].
Assuming that this attracting region is an ellipse of major semi-axis R1 and minor semi-axis R2 then all the points that lie 
inside this elliptical region are considered to belong to the attractor of vertical stance. From the biomechanical point of view,
the larger the size of the ellipse, the stronger the person’s ability to maintain balance.

2.2. The basin of attraction of human balance 

Following the model presented in [18], the motion of the center of gravity of the body is considered to take place inside a
two-dimensi onal manifold (a basin of attraction), the shape and size of which is characteri stic of the movement patterns and 
asymmetrie s of the individual and is independen t of the initial perturbation from quiet stance [18]. A mentioned above, this 
basin of attraction includes the attractor at vertical stance and its boundary is the critical curve which separates the condi- 
tion of being able to regain balance with the condition of the horizontal failure state. It is only inside this basin of attraction 
that initial perturbations from the vertical can be corrected, with the orbit spiraling back onto the attractor of vertical stance.
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In the sections that follow the phase space of the two angles is expressed as a polar coordina te system ðq; hÞ (see also [18])
instead of the cartesian ðhx; hyÞ, such that 
q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

x þ h2
y

q
;

q P 0 and 
h � arctanðhy=hxÞ;
h ¼ 0; . . . ;2p.
To model the contours that cut the basin of attraction at different depths z we consider that each contour is represented by

a closed curve on the ðq; hÞ plane. For a three-dimens ional representation of the basin of attraction of the system of human 
balance, let us denote as zðq; hÞ the local depth of the basin at ðq; hÞ. In order to estimate the basin of attraction, zðq; hÞ is de- 
rived from experimental data, following the method described in [18]: given an integer N that defines the resolution of the 
basin of attraction, the phase space ðq; hÞ of the system is partitioned into an N � N grid and the number of experimentally 
recorded data points that are containe d within each of the N2 boxes are counted to provide the density distribut ion Dðq; hÞ
of the experimental data. On the boundary of the basin of attraction (i.e. on the critical curve) there is D ¼ 0 and, as the attrac- 
tor of vertical stance within the basin is approached , the values of D become very large. There is always D P 0.

The depth z can be obtained from the values of the density distribution D, this way reflecting the number of experimen- 
tally recorded points at a given ðq; hÞ. In other words, the longer the system resides in a neighborho od of the basin of attrac- 
tion, the deeper the basin there [18]. With the aim to derive a basin of attraction that will be a realistic approximat ion of a
potential well and this way applicable for simulatio ns the method presente d in [36] has been modified. The depth z of the 
basin of attraction is derived as follows:
zðq; hÞ � 1
Dðq; hÞ þ 1

;

this way assuming that:

� the plane z ¼ 1 correspond s to the critical curve (the boundary of the basin of attraction),
� as we move further inside the basin approaching the attractor of vertical stance, the values of z decrease,
� the region z� 1 (practically the plane z ¼ 0) correspond s to the attracting region of vertical stance at the heart of the 

basin of attraction, and 
� inside the basin there is 0 6 z 6 1.

In order now to obtain the three-dim ensional function describin g the basin of attraction, the functions that give the contours 
of the basin are first calculated as follows (see also [18]): Given an integer m 2 N, an appropriate algorithm [18] is applied to
find the region on the phase space of ðq; hÞ inside which Dðq; hÞP m. Then the contour that corresponds to
z ¼ 1
mþ 1

; m 2 N ð1Þ
is calculated as the closed curve enclosing this region, by means of numerical curve fitting algorithms, see also [18]. The con- 
tour corresponding to z ¼ 1 is the critical curve.

In the present study the Levenber g–Marquardt algorithm (LMA) [38], also known as the damped least-squares (DLS)
method, is used for the numerical curve fitting purposes. The LMA interpolates between the Gauss–Newton and the gradient 
descent methods, and is a very popular curve-fitting algorithm used in many numerical applications.

We assumed the functions describing the contours of the basin of attraction to be sums of ellipses on the phase space of
ðq; hÞ. This way the contour that corresponds to a given depth z has the form 
qzðhÞ ¼
XMz

i¼1

qz;iðhÞ; ð2Þ
where Mz 2 NI is the number of ellipses that sum up to construct the contour that corresponds to each z. The components 
qz;iðhÞ are ellipses of the general polar form 
qz;iðhÞ ¼
Pz;iðhÞ þ Q z;iðhÞ

Rz;iðhÞ
;

where
Pz;iðhÞ ¼ r0z;i ðb2
z;i � a2

z;iÞcosðhþ h0z;i
� 2/z;iÞ þ ða2

z;i þ b2
z;iÞcosðh� h0z;iÞ

h i
;

Q z;iðhÞ ¼
ffiffiffi
2
p

az;ibz;i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rz;iðhÞ � 2r2

0z;i
sin2ðh� h0z;iÞ

q
;

Rz;iðhÞ ¼ ðb2
z;i � a2

z;iÞcosð2h� 2/z;iÞ þ a2
z;i þ b2

z;i
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and az;i; bz;i; r0z;i; h0z;i and /z;i, are constants that are appropriate ly chosen for a given z.
The choice of the above function combinati ons was based on the fact that the experimental error can unavoidabl y affect 

the fine structure of the contours and as a result of the three-dim ensional basin of attraction. For this reason no emphasis 
was given on calculating the details of the contours’ shape. The functions qzðhÞ that describe each contour are obtained 
through numerical optimizati on [18,36,38], so as to provide best fit to the experimental data.

On the three-dimens ional (cylindrical) space of ðz;q; hÞ the basin of attraction has the shape of a well and is assumed to be
obtained by rotating a gaussian bell around the z axis and vertically to the phase space ðq; hÞ of the system. The shape and the 
position of the gaussian bell depends on h as follows:

� its mean lðhÞ follows the critical curve, i. e. lðhÞ ¼ q1ðhÞ
� its standard deviation rðhÞ is obtained by use of the contour at zr ¼ e�1, i.e. rðhÞ ¼ lðhÞ � qzr ðhÞ.

The three dimensional function that describes the basin of attraction (the potential function) is therefore expressed in the 
form:
zðq; hÞ ¼ exp � qðhÞ � q1ðhÞ
q1ðhÞ � qzrðhÞ

" #2
8<
:

9=
;: ð3Þ
It should be noted here that, as the value of zr does not correspond to an integer value of m, see Eq. (1), the contour qzr ðhÞ
could not be obtained directly from the experime ntal data. For this reason it was numerically approximat ed to be
qzr ðhÞ � 1:103qz2

ðhÞ, where the depth z2 corresponds to m ¼ 2, see Eq. (1).

3. Material and methods 

3.1. The subjects of the study 

Three subjects served as test subjects for the application presented in this study:

1. Subject ‘‘A’’: A healthy 40 year old male ex-high level track-and- field athlete who was still keeping physically active.
Two sets of experime ntal data were collected in two different data collection sessions. Care was taken to minimize the 
time between the two successive data collection sessions so as to avoid any possible effect of training and/or change 
in the alignment of the body and therefore the movement patterns of the subject.

2. Subject ‘‘B’’: A healthy 49 year old male professional Judoka (5th Dan).
As with the first subject, two sets of experimental data were collected in two different occasions, while care was taken so
that the time interval between the two data collection sessions did not allow for any modifications in the subject’s move- 
ment patterns.

3. Subject ‘‘C’’: A 21 year-old male elite athlete of the Spanish national Judo team, who had suffered a rupture of the anterior 
cruciate ligament (ACL) and the lateral meniscus of the right knee. This type of injury is in general very common and in
Judo is one of the most common injuries, usually occurring during competition with a probabili ty of approximat ely 30%
[39]. The injury was recovered by surgical reconstruction of the ligament and a rehabilitati on program of two sessions a
day five days a week of duration of 1.5 h each and for a total period of five and a half months. The treatment consisted of
electrotherap y and ultrasound, as well as proprioception exercises and strengthening of flexo-extensor muscles of the 
knee, cyriax massage and exercises in aquatic environment. The main objective of an athlete who has suffered such an
injury and has undergone through a ligament reconstructi on surgery is to restore the stability of the knee so that they 
can return to the same level of physical activity as soon as possible [40].
As the aim of this study was to detect the changes in the Judoka’s balance patterns resulting from the rehabilitation after 
the injury, the basin of attraction of this subject was calculated using two different data sets recorded:
(a) while the subject was injured, a week before the surgical intervention 
(b) a few months after the end of the rehabilitation period, when the athlete had fully recovered from his injury.

The authors confirm that our research met the highest ethical standards for authors and co-authors and that it was per- 
formed following the guidelines of the Declaration of Helsinki, last modified in 2008.

In addition, the authors certify that the present research was carried out in the absence of any financial, personal or other 
relationship s with other people or organizations that could inappropriatel y influence, or be perceived to influence, the pre- 
sented work and lead to a potential conflict of interest.

3.2. The protocol 

The experime ntal data collection required a force platform, able to record the time series of the ground reaction force that 
the subjects exerted while trying to regaining balance after an initial voluntary perturbation. A Kistler 9286AA portable force 
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platform and its correspond ing software was used, with a sampling rate of 200 Hz and a total recording time of 5 s for each 
complete movement. The original recorded data did not undergo any filtering or editing before analysis.

The present study followed the same experimental protocol described in [22,18,36 ]. The subjects initially stood on the 
force platform with hands on hips, eyes open, and focused on a spot on the wall. Care was always taken so as to assure that 
the experiment was carried out in a quiet room (a laboratory) free from distractions. During experime ntal data collection the 
subjects were asked to repeat maximum amplitude and speed voluntary movements in the directions forward, backward,
left, right, and the four diagonal s forward-left, forward-rig ht, backward-left and backward-right. The time series of the 
ground reaction force were recorded for five successful movement for each of the eight directions (giving a total of 40 time 
series for each data set). A successful movement consisted of the subject being able to correct the initial perturbation and 
regain vertical stance. The subjects were allowed to bend at ankles, knees, or waist or twist their body in order to correct 
the perturbation , as long as their hands remained on their hips and their feet on the floor.

3.3. The phase space of the experimentally recorded data 

From the three components Fx; Fy and Fz of the ground reaction force recorded by the force platform, the angles hx

(between Fz and Fx) and hy (between Fz and Fy) were obtained. Figs. 2–4 present the experimentally recorded sets of 40 time 
series data, plotted on the phase space of ðhx; hyÞ. For the data shown in these figures, positive values of hx point forwards and 
positive values of hy point to the left.

By mere observation of these figures, it can be easily seen that the first two subjects do not show any significant changes 
in their movement patterns, while for the third subject the changes are dramatic, implying that the rehabilitati on reached 
Fig. 3. Subject ‘‘B’’: The experimentally recorded time series data converted into angles and plotted on the phase space of ðhx; hyÞ. (a): First data collection 
session, (b): second data collection session. The angles are expressed in radians.

Fig. 2. Subject ‘‘A’’: The experimentally recorded time series data converted into angles and plotted on the phase space of ðhx; hyÞ. (a): First data collection 
session, (b): second data collection session. The angles are expressed in radians.



Fig. 4. Subject ‘‘C’’: The experimentally recorded time series data converted into angles and plotted on the phase space of ðhx; hyÞ. (a): First data collection 
session (injury), (b): second data collection session (after rehabilitation and recovery). The angles are expressed in radians.
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exceptional levels. Regarding subject ‘‘C’’, the effects of the injury are clearly shown, not only as restrictions in the range of
movement, but also as limited movement on the fhx < 0; hy < 0g part of the phase space. The differenc es in the range of the 
maximum angular movements between the three subjects should be also emphasized (see also Section 4.2 below).

4. Results 

4.1. The attracting regions at vertical stance 

As explained in Section 2.1, in order to take into account the presence of body sway, the attractor of vertical stance within 
the basin is not modeled as a point but rather as a small attracting region around the vertical.

These attracting regions were calculated from the experimental data to be:

� for subject ‘‘A’’,
q0 ¼ 0:027 (circular region),
� for subject ‘‘B’’,

q0 ¼ 0:012 (circular region),
� for the pre-operation condition of subject ‘‘C’’,
q0 ¼
0:0000945

ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:00002925 sin 2hð Þ þ 0:00019125

p

(a small elliptical region with principal axis a0 ¼ 0:0105, secondar y axis b0 ¼ 0:009, rotated by /0 ¼ �p=4),
� for the post-operation and rehabilitation condition of subject ‘‘C’’,

q0 ¼ 0:013 (circular region).

According to the experime ntal values above, for all three healthy and active subjects that participa ted in this study the small 
attracting region around the vertical can be modeled as a circle of radius R (the values of R in the relations above are 
expressed in radians), with the pre-operation condition of subject ‘‘C’’ being the only exception, as the symmetry of the 
attractor at vertical stance was affected by the injury.

4.2. The range of movement 

Denoting as hmax the maximum (in absolute terms) recorded angle that a subject could lean to and still regain vertical 
stance, then the value of hmax gives a good estimation of the subject’s range of movement and subsequently of their muscular 
strength, flexibility and general ability to regain balance, see also [18,22,24,36,41 ].

The analysis of the present study revealed angular limits of the basins for each subject (see also Figs. 10–13):

� for subject ‘‘A’’, there is hmax A ¼ 0:17 radians.
� for subject ‘‘B’’, there is hmax B ¼ 0:5 radians.
� for the pre-operation condition of subject ‘‘C’’, there is hmax C1 ¼ 0:115 radians.
� for the post-operation and rehabilitation condition of subject ‘‘C’’, there is hmax C2 ¼ 0:51 radians.



Fig. 5. Grey points: experimental data points of subject ‘‘A’’, on the phase space of ðhx; hyÞ. Solid curves: calculated contours enclosing regions of less or
equal depth. First data collection session: (a) z ¼ 0:09, (c) z ¼ 0:2, (e) z ¼ 0:5; second data collection session: (b) z ¼ 0:09, (d) z ¼ 0:2, (f) z ¼ 0:5. The angles 
are expressed in radians.
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4.3. The contours of the basins of attraction 

As mentioned in the previous sections, the contours of the basin of attraction, each of which corresponds to a constant 
depth z, are calculated by use of appropriate curve fitting, see also [18,38]. Fig. 5 presents examples of the calculated contour 
curves for the data belonging to the first subject, together with the data points (grey points). Three different contours are 
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presented, for z ¼ 0:09; z ¼ 0:2 and z ¼ 0:5 that are calculated by use of the same function for a particular z, for both data 
collection sessions.

Fig. 5 also illustrates and emphasizes the robustness of the method and its lack of sensitivit y to different experime ntal 
data sets (as long as these data sets correspond of course to the same, unmodified, condition of a subject). Even though occa- 
sional differences in the data points can be observed, they are of minor importance : within the range of experime ntal error,
the data sets shown in 5 can be assumed to be indistinguishab le and independen t of the data collection session.

Regarding now maximum movements, the differences in the recorded data between the two data collection sessions 
seem to be more significant (please refer to the full data sets, shown in Figs. 2 and 3). Such deviations are related to differ- 
ences in the subjects’ motivation or their general biomechani cal or neuromuscul ar condition during the data collection ses- 
sions and are to be expected , even from carefully chosen subjects such as those that took part in the present study. For this 
reason, the critical curve (contour z ¼ 1) and subsequent ly the border of the basin of attraction was calculated as the curve 
enclosing the superpos ition of the two data sets (of the first and the second data collection session), so that all maximum 
possible movements were taken into account.

Hence, while the contours of the interior of the basins of attraction can be precisely calculated , the boundaries of the basin 
of attraction, i.e. the critical curves, can only be estimate d. This limitation arises from the fact that the method is based on
experimental data of human subjects, so absolute maximum movements are, by definition, almost impossible to be recorded.
However, even though the differences in the maximum recorded movements between the two data collection sessions can 
not be totally avoided, they can be minimized: an effective approach to achieve minimum differenc es is to use highly trained 
subjects, able to control their body movements, such as the athletes used in this study.

Fig. 6 shows the set of the contours that was used for the calculation of the basin of attraction of subject ‘‘A’’. The same 
procedure was followed in order to obtain the contours of the basins of attraction that correspond to subject ‘‘B’’, as well as
the two (pre-and post-operation) conditions of subject ‘‘C’’, see Figs. 7–9,. Appendix A includes, as an example, the numer- 
ically fitted functions that describe the contours of the basin of attraction of subject ‘‘B’’.
Fig. 7. The set of calculated contours of the basin of attraction of Subject ‘‘B’’, corresponding to z ¼ 0:04; z ¼ 0:09; z ¼ 0:2; z ¼ 0:33; z ¼ 0:5 and z ¼ 1. The 
functions describing these contours are indicatively given in Appendix A. The angles are expressed in radians.

Fig. 6. The set of calculated contours of the basin of attraction of Subject ‘‘A’’, corresponding (from the smallest to the largest) to
z ¼ 0:04; z ¼ 0:09; z ¼ 0:2; z ¼ 0:33; z ¼ 0:5 and z ¼ 1. The angles are expressed in radians.



Fig. 8. The set of calculated contours of the basin of attraction of the pre-operation condition of Subject ‘‘C’’, corresponding to
z ¼ 0:04; z ¼ 0:09; z ¼ 0:2; z ¼ 0:33; z ¼ 0:5 and z ¼ 1. The angles are expressed in radians.

Fig. 9. The set of calculated contours of the basin of attraction of the post-operation condition of Subject ‘‘C’’, corresponding to
z ¼ 0:04; z ¼ 0:09; z ¼ 0:2; z ¼ 0:33; z ¼ 0:5 and z ¼ 1. The angles are expressed in radians.
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4.4. The three dimensional basins of attraction 

Figs. 10–13 show the three-dimens ional plots of the interior of the basins of attraction, see Eq. (3), for subject ‘‘A’’, subject 
‘‘B’’ and the two different conditions of subject ‘‘C’’ respectively .

5. Discussion 

The present applicati on of the method has the following potential biomechanical conclusions :

� Subject ‘‘A’’:
The basin of attraction that correspond s to subject ‘‘A’’ has a strong base, the larger attracting region around the vertical of
all three subjects, reflecting a better ability to maintain balance at vertical stance. His overall range of movement is,
though, far more restricted, in comparison to the other two subjects. The walls of the basin are steep, meaning that every 
perturbation away from the vertical, small enough so that it does not exceed the small limits of the basin, is rapidly cor- 
rected.
The biomechanics of subject ‘‘A’’ seems very conservati ve, as it does not allow his center of mass to take risks away from 
the vertical. Taking into account that subject ‘‘A’’ is a track-and-field athlete, this could be due to the combination of
strong leg muscles and a rather limited flexibility.
� Subject ‘‘B’’:

The general condition of subject ‘‘B’’ could be classified excellent ; the range of movement is wide and the correspondi ng
basin of attraction is symmetric enough with walls that are far less abrupt that those of subject ‘‘A’’.
Subject ‘‘B’’ is a high level Judoka (as well as subject ‘‘C’’), a fact that fundamenta lly implies a powerful combination of
muscular strength and flexibility.



Fig. 10. Subject ‘‘A’’, zðq; hÞ: three-dimensional plot of the interior of the calculated basin of attraction, 0 6 z 6 1; 0 6 q 6 q1ðhÞ. The angles are expressed in
radians.

Fig. 11. Subject ‘‘B’’, zðq; hÞ: three-dimensional plot of the interior of the calculated basin of attraction, 0 6 z 6 1; 0 6 q 6 q1ðhÞ.The angles are expressed in
radians.

Fig. 12. Subject ‘‘C’’, pre-operation condition, zðq; hÞ: three-dimensional plot of the interior of the calculated basin of attraction, 0 6 z 6 1; 0 6 q 6 q1ðhÞ.
The angles are expressed in radians.

Fig. 13. Subject ‘‘C’’, post-operation condition, zðq; hÞ: three-dimensional plot of the interior of the calculated basin of attraction, 0 6 z 6 1; 0 6 q 6 q1ðhÞ.
The angles are expressed in radians.
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� Subject ‘‘C’’:
The effects of the injury of subject ‘‘C’’ are clearly reflected on the size, as well as the shape of the attracting region at
vertical stance. There is a general absence of movement on the fhx < 0; hy < 0g part of the phase space of the system’s 
variables, apparently adopted by the subject’s biomechanics in order to protect the injured knee. The basin of attraction 
that correspond s to the injured period of subject ‘‘C’’ carefully imposes strong restrictions on the subject’s range of move- 
ment; vertical stance of the injured subject is easily lost.
After recuperation from the injury, the shape and the size of the central parts of the basin are corrected and slightly 
expanded, while an exceptional opening of the walls has been accomplished. To illustrate this more clearly, Fig. 14 shows
the two basins of attraction that correspond to the pre- and post-operati on condition s of subject ‘‘C’’, on the same plot.
Such changes are obviously the achievemen t of an extraordinar y treatment and rehabilitation program.



Fig. 14. Subject ‘‘C’’, plots of the interior of zðq; hÞ of the pre- and post-operation conditions shown on the same coordinate system. For each of the plots 
there is 0 6 z 6 1; 0 6 q 6 q1ðhÞ. The angles are expressed in radians.
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6. Conclusions 

In this work we applied a previousl y presented model [18] that considers the process of regaining vertical stance as move- 
ment inside a basin of attraction. This basin of attraction can be considered as a potential well, inside which the center of
mass moves during the recuperatio n of vertical stance after the initial perturba tion.

In order to assure high motivation from the subjects during data collection, as well high data quality, three high level ac- 
tive athletes were chosen as subjects of the study.

To conclude, we highlight the power of the presented method as well as its robustnes s. The validity of the method, as well 
as of the protocol used is confirmed by the fact that the method is able to successfully detect:

1. the inherent differences in the patterns of movement between the subjects that are a result of the differences in their 
training and the nature of their physical activity,

2. the impressive differences in the shape and the size of the basin of attraction achieved by the rehabilitation program and 
the recovery of the injury of the third subject.

The method presente d here be can successfu lly applied not only to problems of human balance such the one presented here 
but also to any other problem for which the use of experimental data is necessar y for the calculation of a potential well.
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Appendix A. The numericall y obtained functions that describe the contours of the basin of attraction. Example:
subject ‘‘B’’.
q0ðhÞ ¼ 0:012;

q0:09ðhÞ ¼
0:00068904

ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:00034385 cos 2hð Þ þ 0:00142033

p ;

q0:2ðhÞ ¼
0:0030315

ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:00195125 cos 2hð Þ þ 0:00636925

p ;

q0:33ðhÞ ¼
0:007650

ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:004779 cos 2hð Þ þ 0:016029

p þ 0:000165
ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:00086975 cos 2hð Þ þ 0:00093025

p ;

q0:5ðhÞ ¼
0:015795

ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:004536 cos 2hð Þ þ 0:031914

p þ 0:001458
ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:01148175 cos 2hð Þ þ 0:01184625

p ;

q1ðhÞ ¼
0:036

ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0076 cos 2hð Þ þ 0:0724

p þ 0:00270
ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:017825 cos 2hð Þ þ 0:018625

p þ 0:00512
ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:102144 cos 2hð Þ þ 0:102656

p
þ 0:00143

ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:011931 sin 2hð Þ þ 0:012269

p ;



8922 M.S. Zakynthinaki et al. / Applied Mathematics and Computation 219 (2013) 8910–8922
References

[1] H.A. Antosiewicz, A survey of Lyapunovs second method, volume 4 of Contributions to the Theory of Nonlinear Oscillations, Princeton University Press,
1958, pp. 141–166.

[2] J.R. Cusumano, B.W. Kimble, A stochastic interrogation method for experimental measurements of global dynamics and basin evolution: application to
a two-well oscillator, Nonlinear Dyn. 8 (1995) 213–235.

[3] W. Hahn, Theory and Applications of Lyapunovs Direct Method, Prentice-Hall, Englewood Cliffs, NJ, 1963.
[4] J.R. Hewit, C. Storey, Computer application of the tracking function approach to practical stability, Electron. Lett. 2 (1966) 408–409.
[5] A.M. Letov, Stability in Nonlinear Control Systems, Princeton University Press, 1961.
[6] A. Levin, An analytical method of estimating the domain of attraction for polynomial differential equations, IEEE Trans. Autom. Control 39 (12) (1994)

2471–2475.
[7] W.O. Paradis, D.D. Perlmutter, Tracking function approach to practical stability and ultimate boundedness, AIChE J. 12 (1966) 13–136.
[8] D.D. Perlmutter, Stability of Chemical Reactors, Prentice-Hall, Englewocd Cliffs, 1972.
[9] M.T.R. Genesio, A. Vicino, On the estimation of asymptotic stability regions: state of the art and new proposals, IEEE Trans. Autom. Control AC-30 (8)

(1985) 747–755.
[10] J.P.L. Salle, S. Lefschetz, Stability by Lyapunov’s Direct Method, Academic, New York, 1961.
[11] E.J. Davison, K.C. Cowan, A computational method for determining the stability region of a second-order non-linear autonomous system, Int. J. Control 

9 (1969) 349–357.
[12] J. Texter, Numerical algorithm for implementing zubovs consuuction in two-dimensional systems, IEEE Trans. Automat. Control AC-19 (1974) 62–63.
[13] A.L. Schwab, M. Wisse, Basin of attraction of the simplest walking model, in: Proceedings of DETC01 ASME 2001 Design Engineering Technical 

Conferences and Computers and Information in Engineering Conference, 2001, pp. 1–9.
[14] J.A.Y.C. Grebogi, E. Ott, Metamorphoses of basin boundaries in nonlinear dynamical systems, Phys. Rev. Lett. 56 (10) (1986) 1011–1016.
[15] A.I. Lebedev, I. Sluchinskaya, A new method for determining parameters of the potential well of off-center atoms from EXAFS data, Crystalogr. Rep. 49

(suppl. 1) (2004) 594–598.
[16] H. Urai, New method for potential well measurements using bubble runout in ion-implanted bubble devices, IEEE Trans. Magn. MAG-21 (6) (1985)

2676–2679.
[17] K. Pakdamana, C. Grotta-Ragazzoc, C.P. Maltad, O. Arinoe, J.-F. Vibertb, Effect of delay on the boundary of the basin of attraction in a system of two 

neurons, Neural Networks 11 (1998) 509–519.
[18] M.S. Zakynthinaki, J.R. Stirling, C.A. Cordente, A. López, M. Sillero, G. Rodrı́guez, J. Sampedro, Modelling the basin of attraction as a two-dimensional 

manifold from experimental data: applications to balance in humans, Chaos 20 (2010) 013119-1–1.
[19] J. Milton, J.L. Cabrera, T. Ohira, S. Tajima, Y. Tonosaki, C.W. Eurich, S.A. Campbell, The time-delayed inverted pendulum: implications for human balance 

control, Chaos 19 (2009) 026110.
[20] J.G. Milton, Introduction to focus issue: bipedal locomotion from robots to humans, Chaos 19 (2009) 026101.
[21] B.L. Luu, T.P. Huryn, H.F.M.V. der Loos, E.A. Croft, J.S. Blouin, Validation of a robotic balance system for investigations in the control of human standing 

balance, IEEE Trans. Neural Syst. Rehabil. Eng. 19 (4) (2011) 382–390.
[22] M.S. Zakynthinaki, J. Madera, A. López, C.A. Cordente, G. Rodrı́guez, M. Sillero, J. Sampedro, Rotated balance in humans due to repetitive rotational 

movement, Chaos 20 (2010) 013118-1–1.
[23] M. Günther, O. Müller, R. Blickhan, Watching quiet human stance to shake off its straitjacket, Arch. Appl. Mech. 81 (2011) 283–302.
[24] J.R. Stirling, M.S. Zakynthinaki, Stability and the maintenance of balance following a perturbation from quiet stance, Chaos 14 (1) (2004) 96–105.
[25] B.G. Bardy, O. Oullier, On perturbation and pattern coexistence in postural coordination dynamics, J. Motor Behav. 39 (4) (2007) 326–334.
[26] G.E. Riccio, T.A. Stoffregen, Affordances as constraints on the control of stance, Human Mov. Sci. 7 (1988) 265–300.
[27] J.J. Collins, C.J. DeLuca, Random walking during quiet standing, Phys. Rev. Lett. 73 (1994) 764–767.
[28] M.T. Blàzquez, M.A.F.A. de Saavedra, A.M. Lallena, P. Carpena, Ankle and hip postural strategies defined by joint torques, J. Comput. Appl. Math. 233 

(2010) 1478–1482.
[29] N. Fujisawa, T. Masuda, Y. Inaoka, H. Fukuoka, A. Ishida, H. Minamitani, Human standing posture control system depending on adopted strategies, Med.

Biol. Eng. Comput. 43 (1) (2005) 107–114.
[30] T. Kiemel, K.S. Oie, J.J. Jeka, Slow dynamics of postural sway are in the feedback loop, J. Neurophysiol. 95 (3) (2006) 1410–1418.
[31] A.D. Kuo, An optimal control model for analyzing human postural balance, IEEE Trans. Biomed. Eng. 42 (1) (1995) 87–101.
[32] L.M. Nashner, G. McCollum, The organization of postural movements: a formal basis and experimental synthesis, Behav. Brain Sci. 26 (1985) 135–172.
[33] C.F. Runge, C.L. Shupert, F.B. Horak, F.E. Zajac, Ankle and hip postural strategies defined by joint torques, Gait Posture 10 (2) (1999) 161–170.
[34] B.G. Bardy, L. Marin, T.A. Stoffregen, R.J. Bootsma, Postural coordination modes considered as emergent phenomena, J. Exp. Psychol. Human Percept.

Perform. 25 (1999) 1284–1301.
[35] G. McCollum, T.K. Leen, Form and exploration of mechanical stability limits in erect stance, J. Motor Behav. 21 (1989) 225–244.
[36] M.S. Zakynthinaki, J.R. Stirling, A. López, C.A. Cordente, M. Sillero, J. Sampedro, Stochastic optimization for the calculation of the optimal critical curve 

from experimental data in a model of the process of regaining balance after perturbation from quiet stance, Comput. Phys. Commun. 179 (8) (2008)
562–568.

[37] B.G. Bardy, O. Oullier, R.J. Bootsma, T.A. Stoffregen, Dynamics of human postural transitions, J. Exp. Psychol. Human Percept. Perform. 28 (2002) 499–
514.

[38] K. Levenberg, A method for the solution of certain non-linear problems in least squares, Q. Appl. Math. 2 (1944) 164–168.
[39] C.M. Green, M.J. Petrou, M.L.S. Forgarty-Hover, C.G. Rolf, Injuries among judokas during competition, Scand. J. Med. Sci. Sports 17 (2007) 205–210.
[40] H. Moksnes, M.A. Risberg, Performance-based functional evaluation of non-operative and operative treatment after anterior cruciate ligament injury,

Scand. J. Med. Sci. Sports 19 (2009) 345–355.
[41] J.R. Stirling, M.S. Zakynthinaki, A model of stability and balance, in: A. Wit, F. Vaverka (Eds.), Mechanical loads of the human motor system – Injury 

prevention, volume 64 of Lecture notes of the ICB, Seminar, 2005, p. 39.


	Detecting changes in the basin of attraction of a dynamical system: Application to the postural restoring system
	1 Introduction
	1.1 Obtaining the basin of attraction of a dynamical system
	1.2 The application: the dynamic process of balance restoration after perturbation from the vertical

	2 Theory/calculation
	2.1 The model on the phase space of ? 
	2.2 The basin of attraction of human balance

	3 Material and methods
	3.1 The subjects of the study
	3.2 The protocol
	3.3 The phase space of the experimentally recorded data

	4 Results
	4.1 The attracting regions at vertical stance
	4.2 The range of movement
	4.3 The contours of the basins of attraction
	4.4 The three dimensional basins of attraction

	5 Discussion
	6 Conclusions
	Acknowledgement
	Appendix A The numerically obtained functions that describe the contours of the basin of attraction. Example:	subject “B”.
	References


