Sampling associated with resolvent-type kernels and Lagrange-type interpolation series

P. E. Fernández-Moncada* A. G. García ${ }^{\dagger}$ and M. A. Hernández-Medina ${ }^{\ddagger}$

* \dagger Departamento de Matemáticas, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés-Madrid, Spain.
\ddagger Departamento de Matemática Aplicada, E.T.S.I.T., U.P.M., Avda. Complutense 30 , 28040 Madrid, Spain.

Abstract

In this paper a new class of Kramer kernels is introduced, motivated by the resolvent of a symmetric operator with compact resolvent. The article gives a necessary and sufficient condition to ensure that the associated sampling formula can be expressed as a Lagrange-type interpolation series. Finally, an illustrative example, taken from the Hamburger moment problem theory, is included.

Keywords: Kramer kernel; Resolvent-type kernel; Lagrange-type interpolation series; Zero-removing property; Indeterminate Hamburger moment problem.
AMS: 46E22; 42C15; 94A20.

1 Introduction

The classical Kramer sampling theorem provides a method for obtaining orthogonal sampling theorems $[9,15,17,24]$. This theorem has played a very significant role in sampling theory, interpolation theory, signal analysis and, generally, in mathematics; see the survey articles $[5,6]$.

Nowadays, an abstract version of the Kramer sampling theorem can be stated as follows (see, for instance, $[10,16]$): Let $K: \Omega \longrightarrow \mathcal{H}$ be a mapping, where Ω denotes an open subset of \mathbb{R} (or \mathbb{C}) and \mathcal{H} is a separable Hilbert space. Assume that there exists a sequence of distinct numbers $\left\{t_{n}\right\} \subset \Omega$, with n belonging to an indexing set \mathbb{I}

[^0]contained in \mathbb{Z}, such that $\left\{K\left(t_{n}\right)\right\}$ is a complete orthogonal sequence for \mathcal{H}. Then for any f of the form $f(t)=\langle K(t), x\rangle_{\mathcal{H}}, t \in \Omega$, where $x \in \mathcal{H}$, we have
\[

$$
\begin{equation*}
f(t)=\lim _{N \rightarrow \infty} \sum_{\substack{|n| \leq N \\ n \in \mathbb{I}}} f\left(t_{n}\right) S_{n}(t), \quad t \in \Omega, \tag{1}
\end{equation*}
$$

\]

with

$$
\begin{equation*}
S_{n}(t)=\frac{\left\langle K(t), K\left(t_{n}\right)\right\rangle_{\mathcal{H}}}{\left\|K\left(t_{n}\right)\right\|_{\mathcal{H}}^{2}}, \quad t \in \Omega \tag{2}
\end{equation*}
$$

The series in (1) converges absolutely and uniformly on subsets of Ω where the function $t \mapsto\|K(t)\|_{\mathcal{H}}$ is bounded.

Notice that the sampling formula (1) works in the reproducing kernel Hilbert space (written shortly as RKHS) \mathcal{H}_{K} introduced by Saitoh in [18] for the mapping K, whenever the Kramer sampling property holds, i.e., there exists a sequence $\left\{t_{n}\right\} \subset \Omega$ such that $\left\{K\left(t_{n}\right)\right\}$ is a complete orthogonal sequence for \mathcal{H}. In other words, there exist sequences $\left\{t_{n}\right\}$ in $\Omega,\left\{a_{n}\right\}$ in $\mathbb{R} \backslash\{0\}$ and an orthonormal basis $\left\{e_{n}\right\}$ for \mathcal{H} such that $K\left(t_{n}\right)=a_{n} e_{n}$ for each $n \in \mathbb{I}$.

The Kramer sampling theorem can be stated in a more general setting involving Riesz bases [11] by assuming the existence of sequences $\left\{t_{n}\right\}$ in $\Omega,\left\{a_{n}\right\}$ in $\mathbb{R} \backslash\{0\}$ and a Riesz basis $\left\{x_{n}\right\}$ for \mathcal{H} such that $K\left(t_{n}\right)=a_{n} x_{n}$ for each $n \in \mathbb{I}$. From now on we say that K is a Kramer kernel. Recall that a Riesz basis in a separable Hilbert space \mathcal{H} is the image of an orthonormal basis by means of a bounded invertible operator. Any Riesz basis $\left\{x_{n}\right\}_{n=1}^{\infty}$ has a unique biorthonormal (dual) Riesz basis $\left\{y_{n}\right\}_{n=1}^{\infty}$, i.e., $\left\langle x_{n}, y_{m}\right\rangle_{\mathcal{H}}=\delta_{n, m}$, such that, for every $x \in \mathcal{H}$, the expansions

$$
x=\sum_{n=1}^{\infty}\left\langle x, y_{n}\right\rangle_{\mathcal{H}} x_{n}=\sum_{n=1}^{\infty}\left\langle x, x_{n}\right\rangle_{\mathcal{H}} y_{n} \quad \text { in } \mathcal{H}
$$

hold (see [23] for more details and proofs).
The very frequent case where the kernel $K: \mathbb{C} \longrightarrow \mathcal{H}$ is analytic and, consequently, the sampled space \mathcal{H}_{K} is a RKHS of entire functions, was treated in [8, 14]. For this analytic case, it was proved in [10, 11] a necessary and sufficient condition ensuring that the sampling formula (1) can be written as a Lagrange-type interpolation series, i.e., for each $n \in \mathbb{I}$

$$
S_{n}(t)=\frac{G(t)}{\left(t-t_{n}\right) G^{\prime}\left(t_{n}\right)}, \quad t \in \mathbb{C},
$$

where g denotes an entire function having only simple zeros at $\left\{t_{n}\right\}$. Roughly speaking, the aforesaid necessary and sufficient condition concerns the stability of the functions belonging to the space \mathcal{H}_{K}, on removing a finite number of zeros.

The Kramer sampling theorem has been the cornerstone for a significant mathematical literature on the topic of sampling theorems associated with differential or difference problems which has flourished for the past few years. As a small but significant sample of examples see, for instance, $[2,3,9,13,19,20,24,25]$ and references therein.

In this paper we introduce a new family of kernels K_{σ} for which the Kramer property holds. These kernels are motivated on the resolvent of a symmetric operator with compact resolvent. Morever, we give a necessary and sufficient condition ensuring that the associated sampling formula (1) can be written as a Lagrange-type interpolation series. Finally, we include an illustrative example taken from the indeterminate Hamburger moment problem theory [1, 21].

2 Sampling associated with resolvent-type kernels

2.1 By way of motivation

Let \mathcal{H} be a complex Hilbert space and let $\mathcal{A}: \mathcal{D}(\mathcal{A}) \subset \mathcal{H} \rightarrow \mathcal{H}$ be a symmetric (formally self-adjoint) linear operator, densely defined on \mathcal{H}. Assume that there exists its inverse operator $\mathcal{T}=\mathcal{A}^{-1}$, and that it is a compact operator defined on \mathcal{H}. We know from the spectral theorem for symmetric compact operators defined on a Hilbert space that \mathcal{T} has discrete spectrum [22]. Moreover, if $\left\{\mu_{n}\right\}_{n=1}^{\infty}$ is the sequence of eigenvalues of \mathcal{T}, then $\lim _{n \rightarrow \infty}\left|\mu_{n}\right|=0$. We may assume that $\left|\mu_{1}\right| \geq\left|\mu_{2}\right| \geq \ldots \geq\left|\mu_{n}\right| \geq \ldots$. Moreover, the eigenspace associated with each eigenvalue μ_{n} is finite-dimensional; we will assume that $k_{n}=\operatorname{dim} \operatorname{ker}\left(\mu_{n} I-\mathcal{T}\right)=1$ for all $n \in \mathbb{N}$. Note that 0 is not an eigenvalue of \mathcal{T}, so the sequence $\left\{e_{n}\right\}_{n=1}^{\infty}$ of eigenvectors of \mathcal{T} is a complete orthonormal system for \mathcal{H}. The sequences $\left\{z_{n}=\mu_{n}^{-1}\right\}_{n=1}^{\infty}$ and $\left\{e_{n}\right\}_{n=1}^{\infty}$ are, respectively, the sequence of eigenvalues and the sequence of associated eigenvectors of the operator \mathcal{A}. Since $\lim _{n \rightarrow \infty}\left|\mu_{n}\right|=0$, we have $0<\left|z_{1}\right| \leq\left|z_{2}\right| \leq \ldots \leq\left|z_{n}\right| \leq \ldots$ and $\lim _{n \rightarrow \infty}\left|z_{n}\right|=\infty$.

The resolvent operator $R_{z}:=(z I-\mathcal{A})^{-1}$ is a meromorphic function in \mathbb{C} with simple poles at $\left\{z_{n}\right\}_{n=1}^{\infty}$. For each $x \in \mathcal{H}$ the following expansion holds in \mathcal{H} [22]:

$$
\begin{equation*}
R_{z}(x)=\sum_{m=1}^{\infty} \frac{\left\langle x, e_{m}\right\rangle_{\mathcal{H}}}{z-z_{m}} e_{m} \quad \text { in } \mathcal{H} \tag{3}
\end{equation*}
$$

Let G denote an entire function having simple zeros at $\left\{z_{n}\right\}_{n=1}^{\infty}$; this is allowed by Weierstrass' theorem [23, p. 54]. Thus, for a fixed $a \in \mathcal{H}$ the \mathcal{H}-valued mapping defined by

$$
\begin{align*}
& K_{a}: \mathbb{C} \tag{4}\\
& z \longrightarrow \mathcal{H} \\
& K_{a}(z):=G(z) R_{z}(a),
\end{align*}
$$

it is an entire mapping, and defining

$$
\mathcal{H}_{a}:=\left\{f: \mathbb{C} \longrightarrow \mathbb{C}: f(z)=\left\langle K_{a}(z), x\right\rangle_{\mathcal{H}} \quad \text { where } x \in \mathcal{H}\right\}
$$

we obtain a RKHS of entire functions (see [18]). Since $K_{a}\left(z_{m}\right)=G^{\prime}\left(z_{m}\right)\left\langle a, e_{m}\right\rangle_{\mathcal{H}} e_{m}$ for each $m \in \mathbb{N}$; assuming that $\left\langle a, e_{m}\right\rangle_{\mathcal{H}} \neq 0$ for all $m \in \mathbb{N}$, the mapping K_{a} satisfies the Kramer property at the eigenvalues sequence $\left\{z_{m}\right\}_{m=1}^{\infty}$. As a consequence, following (1) and (2), one obtains that any $f \in \mathcal{H}_{a}$ can be recovered through the Lagrange-type
interpolation series:

$$
\begin{equation*}
f(z)=\sum_{n=1}^{\infty} f\left(z_{n}\right) \frac{G(z)}{\left(z-z_{n}\right) G^{\prime}\left(z_{n}\right)}, \quad z \in \mathbb{C} . \tag{5}
\end{equation*}
$$

Now, the resolvent sampling kernel K_{a} given in (4) can be generalized in the following way: Consider

- an entire \mathcal{H}-valued function $\sigma: \mathbb{C} \longrightarrow \mathcal{H}$,
- an arbitrary sequence $\left\{z_{n}\right\}_{n=1}^{\infty}$ in \mathbb{C} such that $\lim _{n \rightarrow \infty}\left|z_{n}\right|=\infty$,
- an entire function $G(z)$ having only simple zeros at $\left\{z_{n}\right\}_{n=1}^{\infty}$,
- an arbitrary Riesz basis $\left\{x_{n}\right\}_{n=1}^{\infty}$ for \mathcal{H} with dual basis $\left\{y_{n}\right\}_{n=1}^{\infty}$,
and define the kernel $K_{\sigma}: \mathbb{C} \longrightarrow \mathcal{H}$ as

$$
\begin{equation*}
K_{\sigma}(z):=\sum_{m=1}^{\infty} \frac{G(z)}{z-z_{m}}\left\langle\sigma(z), y_{m}\right\rangle_{\mathcal{H}} x_{m}, \quad z \in \mathbb{C} \tag{6}
\end{equation*}
$$

By using [14, Theorem 2.3] we deduce that K_{σ} defines an entire \mathcal{H}-valued mapping since, for each $m \in \mathbb{N}$, the function $\frac{G(z)}{z-z_{m}}\left\langle\sigma(z), y_{m}\right\rangle_{\mathcal{H}}$ is an entire function, and the function $z \mapsto\left\|K_{\sigma}(z)\right\|_{\mathcal{H}}$ is bounded on compact subsets of \mathbb{C}. To prove this, due to the Riesz basis condition on $\left\{x_{n}\right\}_{n=1}^{\infty}$ (see [23, p. 27]), there exists a constant $B>0$ such that

$$
\left\|K_{\sigma}(z)\right\|_{\mathcal{H}} \leq B \sum_{m=1}^{\infty}\left|\frac{G(z)\left\langle\sigma(z), y_{m}\right\rangle}{z-z_{m}}\right|^{2}, \quad z \in \mathbb{C}
$$

Next, we prove that the series is uniformly bounded on compact subsets of the complex plane. Indeed, given M a compact in \mathbb{C} there exists a closed disk D_{R} centered at the origin with radius $R>0$ such that $M \subseteq D_{R}$. Apart from a possible finite number of points $\left\{z_{k}\right\}, k$ in \mathbb{I}_{R}, a finite subset of \mathbb{N}, we have the result that $\left|z-z_{m}\right| \geq\left||z|-\left|z_{m}\right|\right| \geq$ $\left|z_{m}\right|-R$ for all $z \in M$ and $m \in \mathbb{N} \backslash \mathbb{I}_{R}$. Thus,

$$
\begin{aligned}
\sum_{m=1}^{\infty}\left|\frac{G(z)\left\langle\sigma(z), y_{m}\right\rangle}{z-z_{m}}\right|^{2} & \leq \sum_{m \in \mathbb{I}_{R}}\left|\frac{G(z)\left\langle\sigma(z), y_{m}\right\rangle}{z-z_{m}}\right|^{2}+|G(z)|^{2} \sum_{m \in \mathbb{N} \backslash \mathbb{I}_{R}} \frac{\left|\left\langle\sigma(z), y_{m}\right\rangle\right|^{2}}{\left(\left|z_{m}\right|-R\right)^{2}} \\
& \leq \sum_{m \in \mathbb{I}_{R}}\left|\frac{G(z)\left\langle\sigma(z), y_{m}\right\rangle}{z-z_{m}}\right|^{2}+C|G(z)|^{2}\|\sigma(z)\|^{2}
\end{aligned}
$$

where C denotes a constant, and both summands are bounded on the compact M. For the second summand, note that the sequence $\left\{1 /\left(\left|z_{m}\right|-R\right)^{2}\right\}$ is bounded, and that $\sum_{m \in \mathbb{N}}\left|\left\langle\sigma(z), y_{m}\right\rangle\right|^{2} \leq C^{\prime}\|\sigma(z)\|^{2}$ for some positive constant C^{\prime} since the sequence $\left\{y_{m}\right\}_{m=1}^{\infty}$ is a Riesz basis for \mathcal{H}.

Besides, for each z_{n} we have $K_{\sigma}\left(z_{n}\right)=G^{\prime}\left(z_{n}\right)\left\langle\sigma\left(z_{n}\right), y_{n}\right\rangle_{\mathcal{H}} x_{n}$. If we assume that $\left\langle\sigma\left(z_{n}\right), y_{n}\right\rangle_{\mathcal{H}} \neq 0$ for all $n \in \mathbb{N}$, we obtain that K_{σ} is an analytic kernel satisfying the Kramer sampling property for the data $\left\{z_{n}\right\}_{n=1}^{\infty} \subset \mathbb{C},\left\{G^{\prime}\left(z_{n}\right)\left\langle\sigma\left(z_{n}\right), y_{n}\right\rangle_{\mathcal{H}}\right\}_{n=1}^{\infty} \subset \mathbb{C} \backslash\{0\}$ and the Riesz basis $\left\{x_{n}\right\}_{n=1}^{\infty}$ for \mathcal{H}.

Definition 1. We say that the entire \mathcal{H}-valued function K_{σ} defined as in (6), and satisfying that $\left\langle\sigma\left(z_{n}\right), y_{n}\right\rangle_{\mathcal{H}} \neq 0$ for all $n \in \mathbb{N}$, is a resolvent-type sampling kernel.

Next, we derive the sampling theory associated with K_{σ} :

2.2 The sampling result

Let K_{σ} be a resolvent-type kernel satisfying the Kramer property for the sequence $\left\{z_{n}\right\}_{n=1}^{\infty}$. Define the mapping \mathcal{T}_{σ} by

$$
\begin{aligned}
\mathcal{T}_{\sigma}: \mathcal{H} & \longmapsto \mathbb{C}^{\mathbb{C}} \\
x & \longmapsto \mathcal{T}_{\sigma}(x),
\end{aligned}
$$

where $\left[\mathcal{T}_{\sigma}(x)\right](z):=\left\langle K_{\sigma}(z), x\right\rangle_{\mathcal{H}}, z \in \mathbb{C}$. Note that $\mathcal{T}_{\sigma}(x)$ defines an entire function [22]. The mapping \mathcal{T}_{σ} is anti-linear, i.e.,

$$
\mathcal{T}_{\sigma}(\alpha x+\beta y)=\bar{\alpha} \mathcal{T}_{\sigma}(x)+\bar{\beta} \mathcal{T}_{\sigma}(y) \text { for all } x, y \in \mathcal{H} \text { and } \alpha, \beta \in \mathbb{C}
$$

Since the sequence $\left\{K_{\sigma}\left(z_{n}\right)\right\}_{n=1}^{\infty}$ forms a complete system in \mathcal{H}, the mapping \mathcal{T}_{σ} is one-to-one (see [18, p.21]). Thus, if we denote by \mathcal{H}_{σ} the range space of \mathcal{T}_{σ}, i.e., $\mathcal{H}_{\sigma}:=\mathcal{T}_{\sigma}(\mathcal{H})$. endowed with the norm $\|f\|_{\mathcal{H}_{\sigma}}:=\|x\|_{\mathcal{H}}$ such that $f=\mathcal{T}_{\sigma}(x)$, we obtain a Hilbert space of entire functions.

Moreover, the space \mathcal{H}_{σ} is a reproducing kernel Hilbert space since the pointevaluation functional $E_{z}(f):=f(z)$ is continuous for each $z \in \mathbb{C}$. Its reproducing kernel k_{σ} is given by

$$
k_{\sigma}(z, \omega)=\left\langle K_{\sigma}(z), K_{\sigma}(\omega)\right\rangle_{\mathcal{H}}, \quad z, w \in \mathbb{C}
$$

that is, for each $\omega \in \mathbb{C}$ the function $k_{a}(\cdot, \omega)$ belongs to \mathcal{H}_{σ}, and the reproducing property

$$
f(\omega)=\left\langle f, k_{a}(\cdot, \omega)\right\rangle_{\mathcal{H}_{\sigma}} \quad \text { for } \omega \in \mathbb{C} \text { and } f \in \mathcal{H}_{\sigma}
$$

holds.
The sampling theorem allowing the recovery of any function in \mathcal{H}_{σ} from its samples at the sequence $\left\{z_{n}\right\}_{n=1}^{\infty}$ reads as follows:
Theorem 1. Any function $f \in \mathcal{H}_{\sigma}$ can be recovered from its samples $\left\{f\left(z_{n}\right)\right\}_{n=1}^{\infty}$ by means of the sampling formula

$$
\begin{equation*}
f(z)=\sum_{n=1}^{\infty} f\left(z_{n}\right) \frac{\left\langle\sigma(z), y_{n}\right\rangle_{\mathcal{H}}}{\left\langle\sigma\left(z_{n}\right), y_{n}\right\rangle_{\mathcal{H}}} \frac{G(z)}{\left(z-z_{n}\right) G^{\prime}\left(z_{n}\right)}, \quad z \in \mathbb{C} \tag{7}
\end{equation*}
$$

The convergence of the series in (7) is absolute and uniform in compact subsets of \mathbb{C}.

Proof. Assume that, for $x \in \mathcal{H}$, we have $f(z)=\left\langle K_{\sigma}(z), x\right\rangle_{\mathcal{H}}, z \in \mathbb{C}$. Expanding $x \in \mathcal{H}$ with respect to the Riesz basis $\left\{y_{n}\right\}_{n=1}^{\infty}$ for \mathcal{H} we obtain $x=\sum_{n=1}^{\infty}\left\langle x, x_{n}\right\rangle_{\mathcal{H}} y_{n}$ in \mathcal{H}, and consequently

$$
\begin{equation*}
f=\mathcal{T}_{\sigma}(x)=\sum_{n=1}^{\infty}{\overline{\left\langle x, x_{n}\right\rangle}}_{\mathcal{H}} \mathcal{T}_{\sigma}\left(y_{n}\right) \quad \text { in } \mathcal{H}_{\sigma} \tag{8}
\end{equation*}
$$

By using the biorthonormality, i.e., $\left\langle x_{n}, y_{m}\right\rangle=\delta_{n, m}$, we get $\mathcal{T}_{\sigma}\left(y_{n}\right)(z)=\frac{G(z)}{z-z_{n}}\left\langle\sigma(z), y_{n}\right\rangle_{\mathcal{H}}$, $z \in \mathbb{C}$. Now, for each $n \in \mathbb{N}$ we obtain $f\left(z_{n}\right)=G^{\prime}\left(z_{n}\right)\left\langle\sigma\left(z_{n}\right), y_{n}\right\rangle_{\mathcal{H}}\left\langle x_{n}, x\right\rangle_{\mathcal{H}}$. Substituting in (8) we deduce (7) with convergence in \mathcal{H}_{σ}. Since \mathcal{H}_{σ} is a RKHS, the convergence in \mathcal{H}_{σ} implies pointwise convergence which is uniform on subsets of \mathbb{C} where the function $z \mapsto\left\|K_{\sigma}(z)\right\|_{\mathcal{H}}$ is bounded; in particular, on compact subsets of \mathbb{C}. This pointwise convergence is absolute due to the unconditional convergence of a Riesz basis expansion.

In the particular case where $\sigma(z)=a \in \mathcal{H}$, a constant vector such that $\left\langle a, e_{n}\right\rangle_{\mathcal{H}} \neq 0$ for all $n \in \mathbb{N}$, we obtain, as a consequence, the sampling formula (5) for the RKHS \mathcal{H}_{a}.

2.3 Lagrange-type interpolation series

A challenge problem is give a neccesary and sufficient condition on the function σ such that the sampling formula (7) can be written as a Lagrange-type interpolation series (10). Observe that it is equivalent to the existence of an entire function $A: \mathbb{C} \longrightarrow \mathbb{C}$ without zeros, such that, for each $n \in \mathbb{N}$ we have

$$
\begin{equation*}
\frac{\left\langle\sigma(z), y_{n}\right\rangle_{\mathcal{H}}}{\left\langle\sigma\left(z_{n}\right), y_{n}\right\rangle_{\mathcal{H}}}=\frac{A(z)}{A\left(z_{n}\right)}, \quad z \in \mathbb{C} . \tag{9}
\end{equation*}
$$

In this case, the sampling formula (7) reduces to a Lagrange-type interpolation series (10) where $H(z)=A(z) G(z), z \in \mathbb{C}$.

As it was proved in [11, Theorem 4], a necessary and sufficient condition assuring that the sampling formula associated with an analytic Kramer kernel K can be written as a Lagrange-type interpolation series is that the zero-removing property holds in \mathcal{H}_{K}; this property reads:
Definition 2. A set \mathcal{A} of entire functions has the zero-removing property if for any $g \in \mathcal{A}$ and any zero w of g the function $g(z) /(z-w)$ belongs to \mathcal{A}.
As a corollary of the aforementioned result [11, Theorem 4]) we obtain:
Corollary 2. The sampling formula (7) in \mathcal{H}_{σ} can be written as a Lagrange-type interpolation series

$$
\begin{equation*}
f(z)=\sum_{n=1}^{\infty} f\left(z_{n}\right) \frac{H(z)}{\left(z-z_{n}\right) H^{\prime}\left(z_{n}\right)}, \quad z \in \mathbb{C} \tag{10}
\end{equation*}
$$

where H denotes an entire function having only simple zeros at $\left\{z_{n}\right\}_{n=1}^{\infty}$ if and only if the space \mathcal{H}_{σ} satisfies the zero-removing property.

Now, we are ready to prove when the sampling formula (7) can be expressed as a Lagrange-type interpolation series, or, equivalently, when the zero-removing property in \mathcal{H}_{σ} holds:

Theorem 3. In the $R K H S$ of entire functions \mathcal{H}_{σ} associated with a resolvent-type sampling kernel K_{σ} (see (6)) the zero-removing property holds if and only if the \mathcal{H} valued function σ has the form $\sigma(z)=F(z)$ u where $F: \mathbb{C} \longrightarrow \mathbb{C}$ is an entire function without zeros and $u \in \mathcal{H}$ with $\left\langle u, y_{n}\right\rangle_{\mathcal{H}} \neq 0$ for each $n \in \mathbb{N}$.

Proof. Assume that $\sigma(z)=F(z) u$, with $\left\langle u, y_{n}\right\rangle_{\mathcal{H}} \neq 0$ for each $n \in \mathbb{N}$ and F entire function without zeros. For $f \in \mathcal{H}_{\sigma}$, the sampling formula (7) reads

$$
\begin{align*}
f(z) & =\sum_{n=1}^{\infty} f\left(z_{n}\right) \frac{\left\langle F(z) u, y_{n}\right\rangle_{\mathcal{H}}}{\left\langle F\left(z_{n}\right) u, y_{n}\right\rangle_{\mathcal{H}}} \frac{G(z)}{\left(z-z_{n}\right) G^{\prime}\left(z_{n}\right)} \\
& =\sum_{n=1}^{\infty} f\left(z_{n}\right) \frac{F(z)}{F\left(z_{n}\right)} \frac{G(z)}{\left(z-z_{n}\right) G^{\prime}\left(z_{n}\right)}, \quad z \in \mathbb{C} . \tag{11}
\end{align*}
$$

Taking $H(z):=F(z) G(z), z \in \mathbb{C}$, we have $H^{\prime}\left(z_{n}\right)=F\left(z_{n}\right) G^{\prime}\left(z_{n}\right)$, and substituting in (11) we obtain the Lagrange-type interpolation series

$$
f(z)=\sum_{n=1}^{\infty} f\left(z_{n}\right) \frac{H(z)}{\left(z-z_{n}\right) H^{\prime}\left(z_{n}\right)}, \quad z \in \mathbb{C}
$$

By using Corollary 2, the zero-removing property in \mathcal{H}_{σ} holds.
Conversely, assume that the zero-removing property in \mathcal{H}_{σ} holds. In this case, it is easy to deduce that $\sigma(z) \neq 0$ for all $z \in \mathbb{C}$. Indeed, if $\sigma\left(z_{0}\right)=0$ then $K_{\sigma}\left(z_{0}\right)=0$ and, consequently, every function in \mathcal{H}_{σ} has a zero at z_{0}. Let f be a nonzero entire function in \mathcal{H}_{σ} and let r denote the order of its zero at z_{0}. The function $f(z) /\left(z-z_{0}\right)^{r}$ belongs to \mathcal{H}_{σ} and, however it does not vanish at z_{0}, a contradiction.

For each $n \in \mathbb{N}$ the function $S_{n}(z):=\left\langle K_{\sigma}(z), y_{n}\right\rangle_{\mathcal{H}}=\frac{G(z)}{\left(z-z_{n}\right)}\left\langle\sigma(z), y_{n}\right\rangle_{\mathcal{H}}, z \in \mathbb{C}$, belongs to \mathcal{H}_{σ} and it has zeros at $\left\{z_{m}\right\}_{m \neq n}$. Since the zero-removing property holds, for $m \neq n$, the functions

$$
T_{n, m}(z):=\frac{S_{n}(z)}{z-z_{m}}=\frac{G(z)}{\left(z-z_{n}\right)\left(z-z_{m}\right)}\left\langle\sigma(z), y_{n}\right\rangle_{\mathcal{H}}, \quad z \in \mathbb{C}
$$

belong to \mathcal{H}_{σ}. The sampling formula (7) for $T_{n, m}(z)$ gives

$$
\begin{equation*}
T_{n, m}(z)=\sum_{j=1}^{\infty} T_{n, m}\left(z_{j}\right) \frac{\left\langle\sigma(z), y_{j}\right\rangle_{\mathcal{H}}}{\left\langle\sigma\left(z_{j}\right), y_{j}\right\rangle_{\mathcal{H}}} \frac{G(z)}{\left(z-z_{j}\right) G^{\prime}\left(z_{j}\right)} \tag{12}
\end{equation*}
$$

Evaluating the function $T_{n, m}$ at the sequence $\left\{z_{j}\right\}_{j=1}^{\infty}$ we get

$$
T_{n, m}\left(z_{j}\right)=\frac{S_{n}\left(z_{j}\right)}{z_{j}-z_{m}}=\left\{\begin{array}{cl}
\frac{G^{\prime}\left(z_{n}\right)}{z_{n}-z_{m}}\left\langle\sigma\left(z_{n}\right), y_{n}\right\rangle_{\mathcal{H}} & j=n \\
\frac{G^{\prime}\left(z_{m}\right)}{z_{m}-z_{n}}\left\langle\sigma\left(z_{m}\right), y_{n}\right\rangle_{\mathcal{H}} & j=m \\
0 & j \neq m, n
\end{array}\right.
$$

from which expansion (12) reads

$$
\begin{align*}
T_{n, m}(z) & =\frac{G^{\prime}\left(z_{n}\right)}{z_{n}-z_{m}}\left\langle\sigma\left(z_{n}\right), y_{n}\right\rangle_{\mathcal{H}} \frac{\left\langle\sigma(z), y_{n}\right\rangle_{\mathcal{H}}}{\left\langle\sigma\left(z_{n}\right), y_{n}\right\rangle_{\mathcal{H}}} \frac{G(z)}{\left(z-z_{n}\right) G^{\prime}\left(z_{n}\right)} \\
& +\frac{G^{\prime}\left(z_{m}\right)}{z_{m}-z_{n}}\left\langle\sigma\left(z_{m}\right), y_{n}\right\rangle_{\mathcal{H}} \frac{\left\langle\sigma(z), y_{m}\right\rangle_{\mathcal{H}}}{\left\langle\sigma\left(z_{m}\right), y_{m}\right\rangle_{\mathcal{H}}} \frac{G(z)}{\left(z-z_{m}\right) G^{\prime}\left(z_{m}\right)} \\
& =\frac{G(z)}{z_{n}-z_{m}}\left[\frac{\left\langle\sigma(z), y_{n}\right\rangle_{\mathcal{H}}}{z-z_{n}}-\frac{\left\langle\sigma\left(z_{m}\right), y_{n}\right\rangle_{\mathcal{H}}\left\langle\sigma(z), y_{m}\right\rangle_{\mathcal{H}}}{\left\langle\sigma\left(z_{m}\right), y_{m}\right\rangle_{\mathcal{H}}\left(z-z_{m}\right)}\right] . \tag{13}
\end{align*}
$$

Hence,

$$
\frac{\left\langle\sigma(z), y_{n}\right\rangle_{\mathcal{H}}}{\left(z-z_{n}\right)\left(z-z_{m}\right)}=\frac{1}{z_{n}-z_{m}}\left[\frac{\left\langle\sigma(z), y_{n}\right\rangle_{\mathcal{H}}}{z-z_{n}}-\frac{\left\langle\sigma\left(z_{m}\right), y_{n}\right\rangle_{\mathcal{H}}\left\langle\sigma(z), y_{m}\right\rangle_{\mathcal{H}}}{\left\langle\sigma\left(z_{m}\right), y_{m}\right\rangle_{\mathcal{H}}\left(z-z_{m}\right)}\right],
$$

that is

$$
\frac{\left\langle\sigma(z), y_{n}\right\rangle_{\mathcal{H}}}{\left(z-z_{m}\right)\left(z-z_{n}\right)}-\frac{\left\langle\sigma(z), y_{n}\right\rangle_{\mathcal{H}}}{\left(z-z_{n}\right)\left(z_{n}-z_{m}\right)}=-\frac{\left\langle\sigma\left(z_{m}\right), y_{n}\right\rangle_{\mathcal{H}}\left\langle\sigma(z), y_{m}\right\rangle_{\mathcal{H}}}{\left\langle\sigma\left(z_{m}\right), y_{m}\right\rangle_{\mathcal{H}}\left(z-z_{m}\right)\left(z_{n}-z_{m}\right)} .
$$

or

$$
\frac{\left\langle\sigma(z), y_{n}\right\rangle_{\mathcal{H}}}{z-z_{n}}\left[\frac{z-z_{n}}{\left(z-z_{m}\right)\left(z_{m}-z_{n}\right)}\right]=\frac{\left\langle\sigma\left(z_{m}\right), y_{n}\right\rangle_{\mathcal{H}}\left\langle\sigma(z), y_{m}\right\rangle_{\mathcal{H}}}{\left\langle\sigma\left(z_{m}\right), y_{m}\right\rangle_{\mathcal{H}}\left(z-z_{m}\right)\left(z_{m}-z_{n}\right)} .
$$

Therefore

$$
\begin{equation*}
\left\langle\sigma(z), y_{n}\right\rangle_{\mathcal{H}}=\frac{\left\langle\sigma\left(z_{m}\right), y_{n}\right\rangle_{\mathcal{H}}}{\left\langle\sigma\left(z_{m}\right), y_{m}\right\rangle_{\mathcal{H}}}\left\langle\sigma(z), y_{m}\right\rangle_{\mathcal{H}} . \tag{14}
\end{equation*}
$$

Expanding $\sigma(z)$ with respect to the Riesz basis $\left\{x_{n}\right\}_{n=1}^{\infty}$ we have

$$
\sigma(z)=\sum_{j=1}^{\infty}\left\langle\sigma(z), y_{j}\right\rangle_{\mathcal{H}} x_{j} \quad \text { in } \mathcal{H} .
$$

Having in mind (14) we observe that the coefficients $\left\langle\sigma(z), y_{j}\right\rangle_{\mathcal{H}}$ satisfy

$$
\left\langle\sigma(z), y_{j}\right\rangle_{\mathcal{H}}=a_{m, j}\left\langle\sigma(z), y_{m}\right\rangle_{\mathcal{H}}
$$

where

$$
a_{m, j}=\left\{\begin{array}{cc}
\frac{\left\langle\sigma\left(z_{m}\right), y_{j}\right\rangle_{\mathcal{H}}}{\left\langle\sigma\left(z_{m}\right), y_{m}\right\rangle_{\mathcal{H}}} & j \neq m \\
1 & j=m
\end{array}\right.
$$

Notice that the sequence $\left\{a_{m, j}\right\}_{j=1}^{\infty}$ belongs to $\ell^{2}(\mathbb{N})$ for each $m \in \mathbb{N}$. As a consequence of (14) we obtain

$$
\sigma(z)=\sum_{j=1}^{\infty}\left\langle\sigma(z), y_{j}\right\rangle_{\mathcal{H}} x_{j}=\left\langle\sigma(z), y_{m}\right\rangle_{\mathcal{H}} \sum_{j=1}^{\infty} a_{m, j} x_{j}=F_{m}(z) u_{m},
$$

where $u_{m} \neq 0$ belongs to \mathcal{H}, and $F_{m}(z)=\left\langle\sigma(z), y_{m}\right\rangle_{\mathcal{H}}, z \in \mathbb{C}$, is an entire function without zeros; recall that $\sigma(z) \neq 0$ for any $z \in \mathbb{C}$. Fixing any $m \in \mathbb{N}$ we conclude the proof of the theorem. Note that $\left\langle u, y_{n}\right\rangle_{\mathcal{H}} \neq 0$ for all $n \in \mathbb{N}$; in case that $\left\langle u, y_{k}\right\rangle \neq 0$ for some $k \in \mathbb{N}$ we derive that $f\left(z_{k}\right)=0$ for every $f \in \mathcal{H}_{\sigma}$ and, consequently, the ZR property does not hold in \mathcal{H}_{σ}.

3 An illustrative example

Given two sequences $\left\{b_{n}\right\}_{n=0}^{\infty}$ and $\left\{a_{n}\right\}_{n=0}^{\infty}$ of, respectively, real and positive numbers consider the semi-infinite Jacobi matrix

$$
\mathcal{A}=\left(\begin{array}{ccccc}
b_{0} & a_{0} & 0 & 0 & \cdots \tag{15}\\
a_{0} & b_{1} & a_{1} & 0 & \cdots \\
0 & a_{1} & b_{2} & a_{2} & \ddots \\
0 & 0 & a_{2} & b_{3} & \ddots \\
\vdots & \vdots & \ddots & \ddots & \ddots
\end{array}\right)
$$

whose domain $D(\mathcal{A})$ is the set of sequences of finite support. The Hamburger moment problem associated with \mathcal{A} reads as follows: Given the real numbers $s_{n}=\left\langle\delta_{0}, \mathcal{A}^{n} \delta_{0}\right\rangle_{\ell^{2}}$, $n \geq 0$, where δ_{0} stands for the sequence $(1,0,0, \ldots)$, we are interested in the search of positive Borel measures μ supported on $(-\infty, \infty)$ satisfying

$$
s_{n}=\int_{-\infty}^{\infty} x^{n} d \mu(x), n \geq 0
$$

If such a measure exists and is unique, the moment problem is determinate. If a measure μ exists, but it is not unique, the moment problem is called indeterminate (see, for instance, [21] or the classical reference [1]).

The operator \mathcal{A} is closable since it is symmetric and densely defined; we denote again by \mathcal{A} its closure. The domain of the adjoint of \mathcal{A} is given by $D\left(\mathcal{A}^{*}\right)=\left\{z \in \ell^{2}\left(\mathbb{N}_{0}\right) \mid\right.$ $\left.\mathcal{A} z \in \ell^{2}\left(\mathbb{N}_{0}\right)\right\}[21, \mathrm{p} .105]$. If \mathcal{A} is not a self-adjoint operator (the associated Hamburger
moment problem is indeterminate) its (von Neumann) self-adjoint extensions, $\mathcal{A} \subset$ $\mathcal{S}_{t} \subset \mathcal{A}^{*}$, can be parametrized by $t \in \overline{\mathbb{R}}=\mathbb{R} \cup\{\infty\}$ and their domains are [21, p.125]

$$
\mathcal{D}\left(\mathcal{S}_{t}\right)= \begin{cases}\mathcal{D}(\mathcal{A})+\operatorname{span}\{t \Pi(0)+\Theta(0)\} & \text { if } t \in \mathbb{R} \\ \mathcal{D}(\mathcal{A})+\operatorname{span}\{\Pi(0)\} & \text { if } t=\infty\end{cases}
$$

where

$$
\Pi(z):=\left\{P_{0}(z), P_{1}(z), P_{2}(z), \ldots\right\} \text { and } \Theta(z):=\left\{Q_{0}(z), Q_{1}(z), Q_{2}(z), \ldots\right\}
$$

denote the polynomial solutions $\left\{P_{n}\right\}_{n=0}^{\infty}$ and $\left\{Q_{n}\right\}_{n=0}^{\infty}$ of the second order difference equation

$$
\begin{equation*}
a_{n} \gamma_{n+1}+b_{n} \gamma_{n}+a_{n-1} \gamma_{n-1}=z \gamma_{n}, \quad n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\} \quad\left(a_{-1}=1\right) \tag{16}
\end{equation*}
$$

corresponding to the initial data $\gamma_{-1}=0, \gamma_{0}=1$ and $\gamma_{-1}=-1, \gamma_{0}=0$ respectively. Equivalently (see [21, p.126]), for a sequence $\Gamma=\left\{\gamma_{n}\right\}$ we have

$$
\Gamma \in D\left(\mathcal{S}_{t}\right) \Leftrightarrow \begin{cases}\lim _{n \rightarrow \infty} W(\Gamma, t \Pi(0)+\Theta(0))(n)=0 & \text { if } t \in \mathbb{R}, \\ \lim _{n \rightarrow \infty} W(\Gamma, \Pi(0))(n)=0 & \text { if } t=\infty\end{cases}
$$

where $W\left(\Gamma, \Gamma^{\prime}\right)(n)=a_{n}\left(\gamma_{n+1} \gamma_{n}^{\prime}-\gamma_{n} \gamma_{n+1}^{\prime}\right)$ denotes the Wronskian of the sequences $\Gamma=\left\{\gamma_{n}\right\}$ and $\Gamma^{\prime}=\left\{\gamma_{n}^{\prime}\right\}$.

The eigenvalue problem $\left(z I-\mathcal{S}_{t}\right) \Gamma=0$ is equivalent to the discrete Sturm-Liouville problem

$$
\begin{cases}a_{n} \gamma_{n+1}+b_{n} \gamma_{n}+a_{n-1} \gamma_{n-1}=z \gamma_{n}, & n \in \mathbb{N}_{0} \tag{17}\\ \gamma_{-1}=0, \lim _{n \rightarrow \infty} W(\Gamma, t \Pi(0)+\Theta(0))(n)=0 . & \end{cases}
$$

whenever $t \in \mathbb{R}$, or

$$
\left\{\begin{array}{l}
a_{n} \gamma_{n+1}+b_{n} \gamma_{n}+a_{n-1} \gamma_{n-1}=z \gamma_{n}, \quad n \in \mathbb{N}_{0} \tag{18}\\
\gamma_{-1}=0, \lim _{n \rightarrow \infty} W(\Gamma, \Pi(0))(n)=0 .
\end{array}\right.
$$

in the case $t=\infty$. As a consequence, z will be an eigenvalue of \mathcal{S}_{t} if and only if

$$
\lim _{n \rightarrow \infty} W(\Pi(z), t \Pi(0)+\Theta(0))(n)=0 \quad \text { whenever } t \in \mathbb{R}
$$

or

$$
\lim _{n \rightarrow \infty} W(\Pi(z), \Pi(0))(n)=0 \quad \text { whenever } t=\infty .
$$

It is known [21, p.127] that each self-adjoint extension \mathcal{S}_{t} of \mathcal{A} has a pure point spectrum $\left\{z_{i}^{t}=z_{i}\left(\mathcal{S}_{t}\right)\right\}_{i=0}^{\infty}$. The corresponding eigenfunctions $\left\{\Pi_{i}^{t}\right\}_{i=0}^{\infty}$ are given by

$$
\Pi_{i}^{t}=\Pi\left(z_{i}^{t}\right)=\left\{P_{0}\left(z_{i}^{t}\right), P_{1}\left(z_{i}^{t}\right), \ldots, P_{n}\left(z_{i}^{t}\right), \ldots\right\}, \quad i \in \mathbb{N}_{0}
$$

and they form an orthogonal basis in $\ell^{2}\left(\mathbb{N}_{0}\right)$ [4, 12]. Consequently, the resolvent operator $R_{z}^{t}=\left(z I-\mathcal{S}_{t}\right)^{-1}$, where $z \notin \rho\left(\mathcal{S}_{t}\right)$, is a compact operator [7, p.423].

Consider the canonical product $G_{t}(z)$ of the sequence of eigenvalues $\left\{z_{i}^{t}\right\}_{i=0}^{\infty}$; this canonical product always exists because, in particular, $\sum_{i=0}^{\infty}\left|z_{i}^{t}\right|^{-2}<\infty$ (see [21, p. 128]). Specifically, the canonical product is given by

$$
G_{t}(z)= \begin{cases}\prod_{n=0}^{\infty}\left(1-\frac{z}{z_{t}^{t}}\right) \exp \left(z / z_{n}^{t}\right) & \text { if } \sum_{n=0}^{\infty}\left|z_{n}^{t}\right|^{-1}=\infty \\ \prod_{n=0}^{\infty}\left(1-\frac{z}{z_{n}^{t}}\right) & \text { if } \sum_{n=0}^{\infty}\left|z_{n}^{t}\right|^{-1}<\infty\end{cases}
$$

whenever $z_{0}^{t} \neq 0$, and

$$
G_{t}(z)= \begin{cases}z \prod_{n=1}^{\infty}\left(1-\frac{z}{z_{n}^{t}}\right) \exp \left(z / z_{n}^{t}\right) & \text { if } \sum_{n=0}^{\infty}\left|z_{n}^{t}\right|^{-1}=\infty \\ z \prod_{n=1}^{\infty}\left(1-\frac{z}{z_{n}^{t}}\right) & \text { if } \sum_{n=0}^{\infty}\left|z_{n}^{t}\right|^{-1}<\infty\end{cases}
$$

in the case $z_{0}^{t}=0$.
Thus, for a fixed $t \in \overline{\mathbb{R}}$, we define the kernel $K^{t}: \mathbb{C} \longrightarrow \ell^{2}\left(\mathbb{N}_{0}\right)$ as

$$
K^{t}(z)(m):=\sum_{i=0}^{\infty} \frac{G_{t}(z)}{z-z_{i}^{t}}\left\langle\delta_{0}, \frac{\Pi_{i}^{t}}{\left\|\Pi_{i}^{t}\right\|}\right\rangle_{\ell^{2}} \frac{\Pi_{i}^{t}(m)}{\left\|\Pi_{i}^{t}\right\|}=\sum_{i=0}^{\infty} \frac{G_{t}(z)}{z-z_{i}^{t}} \frac{\Pi_{i}^{t}(m)}{\left\|\Pi_{i}^{t}\right\|^{2}}, \quad m \in \mathbb{N}_{0} .
$$

Note that K^{t} corresponds to the particular choice $\sigma(z)=\delta_{0}$ for all $z \in \mathbb{C}$, and that $P_{0}\left(z_{i}^{t}\right)=1$ for each $i \in \mathbb{N}_{0}$. As a consequence of Theorem 1, any function f defined as

$$
f(z)=\left\langle K^{t}(z),\left\{c_{n}\right\}\right\rangle_{\ell^{2}}=\sum_{m=0}^{\infty} K^{t}(z)(m) \bar{c}_{m}, \quad z \in \mathbb{C},
$$

where $\left\{c_{m}\right\}_{m=0}^{\infty} \in \ell^{2}\left(\mathbb{N}_{0}\right)$, can be recovered through the Lagrange-type interpolation series

$$
f(z)=\sum_{i=0}^{\infty} f\left(z_{i}^{t}\right) \frac{G_{t}(z)}{\left(z-z_{i}^{t}\right) G_{t}^{\prime}\left(z_{i}^{t}\right)}, \quad z \in \mathbb{C} .
$$

The convergence of the above series is absolute and uniform on compact subsets of \mathbb{C}.
Finally, it is worth to mention that more can be said about the kernel K^{t} and the sampling points $\left\{z_{i}^{t}\right\}_{i=0}^{\infty}$. Indeed, it is known that, associated with the self-adjoint extension \mathcal{S}_{t} of \mathcal{A}, there exists a positive measure μ_{t} solution of the indeterminate Hamburger moment problem $s_{n}=\int_{-\infty}^{\infty} x^{n} d \mu_{t}(x), n \geq 0$, for which the polynomials $\left\{P_{n}\right\}_{n=0}^{\infty}$ are dense in $L^{2}\left(\mu_{t}\right)$ (an extremal measure). Equivalently, the Hamburger moment problem is indeterminate if and only if the discrete Sturm-Liouville problem (17) or (18) belongs to the limit-circle case. Taking into account the components $A(z)$, $B(z), C(z)$ and $D(z)$ of the Nevalinna matrix of the indeterminate Hamburger moment problem (see [21, p. 124]) we have that [21, p. 126]

$$
m_{t}(z):=\frac{A(z)+t C(z)}{B(z)+t D(z)}=\int_{-\infty}^{\infty} \frac{d \mu_{t}(x)}{z-x}, \quad z \in \mathbb{C} \backslash \mathbb{R} .
$$

The poles of the meromorphic function $m_{t}(z)$ (which coincide with the zeros of the entire function $B(z)+t D(z)$ if $t \in \mathbb{R}$ or the zeros of $D(z)$ if $t=\infty)$ are precisely the eigenvalues of \mathcal{S}_{t}, that is, the sampling points $\left\{z_{i}^{t}\right\}_{i=0}^{\infty}$ (see [21, p.127]). Concerning the kernel K^{t}, for each $z \in \mathbb{C}$, we have that

$$
K^{t}(z)(m)=G_{t}(z)\left[Q_{m}(z)+m_{t}(z) P_{m}(z)\right], \quad m \in \mathbb{N}_{0}
$$

Since we are dealing with an indeterminate Hamburger moment problem, note that, for each $z \in \mathbb{C}$, the sequences $\left\{P_{m}(z)\right\}_{m=0}^{\infty}$ and $\left\{Q_{m}(z)\right\}_{m=0}^{\infty}$ belong to $\ell^{2}\left(\mathbb{N}_{0}\right)$. See [13] and [21] for the details.

Acknowledgments: This work has been supported by the grant MTM2009-08345 from the Spanish Ministerio de Ciencia e Innovación (MICINN).

References

[1] N. I. Akhiezer. The classical moment problem. Oliver \& Boyd, Edinburgh, 1965.
[2] M. H. Annaby. Sampling expansions for discrete transforms and their relationships with interpolation series. Analysis, 18:55-64, 1998.
[3] M. H. Annaby and G. Freiling. Sampling expansions associated with Kamke problems. Math. Z., 234:163-189, 2000.
[4] F. V. Atkinson. Discrete and Continuous Boundary Problems. Academic Press, New York, 1964.
[5] P. Butzer, J. R. Higgins and R. L. Stens. Sampling theory in signal analysis. In: Development of Mathematics 1950-2000. J. P. Pier (ed.). Birkäuser, Basel, 2000, pp. 193-234.
[6] P. Butzer and G. Nasri-Roudsari. Kramer's sampling theorem in signal analysis and its role in mathematics. In: Image processing; mathematical methods and applications. Proc. of IMA Conference, Cranfield University, UK, J. M. Blackledge (ed.). Clarendon Press, Oxford, 1997, pp. 49-95.
[7] D. E. Edmunds and W. D. Evans. Spectral Theory and Differential Operators. Oxford Science, Oxford, 1990.
[8] W. N. Everitt, G. Nasri-Roudsari and J. Rehberg. A note on the analytic form of the Kramer sampling theorem. Results Math., 34(3-4):310-319, 1998.
[9] W. N. Everitt and G. Nasri-Roudsari. Interpolation and sampling theories, and linear ordinary boundary value problems. In J. R. Higgins and R. L. Stens, editors, Sampling Theory in Fourier and Signal Analysis: Advanced Topics. Oxford University Press, Oxford, 1999.
[10] W. N. Everitt, A. G. García and M. A. Hernández-Medina. On Lagrange-type interpolation series and analytic Kramer kernels Results Math., 51:215-228, 2008.
[11] P. E. Fernández-Moncada, A. G. García and M. A. Hernández-Medina. The zeroremoving property and Lagrange-type interpolation series. Numer. Funct. Anal. Optim., 32:858-876, 2011.
[12] A. G. García and M. A. Hernández-Medina. Sampling theorems and difference Sturm-Liouville problems. J. Difference Equ. Appl., 6: 695-717, 2000.
[13] A. G. García and M. A. Hernández-Medina. Discrete Sturm-Liouville problems, Jacobi matrices and Lagrange interpolation series. J. Math. Anal. Appl., 280(2):221231, 2003.
[14] A. G. García and L. L. Littlejohn. On Analytic Sampling Theory. J. Comput. Appl. Math., 171:235-246, 2004.
[15] J. R. Higgins. Sampling Theory in Fourier and Signal Analysis: Foundations. Oxford University Press, Oxford, 1996.
[16] J. R. Higgins. A sampling principle associated with Saitoh's fundamental theory of linear transformations. In S. Saitoh et al., editor, Analytic extension formulas and their applications. Kluwer Academic, 2001.
[17] H. P. Kramer. A generalized sampling theorem. J. Math. Phys., 63:68-72, 1959.
[18] S. Saitoh. Integral transforms, reproducing kernels and their applications. Longman, Essex, England, 1997.
[19] L. O. Silva and J. H. Toloza. Applications of Krein's theory of regular symmetric operators to sampling theory. J. Phys. A: Math. Theor., 40:9413-9426, 2007.
[20] L. O. Silva and J. H. Toloza. Bounded rank-one perturbations in sampling theory. J. Math. Anal. Appl., 345:661-669, 2008.
[21] B. Simon. The classical moment problem as a self-adjoint finite difference operator. Adv. Math., 137: 82-203, 1998.
[22] A. E. Taylor and D. C. Lay. Introduction to Functional Analysis. John Wiley \& Sons, New York, 1980.
[23] R. M. Young. An Introduction to Nonharmonic Fourier Series. Academic Press, 2001.
[24] A. I. Zayed. Advances in Shannon's Sampling Theory. CRC Press, Boca Raton, 1993.
[25] A. I. Zayed and C. E. Shin. Lagrange interpolation and boundary-value problems. J. Integral Equations Appl., 18: 521-550, 2006.

[^0]: *E-mail:pefernan@math.uc3m.es
 ${ }^{\dagger}$ E-mail:agarcia@math.uc3m.es
 ${ }^{\ddagger}$ E-mail:mahm@mat.upm.es

