
UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR
DE INGENIEROS DE TELECOMUNICACIÓN

DEPARTAMENTO DE INGENIERÍA DE SISTEMAS
TELEMÁTICOS

T́ıtulo: “Development of a management system for virtual machines on
private clouds”

Autor: D. Mattia Peirano
Tutor: D. Juan Carlos Dueñas López
Departamento: Departamento de Ingenieŕıa de Sistemas Telemáticos

Tribunal calificador:

Presidente: D. Juan Carlos Dueñas López

Vocal: D. David Fernández Cambronero

Secretario: D. Gabriel Huecas Fernández-Toribio

Fecha de lectura: 15 de Marzo 2013

Calificación:

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR
DE INGENIEROS DE TELECOMUNICACIÓN

PROYECTO FIN DE CARRERA

Development of a management system for virtual
machines on private clouds

Mattia Peirano
2013

To my sister

Acknowledgements
During these five years between Politecnico di Torino and Universidad Politécnica

de Madrid, I have had the chance to meet many people along the way: some of them
have come along with me, others joined just to share a stretch of road together and
then follow on their own.

I want to begin by expressing my gratitude to those people who made this expe-
rience possible. First I want to thank my family that allowed me to embark on this
adventure: they supported me during this year away with its ups and downs, and,
even from afar, with their great love, they have been present in some way.

Thanks to Juan Carlos for allowing me to finish my studies, by welcoming me
in his research group. He has been my guiding light since the very beginning of
my adventure at the ETSIT, which began with his own lecture on Telematics Ser-
vices Architecture. I have been very lucky in choosing that course: thanks for this
opportunity you gave me.

Thanks to Rodrigo, workmate, fellow of lunches and breakfasts; he has been
able to teach me a lot and to grant me a bit of his experience. His passion at work
will allow him to be, besides a successful writer, a great professor, as those who fill
the classroom with students sitting on the steps. Between chocolate cookies and
our inevitable croissants with Eva, he introduced me to the true essence of Spanish
customs and traditions.

Thanks to professor Guido Marchetto who allowed me to finish my degree with
his supervision and support.

Thanks to Valentina who has been able to give me a bit of her strength, always
encouraging me in all my important decisions. She was able to find hundreds of
reasons not to give up; thanks for supporting and waiting for me for all this time.

Thanks to Julia, flatmate with whom I had the pleasure of sharing the best part of
this journey. I hope our paths will cross again, despite the large distance. Thanks to
Sara, the first who welcomed me in this city and in this school. Thanks to the many
people I have had the pleasure to meet during this experience at both universities:
somehow, everyone of you left me something, and I hope I’ve left something to you,
too.

And a final thanks to my old friends, who, even if far, every time I came back,
were able to make me feel I had never left.

Grazie a tutti

Madrid, February 20, 2013

Abstract

Cloud computing and, more particularly, private IaaS, is seen as a mature technol-
ogy with a myriad solutions to choose from. However, this disparity of solutions
and products has instilled in potential adopters the fear of vendor and data lock-
in. Several competing and incompatible interfaces and management styles have
increased even more these fears. On top of this, cloud users might want to work
with several solutions at the same time, an integration that is difficult to achieve in
practice. In this Master Thesis I propose a management architecture that tries to
solve these problems; it provides a generalized control mechanism for several cloud
infrastructures, and an interface that can meet the requirements of the users. This
management architecture is designed in a modular way, and using a generic infor-
mation model. I have validated the approach through the implementation of the
components needed for this architecture to support a sample private IaaS solution:
OpenStack.

Keywords: cloud computing; private IaaS; cloud management; management ar-
chitecture; cloud interoperability; OpenStack.

Riassunto

Il cloud computing, e più in particolare i servizi IaaS privati, sono ormai visti come
una tecnologia matura che presenta una miriade di soluzioni tra cui è possibile sce-
gliere. Tuttavia, questa disparità di soluzioni e prodotti ha instillato nei potenziali
utenti la paura di legarsi definitivamente ad un determinato fornitore o tecnolo-
gia. L’avvento di nuove interfacce di gestione, incompatibili tra loro, e di diversi
stili di amministrazione ha dato ancor più voce a questi timori. In primo luogo,
gli utenti del cloud possono voler lavorare contemporaneamente con diverse solu-
zioni tecnologiche, ma tale integrazione risulta difficile da realizzare nella pratica.
In questa tesi magistrale propongo un modello di architettura di gestione che cerca
di affrontare tali problemi offrendo un metodo comune di controllo per tecnologie
cloud eterogenee e un’interfaccia che può essere adattata alle esigenze dell’utente.
Questa architettura è stata progettata in modo tale da avere una struttura modulare
e utilizzando un modello di informazione generico. Abbiamo convalidato il nostro
approccio attraverso lo sviluppo e la implementazione dei componenti necessari, fa-
cendo riferimento a una specifica soluzione di IaaS privato: OpenStack.

Parole chiave: cloud computing; IaaS privati; gestione del cloud; architettura
di gestione; interoperabilità tra cloud; OpenStack.

Resumen

La computación en la nube y, más concretamente, las IaaS privadas, están conside-
radas como una tecnoloǵıa madura que presenta una multitud de soluciones entre las
cuales elegir. Sin embargo, esta disparidad de soluciones y productos ha inculcado
en los potenciales usuarios el miedo a ligarse perennemente a un proveedor o tec-
noloǵıa espećıficos. La aparición de varias interfaces de gestión, incompatibles entre
ellas, y distintos estilos de administración han dado voz, aún más, a estos temores.
Además, los usuarios de los servicios en la nube desean trabajar con varias soluciones
al mismo tiempo, y ésta es una integración dif́ıcil de lograr en la práctica. En este
Proyecto de Fin de Carrera propongo un modelo de arquitectura de gestión que no
sólo trata de hacer frente a estos problemas, sino que ofrece una forma común de
manejar varias soluciones de computación en la nube, y una interfaz que se puede
adaptar a las necesidades del usuario. Esta arquitectura de gestión está diseñada de
una manera modular, usando un modelo de información genérico. Hemos validado
nuestro enfoque a través de una implementación de los componentes de tal arquitec-
tura escogiendo como referencia una solución de IaaS privado espećıfica: OpenStack.

Palabras clave: computación en la nube; IaaS privada; gestión de la nube; ar-
quitectura de gestión; interoperabilidad entre nubes; OpenStack.

Contents

1. Introduction 1
1.1. Context . 2
1.2. Technical Objectives . 2
1.3. Didactic Objectives . 3
1.4. Work Plan . 4
1.5. Document Structure . 5

2. State of the Art 7
2.1. Cloud Computing Definition . 7
2.2. Main Features . 8
2.3. Service Models . 8

2.3.1. Infrastructure as a Service - IaaS 8
2.3.2. Platform as a Service - PaaS 9
2.3.3. Software as a Service - SaaS 9

2.4. Deployment Models . 9
2.4.1. Private Cloud . 9
2.4.2. Community Cloud . 10
2.4.3. Public Cloud . 10
2.4.4. Hybrid Cloud . 10
2.4.5. Hosted Public Cloud vs. Hosted Private Cloud 11

2.5. Computing as Utility . 11
2.6. Cloud Sustainability . 12
2.7. Technologies . 13

2.7.1. Private IaaS . 13
2.7.2. Public IaaS . 21
2.7.3. PaaS Services . 23
2.7.4. SaaS Services . 24

2.8. Management of cloud services . 25
2.8.1. KOALA . 26
2.8.2. Scalr . 26
2.8.3. Puppet . 27

i

2.9. Virtualization . 27
2.9.1. Hypervisors . 27
2.9.2. LibVirt . 28
2.9.3. Other solutions . 28

2.10. Supporting technologies . 29
2.10.1. Eclipse Modeling Framework 29
2.10.2. GitHub . 29
2.10.3. Launchpad . 29
2.10.4. REST . 30

3. Requirements Analysis 31
3.1. Problem Definition . 31
3.2. Domain model . 33
3.3. Requirements . 35

3.3.1. Functional Requirements . 36
3.3.2. Non-functional Requirements 39

3.4. Use cases . 40
3.4.1. Traceability . 47

4. Design 49
4.1. General architecture . 49
4.2. Assumptions . 51
4.3. The Cloud Computing Information model 52

4.3.1. EMF Model . 52
4.3.2. OpenStack Information Model 53

4.4. Component Diagram . 57
4.4.1. Client Layer . 57
4.4.2. Manager Layer . 59
4.4.3. Controller Layer . 61

4.5. Man.O.S. detailed Design . 62
4.5.1. The Client . 62
4.5.2. System interfaces . 65
4.5.3. Manager Implementation . 71
4.5.4. The Utility Package . 78
4.5.5. Exceptions . 79
4.5.6. The Infrastructure Manager Implementation 79

5. Test 83
5.1. Introduction to Tests . 83

5.1.1. Tests in Java Environment . 84
5.2. Test Architecture . 84

ii

5.2.1. Unit Tests . 85
5.2.2. Integration Tests . 88
5.2.3. System Tests . 89

5.3. Metrics and Statistics . 95
5.3.1. Cyclomatic Complexity . 95
5.3.2. Weighted Methods per Class 96
5.3.3. Efferent Couplings . 97
5.3.4. Lack of Cohesion in Methods 98
5.3.5. Number of Levels . 98
5.3.6. Number of Fields . 99
5.3.7. Number of Parameters . 100
5.3.8. Conclusions . 100

6. OpenStack Experience and Configuration Troubleshooting 103
6.1. Operational Problems . 103
6.2. The Quantum Service Installation . 105

6.2.1. A suggested Openstack Improvement 106
6.2.2. General Advice . 108

7. Virtual Networks over Openstack - VNO 109
7.1. Virtual Networks over linuX - VNX 109
7.2. The VNO Service . 110

7.2.1. The Architecture . 110
7.2.2. The Test . 112

8. Results and conclusions 115
8.1. Results . 115
8.2. Conclusions . 116
8.3. Future works . 116

A. Configuration example for OpenStack 117
A.1. File nova.conf with nova network . 117
A.2. Cleanup script . 120
A.3. IPTables rules . 121

B. VNX example of configuration file 123
B.1. VNX configuration file . 123

Bibliography 129

iii

List of Figures

1.1. Autonomic element . 3
1.2. Project plan . 4

2.1. Service models . 10
2.2. Gartner’s Hype Curve for emerging technologies (July 2012) 12
2.3. Eucalyptus structure . 14
2.4. OpenStack conceptual architecture 17
2.5. Monthly number of threads . 20
2.6. Monthly number of participants . 20
2.7. Amazon web services . 22
2.8. Types of Hypervisors . 28

3.1. Cloud Computing scenario . 32
3.2. Schematic representation of the domain model 34
3.3. Use Case . 41
3.4. Inclusion . 41
3.5. Extension . 41
3.6. Actor . 41
3.7. Use case diagram . 42

4.1. High level system diagram . 50
4.2. EMF Model of the Virtual Environment 53
4.3. EMF Model of the Physical Environment 54
4.4. OpenStack Data Model . 54
4.5. High level component diagram . 58
4.6. Quantum Client Structure . 65
4.7. System Interfaces . 66
4.8. Infrastructure Manager interface . 71
4.9. UML class diagram of the Infrastructure Manager implementation. . 72
4.10. Authentication Manager . 73
4.11. Flavor Manager . 75
4.12. Virtual Appliance . 76

iv

4.13. Network Manager . 76
4.14. Virtual Machine Manager . 77
4.15. Consistency interface implemented using CSV and mysql. 78
4.16. Activity diagram of the Virtual Appliance creating process. 80
4.17. Activity diagram of the Virtual Machine starting process. 82

5.1. Graph representing the updates to the test cloud infrastructure . . . 89
5.2. Test bench architecture . 90
5.3. Cyclomatic complexity . 96
5.4. Weighted methods per class . 97
5.5. Efferent couplings . 98
5.6. Lack of cohesion in Methods . 99
5.7. Number of levels . 100
5.8. Number of fields . 101
5.9. Number of parameters . 101

7.1. VNO architecture . 111
7.2. VNO service activity diagram . 113
7.3. VNO service test result, the creation of a Virtual Router is the future

goal and it is not still present . 114

v

List of Tables

3.1. Functional requirement 01 . 36
3.2. Functional requirement 02 . 36
3.3. Functional requirement 03 . 36
3.4. Functional requirement 04 . 37
3.5. Functional requirement 05 . 37
3.6. Functional requirement 06 . 37
3.7. Functional requirement 07 . 37
3.8. Functional requirement 08 . 38
3.9. Functional requirement 09 . 38
3.10. Functional requirement 10 . 38
3.11. Functional requirement 11 . 38
3.12. Functional requirement 12 . 39
3.13. Non-functional requirement 01 . 39
3.14. Non-functional requirement 02 . 39
3.15. Non-functional requirement 03 . 39
3.16. Non-functional requirement 04 . 40
3.17. Non-functional requirement 05 . 40
3.18. Use case 01 . 43
3.19. Use case 02 . 44
3.20. Use case 03 . 44
3.21. Use case 04 . 45
3.22. Use case 05 . 45
3.23. Use case 06 . 46
3.24. Use case 07 . 47
3.25. Traceability matrix mapping Functional Requirements to Use Cases . 47

4.1. Assumption 01 . 51
4.2. Assumption 02 . 51
4.3. Assumption 03 . 51
4.4. Assumption 04 . 51
4.5. Mapping between information models 61

vi

5.1. Unit test set . 87
5.2. Integration tests mapped to use cases 94
5.3. General statistics . 95

vii

Chapter 1

Introduction

During recent years the term “Cloud Computing” has become very popular and
many companies has changed their IT infrastructures and services, to fit in this
new tendency. Cloud Computing has become a revolutionary technology that has
changed the way services and resources are managed, enabling the access to com-
puting power as an utility. For this reason, Cloud Computing could be considered
the third evolution of the IT technology, after the mainframe and the client-server
paradigms. This technology offers a great variety of services, at different levels of
the service stack:

IaaS - Infrastructure as a Service: Providing raw computing resources.

PaaS - Platform as a Service: Providing elastic software platforms.

SaaS - Software as a service: Providing software deployed onto the cloud.

In each case, the cloud approach offers to the user ease of access and management,
freeing him from the troubles of the administration of physical machines. The user
does not need to care what is happening behind his software/platform/infrastruc-
ture, nor he does need to know where his software is run or how many computers are
involved in the computational work. These features change the traditional approach
to IT industry.

Moreover, Cloud Computing can also save resources and optimize their man-
agement when used in a private infrastructure, reducing problems and management
costs. However, to truly realize this, current private solutions should improve its
optimization and automation capabilities.

1

1 – Introduction

1.1. Context
In mid-October 2001, IBM released a manifesto observing that the main ob-

stacle to further progress in the IT industry was a looming software complexity
crisis [1, 2]. The only sensible option was autonomic computing; computing systems
that can manage themselves following high-level policies from administrators [2].
Public cloud computing solutions, such as Amazon EC2, provide customers with
a great availability due to the enormous pool of resources they own. However, in
private clouds the available resources are limited and a fair and sensible utilization
is paramount. One does not need only to support applications actually running,
but also to turn off unused machines to save on energy. Some authors claim that
“immediate scalability and resources usage optimization are key elements for the
Cloud. These are provided by increased monitoring, and automation of resources
management in a dynamic environment” [3]. Therefore, this should be the main
target of a complete cloud autonomic system: Markus Klems affirmed “With moni-
toring and increasing automation of resource provisioning we might one day wake up
in a world where we don’t have to care about scaling our web applications because
they can do it alone” [4].

This Master Thesis is part of a bigger work that tries to follow this path, con-
tributing to the creation of an autonomic management system for IaaS private
clouds. Its central element will be a cloud manager, which will implement an auto-
nomic loop (figure 1.1) that will manage both the physical and virtual infrastructure
of the cloud. Starting from a data retrieval system [5] this will use the captured
information to define a set of management actions that will, in turn, be performed
over the managed elements of the cloud.

To realize this big picture, I propose for my Master Thesis a component that will
be responsible for this last part: the “effector” of the loop, able to interface with
the cloud infrastructure.

1.2. Technical Objectives
The main objective is to create a system able to manage virtual instances of

cloud nodes in order to optimize, following some management policies, the use of
physical resources. The system will be able to choose or change the location of
virtual instances, trying to implement a resource distribution given by an external
element (not developed in this Master Thesis): a reasoning engine. Therefore, this
system will need to interact with a cloud controller. Working together they can
achieve better performances and nearly optimal resource utilization. In order to
achieve the proposed aim we will focus on the following sub-objectives:

1. Development of a virtual machine (VM) controller prototype, able to manage

2

1.3 – Didactic Objectives

Figure 1.1: Autonomic element

all configuration and runtime parameters concerning the VM lifecycle and the
initial configuration set. The controller should be able to run or stop virtual
instances, assigning them resources according to an external plan.

2. Development of an interpreter that allows working with different private cloud
technologies without changing the entire controller code and giving our system
a greater level of interoperability. This way, just changing the interpreter
implementation, the controller can be used with a different cloud technology.

Although the developed software will be able to work with the monitoring and
reasoning components of the autonomic loop (figure 1.1), it will also be a standalone
system. It will implement a set of control interfaces that can be easily accessed by
third party components. In fact, these interfaces will be defined in this Master The-
sis. Therefore, the proposed work will be capable of interacting with other external
systems; it can work independently from the other elements of the autonomic system
and could be also employed in other environments.

1.3. Didactic Objectives
This project also aims to complete the formation of the author as master degree

student. This final work, being a software development project, allows to consolidate
and apply in a practical way different concepts which had been studied along the
degree. This type of work allows the candidate to improve his teamwork skills and
management abilities in the context of software engineering projects.

3

1 – Introduction

From a more technical point of view, the work will force the candidate to learn
and study new technologies and tools which could be the basis for possible future
job opportunities.

1.4. Work Plan
The project followed a waterfall development cycle, with a duration of 6 months.

The main part of the project was divided in 4 primary steps: analysis, design,
implementation and test. The documentation task ran in parallel with the whole
project leading to the final document writing. The following Gantt schema shows
the proposed project lifetime.

Figure 1.2: Project plan

As we can see in figure 1.2 the main steps were divided in smaller tasks, making
the project better organized and manageable:

State of the art: analysis of the existing technologies and choice of which can be
used in the project. Analysis of the cloud technologies, especially focusing on private
IaaS solutions; review of the physical and logical structure of the cloud, analyzing the
interconnection between the layers composing the system. This task also includes
an analysis of the communication capabilities between the cloud technology and the
external controllers that I developed, and the installation of the OpenStack cloud
service on the machines of the laboratory.

Use case and requirements definition: identification of the system main re-
quirements, starting from the use case analysis.

System creation: this task can be separated in a set of 4 subtasks:

Requirements analysis

System design

4

1.5 – Document Structure

Implementation

Test on the infrastructure, compilation of results and an evaluation of the
feasibility of a possible integration with an external reasoning system acting
on the cloud.

Documentation and document redaction: report of the achievements and
documentation of the performed work.

1.5. Document Structure
This Master Thesis consists of eight chapters. This division approximately cor-

responds to the natural cycles of the software development. In this first chapter I
presented the context of the problem and set the main objectives to be met.

In the second chapter, I perform a detailed study of the state of the art in terms
of cloud computing, monitoring, and other technologies that support the implemen-
tation of the system. In this section I explore the concept of cloud computing trying,
to highlight the main characteristics of this technology.

The third chapter analyzes in detail all requirements the system must meet to
resolve the planned issue. In this section I define so much the functional requirements
of the software as the use cases in which it will be used. After it we arrive at
a complete overview of the technical requirements of the system that I intend to
design and develop.

The fourth chapter is the detailed design of the system structure, supported
by UML diagrams that facilitate its comprehension. At this level, I introduce the
features of the system that tries to satisfy the requirements defined in the previous
chapter. This section also describes the data model that has been chosen to represent
the cloud elements.

In the fifth chapter I describe the battery of tests performed in order to verify
the correctness of the implemented system. I also included some brief metrics and
statistics about the code, that could help in its evaluation.

The sixth chapter presents a brief overview over the main problems encountered
during the deployment of the selected infrastructure.

The seventh chapter offers the idea for the development of a new service, which
use as a basis the infrastructure I developed. This section describes the implemented
service and lays the foundations for another, future, project.

The eighth chapter contains some final considerations and a several possible work
lines for future projects related to this.

Finally, in the form of annexes, I provide samples of the configuration files used,
and a brief user manual for the two developed services.

5

6

Chapter 2

State of the Art

In this chapter I provide a general overview of the Cloud Computing concept,
his history and evolution. Subsequently I will describe the most interesting systems
present in the actual state of the field and the technologies that will be adopted in
the project. This part is the result of a process of documentation.

2.1. Cloud Computing Definition

In the literature many authors have tried to give a formal definition of the term
“Cloud Computing”, but usually only some of its aspects are treated, while other
are not taken into account. According to the definition of the National Institute
of Standard and Technology (NIST)[6] “Cloud computing is a model for enabling
ubiquitous, convenient, on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applications, and services) that
can be rapidly provisioned and released with minimal management effort or service
provider interaction”.

Vaquero [3] instead defines Cloud computing as “a large pool of easily usable and
accessible virtualized resources (such as hardware, development platforms and/or
services). These resources can be dynamically reconfigured to adjust to a variable
load (scale), allowing also for an optimum resource utilization. This pool of resources
is typically exploited by a pay-per-use model in which guarantees are offered by the
Infrastructure Provider by means of customized SLAs”.

Both definitions describe the same “object”, picturing it from different angles; it
is necessary to admit that it is difficult to find a definition that collects synthetically
every aspect of cloud computing. Because of this, in the next section I analyze the
main characteristics of this technology.

7

2 – State of the Art

2.2. Main Features
Some authors had tried to define the differences between cloud computing and

grid computing technology. In this paragraph I will focus on the aspects that dis-
tinguish it from others computing systems [6].

On-demand self-service: computing resources are delivered to the consumer
without the human intervention. The system is able to scale via dynamic on-
demand provisioning, according to the user needs.

Broad network access: cloud services are available over the network, en-
abling users to access them regardless of their position or the platform they
use (e.g. smart-phones, laptops, etc.).

Resource pooling: cloud computing providers provide pooled computing
capabilities that are used to serve consumers using a multitenancy model; this
model reduces costs and utilization, since virtual and physical resources are
assigned based on user demand. In this case virtualization plays an important
role, providing maximum flexibility to configure various partitions of resources
on the same physical machine.

Rapid elasticity: resources provisioning can adapt very rapidly to the instant
demand, optimizing resource utilization and increasing the perceived quality,
giving to the consumer the impression of a single dedicated resource [3].

Measured service: clouds allows for transparent tracing and report of user
consumption. This characteristic enables the adoption of a pay-per-use model
where users are billed based on their consumption.

2.3. Service Models
In this chapter I present, following a bottom-up approach, the different service

models that had been defined in the cloud computing environment. I start presenting
the lower layer, which is closer to the hardware infrastructure and directly interacts
with it.

2.3.1. Infrastructure as a Service - IaaS
This is the most basic cloud service model that provides computing, storage

and network resources. Usually the features are achieved through virtualization:
service providers split, assign and dynamically resize virtual resources to build ad-
hoc systems as demanded by customers [3]. According to this, it is necessary to

8

2.4 – Deployment Models

distinguish between two types of resources: physical resources set (PRS) and virtual
resources set (VRS) services [7]. In an infrastructure of this type, users can access
resources, manage operating systems, storage and deploy applications.

Usually, even storage and network services are virtualized in order to provide fully
customized capabilities. VRS services are the most common and widely adopted
(e.g. Amazon EC2 [8], OpenNebula [9], OpenStack [10] etc.).

2.3.2. Platform as a Service - PaaS
This is a model where providers deliver a platform (Operating System, program-

ming language environment, libraries etc.). On top of it users can deploy their
applications, without being troubled with the system configuration.

Providers offer to their customers a black box with auto-scale capabilities, able
to change dynamically the allocation of resources, depending on the workload (ap-
plication demand). Indeed, the underlying level is not accessible by users, which
cannot manage the cloud infrastructure, and only use the overlying services (e.g.
Heroku [11], Google AppEngine [12], Cloud Foundry [13], etc.).

2.3.3. Software as a Service - SaaS
This is the last service model, where the user can access running software pro-

grams, deployed over the cloud, through the use of cloud clients such as PCs, lap-
tops, smart-phones. . . The consumer cannot access any layer of the structure; he can
solely use the deployed application, accessing it through a browser and a network
connection. Using the programs do not require any particular installation or system
configuration. This is the case of online word processors like GoogleDocs [14] or
online game platforms like Gaikai [15].

2.4. Deployment Models
The NIST defines four types of deployment models, according to who owns the

infrastructure, or who make use of it.

2.4.1. Private Cloud
A private cloud is a cloud infrastructure used only by one organization; it could be

on-premises or hosted in another infrastructure. This model raze some criticism, due
to the fact that the owner still have to deploy and manage the system, contradicting
one of the main features of cloud computing. On the other hand, the adoption of
an on-premises Private Cloud guarantee a higher level of security: sensible data

9

2 – State of the Art

Hardware

SaaS

PaaS

IaaS

Compute

Service
Network

Service

Storage

Service

Figure 2.1: Service models

are stored in an internal infrastructure, instead of inside a third-party data center,
where the control might be not so strict.

2.4.2. Community Cloud

This is a cloud deployment model where several companies share among them
part of their resources, forming a kind of shared cloud. It can be managed by a
third party, while resources can be hosted internally or externally.

2.4.3. Public Cloud

In this deployment model a company owns a cloud infrastructure and offers cloud
computing services to third-party. Customers are usually billed according to a pay-
per-use model, where only the effective utilization of resources is charged. This is
the case of computing services providers like Amazon and Google.

2.4.4. Hybrid Cloud

This is a combination of two or more clouds (private and public) that continue to
exist as independent systems, but are also bounded together. This bond is created
by the sharing of resources.

10

2.5 – Computing as Utility

2.4.5. Hosted Public Cloud vs. Hosted Private Cloud

Commercial companies (i.e. Citrix) , advertising about IaaS cloud products,
talk about two types of private clouds: a “hosted private cloud” and a “hosted
public cloud” service. Similarly, Microsoft proposes a similar offer but distinguishes
between a private cloud on proprietary machines and a private cloud deployed on
a hosted physical infrastructure. Sometimes it is not so clear where the border line
between a Public Cloud service and Private Hosted Cloud is drawn.

Analyzing the matter we can assume that the difference consists in the resource
allocation process: in a Private Hosted Cloud a user can purchase a specific amount
of resources; while in a Public Cloud the resource allocation scales with the workload,
without an established limit (on-demand); in this case the user will be charged only
for the amount of resources that he uses.

Referring to the NIST definition, a private clouds infrastructure “is provisioned
for exclusive use by a single organization comprising multiple consumers. It may be
owned, managed, and operated by the organization, a third party, or some combi-
nation of them, and it may exist on or off premises.” [6] The author does not make
distinction between the two implementations of private cloud, giving raise to some
discussion on security issues.

2.5. Computing as Utility

The Gartner’s Hype-Curve (figure 2.2) shows that in 2012 the expectations for
cloud computing specific technologies are high: Hybrid Cloud Computing and Pri-
vate Cloud Computing reside at the peak of the curve. On the other hand, the cloud
computing element is falling in the “disillusionment” zone, while the Cloud/Web
Platforms technology, which was present in the 2011 Gartner’s curve, is no longer
mentioned. Gartner analysts define Cloud Computing as one of the fastest-moving
emerging technologies and the offered portrait (Hype Curve) seems to suggest that
the global scenario is moving towards a state in which analytic insight and comput-
ing power are nearly infinite and cost effectively scalable [16].

Some authors claim that cloud computing is being transformed into a model of
services, delivered in a manner similar to classic utilities, like electricity, water, gas,
etc. This type of services must be available at any time and consumers pay just
what they consume (pay-per-use) [6].

Obviously, this kind of service delivery model is applicable to an environment
where a Service Level Agreement is defined and the provisioning granted. This could
be the new goal that Information Technology companies will try to reach for cloud
computing systems.

11

2 – State of the Art

Figure 2.2: Gartner’s Hype Curve for emerging technologies (July 2012)

2.6. Cloud Sustainability

During lasts years the cloud services demand has grown exponentially, and ser-
vice providers started to keep into account energy issues, since the rising energy cost
is a highly potential threat as it increases the Total Cost of Ownership (TCO) and
reduces the Return on Investment (ROI) of Cloud infrastructures [17]. In order to
lead the data center to a sustainable energy consumption, cloud infrastructures need
an efficient management that not only meets the Quality of Service agreed with the
customer, but cut on energy consumption.

Virtualization makes energy management a little easier: virtual instances are
not tied to a specific physical machine and can be moved and grouped according to
satisfy the demand. Naturally, it is necessary to found an algorithm that optimizes
the energy/performance ratio, and then, implement a system that would be able to
self configure according to this algorithm. This is because not all physical machines
need to remain on.

It is important to understand which factors are dominant in the energy consump-
tion of a data center that houses a cloud. Some authors [18], describing consumption
models in cloud computing, argued that in some cases cloud computing savings are
minimal, due to the considerable increase of network traffic. In other cases, where

12

2.7 – Technologies

network traffic is not so relevant (e.g. slow frame rate applications in public clouds
or services in a private on-premise cloud) energy savings are substantial. As [18]
claims, “The number of users per server is the most significant determinant of the
energy efficiency of a cloud software service”.

Looking at this assumption we infer that a resource manager can improve the
current state of the technology.

2.7. Technologies
In this section I describe some existing cloud technologies, focusing on their

main characteristics and architectures. Again, here I adopt a bottom-up approach,
starting from the lower level of the service model stack (Infrastructure as a Service),
and climbing up to reach to the highest one (Software as a Service).

2.7.1. Private IaaS
Eucalyptus

Eucalyptus (Elastic Utility Computing Architecture for Linking Your Programs
To Useful Systems) is an open-source cloud-computing framework [3] written in
Java and C, which interface is based on the well known Amazon cloud services API.
Eucalyptus has a modular and hierarchical design and supports most of currently
available Linux distributions. As other IaaS technologies, Eucalyptus can interact
with several hypervisor as XEN or KVM. The system takes advantage of modern
infrastructure virtualization software to create elastic pools that can be dynamically
scaled up or down depending on application workloads.

Architecture Eucalyptus consists of the following components:

Cloud Controller: this component provides computational functionality, or
rather it enables the deployment and management of virtual instances.

Walrus: this component provides simple storage functionality. This module is
equivalent to the Amazon Simple Storage Service (S3) which will be described
in later paragraphs.

Cluster Controller: this component provides management service for a cluster
in your cloud.

Storage Controller: this component provides Amazon Elastic Block Store func-
tionality (section 2.7.2).

13

2 – State of the Art

Node Controller: this component controls virtual machine instances and their
life-cycle. It runs on every node that is destined for hosting VM instances.

Figure 2.3: Eucalyptus structure (retrieved at [19])

Resource Administration Eucalyptus provides a public API, completely inter-
operable with Amazon’s services: users can deploy instances in the proprietary
on-premises infrastructure and then move it to the Amazon public cloud, using the
same command set. This level of interoperability allows users to create Hybrid
Clouds without management troubles.

The Eucalyptus Dashboard provides cloud administrators with a graphical con-
sole for performing several cloud management tasks including all virtual and physical
resource management and virtual cloud resource configuration.

Nimbus

Nimbus is an open source EC2/S3-compatible Infrastructure-as-a-Service imple-
mentation specifically targeting features of interest to the scientific community such
as support for proxy credentials, batch schedulers, best-effort allocations and others
[20]. This is an open source tool set and also a cloud computing solution providing
IaaS. Nimbus platform provides an integrated set of tools designed to overcome user
needs: the Phantom service provides auto-scaling and high availability for collections

14

2.7 – Technologies

of resources. The Context Broker service is a service that allows clients to coordi-
nate large virtual cluster. Finally the cloudinit.d toolkit is adopted for launching,
controlling, and monitoring cloud applications. Nimbus supports XEN and KVM
hypervisors. It also offers a special testing characteristic: the infrastructure could
be run in “fake mode” where no virtual machines are ever started. This is very
useful for testing the infrastructure topologies before the effective deployment.

OpenNebula

OpenNebula is a research project started as a management tool for the orches-
tration and configuration of virtual machines in data centers. The main aim of the
project was to address challenges from business use cases in real-world conditions [9].

OpenNebula orchestrates the existing storage, networking, virtualization, mon-
itoring, and security platforms. It provides a great compatibility that allows com-
panies to continue to use their own infrastructure, updating offered services to the
latest technology models.

OpenNebula can manage different user groups, separating projects that share
the same infrastructure. The system provides a full control of the infrastructure:
the user can deploy VM according to predefined VM templates, create and manage
virtualized networks with traffic isolation.

OpenNebula supports XEN, KVM and VMWare hypervisors and supports dif-
ferent access interfaces including REST-based interfaces, OGF OCCI service inter-
faces, and the emerging cloud API standard, as well as the de-facto AWS EC2 API
standard [21].

The system provides a Marketplace where users can choose virtual appliances
and deploy their systems with just a few steps. The list of available instances offers
CentOS, Debian, openSUSE and Ubuntu releases.

The most interesting characteristic of OpenNebula remains the interoperability
with existing IT infrastructures, given by the modular and extensible architecture.
The software is delivered under Apache license.

OpenStack

OpenStack is a private IaaS cloud computing system composed by a set of smaller
projects, which are community maintained [10]. Each project concerns a different
service, necessary to deploy the entire infrastructure.

Architecture Several parts make the Openstack system: each of them specialized
in a specific role. The interaction between them could be appreciate in figure 2.4.
The architecture is composed of six core blocks, each one presenting a code-name:

Identity - Keystone

15

2 – State of the Art

Compute - Nova

Image management - Glance

Dashboard - Horizon

Object Storage - Swift (Like Amazon S3)

Volumes - Cinder (Like Amazon EBS)

Networking - Quantum

Each service can interact with the others, and they are accessible trough a public
API. Another important aspect is that Openstack’s APIs are compatible with Ama-
zon EC2 and Amazon S3 services, so clients written for the Openstack infrastructure
can be easily used with the Amazon cloud [22].

Identity - Keystone is an OpenStack project that provides Identity, Token,
Catalog and Policy services. It is implemented using a RESTfull interface and each
connection to the API server should be created using secure HTTP (HTTPS). The
authentication token validity lasts twenty-four hours and it is sent in all request
messages against the API.

Compute - Nova service provides and manages large networks of virtual ma-
chines. It provides on-demand computing resources and it is able to work with
different types of hypervisor technologies. its main features are:

Management of virtualized commodity server resources (CPU, Memory, Net-
work Interfaces)

Management of Local Area Networks (If the network module - Quantum - is
not present)

A distributed and asynchronous architecture

Virtual Machine management

Volume management (If the volume module - Cinder - is not present)

Image Management - Glance provides discovery, registration, and delivery ser-
vices for virtual disk images. It also provides an API with a REST interface, with
which it is possible to retrieve information about the existing disk images, create
new ones etc. Glance is compatible with different types of images, offering a good
interaction with others systems (Raw, VHD, VDI, VMDK, OVF, qcow2 etc.).

16

2.7 – Technologies

Dashboard - Horizon provides a web user interface for managing Openstack ser-
vices. With the web interface the user can easily access resources and manage them
by a visual interface. All operations can also be performed through the Command
Line Interface (CLI)

Object Store - Swift provides a fully distributed storage platform that can be
used from applications. OpenStack provides redundant and scalable object storage
using clusters of standardized servers, capable of storing petabytes of data. Swift
is a distributed storage system for static data (as virtual machine images) that
guarantees reliability and integrity by replication: data are stored in different disks
all over the data center.

Network - Quantum is a project created in order to provide high level manage-
ment over the network of the cloud. It enables the definition of the network con-
nectivity and the addressing of virtual machines, allowing multi-tenant connections.
Quantum can configure many network topologies, managing L2 and L3 configura-
tions (L2 and L3 stands for Layer 2 and Layer 3 of the OSI model). Each tenant
can have multiple networks with a private addressing that does not interfere with
other tenant’s addressing plans. Quantum service is used by other projects as Nova
or Swift.

Figure 2.4: OpenStack conceptual architecture1

17

2 – State of the Art

CloudStack

Apache CloudStack system does not stray too far from the other platforms of this
type. It is an open source software designed to deploy and manage large networks of
virtual machines as a highly scalable Infrastructure as a Service. Unlike OpenStack,
CloudStack has a monolithic architecture where all the services are offered by a
single cloud manager that run on a virtual machine itself. It controls the allocation of
virtual machines to hosts and assigns storage and IP addresses to the virtual machine
instances. The Management Server runs in a Tomcat container and requires a
MySQL database for persistence. CloudStack supports XEN and KVM hypervisors
and provides Network-as-a-Service, user and account management and a full and
open native API compatible with AWS EC2 and S3. This last characteristic is
paramount for the deployment of a Hybrid cloud infrastructure. In April 2012
CloudStack has been donated to the Apache Software Foundation, where it was
accepted into the Apache Incubator.

Comparison of Open-source IaaS Cloud Frameworks

As we can see, the number of IaaS solutions is considerably wide. With all these
different open-source cloud technologies, the decision to choose the most suitable
one that meets our needs becomes a difficult task, because every platform has spe-
cific characteristics. Therefore I decided to base the decision taking into account
some comparisons already presents in the literature [21, 23, 24] that point out the
characteristics of these products, indicating which are the pros and cons of each one
of them.

It is important to realize that some of these comparisons have been made a
couple of years ago, and since them some of these technologies have experienced a
substantial improvement; the offered services have increased, and many differences
between these solutions are no longer valid.

On this basis, I compared the infrastructure services that provide a high level
of customization, since we need the possibility of interacting with VMs at a very
low level, controlling them with many degrees of freedom. For this reason I have
reduced the array of private cloud solutions to the following three:

OpenNebula

OpenStack

Eucalyptus

I have used to decide the following criteria:

1Retrieved on Jan-10-2013 at: “http://docs.openstack.org/folsom”

18

2.7 – Technologies

Software deployment An important feature is the ease of software deployments:
the easiest to deploy is OpenNebula because we only have to install a single service
in the main controller, and no OpenNebula software is installed in the compute
nodes. On the other hand, the deployment of Eucalyptus and OpenStack is more
difficult due to the number of different components to configure and the different
configuration possibilities that they provide [21].

Security All of the IaaS frameworks support X.509 credentials as authentica-
tion method for users. OpenStack and OpenNebula also support authentication
via LDAP, although it is quite basic [21]. OpenStack has developed a standalone
project (Keystone) in charge with all security issues over the infrastructure, offering
a centralized module that provides unified authentication across all projects.

Interfaces All solutions offer the same set of interfaces: a Open Cloud Computing
Interface (OCCI) and the EC2 and S3 interfaces, all based on REST.

Networking The network is managed differently for each IaaS framework, pro-
viding various options in each of them. But analyzing the possibilities that each
infrastructure provides [21], only OpenStack offers a standalone service that pro-
vides the possibility of creating several virtual network topologies. None of the
others gives the user such level of control over the networking environment.

Virtualization All of the IaaS that listed before support KVM and XEN, which
are the most popular open source hypervisors. OpenNebula and Openstack also sup-
port VMWare, while Eucalyptus only supports VMWare in its commercial version.
Additionally, OpenStack also supports LXC and Microsoft’s HyperV that provides
integration and support of Windows Servers.

Scale and activity level of the community The last parameter I consider is
the scale and the activity level of the community that lies behind each IaaS software.
To evaluate this feature, I made use of a set of charts that provides a comparison
between the aforementioned solutions, based on the total number of monthly new
threads in the community forum and the monthly number of active participants
contributing to the project [25].

In figures 2.5 and 2.6 we see that the OpenStack community is much more
active and wide than the others. This feature implies a greater development and
maintenance process that, in this open source scenario, is of paramount importance.

19

2 – State of the Art

Figure 2.5: Monthly number of threads

Figure 2.6: Monthly number of participants

20

2.7 – Technologies

Conclusion In light of this analysis, even if the aforementioned technologies are in
many cases equivalents I chose to use the OpenStack IaaS. Although its deployment
may be more difficult than OpenNebula, it offers a set of capabilities superior to
the other solutions, the more important of all the advanced virtual network service.
Moreover, using OpenStack I’m able to work with the support of a community that
is in constant ferment, where bugs are resolved quickly and software versions are
updated constantly.

2.7.2. Public IaaS

Amazon Web Services - AWS

Launched in 2002 is now one of the most important cloud systems in the mar-
ket. It offers a complete set of infrastructure and application services that enable
the customer to run virtually server instances in the cloud. The most well known
Amazon’s services are Amazon Elastic Computing Cloud (EC2) and Amazon Simple
Storage Service (S3).

EC2 allows users to rent virtual computers on which they can run their own
applications; in addition, users obtain the complete control of his computing re-
sources with the possibility of managing them as they prefer. Amazon EC2 allows
the customer to start instances from a preconfigured VM image or to create it with
personal libraries, applications and data. The user chooses the instance type, selects
a Virtual Appliance (configuration set regarding memory, CPU, instance storage,
etc.) and obtains the root access to each VM.

The Auto Scaling service provides the automatic adaptation to the workload,
avoiding a decrease of performances during bursts of demand and minimizing costs
during periods of low usage. This service fits with applications that have very differ-
ent utilization rates throughout the day. Amazon offers various payment types, from
the on-demand model to the “Reserved Instances” model, specific for applications
that require reserved capacity; the SLA provides 99.95% of availability over each
Amazon EC2 zone.

Amazon Elastic Block Store offers persistent storage on the Amazon’s infrastruc-
ture. Blocks are mounted through the network and are totally independent from the
life-cycle of an instance; durability is provided by replication. Amazon EC2 works in
conjunction with Amazon Simple Storage Service (Amazon S3), Amazon Relational
Database Service (Amazon RDS), Amazon SimpleDB and Amazon Simple Queue
Service (Amazon SQS) and offers interfaces accessible through HTTP, using REST
and SOAP protocols or the CloudFront service.

21

2 – State of the Art

Figure 2.7: Amazon web services

Azure

Microsoft’s Windows Azure was born as a PaaS product but in June 2012, Mi-
crosoft announced in preview at the Meet Windows Azure Event its new IaaS service.
Azure supports different types of operating systems that can be retrieved from a de-
fault list provided by the system, or personally uploaded. The Microsoft’s IaaS
service offers built in monitoring for basic CPU, memory, network, and disk met-
rics, and a continuous geographic data replication across data centers [26]. Windows
Azure also competes in the PaaS market.

Google Compute Engine - GCE

Google Compute Engine, announced at Google IO (June 29, 2012), is a Infras-
tructure as a Service product that permits to deploy virtual servers on Google’s
datacenters, the same infrastructure used by the company for its web-services like
Gmail, Maps and Search. GCE has a number of advanced cloud computing features:
user-level access to individual servers, persistent and attachable storage deployed in
a specified Google data center/zone. First opinions state that GCE could start
to weaken the Amazon’s hegemony in the IaaS cloud services field. Being a new
product GCE is in limited preview.

Rackspace Public Cloud

Rackspace Public Cloud is a cloud computing solution offered by Rackspace.
This was one of the first commercial proposals among cloud computing services.

22

2.7 – Technologies

Rackspace Cloud Server service enables the deployment of hundreds of VMs, and
supports several Linux distributions. It works with the XEN hypervisor and in 2010
has contributed to the source code of the OpenStack project, delivered under the
Apache License. Recently (April 2012) Rackspace announced that it is going to
include Openstack Compute service in its infrastructure.

Rackspace Public Cloud provides automatic scaling, on-demand load balancers,
virtualized networks, periodic incremental backups, data encryption and high per-
formance databases. It also offers a cloud monitoring service that sends alerts to the
user (via mobile phone, laptop, etc.) when something is going wrong with servers,
applications or configurations.

Other

Other solutions are present, like IBM Small Cloud Enterprise or GreenQloud, a
company offering green cloud computing services powered by emission-free energy
sources.

2.7.3. PaaS Services
Google AppEngine

Google AppEngine is a platform provided by Google that allows the user to run
web applications on Google’s infrastructure (Google Cloud), easing the management
of the entire physical equipment, its scalability and the data storage. With Google
App Engine users can develop an application and make it visible to the world,
without problems of physical resources management. The scalability of the service
is directly managed by the App Engine, which automatically distributes the load of
incoming requests over the available resources.

Google App Engine supports several programming languages, like Java, Python,
JavaScript, Ruby and Go. From an economical point of view, Google App Engine
initially provides a totally free of charge access, naturally with limited storage capac-
ity (1 GB) and limited number of accesses. If more computational power or resources
are needed, the user can enable the paying service where only usage exceeding the
free limit will be charged.

Google App Engine provides a dynamic web server system with persistent storage
that presents different data warehousing strategies and access typologies:

App Engine Datastore: a NoSQL distributed storage that works with a no-
relational query and transactions engine.

Google Cloud SQL: a relational storage offering SQL access, based on a dis-
tributed Relational Database Management System, which provide high data
availability.

23

2 – State of the Art

Google Cloud Storage: a Large Objects Storage Service that combines the
performance and scalability of Google’s cloud (distributed replication, access
control, etc.)

In addition to this, Google App Engine provides a cache memory service (Mem-
cache) accessible through a Java interface, which increases the performance and
reduces the resource usage of web applications.

Heroku

Heroku is one of the first cloud PaaS to appear. Launched in 2007, it supports
several programming languages like Ruby on Rails, Java, Phyton, Clojure etc. The
adoption of Git [27], a free revision control software makes the deployment of new
applications incredibly easy: with very few commands the application can be de-
ployed on Heroku’s infrastructure. The platform provides interoperability with third
party services, like databases, email, management, search etc.

The application management is performed through a command-line interface, a
web console or a RESTfull API. Heroku also provides a release management service
that enables the user to safely make changes to the developed code and, if needed,
to roll back to a previous version.

The application status is continuously logged, so the customer can follow the
behavior of his application during its lifecycle: all operations performed in each part
of the platform are recorded giving the user full visibility of the system.

The platform provides an auto scale capability that increases automatically the
amount of resources (Dynos) assigned to the application, using a dynamic routing
service balances automatically the web traffic.

2.7.4. SaaS Services

Storage

There are a lot of companies that focus their business on a platform that stores
files in the cloud; there are many examples like the famous Dropbox [28], which
are able to work either with mobile devices or traditional computers. A relatively
new entry in this field is Google Drive, which tries to compete by integrating it
with its other cloud services. SkyDrive is the Microsoft’s answer, offering storage
service integrated with all the products of Windows Live. For all solutions, data is
available trough web navigation with a web browser, but in some cases the company
also produces PC or Smartphone software providing a full synchronization with the
cloud.

24

2.8 – Management of cloud services

Office

The online text editor service is another type of cloud service that has seen a
rapid growth in recent years. This service frees the user from the issues of portability
and access, very common in classic editing programs. Google and Microsoft has
begun to offer this kind of services with their products Google Docs and Office Live
Workspace, enjoying great success. In this category we can also found the Alfresco
cloud enterprise content management system.

Pictures elaboration

Also, in the image editing scenario a lot of cloud services are rising up: an
example is Photoshop Express, the web cloud version of the most famous image
editing software. This version saves the occasional customers from the huge cost
and big size of the full release.

Security

In the security field there are some innovative proposals of cloud anti-virus. One
example is the Panda Cloud Antivirus [29] where the file analysis is run on the cloud
instead of the local PC like all classic anti-virus software products.

Games

Cloud computing has started to catch on the world of videogames; a typical
example is the Gaikai [15] platform, where the game is run in the cloud enabling
low capacity computers to run new generation games that usually need an high level
of resources. Gaikai has been acquired by Sony and the future PlayStation 4 will
feature cloud gaming.

2.8. Management of cloud services
With the expansion of the sector, automated cloud controllers have become of

paramount importance, mostly when the private cloud infrastructure experiences
a rapid growth. In contrast to the elasticity and flexibility of cloud services the
traditional management methods and tools seem inappropriate because they usually
require local software installation with continuous updates and patches [30].

All private IaaS solutions offer their own management interfaces, tailored to its
specific needs and features, and are rarely able to interact with other solutions, or
even other cloud deployments of the same solution. The only exceptions to this fact
are not by design: it is just that some private IaaS solutions try to replicate the same

25

2 – State of the Art

capabilities and abstractions offered by more popular public offerings, like Amazon
AWS. And, in doing that, they develop very similar or even identical interfaces.

The existing management tools for cloud infrastructure and storage services can
be classified as follows [31]:

Command-line tools.

Locally installed management applications with a graphical user interface.

Firefox browser extensions.

Online tools.

These management systems are usually proprietary solutions that work only with
a specific cloud service, and are not compatible with other service providers [32]. In
the next paragraphs I will focus on some open source solutions that can be found
in the cloud computing scenario.

2.8.1. KOALA
KOALA (Karlsruhe Open Application (for) cLoud Administration) is a web

based application able to manage and control AWS compatible cloud services [30].
It allows the user to work with a large variety of services of various public and pri-
vate cloud providers in a seamless and transparent way [31]. KOALA is an open
source project that presents an innovative characteristic: in contrast to the majority
of management systems, it does not require a local installation since itself could
be deployed in the cloud, on a scalable platform service such as Google App En-
gine. The user interface allows customers to start, stop and monitor their instances
and volumes in various cloud infrastructure regions, and to have access to the con-
sole output of virtual machines. KOALA supports S3, Google Storage and Walrus
storage services.

2.8.2. Scalr
Scalr is a proprietary, cross platform cloud management software that provides

auto scaling, disaster recovery and server management. It is open source, available
at Google Code2 but a hosted version is available as paid service. The manager
is able to scale the virtual infrastructure according to the load. Scaling strategies
could be based on CPU, RAM, disk, network or date. This last can be useful in the
case an increase of traffic is expected as during scheduled public events. The code
is distributed under Apache 2 license.

2http://code.google.com/p/scalr/

26

2.9 – Virtualization

2.8.3. Puppet
Puppet is an IT automation software that helps system administrators manage

infrastructure throughout its lifecycle, easing the automation of the repetitive tasks
[33]. This configuration management tool is written in Ruby and provides some
specific modules for cloud management. The software is distributed for free with
some utilization restrictions. The paid version offers a solution without limits.

2.9. Virtualization

2.9.1. Hypervisors
A hypervisor, also called Virtual Machine Manager, is a software that allows to

run and orchestrate many operating systems (OS), that usually are denoted “guest”,
on the same hardware, usually denoted as “host”. It is responsible for the manage-
ment of virtual resources, which are distributed among the running guests. There
are two main types of hypervisors (figure 2.8):

Type 1 (or native): this kind of hypervisors runs directly on the hardware,
without the mediation of a host operating system.

Type 2 (or hosted): this kind of hypervisors runs over a conventional operating
system.

The two mostly widely used hypervisors are XEN and KVM which is included
in Linux distributions since the 2.6.20 version.

XEN

Xen is a open source software developed by Cambridge University and licensed
under the GNU General Public License (GPLv2). It belongs to the first category of
hypervisors and is responsible of managing CPU, memory and interrupts [34]. It sup-
ports two virtualization modes: paravirtualization or full virtualization (also called
Hardware-assisted virtualization). The management service is provided trough a
special Virtual Machine that has privileges in accessing the hardware configuration:
it offers an interface to the exterior, with which the user can manage the life cycle
of virtual instances.

KVM - Kernel-based Virtual Machines

KVM is a native hypervisor that provides virtualization solutions; it is a open
source software distributed as a module included in Linux mainline. In contrast

27

2 – State of the Art

Figure 2.8: Types of Hypervisors

with XEN, KVM it is not an external software, but a component of Linux that uses
the regular Linux scheduler. Like XEN it supports several guest operating system
including Ubuntu releases and Windows.

2.9.2. LibVirt
LibVirt (VIRTualization LIBrary) is a toolkit used to interact with the virtual-

ization capabilities of recent versions of Linux [35]. It is a free software, providing a
rich API that allows the user to manage and perform actions over hypervisors. It al-
lows to manage remote hypervisors using a special daemon called libvirtd that runs
on remote nodes. This daemon is started automatically when libvirt is installed on
a new node and can automatically determine the local virtual machine manager and
set up drivers for it [36]. This tool can interact with a wide variety of hypervisors
as Linux KVM, Xen or VMware.

2.9.3. Other solutions
In the virtualization environment other solutions are present: the most known

are VMWare an VirtualBox. The former is developed by a company that provides
software solutions for cloud and virtualization services. Some versions of the software
are distributed free of charge (VMWare Player), while the enterprise product involve

28

2.10 – Supporting technologies

a fee; it is compatible with most of classic operating systems (Linux, Ma OS X,
Windows).

VirtualBox (formally Oracle VM VirtualBox) is a virtualization software created
by the German company Innotek GmbH and then purchased by Sun Microsystems.
The core package of the software is distributed under the GPLv23 license, while
the VirtualBox Oracle VM VirtualBox extension pack is a proprietary solution, dis-
tributed for free under the PUEL License4. Even in this case, this technology is able
to run several operating systems over a single host machine.

2.10. Supporting technologies

2.10.1. Eclipse Modeling Framework
The EMF project is a modeling framework and code generation facility, for build-

ing tools and other applications, based on a structured data model [37]. EMF allows
the automatic creation of a set of Java classes starting from a XML specification that
defines such model. XML is not the only supported language: EMF can read, ana-
lyze and convert diagrams expressed in UML or other languages specific for model
design.

2.10.2. GitHub
GitHub is an web based hosting service for the management of software projects

throughout the Git control version protocol. It enables the user to store his code,
which remains publicly available through the internet. The web page offers social
networking functionality and includes two types of accounts: the former is a totally
free solution that allows users to store code only publicly. The latter is kind of
premium account which provides the ability to save the code privately (not accessible
publicly). This feature is only available after paying a subscription fee.

2.10.3. Launchpad
Launchpad is a web application maintained by Canonical Ltd. that supports

software developing. In July 2009 the source was released under GNU Affero General
Public License5. The web page is divided into several sections: some parts are

3Available at “http://www.gnu.org/licenses/gpl-2.0.html”
4PUEL - Personal Use and Evaluation License available at

“https://www.virtualbox.org/wiki/VirtualBox PUEL”
5Avalable at http://www.gnu.org/licenses/agpl-3.0.html

29

2 – State of the Art

specifically dedicated to developers’ questions, while others are related to the bug
notification process. Developers or users can join the community to share their
experience, problems and solutions. A specific section is dedicated to bug tracking,
where users can contribute to resolve software’s matters using the code hosting
service, managed through the GNU Bazaar control version system.

2.10.4. REST
The REpresentational State Transfer is a type of software architecture introduced

in 2000 by Roy Fielding in his Ph.D thesis [38]. REST refers to a set of assumption
that had been fundamentals in the evolution of the Internet. This architectural
style consists of clients and servers that interchange messages describing addressable
resources and its state. REST ease the interaction between services decreasing the
coupling between them.

30

Chapter 3

Requirements Analysis

In this chapter I analyze in detail all aspects of the software that I am going to
develop. I will review all functions that the Infrastructure Manager (hereafter IM)
have to comply to to create a comprehensive management module. After having
introduced the main topic and the working scenario I will describe in specific terms
the problem and the main objectives of the project.

3.1. Problem Definition
As described in the state of the art chapter, the cloud computing scenario is

populated by several private IaaS solutions. However, this wide offer of private
IaaS cloud technologies also involves an important drawback: each one is managed
using different abstractions (sometimes for the same concepts) and through different
management interfaces.

This fact presents problems for a more widespread adoption of private IaaS cloud
computing, since potential users fear of being locked-in with a particular solution
that falls behind the others in terms of features or support. One should be able to
change its previously chosen technology for private IaaS without having to modify
the management interfaces, a fact that sometimes incurs expensive retraining and
even more expensive errors during production deployments.

Moreover, an enterprising private IaaS user could have the desire of deploying
two or more different cloud offerings, leveraging the strong features of each for a
solution better tailored to his specific needs. In this situation the user would benefit
greatly from an integrated management interface that could wrap this mixture of
products into a uniform whole.

With this problem in mind, I proceed to design a management system for a
private IaaS cloud, OpenStack, providing the possibility of being expanded in order
to create a general management interface. In particular I implement the system for

31

3 – Requirements Analysis

a specific cloud solution, leaving the integration with the others as a future line of
work.

This management system should provide the possibility of offering its interface
through different implementations (like a REST web service, a command line, or a
web page), to better suit the user’s needs. Despite this, the greatest effort of the
work lies in the definition of the general architecture and the development of the
main structure, the heart of the system.

So, with this premise, I can state that the main aim of the Infrastructure Manager
is the deployment and management of virtual machines over a private IaaS solution,
regardless of the adopted technology. More precisely, the main target is to create
a system that provides an extensible operational interface, which allows the user
to interact with the cloud infrastructure throughout a set of primitive functions. It
should emulate what actually is done by a human administrator, managing manually
all occurrences over different infrastructures.

IaaS

Physical Infrastructure

Cloud Technology
Server

VM

Virtual Machine

LAN Ethernet

Project

Physical LAN

VM

VM

VM

VM

VMVM

VM

Virtual LAN

Figure 3.1: Cloud Computing scenario

32

3.2 – Domain model

3.2. Domain model
A good way to describe an environment is to start analyzing each element from

which it is composed. This section tries to define a common vocabulary of terms in
order to avoid misunderstandings between similar concepts used in the scenario. In
figure 3.2 we can see the graphical representation of all elements listed hereafter.

Host refers to a physical machine, running an operating system, which holds a
Hypervisor. It can host one or more Virtual Machines.

Virtual Machine hereafter VM, is a running virtual computer. It is defined by a
set of virtual resources and could be seen as a virtualized hardware where its
specifications are defined as a set of virtual resources. Its execution is managed
by the hypervisor.

Virtual Instance refers to a software program running on a VM. It is deployed
over a VM. It could also be called Server.

Virtual Appliance hereafter VA, is a minimum configuration set that defines a
list of virtual resources (as RAM, Hard Disk capacity, CPU. . .) needed to the
VI

Hypervisor also called Virtual Machine Manager is a software, installed on a
Host, that presents to the Virtual Machines a virtual operating platform and
manages their execution.

Virtual CPU virtual resource, or rather a virtualized Central Processing Unit
assigned to a Virtual Machine. More than one Virtual CPU can be assigned
to each VM, according to its definition.

Virtual Memory virtual resource, or rather a virtualized random-access memory
(RAM) assigned to a VM.

Virtual Storage Unit virtual resource, or rather a virtualized volume of persis-
tent memory, which can be attached to a VM.

Virtual Network Interface virtualized resource that simulates the connection
to a Local Area Network.

Image is a single file containing a deployable operating system. The format can
vary depending on the virtualization technology that is adopted.

Cloud Controller host running the IaaS Service, which manages the main cloud
platform.

33

3 – Requirements Analysis

Figure 3.2: Schematic representation of the domain model

34

3.3 – Requirements

Infrastructure Manager is the system that interacts with the IaaS platform in
order to manage the infrastructure of virtual machines. The creation of this
module corresponds to the aim of this project

Migration displacement of a Virtual Machine from a host to another, turning off
the instance.

Resize deployment of a Virtual Machine with another set of virtual appliance.

Physical Storage Unit secondary storage of a host, usually expressed in giga-
bytes.

Physical Memory main memory of a host (RAM) usually expressed in megabytes.

CPU the term defines the elemental physical processing unit; more precisely I
intend a single core of a multicore processor.

User the person or system that interact with the Infrastructure Manager.

3.3. Requirements
The analysis phase includes the study and the definition of the system require-

ments. In this section I expose which are the sub-objectives of the IM and I itemize
the set of functions our software will provide. Requirements define in detail all ser-
vices the system should offer, identifying its restrictions and characteristics. I will
distinguish between two types of requirements:

Functional requirements: they define all functions that the system has to
provide to the user, specifying which are inputs and outputs of each task.

Non-Functional requirements: all limitations that affect the system behavior.
In this part I will include all development restrictions and the use of specific
standards.

Each requirement can be flagged with two different priorities:

Mandatory: essential characteristics without which the system could not be
defined complete.

Optional: noncompulsory characteristic that enriches and adds value to the
software.

In the next section I will list all requirements following a standard tabular format;
each requirement is identified by an unique ID - FRXX where XX stands for the
number of the list.

35

3 – Requirements Analysis

3.3.1. Functional Requirements

FR01 Start/Stop a Virtual Machine
Description
The system must be able to start and stop Virtual Machines according to a Virtual
Appliance definition. In the creation phase, it should retrieve the information about
the available virtual resources set; if any suitable is present, it should create a
feasible one that accomplishes user needs. Moreover, the system should control the
presence of available images and respond to the user with the proper notification.
On stopping phase, the system must inform the user with the final status, or any
problem regarding the requested action. The user should be able to provide as
optional value the Host name over which the VM will be instantiated.
Priority Mandatory

Table 3.1: Functional requirement 01

FR02 Retrieve the Virtual Machine list
Description
The system must provide the list of all running Virtual Machines, specifying the
detailed information as identifier and status (running, stopped, booting etc.). In
this way the system is aware of the actual situation.
Priority Mandatory

Table 3.2: Functional requirement 02

FR03 Resize a Virtual Machine
Description
The system must be capable to resize a running VM, or rather to change the resource
set associated to a running VM. The user has to enter the new parameters and the
Infrastructure Manager must control if the running VM fits the targeted resources
set and, in the affirmative case, proceed with the operation. In the event of problems,
the system must inform the user that the operation cannot be performed.
Priority Mandatory

Table 3.3: Functional requirement 03

36

3.3 – Requirements

FR04 Create/Delete a Virtual Appliance
Description
The system must provide the possibility of create a new Virtual Appliance definition.
It have to check the validity of the inserted parameters (resources set, Image, etc.)
and store it in a reliable and consistent mode. On the other hand, also the possibility
of deleting an existing VA must be provided.
Priority Mandatory

Table 3.4: Functional requirement 04

FR05 Retrieve the Virtual Appliance list
Description
In order to provide consistent information, the system must return the list of all
available VAs. With this, the user can obtain a actualized view of the environment
and could use the retrieved information with other functionality as the FR01
Priority Mandatory

Table 3.5: Functional requirement 05

FR06 List all/active hosts
Description
The system must provide detailed information about how many and which are the
active and inactive hosts underlying the cloud infrastructure.
Priority Optional

Table 3.6: Functional requirement 06

FR07 Suspend/Restart a Virtual Machine
Description
The system must provide the capability of suspending and restarting Virtual Ma-
chines.
Priority Mandatory

Table 3.7: Functional requirement 07

37

3 – Requirements Analysis

FR08 Create/Delete a Virtual Network
Description
The Infrastructure Manager must be able to create a new Virtual Network. The user
will provide the network address and the network mask, associated to this instance.
The system must control the availability of addresses and return the id of the created
element.
Priority Mandatory

Table 3.8: Functional requirement 08

FR09 Retrieve Virtual Network information
Description
The information about the available Virtual Networks must be retrievable. For each
virtual network definition, the IM should show net address and mask.
Priority Mandatory

Table 3.9: Functional requirement 09

FR10 Create/Delete SSH key pairs
Description
The system must be able to create and store SSH key pairs in order to permit a
secure access to virtual instances.
Priority Mandatory

Table 3.10: Functional requirement 10

FR11 Automated boot of instances
Description
The system must be able to start a cloud elements starting from a ad hoc config-
uration file. This must be compatible with other technologies of this type as the
Virtual Networks over linuX technology[39].
Priority Optional

Table 3.11: Functional requirement 11

38

3.3 – Requirements

FR12 Authentication
Description
The systems must authenticate against the cloud technology, in order to perform
operations on the infrastructure. The authentication information should be stored
as a session, avoiding continuous authentication requests.
Priority Mandatory

Table 3.12: Functional requirement 12

3.3.2. Non-functional Requirements

NFR01 Support to different private cloud infrastructures
Description
The IM should be implemented in order to permit an easy adaptation with most of
cloud infrastructures.
Priority Mandatory

Table 3.13: Non-functional requirement 01

NFR02 Extensible structure
Description
The software mus follow a modular architecture in order to permit an easy extension
of the code.
Priority Optional

Table 3.14: Non-functional requirement 02

NFR03 Integration in the main project
Description
The project must follow all conventions established by the research group in order
to permit the integration in the main project.
Priority Mandatory

Table 3.15: Non-functional requirement 03

39

3 – Requirements Analysis

NFR04 Java implementation
Description
The software must be implemented in the Java language, using the Java Developers
Kit 1.6 or higher.
Priority Mandatory

Table 3.16: Non-functional requirement 04

NFR05 Easiness of use
Description
The system must be easy to use, so that simplifies the ordinary sequence of opera-
tions that should be performed manually.
Priority Mandatory

Table 3.17: Non-functional requirement 05

3.4. Use cases

With the aim to describe in the best way all characteristics of our system, I will
discuss some situations in which the Infrastructure Manager could be encountered.
Before detailing each use case, it is important to define the Use Case concept and
which are the connections between it and the user.

A use case is a list of steps, typically defining interactions between a role (known
in UML [40] as actor) and a system, to achieve a specific goal. This is a technique
usually used in software engineering processes that permits to retrieve the system
requirements in a exhaustive way in order to obtain a quality developed software.

The use case section identifies and describes the basic scenarios of use of the
system and the actors that interface with it. A use case must be elemental, or
better non decomposable into simpler use cases that have still complete sense for
the involved actors. Use cases will be represented with UML as shown in the next
figure.

40

3.4 – Use cases

UC x.x

Use Case Name

Figure 3.3: Use Case

Some use cases could be linked between them in different ways. In a use case
diagram there are two ways of defining these relationships. The former one is the
inclusion: this relation is specified when a particular use case is carried out employ-
ing another one. The latter one is the extension, when a use case adds a a further
functionality to another one.

<< includes >>

Figure 3.4: Inclusion

<< extends >>

Figure 3.5: Extension

The last main element of a use case UML diagram is the Actor. An Actor is an
external agent that starts a use case; it could be a person (usually with a specific
role) or a automatic module (computer, intelligent agent, etc.).

Actor

Figure 3.6: Actor

41

3 – Requirements Analysis

In our specific system, the actor is a simple user that could be represented by a
person, as a system administrator, or an automatic element, as a reasoning module
or an intelligent controller. The user can interact with the Infrastructure Manager
and start the defined use cases.

User

UC Diagram

UC 01

Start a VM

UC 03

Suspend/

Resume a

VM

UC 06

Resize a VM

UC 02

STOP a VM

UC 04

Create a VA

UC 05

Create a

Virtual

Network

UC 07

Create a

Virtual

Scenario

<< includes >>

<< includes >>

<< includes >>

Figure 3.7: Use case diagram

In the next part I analyze in a detailed way the use cases defined in the UML
schema represented in figure 3.7. Each use case description follows a standard layout
that specifies, preconditions, actions that the system must perform, post-conditions
and the exception list, or rather the index of possible impediments that prevent the
success of the transaction. Each Use Case will be referred with a standard notation:
UCXX where XX stands for the use case number.

42

3.4 – Use cases

UC01 Start a Virtual Machine from a Virtual Appliance definition
Description The system starts a new Virtual Machine according to the

user specifications (Virtual Appliance, Network, Host, etc.)
and returns an information set that allows the user to reach
the new running instance.

Preconditions The system must be authenticated with the Cloud Con-
troller in order to be able to perform all requested oper-
ations. Furthermore, in the system must be defined at least
an available Virtual Appliance, where its parameters are co-
herent with the cloud technology (see UC04).

Sequence Step Action
1 The system checks the availability of the selected Vir-

tual Appliance.
2 If specified, it checks the availability of the selected

Host.
3 It checks the availability of the selected Network.
4 The system boot the Virtual Machine and check the

running state.
5 The user receives the credentials and the IP address

of the Virtual Machine.
Post-conditions The new VM is running and the user earns the credential

that permits to access the virtual instance.
Exceptions Case Condition and action

1 If the VA is not present, the system returns an error
message.

2 If the Network is not present, the system returns an
error message.

3 If the Host is not present, the system returns an error
message.

Comments If no Host is specified, the physical position of the new Vir-
tual Machine will be chosen by the Cloud Controller

Table 3.18: Use case 01

UC02 Stop a Virtual Machine
Description The system stops the Virtual Machine selected by the user
Preconditions The system must be authenticated with the Cloud Con-

troller in order to be able to perform all requested oper-
ations. The selected Virtual Machine must exist.

43

3 – Requirements Analysis

Sequence Step Action
1 The system checks if the selected VM is running.
2 It shutdowns the VM.

Post-conditions The selected VM is off.
Exceptions Case Condition and action

1 If the VM is not present, the system returns an error
message.

2 If the VM can not be switched off, the system returns
an error message.

Comments None

Table 3.19: Use case 02

UC03 Suspend/Resume a Virtual Machine
Description The system suspends/resumes a Virtual Machine selected

by the user
Preconditions The system must be authenticated with the Cloud Con-

troller in order to be able to perform all requested oper-
ations. The selected Virtual Machine must be running.

Sequence Step Action
1 The system checks if the selected VM is running/sus-

pended.
2 It suspends/resumes the VM.
3 The user receives the final status of the VM.

Post-conditions The selected VM is in the suspended/active state.
Exceptions Case Condition and action

1 If the VM is not present, the system returns an error
message.

2 If the VM can not be suspended/resumed, the system
returns an error message.

Comments Physical resources attached to a suspended VM must be
freed.

Table 3.20: Use case 03

UC04 Create a Virtual Appliance
Description The system creates a new Virtual Appliance and store it in

a reliable database. The whole stored information must be
coherent with the system.

44

3.4 – Use cases

Preconditions The system must be authenticated with the Cloud Con-
troller in order to be able to perform all requested oper-
ations.

Sequence Step Action
1 The system checks if an equivalent VA is already

present.
2 It checks the validity of parameters passed by the user

(virtual resources, Image, etc.).
3 The user receives the ID of the new VA.

Post-conditions The selected VA is created.
Exceptions Case Condition and action

1 If the VA is already present, the system returns its
ID.

2 If parameters are not valid, the system rise an excep-
tion.

Comments None

Table 3.21: Use case 04

UC05 Create a Virtual Network
Description The system creates a new Virtual Network on the cloud

infrastructure.
Preconditions The system must be authenticated with the Cloud Con-

troller in order to be able to perform all requested oper-
ations.

Sequence Step Action
1 The system checks if an equivalent Network is already

present.
2 It checks the validity of parameters passed by the

user.
3 The user receives the ID of the new network.

Post-conditions The selected network is created.
Exceptions Case Condition and action

1 If the network is already present, the system returns
its ID.

2 If parameters are not valid, the system rise an excep-
tion.

Comments None

Table 3.22: Use case 05

45

3 – Requirements Analysis

UC06 Change virtual resources to a specific VM
Description The system manages the set of virtual resources that had

been attached to the Virtual Machine. According to the user
needs it changes this set with a new one without altering the
parameters that do not refers to this aspect.

Preconditions The system must be authenticated with the Cloud Con-
troller in order to be able to perform all requested oper-
ations. The selected Virtual Machine must be running.

Sequence Step Action
1 The system checks if the selected VM is running.
2 It checks if the virtual resources set exists.
3 If it does not exists, the system create a new one
4 The VM is shut down and the resources set changed
5 The VM is reactivated with the new configuration.

Post-conditions The selected VM is running with the new set of virtual re-
sources.

Exceptions Case Condition and action
1 If the VM is not present, the system returns an error

message.
2 If the VM can not be resized, the system returns an

error message.
Comments Credentials used by the user to accede the VM must not

change.

Table 3.23: Use case 06

UC07 Create a complete virtual scenario
Description The system creates a compete scenario with Virtual Ma-

chines and networks defined by the user by a configuration
file.

Preconditions The system must be authenticated with the Cloud Con-
troller in order to be able to perform all requested oper-
ations.

Sequence Step Action
1 The manager parse the configuration file.
2 It checks the validity of introduced values and creates

the VA definitions
3 The IM create the networks according to addresses

and net-mask defined into the configuration file.

46

3.4 – Use cases

4 A The list of active servers and networks is returned.
Post-conditions The cloud elements defined in the configuration file are ac-

tive
Exceptions Case Condition and action

1 If parameters are not valid, the system rise an excep-
tion.

Comments Optionally this function could be exported as a REST ser-
vice.

Table 3.24: Use case 07

3.4.1. Traceability
The relationships between use cases and requirements can be maintained through

a tracking matrix, which shows the mapping between use cases and functional re-
quirements. In general, each functional requirement should be reflected in at least
one use case, and no one would involve functional requirements not present in the
requirements section or contradict them.

In the tracking matrix we can see how many functional requirements are involved
in each use case. The last FR is involved in all UCs since it refers to the authen-
tication phase, an essential step that is mandatory in order to perform any kind of
operation over the cloud.

The last use case also involves a lot of functional requirements, since the creation
of a complete virtual scenario is a process that needs a wide set of capabilities.

UC01 UC02 UC03 UC04 UC05 UC06 UC07
FR01 X X X X
FR02 X X X
FR03 X
FR04 X X
FR05 X X X
FR06 X X
FR07 X
FR08 X X
FR09 X X X
FR10 X X
FR11 X
FR12 X X X X X X X

Table 3.25: Traceability matrix mapping Functional Requirements to Use Cases

47

48

Chapter 4

Design

After defining the domain model and the functional aspects that the infrastruc-
ture manager should provide, I design a software architecture that accomplishes with
these preliminary conditions. In order to ease the comprehension I will accompany
the description with graphical representations, following the UML standards.

In this chapter I will describe the adopted solution, moving from the software
architecture to the description of each functional element.

4.1. General architecture
I will start to analyze the architecture from an high level description and drop

down up to a detailed overview of each specific component. In figure 4.1 we can see
how the system can be divided in three main layers:

A top layer denominated Control Layer that represents the main controller
module. This component make use of services provided by underlying levels;
on the other hand it also provides services to the outer world.

A medium layer, called Manager Layer that represents the heart of the whole
system. This part is formed by a set of modules, each of which is charged to
manage a specific functional area.

A lower layer, the Client Layer the plug of the software to the cloud technology,
which behaves as server.

The architecture of the system will follow the Roman concept of “Divide et
impera” (divide and rule). The aim of this technique is to split the main problem
into smaller ones, whose solution results more feasible. In this optic, I have designed
some components (managers), which are charged for specific functional areas. In
other words, I have organized the software architecture assigning to each manager

49

4 – Design

CLIENT LAYER

MANAGEMENT LAYER

CONTROL LAYER

Figure 4.1: High level system diagram

tasks related to a restricted area of the cloud technology. The Network Manager is
an example: it is responsible of all what concerns the network definition, creation,
deletion, etc. but it does not matters what is going on with virtual machines.

This type of architecture gives to the code a modular structure that facilitates
reuse and maintenance, granting low coupling between areas. Afterwards I have de-
fined a “vertical” interaction between managers: two elements of different functional
areas will not be able to interact directly. The interaction, where needed, will be
provided in a hierarchical way by the root of the architectural tree. The modularity
allows a posterior integration with additional blocks, related to new functional areas.

The lower part of the system will be the module that cooperates with the cloud
technology. It could be defined as a Cloud Client, since it is a Java implementation
of commands and operations offered by the API of the selected cloud technology. I
chose to make it as an independent block in order to make the developed system
independent from the chosen communication technology. Openstack offers a rich
REST interface that allows to perform various operations over the infrastructure. I
will not dwell on all these features, but instead focus on those that are necessary for
the Infrastructure Manager.

From the user point of view, the developed system will provide a public interface.
The implementation of this interface exploits manager services trying to achieve its
goal. This main module determines the higher level of integration of the software;
it orchestrates managers, obtaining data that allow it to manage the cloud.

I will start analyzing how the information flows throughout the system up to
reach the user. In order to make effective the communication between modules, it is
necessary to define a common vocabulary, or rather an information model. In next

50

4.2 – Assumptions

section I focus on the information base used by modules to communicate with the
exterior and between them, approaching the idea of defining a sort of ontology for
these scenarios [41].

4.2. Assumptions
Before defining the information model I will state some assumption, or rather

some simplifications that reduce considerably the complexity of the problem while
not changing the essence of the work.

A01 Single cloud administrator
Description First of all we assume that only Infrastructure Manager acts on the

cloud infrastructure: in this way we avoid inconsistency problems
that could be caused by a parallel management of several adminis-
trators.

Table 4.1: Assumption 01

A02 No over-provisioning
Description Subsequently, we do not allow the split of a physical CPU into

more virtual cores than physical ones it has. In other words we are
preventing the over provisioning of computational resources.

Table 4.2: Assumption 02

A03 Already charged cloud elements
Description We assume that some cloud elements such as disk Images had been

already uploaded to the Cloud Controller through the specific ser-
vice.

Table 4.3: Assumption 03

A04 Hosts with similar hardware configuration
Description We assume that all Hosts, or rather all physical machines mount a

CPU with the same architecture.

Table 4.4: Assumption 04

51

4 – Design

4.3. The Cloud Computing Information model

4.3.1. EMF Model
An important non functional requirement of the project is the utilization of an

information model that had been defined by the research group and assumed as a
standard. The definition of the model does not make part of the performed work, but
it has a crucial importance in the cooperation between the IM and other elements
developed by the members of the group; for this reason, I reserve some paragraphs
to describe it.

The model has been defined using the ECore architecture, defined in the Eclipse
Modeling Framework. This is a variant of the classic Essential Meta Object-Facility
(EMOF) a closed meta-modeling architecture defined by the Object Management
Group (OMG)[42].

Virtual environment

The virtual environment is defined around the concept of virtual machine, ful-
crum of the system. A Virtual Machine is a virtualized running hardware: it is
composed by a set of virtual Resources as Virtual Memory, Virtual Storage Unit
etc. This element is strictly linked with other two modules: the Virtual Appliance
and the Virtual Instance. The former is a definition of minimum resources that a
VM needs to be deployed, while the latter represents the software running on it. The
relationship between elements could be seen in the figure 4.2. All virtual elements
are mapped on a physical one: physical resources are split and redistributed among
VMs, but, as mentioned in the assumption section (4.2) CPU over-provisioning is
not supported.

Physical environment

In the figure 4.3 we can see the integrating part of the previous EMF model;
in this case the representation refers to the physical infrastructure of the cloud
(the computational nodes), or rather, the infrastructure where Virtual Machines
will run. A Physical Machine is composed by several resources, as Processing Unit,
Memory, Storage Unit and Network Interfaces. These elements will be associated to
the virtual resources, therefore to Virtual Machines. Virtualization techniques allow
the physical component to host different virtual elements (e.g. a physical memory
can host two virtual RAM, but each of them will be mapped to a dedicated area).
All the virtual elements can not prescind from the physical ones, so each virtual
element must have a total matching with the underlying resources. With this model
we offer a static view of the entire infrastructure, but we not consider the dynamic

52

4.3 – The Cloud Computing Information model

Figure 4.2: EMF Model of the Virtual Environment

information such as load or utilization etc. This information model is so general
that permits to describe each kind of infrastructure.

4.3.2. OpenStack Information Model

In the OpenStack environment the conceptualization of the infrastructure had
been though in a different way; the information model is more limited and prag-
matic. It is mainly focused on the virtual aspect, while the physical part is left a
bit in the background. In the Openstack world many elements I have previously
explained are defined with other names, so it is necessary to describe the Openstack
information model and make a mapping to ours. The central element of the Open-
Stack infrastructure is the Server Instance; this is a deployment of a OS disk Image

53

4 – Design

Figure 4.3: EMF Model of the Physical Environment

in a Virtual Machine. In OpenStack we can not separate the concept of Virtual
Machine and Virtual Instance: the two elements are merged together in a single
element: the Server. It is necessary to describe which are the bearing blocks of
the system. Figure 4.4 puts in evidence the main elements of the OpenStack data
model, grouping them according to the service they are managed from.

Keystone Authentication Service

Glance Image Service

Quantum Network Service

Nova Compute Service

Network

Server (VM)

Subnet

Network
Interface

KeyPair

Image

Host

Security GroupMetadata

vRAM

vStorage

vCPU

Flavor

RAM Storage CPU

1

1

1

1

1

1

1

1

1..*1..*

11

1..*

1..*

1..*

11

1

1..*

1..*

1..*

Tenant User
1 1..*1

1

Swap
1..*

1..*

Figure 4.4: OpenStack Data Model

54

4.3 – The Cloud Computing Information model

Tenant The OpenStack infrastructure could be organized in several projects, or
better, following the producer definition, Tenants. A tenant could be defined as a
restricted area of the infrastructure where only authorized users can access. This is
used to isolate access to computational resources, and could be simply considered
as an alternative term for a project. Each project has an unique identifier and a
boolean value indicating its state. Tenants and users are managed by the Keystone
authentication service, the security center of the infrastructure.

Listing 4.1: Example of Tenant specification
+----------------------------------+----------+---------+
| id | name | enabled |
+----------------------------------+----------+---------+
bcb940507f644777849d1b3c47c6d6c0	gojira	True
ca242d34fc7543bdbb964d7f97d80001	mazinger	True
e706a03561e54b1f952330f7f632ff96	service	True
+----------------------------------+----------+---------+

Network Interface The Network Interface is an attachment to a defined vir-
tual network. Networks can be previously created by using the Quantum service, a
module that provides the possibility of customize network topologies. As the previ-
ous elements each network owns an identifier associated to a network name and to
some subnets; these are referenced by its identifier. All what concerns the network
administration is borne by the specialized service (section 2.7.1) that offers a still
incomplete API.

Listing 4.2: Example of Network specification
+-----------------------+---------+---------------------------+
| id | name | subnets |
+-----------------------+---------+---------------------------+
| 910 a4463 -7b5f -4 a90 | private | 1578 ce33 -26a7 -4 d97 |
+-----------------------+---------+---------------------------+

Flavor The Flavor could be defined as virtual hardware template in which the
system administrator defines sets of virtual resources. Each Flavor is identified by
a unique numerical code and specifies a flavor name, the quantity in MB of Virtual
RAM, the quantity expressed in GB of Virtual Storage Unit, an additional (op-
tional) ephemeral memory expressed in GB, an optional swap memory, the number
of Virtual CPUs, the ratio between reception and transmission speeds that could be
used to arrange the network bandwidth (RX/TX), a boolean value that indicates if
the flavor is shared among all tenants or not and finally an additional field used to
specify optional restrictions as on which compute nodes the flavor can run on.

55

4 – Design

Listing 4.3: Example of Flavor specification
+---+-------------+-----+----+----+----+----+------+------+-----+
|ID | Name | RAM |Disk|Eph |Swap|Vcpu| rxtx | Public |extra|
+---+-------------+-----+----+----+----+----+------+------+-----+
1	m1.tiny	512	0	0		1	1.0	True	{}
2	m1.small	2048	10	20		1	1.0	True	{}
3	m1. medium	4096	10	40		2	1.0	True	{}
4	m1.large	8192	10	80		4	1.0	True	{}
+---+-------------+-----+----+----+----+----+------+------+-----+

Image The Image is a disk image containing an executable operating system. It
must be loaded in the system through the specific service Glance (section 2.7.1). The
image format must follow the rules defined by the service. The image is identified
by a unique alphanumerical code which is associated to the image name, the status
and the server name (only if the image had been created as a copy of a running
server).

Listing 4.4: Example of Image specification
+-----------------------+--------------+--------+-----+
| ID | Name | Status | Server
+-----------------------+--------------+--------+-----+
aee1d242 -730f -431f -88 c1	Ubuntu 12.04	ACTIVE	
0 b27baa1 -0ca6 -49a7 -b3f4	Ubuntu 12.10	ACTIVE	
df8d56fc -9cea -4dfd -a8d3	CirrOS	ACTIVE	
+-----------------------+--------------+--------+-----+

The Virtual Machine - Server The Server is the running Virtual Machine,
or rather the deployment of an Image with a Flavor over a Host. In the creation
phase, the user can specify some additional attributes in order to customize the
new instance. Servers represent the core of the cloud infrastructure and could be
managed according to user or application needs. As we can see in the listing 4.5
even in this case each instance own a unique ID. To each identifier is associated
also a name, which not necessary must be univocal, a status and a network address
according to the specified network during the creation phase.

Listing 4.5: Example of Server specification
+-------------------------+---------+--------+------------------+
| ID | Name | Status | Networks |
+-------------------------+---------+--------+------------------+
| 86273742 - e4fe -4d02 -82 f3 | fenix01 | ACTIVE | private =10.2.2.6 |
+-------------------------+---------+--------+------------------+

56

4.4 – Component Diagram

Additional elements On booting phase Virtual Machines are configurable with
additional attributes. The first element we analyze is theSecurity Group attribute.
The security group is a definition of network rules, that controls the traffic trans-
mission over the virtual network. With the security group, the user can chose which
protocols and which addresses are allowed to cross the virtual network.

The second important attribute is the Key Pair. In the OpenStack environment
the controller can inject an SSH public key into an account on the instance, assuming
the virtual machine image being used supports this. This aspect proves to be very
important at the time of having to automate the secure connection between two
machines.

Lasts two versions of OpenStack offer the possibility of choosing the location of
new VMs. In other words, on booting the user can select which physical machine
will host his instance. This feature is provided by the Availability Zone parameter,
or rather an Amazon EC2 concept of an isolated area that is used for fault tolerance.
The user can specify the name of the Host on which the server will be run.

Naturally, each machine will tend to have a distinct nature. For this reason, the
user can customize the VM by sending an initial configuration file that will be run
during the booting phase. Not necessarily this file must be a script, but it can also
be a list of configuration parameters that follows a specific format.

With these elements we are able to to run a server instance accessible through a
SSH connection. According to the idea of modularity we follow, in the design of the
Infrastructure manager we charge each one of these elements to a specific manager
that controls all its aspects.

The OpenStack environment includes many other aspects and possibilities to
personalize the infrastructure; in our case a restricted set of functionality is used.
Finally we notice how the same scenario could be formalized in different ways.

4.4. Component Diagram
In this section I analyze in detail each component already mentioned in the

previous general overview. The pseudo-UML component diagram in figure 4.5 shows
the system structure with an higher level of detail. We start from the lower part of
the system, namely which is responsible for communicating directly with the cloud
technology.

4.4.1. Client Layer
The client layer is the lower part of our system. It is a module that provides

connectivity with the cloud through a REST interface that provides scalability,
generality of interfaces and independent deployment of components. This level of

57

4 – Design

MANAGEMENT ARCHITECTURE

CONTROL LAYER

MANAGEMENT LAYER

HIGH-LEVEL

MANAGERS

CONTROL INTERFACE

COMMAND LINE

WEB INTERFACE

REST INTERFACE

INFRASTRUCTURE

MANAGER

AUTHENTICATION

MANAGER

GENERAL

INTERFACES

VM

INTERFACE

CHECK

INTERFACE

RETRIEVE

INTERFACE

MODIFY

INTERFACE

AUTH

INTERFACE

MANAGER IMPLEMENTATION

IMPLEMENTATION TECHNOLOGY B

IMPLEMENTATION OPENSTACK

XX

MANAGER

VM

MANAGER

AUTH

MANAGER

CLIENT LAYER

OPENSTACK

CLOUD

CLIENT TECHNOLOGY B

CLIENT OPENSTACK

CLIENT

IMPLEMENTATION

REST

CLOUD

TECHNOLOGY

B

Shell RESTWEB

CLENT INTERFACE

CLIENT

IMPLEMENTATION

XX

OPENSTACK

CLOUD

Figure 4.5: High level component diagram

58

4.4 – Component Diagram

the system does not make entirely part of the performed work, since I used a partially
implemented Java API. I have designed and programmed an additional module in
order to communicate with the OpenStack service Quantum (section 2.7.1).

The client uses a technology that permits to create and manage easily the JSON
[43] messages as communication medium between the two operators. This part
implements the most elemental calls to the cloud service, and represents the founding
base of the entire Infrastructure Manager. It could be considered as a translation of
the specific cloud API to JAVA language. This layer is strictly linked to the chosen
technology that the user is running, and so it should represent a standalone block.

This is done through one or more modules, each designed to work with a particu-
lar access technology and cloud solution. The implementation of such interface may
change according to the selected private to the adopted communication protocol
(e.g. SSH, REST).

4.4.2. Manager Layer
The medium layer is the hearth of the system. In this part all functional areas are

under the specific control of a specialized manager that is able to perform operations
on the cloud. The sectorization and modularity allow adding new managers, where
needed, without affecting the functioning of the rest of elements.

This layer is divided into two others: General Manager Interfaces and Manager
Implementations. The General Interfaces sublayer offers three interfaces which pro-
vide management primitives that can be applied to every Resource as defined in our
information model. In addition it defines other two interfaces, the former specific
for the administration of virtual machines, the latter designed to accomplish all
authentication tasks.

These interfaces are in turn implemented in the remaining sublayer, the Manager
Implementation that includes the following managers:

- Authentication Manager - The Authentication manager is in charge of the first
step of the communication between the IM and the cloud (more precisely the
cloud controller 5.2.3). Before any interaction, the system must be sure of
being already authorized to access the service.

- Virtual Machine Manager - The Virtual machine Manager controls and inter-
acts with the compute service, or rather it manages VMs (Servers) in all their
aspects.

- Flavor Manager - The Flavor Manager overlooks the correct definition of vir-
tual resources configurations.

- Image Manager - The Image Manager interacts with the image storing service
and manages the retrieving of image’s information.

59

4 – Design

- Host Manager - The Host Manager has the task of obtain reliable information
about physical machines making part of the infrastructure. In this way users
could know where they can run their VMs.

- Network Manager - The Network Manager is the module that defines, deletes
and modifies virtual networks that will be employed into the connection be-
tween VMs.

- Subnet Manager - The Subnet Manager is a adjunct of the previous manager.
Its task is to administrate IP ranges in network definition.

- Key Pair Manager - The Key Pair Manager operates on the generation and
control of ssh key pairs, that will be used accessing the instances.

- Security Group Manager - The Security Group manager is in charge of the
retrieval of network rules that have to be applied in virtual networks.

- Virtual Appliance Manager - The Virtual Appliance Manager creates and de-
stroy all kind of virtual machine templates, storing VA definitions in a local
database.

To adapt a cloud solution to our proposal we had to complete three tasks: first
specify a translation between our generic information model and the solution’s own,
second develop a corresponding set of Manager Implementations, and third create
at least one interface for the Client Layer.

As mentioned, since the OpenStack infrastructure works with its own information
model, our software should act as an interpreter between the two views of the same
world. During the description of the developed software we will go on using as
reference the former model but we will evidence the adaptation process that we had
chosen.

Table 4.5 focus on the mapping between the two different information models
(General Information Model 4.3 and the Openstack information model 4.3.2). Each
one includes some elements that are not present in the other. For example the
Virtual Appliance element is not defined in the Openstack environment. When we
need to boot a server instance we need to pass all parameters such as Image, Flavor,
Security Group, Metadata, Network etc. The introduction of the VA eases this task.

The VA could be seen as a Virtual Machine template that once defined can be
reused: when the user need a specific instance, for example a web application server
or a database server, he can retrieve and deploy an already defined VA where an
image that overcomes that service is defined. In the template I define only fixed
elements as image, flavor etc.

The definition of elements such Virtual Network would be inappropriate since
the network, which VM is connected, depends on user needs and can not be defined

60

4.4 – Component Diagram

in a template; the same principle applies to Key Pairs. Since OpenStack does not
provides this kind of functionality, the Infrastructure Manager add an interesting
element in the deployment of cloud infrastructures.

Mapping between the General Information model and the Openstack model
GIM1 Openstack

Virtual Instance Virtual Machine (Server)
Image
Flavor

Virtual Appliance Name
Security Group

Metadata
Virtual Memory Flavor (RAM)
Virtual Storage Flavor (Disk)

Volume
Virtual CPU Flavor (CPU)
Virtual NIC Virtual Network

Owner Tenant
Physical Machine Host

- User
- Key Pair
- Floating IPs

Table 4.5: Mapping between information models

4.4.3. Controller Layer
The top level can be considered as the orchestra conductor that coordinates all

the musicians (managers) making a great “symphony”. The Control Interface is the
outward interface that connects the system to the manager. This layer is designed
to be interchangeable and support several interface implementations at the same
time. The motivation for this schema is that different users could prefer different
management interfaces. Moreover, the user does not need to be a human operator
at all, it can be other system, and therefore there is a need for interfaces more
suited to this task. Samples of these interfaces could be command-line tools or an
administration web page for a human operator, and a web services interface for an
autonomic system that keeps care of the private cloud infrastructure.

1General Information Model

61

4 – Design

The High Level Managers sublayer provides to the Control Interface two compo-
nents: an Infrastructure Manager for controlling the cloud through a set of manage-
ment actions defined in our information model (and therefore technology-agnostic),
and an Authentication Manager in charge of monitoring and enforcing the security
model for the private cloud.

4.5. Man.O.S. detailed Design
The Man.O.S. acronym stands for Managing OpenStack, but refers also to the

Spanish word “hands”, as the system can be seen as the executive part of a bigger
project, formed by a monitoring module (O.J.O.S. - “eyes”) and a reasoning block
(Ce.Re.Pro - similar to cerebro “brain”).

In this section I analyze the implementation of each component composing the
bone structure of the IM.

4.5.1. The Client
As mentioned before, the client level provides communication with the cloud

infrastructure and does not make part entirely of the performed work. In this section
I will describe the changes and the improvement made to the module created by the
Openstack Java SDK community2.

Due to the continuous upgrading of the cloud technology, it has been necessary
to integrate the client code with some modules. The introduction of the virtual
network manager Quantum has forced us to design a specific client, that takes profit
from all new features of the new network controller. The improvement of the source
code has followed the architectural style of the already developed software in order
to ease the collaboration in this community project.

For the collaboration with the Openstack Java SDK community I took advantage
of the gitHub platform’s facilities. The Openstack Java SDK is distributed under
the Apache 2 license3, so as open source software. I will maintain this characteristic
trying to bring profit to the community4.

On 21st December 2012 the code has been integrated in the main branch of the
Openstack Java SDK project.

2For the source code, thanks to Lúıs Gervaso see: “https://github.com/woorea/openstack-java-
sdk.git”

3For details over the Apache license see http://www.apache.org/licenses/LICENSE-2.0.html
4For the implemented and distributed source code “https://github.com/mattiapei/openstack-

java-sdk.git”

62

4.5 – Man.O.S. detailed Design

The Quantum Model

In order to allow the communication between the client and the Quantum con-
troller I have defined a set of basic classes (POJO - Plain Old Java Object) that will
be serialized to a JSON message and then sent to the controller.

Each message that is sent to the main controller must follow a specified schema.
Starting from the message definition5 I created Java classes representing such mes-
sages, which properties will represent the variable’s content. The documentation has
been a bit misleading since the real content of the messages was partially different
from those described in the guide. Thanks to the debug option of the Quantum
Phyton Client (a developers release, since the official one does not exists yet) it has
been possible to study the correct set of messages used during the communication.

The serialization and deserialization is made automatically throughout the adop-
tion of the Jackson library [44]. Trying to explain the behavior I propose an explica-
tive example of how this module works. In the following listings we can see a simple
POJO representing a user (listing 4.6) and the relative JSON message (listing 4.7).
For each attribute the serializer create a key-value entry in the JSON packet and
vice versa, while for nested classes it creates a new JSON object6. Java lists are
serialized in JSON arrays.

Listing 4.6: Simple POJO Example
public class User {

public static class Name {
private String _first , _last;

public String getFirst () { return _first ; }
public String getLast () { return _last; }
public void setFirst (String s) { _first = s; }
public void setLast (String s) { _last = s; }

}

private Name _name;

public Name getName () { return _name; }
public void setName (Name n) { _name = n; }

}

5Available at: “http://docs.openstack.org/api/openstack-network/2.0/content/”
6For JSON element definition refer to: “http://www.json.org”

63

4 – Design

Listing 4.7: JSON message of the serialized POJO
{

"name" : { "first" : "Joe", "last" : " Sixpack " }
}

Subsequently I created a specific class for each element of the Opensack network
model. Each class simply reflects an API standard message.

- Network
- NetworkForCreate
- Networks
- Pool
- Port
- PortForCreate
- Ports
- Subnet
- SubnetForCreate
- Subnets

We notice that I designed a specific class for the creation phase, since the message
content differs from the case in which an information request is performed. In other
words, the message used to create a network differs from a message sent by the
controller to describe an existing one.

The Quantum Client

After defining the messages that will be interchanged, we focus on the client, or
rather the module in charge of sending and manage these messages. In this module
we had defined all operations provided by the Quantum API as Java methods; each
methods is associated to a specific URL, which, following the Openstack documen-
tation, corresponds to a specific action.

Each method requires a parameter, precisely an object of the Quantum Model
that will be serialized and sent. So, for example, if I need to create a new network
in the cloud infrastructure, it will be necessary to define a NetworkForCreate object
specifying all characteristic we need and pass it to the createNetwork method that
will send it to the correct address.

In figure 4.6 we can see the client architecture: for each network element I created
a set of specific classes that defines all operation that could be performed over it.
The Core classes define static methods that recall the specific functions.

64

4.5 – Man.O.S. detailed Design

The Quantum Client object receive on creation 2 parameters with which it can
invoke the Quantum Command interface:

1. The endpoint URL of the network service that usually is obtained by the
Keystone service.

2. The Authentication Token, that allows the client to perform operations over
the infrastructure, previously retrieved in the authentication phase.

C
re

a
te

N
e

tw
o

rk
.ja

v
a

D
e

le
te

N
e

tw
o

rk
.ja

v
a

L
is

tN
e

tw
o

rk
s
.ja

v
a

S
h

o
w

N
e

tw
o

rk
.ja

v
a

C
re

a
te

P
o

rt.ja
v
a

D
e

le
te

P
o

rt.ja
v
a

L
is

tP
o

rts
.ja

v
a

S
h

o
w

P
o

rt.ja
v
a

C
re

a
te

S
u

b
n

e
t.ja

v
a

D
e

le
te

S
u

b
n

e
t.ja

v
a

L
is

tS
u

b
n

e
ts

.ja
v
a

S
h

o
w

S
u

b
n

e
t.ja

v
a

< Interface >
QuantumCommand.java

Networks Core Ports CoreSubnets Core

QuantumClient.java

Figure 4.6: Quantum Client Structure

After describing the lowest level of our architecture we turn to define the beating
heart of the Infrastructure Manager.

4.5.2. System interfaces
With the aim of designing a modular and scalable system, I designed a set

of standard interfaces that define the connection point between the main levels
described in the previous section. Interfaces are defined between Manager layer and
Controller Layer and finally between Controller Layer and Outer World. Figure 4.7
represents the system stack and shows where interfaces are collocated.

65

4 – Design

Infrastructure Manager Interface

General Managers Interfaces

Control Layer

Management Layer

Client Layer

Interpreter Interface

Figure 4.7: System Interfaces

The Client Interface - Interpreter

The client interface is the module that allows decoupling the Infrastructure Man-
ager to the client technology. It defines all basic operation to perform against the
cloud which will be implemented according to the elected protocol. With this solu-
tion, the adoption of a different client technology would imply only the rewriting of
the client implementation, avoiding structural changes in the rest of the system.

Management Layer interfaces

Above the Manager Layer component I defined a set of interfaces that summarize
the main operations that modules provides over the elements of a cloud:

- Retrieve: encloses functions to obtain data from the cloud.

- Modify: refers to all methods that modify the state of the cloud.

- Check: contains methods that allow to check the existence of a specific element,
identified by its unique ID value.

- VMinterface: encompasses specific actions that only can be performed over
Virtual Machines.

- Authentication: This interfaces is implemented only by modules that provide
authentication functions.

66

4.5 – Man.O.S. detailed Design

All these interfaces define functions that handle JAVA Exceptions: this charac-
teristic will be treated in section 4.5.5. Naturally, depending on the functional area,
each manager handles specific objects.

These interfaces are implemented in the underlying layer. Each manager is not
forced to implement all interfaces since the behavior of some methods is specific only
for certain managers and it could not be generalized to all modules. For example
the Virtual Appliance manager does not implements the VMInterface since it does
not make sense to implement a function move that permits to change the position
of the VA since this characteristic is merely own by a Virtual Machine.

Interface Auth The authentication interface just defines two simple methods that
are used to authenticate the user and to check the validity of the token that is used to
perform requests. The getAccess function receives as parameters the user credentials
and the authentication endpoint URL that changes for each infrastructure; it returns
an Access object that contains the token that will be used in all future requests. This
element has a limited validity, so I created a function that checks if the tokens has
already expired.

Listing 4.8: Interface Auth.java
public interface Auth {

public Access getAccess (String tenant , String user , String psw ,
String authURL) throws ExceptionAuthentication ;

public boolean verifyAccessexpiration (Access access);
}

Interface Retrieve This interface defines two methods that could be used to
retrieve information about a specific element of the cloud or to know which are the
cloud elements already defined and active in the infrastructure. It consists of two
main methods:

- getList: is used to retrieve a list of specific elements present in the cloud.
For example it may return the list of the Virtual Machines running on the
infrastructure, if the proper implementation is used.

- getSpecific: returns a specific element identified by a unique number.

If an error on retrieving occurs, a specific exception (ExceptionOnRetrieve) is thrown.

Listing 4.9: Interface Retrieve.java
public interface Retrieve <T> {

public List <T> getList (Access access) throws Exception ;

67

4 – Design

public T getSpecific (String id , Access access) throws
Exception ;

}

Interface Modify In this case the interface defines methods used to change the
state of the cloud. The retrieve methods do not change the number of the running
instances or its configuration while this one does. Due to its nature, the implemen-
tation of this interface requires more precautions, since it modifies cloud instances.

- create: it generates a new element of the system, ensuring the accuracy of the
entered parameters. The main argument passed to the function refers to the
object that wants to be created. If we want to create a new Virtual Machine
the passed object will be a VM object.

- delete: conversely is used to delete a cloud element, retrieved by its unique
identifier.

Even in this case, if errors occur during the execution of the methods, specific
exception will be thrown (ExceptionOnCreate or ExceptionOnDelete).

Listing 4.10: Interface Modify.java
public interface Modify <T> {

public String create (T object , Access access) throws Exception ;
public void delete (String id , Access access) throws Exception ;

}

Interface Check The last common interface is the control interface; although it
defines just two method, it is very useful as utility. The defined function checks if a
element, identified by its ID value, already exists in the system (checkId function).
If it does not, a false value is returned. The second method verifies the presence of
an equivalent element (this feature is not implemented in all managers since in some
of them this function would not have a significant response). This interface has a
paramount aim: avoid the creation of duplicated elements.

Listing 4.11: Interface Check.java
public interface Check <T> {

boolean checkID (String id , Access access) throws Exception ;
T check (T object , Access access) throws Exception ;

}

68

4.5 – Man.O.S. detailed Design

Interface VMInterface Now I pass to define an interface that envelops functions
specific of virtual machines. These methods act over VMs changing their state or
position. As we can see in listing 4.12 the first two functions could be used to suspend
and resume an active running virtual machine, while the last two determine a change
of the resource configuration: in one case the change of the physical host, in the
second the change of allocated virtual resources. In this case, all functions handle a
specific exception type, derived by the VMExeption packet.

Listing 4.12: Interface VMInterfe.java
public interface VMinterface {

public void suspend (String vmID , Access access) throws
VMExceptionOnCheck , VMExceptionOnRetrieve ;

public void resume (String vmID , Access access) throws
VMExceptionOnCheck , VMExceptionOnRetrieve ;

public void migrate (String serverId , String hostid , Access
access) throws VMExceptionOnRetrieve , VMExceptionOnCheck ;

public void resize (String serverId , Access access , String
flavorid) throws VMExceptionOnRetrieve , VMExceptionOnCheck ;

}

The Infrastructure Manager Interface

The control layer is designed to be interchangeable and support several interface
implementations at the same time. The motivation for this schema is that different
users could prefer different management interfaces. Moreover, the user does not
need to be a human operator at all, it can be other system, and therefore there
is a need for interfaces more suited to this task. Samples of these interfaces could
be command-line tools or an administration web page for a human operator, and a
web services interface for an autonomic system that keeps care of the private cloud
infrastructure. The Infrastructure Manager interface defines all operations offered to
the external user. As we can see from the figure 4.8 methods allow to manage virtual
Machines and Virtual Appliance Configurations accessing all previously described
functional areas. The starting element undoubtedly is the authentication function:

- authenticate: it permits the user to authenticate and obtain a token that will
be used in all requests against the cloud infrastructure. The returned key is
associated to token and must be used as reference for future requests.

- checkAccessExpiration: this method controls if the specified access token is
still valid returning a boolean value.

- startVM: the statVM method permits to deploy a Virtual Machine from a
defined Virtual Appliance identified by an “id” parameter. As all the following

69

4 – Design

methods, the invocation of this function requires the previous authentication.
If an Host identifier is passed as parameter, the controller forces where the
VM will be deployed.

- stopVM: the user can adopt this function to stop (shut down) a running Virtual
Machine identified by a specific identifier.

- suspendVM: a running Virtual Machine can temporally be suspended or rather
paused according to the user needs.

- resumeVM: the resume function must be adopted to return the suspended VM
to the active state.

- createVA: this method enable to create new definitions of Virtual Appliance,
storing it in a reliable way.

- deleteVA: as the name suggests, this method permits to delete a definition of
a Virtual Appliance.

- createNetwork: the creation of a virtual network could be considered essential,
since this is the one of the most important elements of the virtual infrastruc-
ture.

- deleteNetwork: with this function the user acquires complete control over the
element Network.

- changeVirtualResources: sometimes the variation of workload may imply the
necessity of improving the virtual resources attached to a VM; this method
performs this function allowing the user to change the set of virtual resources
dedicated to the overloaded server.

- moveTo: the increase of servers workload affects also the physical machine
over which the VM is running. This method allows the user to move a VM to
another physical host, redistributing the load of the infrastructure.

- retrieveNetworks: this function provides to the user the list of all defined
virtual networks.

- retrieveVMlist: this is the last method and it gives to the external user the
list of all running virtual machines.

The InfrastructureManager implementation can be considered the boss of the
infrastructure and it is responsible for the execution of the above described functions.
If any error occurs during the call to an underlying service (managers) it issues an
exception that specifies the occurred problem.

70

4.5 – Man.O.S. detailed Design

Figure 4.8: Infrastructure Manager interface

4.5.3. Manager Implementation
The Manager Level Implementation

In the previous chapters I talked about the specialized managers or workers that
compose the core of the IM. As I defined before each worker is in charged of a
functional area that may be mapped to the element list defined in the OpenStack
information model (section 4.3.2). More precisely, whatever refers to Virtual Ma-
chines will be charged to a specific Virtual Machine Manager ; the same will occur
for Virtual Appliances, Virtual Instances etc.

In each module errors are managed following a standard process: each block
handles specific exception, defined expressly for each functional area, easing the error
detection. This is the layer where the mapping between the Openstack information
model and the general cloud information model (4.3) is performed.

Another central point of the architecture is the amount of information that is
going to be stored in the system; we know that the cloud technology has its own
information base that should not be replicated in order to avoid inconsistency prob-
lems. With this assumption I created a system where data are not replicated and
the majority of information elements are polled from the cloud and transformed in

71

4 – Design

Figure
4.9:

U
M

L
class

diagram
ofthe

Infrastructure
M

anager
im

plem
entation.

72

4.5 – Man.O.S. detailed Design

volatile objects that are used to carry the information through the different levels
of the architecture.

In the management layer I also designed some additional classes used as utility.
These classes offer additional services that workers will exploit. Figure 4.9 shows an
overview of the management level detailed structure. From the UML diagram we
can see how the Infrastructure Manager implementation uses the services provided
by the Managers. If we think of a future integration with a distinct type of service,
which may be the management service of storage volumes that will be introduced
in the next official release of OpenStack, we can see that it would be easy to add a
new module without disrupting the structure of the system, since the structure has
a hierarchical and modular architecture.

Authentication Manager

As usual, in order to access a specific service users need to perform a previous
authentication to verify its identity. A specific manager controls this aspect: the Au-
thentication Manager is responsible of retrieving an authentication token, or rather
a code that confirms the successful authentication. Moreover, the manager permits
to retrieve the list of active tenants previously defined in the cloud or describe a
specific one. This class represents the starting point for every workflow.

The Authentication Manager implements two interfaces as represented in fig-
ure 4.10.

The authentication function receives as parameters four elements: user, pass-
word, tenant and authentication URL which should be previously introduced in the
cloud database by the system administrator.

Figure 4.10: Authentication Manager

73

4 – Design

The authentication URL indicates the access point to the authentication API
and varies depending on where the service is implemented. Retrieving functions
can be performed only after the authentication procedure. Since the token has an
expiration date defining the validity period, the Authentication Manager provides a
function that checks if the token is still valid.

Image Manager

The image manager implements the interface retrieve and check. This implies
that this module is only able to retrieve information about the existing elements
and it is not authorized to create new OS image definitions. As we assumed, the IM
works with OS images previously uploaded. Nevertheless the Image Manager can
retrieve detailed information about existing images or check the validity of a specific
one.

Flavor Manager

This module manages all what concerns virtual resources. The manager controls
all aspects related to Flavor management, creation, deletion or modification, and
it assures the process ends successfully. In addition, the manager permits to check
the existence of equivalent flavors. In other words, if the user requests the creation
of a new element, it is important to verify if, between the already created flavors,
another one that has the same characteristics exists; in an affirmative case, it is
not necessary to duplicate an element, so the system must return the item already
defined. In this way, no duplicated element are present, maintaining the system
clean. Flavor IDs are defined by an algorithm that grants their uniqueness.

Key Pairs Manager

The Key Pairs Manager controls all what refers to the creation of SSH key pairs
(public and private keys). In order to connect to a VM is necessary that the cloud
manager inject a ssh key during the VM’s booting process; the key pair is created and
saved through this controller. All keys, public and private are stored and managed
locally, and a copy is loaded in the cloud system. When a key is deleted, the manager
grants that the information remains consistent. Storing the key is necessary in order
to provide an access method to the external user.

74

4.5 – Man.O.S. detailed Design

Figure 4.11: Flavor Manager

Security Group Manager

The Security Group Manager controls the set of rules governing the IP traffic in
the network. In each group the user can specify which are the admitted protocols, the
active ports or the allowed range of IP address from which a request can be made.
So it limits the protocols and the traffic allowed by the instance. As the Image
Manager this module permits the user to retrieve only pre-uploaded configuration
sets. This feature must be active in the cloud infrastructure configuration.

Virtual Appliance Manager

The Virtual Appliance Manager maps the concept of Virtual Appliances to the
Openstack’s information model. I defined a Virtual Appliance Model class that
refers to the General Model. As we can see in figure 4.12 each VA defines a list
of minimal requirements associated to a specific image and is composed by four
elements: an identifier, the name, the image identifier, the flavor identifier, and the
list of security groups.

In this way we map the flow of information between the two environments. The
manager, which implements the main aforementioned interfaces, controls the cre-
ation, deletion and modification of all Virtual Appliances. It stores and deletes each

75

4 – Design

VA configuration aided by an utility class that I will describe in the section 4.5.4.

Virtual Appliance

Identifier Name FlavorIDImageID
Security
Groups

Figure 4.12: Virtual Appliance

Network Manager and Subnet Manager

With the integration of the quantum module in the OpenStack project, the
customization of the virtual network infrastructure has increased considerably and
new network topologies can be designed. In our system, the module in charge
with these aspects is the Network Manager, that in collaboration with the Subnet
Manager, responsible for managing the organization of IP addresses, can create
and manage various environments of virtual networks. The user can create a new
instance of virtual network passing to the manager the name, the network address
and the network mask of the new LAN. The manager returns the identifiers of the
created element.

Figure 4.13: Network Manager

76

4.5 – Man.O.S. detailed Design

Virtual Machine Manager

The Virtual Instance Manager is committed to manage the life-cycle of Virtual
Machines. Like all others managers it implements the three interfaces Check, Modify
and Retrieve but in addition implements the specific interface VMinterface. The
module has the complete control over VMs, and it could create, delete suspend or
resume them. The manager is able to retrieve the list of running servers or a detailed
description of a specific one. VMs can be deployed starting from a VA from which,
if not specified, it takes the name. But the two most relevant functions refers to the
modification of the VM status. As defined in the VMInterface this manager is able
to change the set of virtual resources attached to the VM. This function receives
as parameter only the VM identifier and the identifier of the new Flavor. VMs can
also be moved from an host to another, in order to permit a redistribution of virtual
instances over the physical infrastructure. In order to ease this feature the manager
provides the possibility of indicate on which Host the Server must be run, avoiding
in case of critical resources, the necessity of an immediate displacement.

Figure 4.14: Virtual Machine Manager

77

4 – Design

Host Manager

Last but not least the Host Manager, the manager charged of retrieve reliable
information about physical machines composing the underlying infrastructure. As
others managers it implements just the interfaces needed to obtain information about
cloud nodes since it would not be possible create or delete new hosts. This manager
is of crucial importance when booting a new VM the host parameter is not null, or
when a server needs to be displaced on another host machine.

Figure 4.15: Consistency interface implemented using CSV and mysql.

4.5.4. The Utility Package
The utility package is a tool set, used to perform operations that not concern

directly with the cloud system. I defined a Java interface (figure 4.15) that defines
a set of functions that could be used to perform operations referring the storing of
Virtual Appliances and Key Pairs. This interface was initially implemented by a
class that saves data into a mysql database.

Given the low amount of stored information, the use of a database of this type
was completely inappropriate and I opted for an implementation that would require a
much lower computational cost. As a consequence I defined a second implementation

78

4.5 – Man.O.S. detailed Design

that stores data in a CSV file7. This option is found to be better in terms of time
and occupied space. In the case the amount of data stored increases, if it were
considered necessary, it would be easy to change the implementation used to the
former one.

4.5.5. Exceptions
Handling errors is an central part of software development and can be managed in

different ways. In our Infrastructure Manager errors are managed through the use of
Java Exceptions. In order to ease the recognition of the trouble I created different
classes of exceptions (extending the java class Exception.java), which follow the
division in functional areas. Thus, each manager triggers its own set of exceptions,
making the error management easier.

As I mentioned before, exceptions refers to the phase in which the error arose.
I defined three types of exception classes: OnCreate exception triggered during
the creation task, OnRetrieve exception thrown when errors on retrieving functions
occur and finally OnCheck exceptions.

In principle, the software throws an exception when a user request can not be
performed or a valid response can not be provided. Exception packages follow a
modular scheme: depending on which part of the process the problem has appeared,
a different exception is thrown.

4.5.6. The Infrastructure Manager Implementation
The controller level is substantially formed by the infrastructure Manager imple-

mentation. As I said before it is the conductor of the system that uses the facilities
provided by the medium level and offers a service to the outer world. It implements
the InfrastrucutureManager.java interface and it is responsible to collect all required
parameters that permit a correct execution of the plans.

An important aspect of this module is its implementation nature: it is a singleton
element. This means that a single instance of this class can run at a time. When
the manager is invoked, if another instance is present, the reference to the already
created one is returned, otherwise a new one is instantiated. With this construct, we
ensure that only one manager is managing the cloud and we don’t have inconsistency
problems.

Every function described by the Infrastructure Manager Interface accepts only
parameters that make part of the General Information Model - GIM, abstracting
the user from the underlying technology.

7Comma-Separated Values

79

4 – Design

The Control Layer is composed by two main logical elements: the Infrastructure
Manager and the Authentication Manager. The former manages the interaction with
the outer world, while the latter manages the security aspect of the infrastructure.

In next paragraphs I analyze the implementation of the primitives offered by the
Infrastructure Manager.

Authentication Functions

In order to avoid continuous and repeated authentication processes, when an
authentication is performed, the Authentication Manager retrieves an access token
and verify its validity; afterwards it maps the obtained value in a table where the
access object is associated to a key value that will be returned to the user.

In this way, each time the user invokes a requests, he simply introduces the key
value as parameter without caring about the access object. Each time a request is
performed, the manager controls the validity of the access element; if it has already
expired, an Authentication Exception, specifying the cause of the failure, is triggered
and a new authentication procedure is requested .

Create and Delete a Virtual Appliance

The creation of the Virtual Appliance involves several managers, since a VA is
composed by different cloud elements. The user passes as a parameter all config-
uration options that he needs for its new VA: the name, the image identifier, the
quantity of vRAM and disk needed by the future VM and the security group rules.
All these elements are enveloped in the structured element VirtualAppliance, which
makes part of the GIM. Naturally the previous authentication is a mandatory con-
dition. After checking the validity of the access token, the manager controls that
another equivalent Resource Set is present. If so, it retrieves the resource identifier,
otherwise it creates a new one with the specified values.

Check Authentication

[Authorized] [Not Authorized]

[All Conform]
Create the VA and
return identifier

Parameters Exception

Send Authentication
Exception

[Not Conform]

Handle
Authentication
Manager Exception

Handle Manager
Exception

Check Cloud Parameters

Retrieve
Virtual

Resources set

Check Image

Check
Security
Groups

Retrieve
Virtual

Resources ID

Create Virtual
Resources set

[Already Exists]

[Does not Exists]

Figure 4.16: Activity diagram of the Virtual Appliance creating process.

80

4.5 – Man.O.S. detailed Design

Subsequently it controls the existence of the specified Image and Security Groups.
Last, if the resource set had been created from scratch it creates the new VA and re-
turns the identifier, else it checks if another equivalent VA has already been specified.
If so, the crating process aborts and the identifier of the existent VA is returned,
otherwise the new Virtual Appliance is created.

On the delete phase the manager simply controls if the element effectively exists.
In that case it proceeds with the cancellation of the VA from the database.

Create and Delete Networks

The second step of the path towards the creation of a VM consists in the creation
of a new Virtual Network. This primitive function reflects the characteristics of the
underlying network manager, which allows you to create a new virtual network by
specifying the name, the network address and network mask. Even in this case,
parameters are passed through an object defined in the GIM (section 4.3). The
identifier of the resource is returned to the user and it will be employed in the
creation of new VMs or in the deletion phase.

Start and Stop a Virtual Machine

The two most important primitives functions refer to the creation and deletion
of Virtual Machines. The boot of a VM requires a previous authentication and
definition of at least one VA and one Virtual Network. A VirtualAppliance object
is passed as parameter as the VirtualNetworkInterface and the key pair name. The
function checks the validity of the introduced values employing the underlying man-
agers. When the key pair does not exists, the IM takes care of creating one. After
that the validity of the Network and VA identifiers is checked. If a PhysicalMachine
object is introduced, the IM verifies the active state of the host and forces the cre-
ation of the VM over such machine. If all tests are passed, it creates the new Virtual
Machine according to the specified parameters and returns its identifier.

The PhysicalMachine parameter is an optional element. In the case where the
parameter were not specified, the choice of the most appropriate Host will fall on
the cloud controller. If an error occurs, a InfrastructureManager exception is raised.

Advanced Operations over Virtual Machines

The last set of primitives is used to complete the set of functional requirements
that I defined at the beginning of the project. More precisely the IM exports four
primitives that allow the user to change the set of resources attached to a VM check-
ing the validity and correctness of all parameters. These functions as the moveTo
method are of paramount importance when the external user is an automated agent
that tries to balance the work load of the infrastructure optimizing the number

81

4 – Design

Check Authentication

[Authorized] [Not Authorized]

[Conform]
Create the instance and

return VM reference
Parameters Exception

Send Authentication
Exception

[Not Conform]

Handle
Authentication
Manager Exception

Handle Manager
Exception

Check Cloud Parameters and retrieve VA

Check Keypair
Check

Networks
Check Host

Retrieve VA

Figure 4.17: Activity diagram of the Virtual Machine starting process.

of used physical resources, since load balancing with infinite resources would be a
trivial problem.

Later, it can be interesting for an administrator to suspend instances, if a main-
tenance is planned, or if the instance is not frequently used. Suspending an instance
frees up memory and vCPUS (suspension could be compared to an hibernation mode
of common desktop OS).

82

Chapter 5

Test

In this chapter I will focus on the main steps of the test process of our system.
I will start with a small overview of the testing world and then I will detail the
characteristic of our test design. In the first part I will describe the design of the
tests, and the main tools that has been used in the deployment of this part.

5.1. Introduction to Tests
The test plan is used to prove the system is functioning as designed and the

developed software responds to the user requests. The main aim is to grant the
quality of the product since the complexity of these software systems, in companion
with the human fallibility may nick the integrity of the system. Tests perform
verification and validation of the system: validation is the proof that the system
is providing all functionality required by the user; verification is the ascertainment
that the system has been correctly developed. Although the utilization of batteries
of tests may be considered a paradoxical behavior, we can not assure the absence of
errors, since the test itself may contain them.

Usually, tests use to be divided into three categories that are linked to the main
phases of the development: unit tests, integration tests and system tests. In addic-
tion, it is necessary to make regression tests in order to verify that modifications
and changes to the code do not introduce errors in the system and to detect errors
in previous tests.

Unit test: Unit tests are used to verify the functionality of a module or
component. In general, they are also known as behavior tests or structure
tests, respectively. They could be designed as Black Box Tests or White Box
Test: the former ones take into account the code structure, whereas the latter
ones just focus on the correctness of the interface or module definition.

83

5 – Test

Integration test: Integration tests allow to verify if all modules properly
interact in order to meet the system requirements.

System test: The aforementioned tests are verification tests. System test
are validation tests which try to verify if the developed software satisfy user
requirements.

In addiction to these, we can consider performance tests, whose aim is to verify that
capacity requirements, established for the system, has been fulfilled.

5.1.1. Tests in Java Environment
In order to test our code we can choose among various alternatives:

Print debugging is the act of watching trace statements, or print statements,
that indicate the flow of execution of a process. This is sometimes called printf
debugging, due to the use of the printf statement in C.

Log debugging, that can be provided by many available tools as Log4J [45]
or the package java.util.logging embedded in the java framework.

Debugging tools, that usually are integrated in common IDEs (Integrated
Development Environments).

In my case I will use Eclipse IDE [46], which provides an embedded debugger
and permits to trace the state of our software during its life-cycle. As all debugging
tools it permits to stop the execution, to see the execution stacks of each thread,
the variables etc.

During the installation of the infrastructure I made massive use of Openstack
system logs, where the system write all performed operations; in this way I could
control the set of modules loaded at the start of the process and in case of error,
which was its source. On the other hand, each test was accompanied by a process
of monitoring via terminal which verified the correct performance of the work. The
correct deployment of cloud elements was constantly monitored through simple shell
commands. Execution logs were also a big aid, since they show the communication
(exchanged messages) between IM and Cloud Controller.

5.2. Test Architecture
In this section I describe the set of implemented tests that lead to the validation

of the implemented software, certifying the completion of the proposed functional
requirements. I adopted a bottom-up approach, starting to test small units of the

84

5.2 – Test Architecture

management layer, up to integrate all simple functions in a more complete verifi-
cation that groups all components and verify the correct cooperation. Lastly, the
implementation of an additional service over the IM has been developed as validation
test of the performed work.

5.2.1. Unit Tests
The formalization of a battery of unit tests to verify certain aspects of the system

will provide the following benefits:

They allow us to clearly define the behavior of the code before deploying it (if
we write the tests before the code).

They maintain their value over time. The other ways of testing the code are
not persistent: executing them again involves the same effort than performing
for the first time.

They allow regression testing whenever you modify the code, ensuring integrity.

Each method has been tested in order to verify the correct behavior in front of a
normal flow of operations or in error situations.

The test code has been wrote using the unit testing framework JUnit [47], a
subset of classes that permits to run the implemented code in a controlled way.
These unit test have been developed as white box tests, also known as transparent
box testing or structural testing where the code test is wrote knowing the internal
structure of the element under prove. In this way the tester can verify the correct
work flow of the unit, even in cause of faults.

The first step had been create unit test bundles for checking the correctness of
managers behavior. For each manager I wrote a battery of unit tests validating the
response of each implemented function singularly. I assumed the underlying level
(client) was error free.

For each functional area, so for each manager, I verified the correct creation,
deletion and retrieving of cloud elements since the testing environment is composed
by the infrastructure manager and the operative cloud technology. Each test is
programmed in order to not leave residual elements of its execution.

Test class Unit Tests Result
AuthManagerTest.java testGetAccess() Success

testGetTenantList() Success
testGetSpecificTenant() Success
testGetAuthURL() Success
testVerifyAccessexpiration() Success

85

5 – Test

FlavorManagerTest.java testGetList() Success
testGetSpecific() Success
testCreate() Success
testDelete() Success
testCheckID() Success
testCheck() Success

HostManagerTest.java testGetList() Success
testCheckID() Success

ImageManagerTest.java testGetList() Success
testGetSpecific() Success
testCheckID() Success

KeyPairManagerTest.java testGetList() Success
testGetSpecific() Success
testCreate() Success
testDelete() Success
testCheckID() Success
testCheck() Success

NetworkManagerTest.java testGetList() Success
testGetSpecific() Success
testCreate() Success
testDelete() Success
testCheckID() Success
testCheck() Success

SecurityGroupManagerTest.java testGetList() Success
testGetSpecific() Success
testCheckID() Success

SubnetManagerTest.java testGetList() Success
testGetSpecific() Success
testCreate() Success
testDelete() Success
testCheckID() Success

VirtualApplianceManagerTest.java testGetList() Success
testGetSpecific() Success
testCreate() Success
testDelete() Success
testCheckID() Success
testCheck() Success

VirtualMachineManagerTest.java testCreate() Success
testGetSpecific() Success
testCheckID() Success

86

5.2 – Test Architecture

testSuspend() Success
testResume() Success
testDelete() Success
testResize() Success
testMigrate() Success

Table 5.1: Unit test set

As can be seen in the table, all implemented modules work correctly. In each
test class I have programmed a automatic set up that provides to the module an
operating environment where its capabilities could be verified. After the execution
this environment is dismantled leaving the system exactly as before the test. List-
ing 5.1 shows an example of unit test applied to the Virtual Appliance Manager in
the creating function. We can see that the test verifies the behavior of the function
in different cases:

Case 1: the test tries to create a new VA (with a correct set of parameters)

Case 2: the test tries to create a new VA with the same set of parameters used
in the previous case. Then verifies if the returned identifier is the same.

Case 3: a wrong parameter is introduced.

Case 4: a null parameter is introduced.

For example in the second case the test verifies that when we try to create a
new VA with the same set of parameters of an existing one, the manager does not
duplicate it, but returns the already existing.

Listing 5.1: Virtual Appliance testCreate() function
@Test
public void testCreate (){

// Case 1: all elements are correct
va = new VirtualAppliance ();
va. setFlavorid (fm. getList (access).get (1).getId ());
va. setImageid (im. getList (access).get (1).getId ());
va. setName (" Cid ");
secgroups = new ArrayList <String >();
secgroups .add (" default ");
va. setSecgroups (secgroups);
try {

id = vam. create (va , access);
} catch (VirtualApplianceExceptionOnCheck e1) {

87

5 – Test

assertTrue (false);
e1. printStackTrace ();

} catch (VirtualApplianceExceptionOnCreate e1) {
assertFalse (true);
e1. printStackTrace ();

}

// Case 2: The VA already exists
try {

assertEquals (id , vam. create (va , access));
} catch (VirtualApplianceExceptionOnCheck e1) {

e1. printStackTrace ();
} catch (VirtualApplianceExceptionOnCreate e1) {

e1. printStackTrace ();
}

// Case 3: One parameter does not exist
va. setFlavorid (" abcdefg ");
try {

vam. create (va , access);
} catch (VirtualApplianceExceptionOnCheck e1) {

assertTrue (false);
e1. printStackTrace ();

} catch (VirtualApplianceExceptionOnCreate e1) {
assertTrue (true);
e1. printStackTrace ();

}

// Case 4: One parameter is null
va. setFlavorid (null);
try {

vam. create (va , access);
} catch (VirtualApplianceExceptionOnCheck e1) {

assertTrue (true);
e1. printStackTrace ();

} catch (VirtualApplianceExceptionOnCreate e1) {
assertTrue (false);
e1. printStackTrace ();

}
}

5.2.2. Integration Tests

The development process has required continuous integration tests between the
Infrastructure Manager and the cloud. The selected testing approach was the Bot-
tom Up method: this approach firstly tests the system integrating its components

88

5.2 – Test Architecture

from the lowest level , then follows with the testing of higher level components. The
process is repeated until the component at the top of the hierarchy is tested.

This process has been followed throughout the whole development process: once
I created a new element, I immediately tested it. If the verification was successful,
the process continued up to the development of the next level of the architecture.
In this way the system was growing stable on a strong foundation.

5.2.3. System Tests
Test Bench

Before starting the design and development of the IM, it was necessary to create
a test bench that would allow us to study more thoroughly the technology and
understand its potentialities and restrictions. Therefore we dedicated five computers
to the installation of the platform in order to deploy a cloud infrastructure for testing
processes.

Since the OpenStack software is open source and the community of developers
is very active, the program is constantly updated due to several bugs that affect the
various releases. These errors and the lack of updated documentation that persists
incoherent with the version of the code have made the preparation of this workbench
slower than planned.

I selected the Openstack Folsom Release right after its publication. This choice
was made because of the advantages introduced by new features, as the new network
service (still unstable probably until the next version). Even if the test version of the
new release (code name Grizzly) had been released just a month after the announce of
Folsom stable release, I considered premature to use a service in its first test edition.
For this reason, I have updated only some parts of the release, so as not to upset
the system already installed. It is necessary to mention that in the first milestone
of the development cycle of the Grizzly release 399 bugs have been identified and
fixed [48].

OpenStack
Diablo
release

OpenStack
Folsom release

Nova network

OpenStack
Folsom

Quantum 1.0

OpenStack
Folsom

Quantum 2.0

September
2012

November
2012

January
2013

Figure 5.1: Graph representing the updates to the test cloud infrastructure

89

5 – Test

Workbench Architecture

I mounted 5 computers connected with a dedicated private LAN. One of these is
connected to the Internet through a second physical network interface and became
the main controller of the cloud infrastructure.

The Cloud Controller runs the main services while the others just run the com-
pute service (2.7.1) and the network plugin (hereafter these machines will be called
compute nodes). In picture 5.2 we can appreciate the physical architecture of our
infrastructure.

Management Network 192.168.0.0/24

Cloud5 Cloud4 Cloud3 Cloud2

Controller
b205b2

Internet

External
Router

Figure 5.2: Test bench architecture

Test Results

The next set of tests tries to verify the correct interaction between the user and
the Infrastructure Manager. Starting from the definition of use cases I made some
system tests, that focus their attention in these specific operations. The last use
case, Creation of a Virtual Scenario will be validated with the work described in
chapter 7.

T01 - Create a Virtual Appliance

The definition of a Virtual Appliance requires four parameters: a name, an
image, a set of virtual resources, and a set of security groups. The test consist of
four attempts of creation:

1. The insertion of a new VA with correct parameters.

90

5.2 – Test Architecture

2. The insertion of a new VA with the same virtual resources set but different
image.

3. The insertion of a new VA with exactly the sames parameters of the previous
case.

4. The creation of a new VA with a wrong parameter.

In each case we should obtain a different result. In the first case we expect the
IM creates normally the new VA. In the second case, the IM should reuse the virtual
resources set created in the previous phase (we should see the same identifier). The
last two tests should not create a new VA, since in the first case the IM should return
the already created VA, and in last one we must obtain a Infrastructure Manager
Exception.

Running the test I obtain 2 VAs with the parameter that I have inserted. The
IM has created a Flavor in the cloud that specifies the requested virtual resources.
We can see the results:

Listing 5.2: T01 allocated virtual resources

+---+-----------+-----+----+----+----+----+------+------+-----+
|ID | Name | RAM |Disk| Eph|Swap|Vcpu| rxtx | Public |extra|
+---+-----------+-----+----+----+----+----+------+------+-----+
| 1 | InfManager1 | 100 | 1 | 0 | | 1 | 1.0 | True | {} |
+---+-----------+-----+----+----+----+----+------+------+-----+

Moreover, the VA database has been populated with only 2 entries, even if we
triggered four attempts. Since in the third attempt the request corresponds to an
existent VM, the IM returns the identifier of the equivalent element. In this way I
verified the IM does not introduces useless redundancy in the information base. In
the last case we obtained an exception indicating which parameter was wrong. In
the following listing (5.3) we can appreciate the two new VA referring to the same
set of virtual resources.

Listing 5.3: VA database content
+----+---------+------+--------------------+----------+
| ID | NAME | VRID | IMAGEID | SECGROUP |
+----+---------+------+--------------------+----------+
| 1 | Test1 .1 | 1 | 6306009a-a797 -4108 | default |
+----+---------+------+--------------------+----------+

91

5 – Test

T02 - Create a Virtual Network

The next step is to test the possibility of creating a new network in the cloud
infrastructure. In this case we need to specify the name of the new network and
the network address together with the number of bits of the network mask. The
system should return the identifier of the element and we should see the new active
network. The test will follow the next flow:

1. Create a new network with network address 10.10.10.0/24 named public.

2. Create a new network with the same parameter.

3. Create a new network with a wrong parameter.

In the former test we should obtain the identifier of the new virtual element
and we should see the network active in the infrastructure. In the second case, the
returned identifier should be the same as before, since the new network is equal to
the former. Lastly we should obtain a Infrastructure Manager Exception.

Effectively the results correspond to what I suggested and we can appreciate the
new Virtual Network is active. Listings 5.4 and 5.5 show the network to which is
associated the subnet 10.10.10.0/24.

Listing 5.4: T02 network definition
+--------------------+--------+-----------------------+
| id | name | subnets |
+--------------------+--------+-----------------------+
| 20172 d4d -84dd -4 ac1 | public | 539786 e7 -0e14 -4 d64 |
+--------------------+--------+-----------------------+

Listing 5.5: T02 subnet definition
+------------------+---+
| Field | Value |
+------------------+---+
allocation_pools	{" start ":"10.10.10.2" ," end ":"10.10.10.254"}
cidr	10.10.10.0/24
dns_nameservers	
enable_dhcp	True
gateway_ip	10.10.10.1
host_routes	
id	539786 e7 -0e14 -4 d64
ip_version	4
name	
network_id	20172 d4d -84dd -4 ac1

92

5.2 – Test Architecture

| tenant_id | bcb940507f64477784 |
+------------------+---+

T03 - Start a Virtual Machine

After defining the two previous elements we are ready to start our first Virtual
Machine. The new instance will be started from the previously created VA and
attached to the network aforementioned. At the end of the process we should see
an active Virtual Machine attached to the before mentioned LAN.

I will proceed to run following operations:

1. Create a VM with the aforementioned VA and virtual network.

2. Create a second VM introducing the same set of parameters.

3. Attempt to pass wrong values.

At the end of the process I expect to see two running instances that have the same
characteristics but the identifiers. In the last test case I obtain an Infrastructure
Manager Exception explaining the source of the fault.

In the following listing we can see the result of the test: two running Virtual
Machines attached to the network that I have created before. Manually I tried to
log in the first VM through a SSH connection and the result was successful.

Listing 5.6: T03 running Virtual Machines
+--------------------+--------------+--------+------------------+
| ID | Name | Status | Networks |
+--------------------+--------------+--------+------------------+
| aa3a4aee -05ed -42 c5 | Test1 .1459488| ACTIVE | public =10.10.10.4|
| 919174 d9 -adc9 -4 b45 | Test1 .14 e2917| ACTIVE | public =10.10.10.5|
+--------------------+--------------+--------+------------------+

T04 - Suspend and Resume a Virtual Machine

Once we have obtained a set of running VMs I try to test the suspend and resume
functions. In this case I try to suspend the running Virtual Machines and verify
their state. If the VM passed to the “suspended” mode I try to resume, in order to
restore the “active” state.

Executing the test we can see that the state of the two VMs changes without
problems, and the two instances pass to the suspended mode. With the resume
function, VMs come back to the previous state. If the resume function is applied to
a running machine, the IM returns an Exception.

93

5 – Test

Listing 5.7: T04 suspended Virtual Machines
+--------------------+-------------+---------+------------------+
| ID | Name | Status | Networks |
+--------------------+-------------+---------+------------------+
| aa3a4aee -05ed -42 c5 |Test1 .1459488| SUSPENDED | public =10.10.10.4|
| 919174 d9 -adc9 -4 b45 |Test1 .14 e2917| SUSPENDED | public =10.10.10.5|
+--------------------+-------------+---------+------------------+

T05 - Change virtual resources Virtual Machine

One of the most interesting features of the Infrastructure Manager is the pos-
sibility of change the set of virtual resources to a VM. This characteristic may be
very useful when a VM needs more capacity to provide its services (think about a
web server with a temporary overload). In this case I will change the resource set,
attaching to the server a vRAM of 512MB.

Executing the test I can see that the virtual machine has changed the set of
virtual resources.

T06 - Stop a Virtual Machine

After all these tests there remains the last task: to turn off the virtual machine.
I executed a double test:

1. I delete the two running VM that I created in T03.

2. I try to delete an nonexistent virtual instance.

In the former case, as supposed, the IM turns off the two running VM and
resources are freed. In the second case, I receive a Infrastructure Manager Exception
that informs me the inserted value is incorrect.

Mapping Between Use Cases and Tests

In the next table I resume the mapping between system tests and use cases:

Test Identifier Use Case Description
T01 UC04 Create a Virtual Appliance
T02 UC05 Create a Virtual Network
T03 UC01 Start a VirtualMachine from a VA definition
T04 UC03 Suspend and resume a VM
T05 UC06 Change virtual resources to a VM
T06 UC02 Stop a VM

Table 5.2: Integration tests mapped to use cases94

5.3 – Metrics and Statistics

5.3. Metrics and Statistics
Including the code developed within the body of the thesis was considered inap-

propriate. It is however important to consider, both in terms of effort in terms of
quality, the performed work; for this purpose we have used a set of metrics show-
ing some characteristics that describe the effective quality of the implemented code.
Firstly I report the general statistics of the Infrastructure Manager implementation:

Besides the amount of code, it is also interesting to estimate its quality through
specific metrics. Below I report a selection of the metrics considered most relevant
for object-oriented development [49]:

Cyclomatic Complexity

Weighted methods per class

Efferent couplings

Lack of cohesion in Methods

Number of levels

Number of fields

Number of parameters

Next we will provide more details about each of the selected indexes and analyze
the graphs of the results of these tests applied to our code.

Packages 23
Classes 103
Functions 602
Lines of code 3964
Test functions 84
Lines of test code 1140

Table 5.3: General statistics

5.3.1. Cyclomatic Complexity
This metric is an indication of the number of ‘linear’ segments in a method

(i.e.sections of code with no branches) and therefore can be used to determine the
number of tests required to obtain complete coverage. It can also be used to indicate
the psychological complexity of a method.

A method with no branches has a Cyclomatic Complexity of 1 since there is

95

5 – Test

1 arc. This number is incremented whenever a branch is encountered. In this
implementation, statements that represent branching are defined as: ‘for’, ‘while’,
‘do’, ‘if’, ‘case’, ‘catch’ etc. The sum of Cyclomatic Complexities for methods in
local classes is also included in the total for a method.

Cyclomatic Complexity is a procedural rather than an object oriented metric.
However, it still has meaning for this kind of programs at the method level.

In our specific case the cyclomatic complexity exceeds the threshold only in the
implementation of the Infrastructure manager and precisely in the method in charge
with the creation of VM since in this phase the system needs to do several checks
on the validity of the parameters.

Figure 5.3: Cyclomatic complexity

5.3.2. Weighted Methods per Class
This metric is the sum of complexities of methods defined in a class. It therefore

represents the complexity of a class as a whole and this measure can be used to
indicate the development and maintenance effort for the class. In order to reduce
this value, classes with a large Weighted Methods Per Class can often be split into
two or more classes.

According to the previous metric, the most complex class is the Infrastructure
Manager Implementation which interacts with the underlying level of managers. In

96

5.3 – Metrics and Statistics

this class resides highest complexity, since, as designed, this is the conductor of the
entire system.

Figure 5.4: Weighted methods per class

5.3.3. Efferent Couplings
This metric is a measure of the number of types the class being measured ‘knows’

about. This includes: inheritance, interface implementation, parameter types, vari-
able types, thrown and caught exceptions. In short, all types referred to anywhere
within the source of the measured class.

A large efferent coupling can indicate that a class is unfocussed and also may
indicate brittleness, since it depends on the stability of all the types to which it
is coupled. When used to measure couplings between packages (coming in a later
release) this measure can be used together with others to calculate ‘abstractness’,
‘stability’ and ‘distance from the main line’.

A typical way to reduce this value is extracting classes from the original class
decomposing it into smaller classes.

In our system the higher value belongs to the Infrastructure Manager Implemen-
tation since it must cooperate with all managers. This correlations makes high the
value of Efferent couplings for this class. On the other hand, since each module is
very specialized, the majority of classes has low values.

97

5 – Test

Figure 5.5: Efferent couplings

5.3.4. Lack of Cohesion in Methods

Chidamber and Kemerer define Lack of Cohesion in Methods as the number of
pairs of methods in a class that don’t have at least one field in common minus the
number of pairs of methods in the class that do share at least one field. When this
value is negative, the metric value is set to 0.

According to the definition, classes that have a high level of lack of cohesion are
the defined POJOs or rather the information model classes of the Quantum Client:
in this classes I defined only attributes and auxiliary methods (setters and getters)
which never access to more than one attribute at a time. This is the reason why they
have an high level of lack of cohesion, but in this case the value is not important,
since it is only due to the method of calculation. POJOs correspond to the highest
values of the graph. For the rest, from the graph we can notice that the cohesion of
the system is high.

5.3.5. Number of Levels

This metric is an indication of the maximum number of levels of nesting in a
method. The idea of the metric is that a large Number Of Levels increases com-
plexity and reduces comprehensibility. In addition, such methods generally (but

98

5.3 – Metrics and Statistics

Figure 5.6: Lack of cohesion in Methods

not necessarily) operate at the lowest level of abstraction or at mixed levels of ab-
straction, both of which contribute to the confusion. All methods that have a large
Number Of Levels can be simplified by extracting private methods or by creating a
Method Object. Both of these result in naming of the different parts of the original
method, thus raising the level of abstraction.

The VirtualApplianceManager class has the higher level of levels of nesting (5),
followed by the InfrastructureManagerImplementation and CSV (implementation of
the Consistency interface) classes (4). Certainly we can find the source of this result
in the high number of parameter checks carried out in the aforementioned classes;
each of these tests is translated in a new level of nesting and in the worst case we
obtain a value of 5, which is located just above the threshold.

5.3.6. Number of Fields
This metric represents the number of fields in a class. Although a large number

of fields is not necessarily an indication of bad code, it does suggest the possibility
of grouping fields together and extracting classes, taking appropriate methods as
well. This gives the group of fields with their associated operations a name thus
improving the semantics of the object model and a better distribution of system
intelligence.

In our case the number of fields never goes beyond the threshold: the higher

99

5 – Test

Figure 5.7: Number of levels

value is related to POJOS classes that are used in the communication with the
Quantum controller. In general, the majority of classes is composed predominantly
of methods and the system maintains an acceptable level of attributes per class.

5.3.7. Number of Parameters
This metric is a count of the number of parameters to a method. Methods with a

large Number Of Parameters often indicate that classes are missing from the model.
Most methods that have a large number of parameters can be simplified by grouping
parameters into sets and making classes from those sets. This leads to increase the
maintainability.

In our case the the Infrastructure Manager is composed by functions that re-
ceive a small number of parameters. This value is a bit misleading, since usually
parameters are structured objects that incorporate a grater set of elements.

5.3.8. Conclusions
As evidenced by the previous set of graphs, the code maintains a good level of

quality in all the analyzed characteristics, giving the work an additional value. In
this way it is presumed that the maintenance of such system should not introduce
many problems, either at the time to integrate it with other systems, either at the
time to change it in order to adapt it to other cloud solutions.

100

5.3 – Metrics and Statistics

Figure 5.8: Number of fields

Figure 5.9: Number of parameters

101

102

Chapter 6

OpenStack Experience and
Configuration Troubleshooting

Since the installation and deployment of the Openstack infrastructure has re-
sulted to be more complex than planned, I have decided to devote a chapter to show
which were the troubles that slowed the work.

6.1. Operational Problems
First of all I must mention the incomplete alignment between the code and

the documentation files that caused diversions from the correct implementation.
Following the provided official guide I encountered many faults that fortunately had
already been treated and most of times solved in mailing lists of the developer’s
community.

The launchpad.net web site in real practice has been of paramount importance
in solving specific problems and support, since at a given time it has been necessary
to interact actively to resolve a configuration error that was not documented.

Our first successful attempt consists in the installation of the Openstack Folsom
release, with the default network managing service Nova Network (deprecated in
next version, due to the advent of the new standalone network manager Quantum).
I choose to use the default hypervisor KVM even it was not the only suitable.

The installation has not been too problematic but the correct configuration of
the computational service has been a path made of continuous tests and changes
into the configuration files. A specific scenario needs a specific configuration that
could not be standardized; so the definition of such file (nova.conf) led me through-
out developers mailing lists and forums till the generation of the configuration set
available in the appendix of this document (Appendix A.1).

The testing of the infrastructure saw the installation of several releases (stable

103

6 – OpenStack Experience and Configuration Troubleshooting

and not), which had implied the removal of the previously installed software. In the
Openstack documentation no section is dedicated to the uninstalling process that,
unfortunately, does not ends with a simple Linux purge command. When the admin
decides to remove OpenStack, he has to take care about some hidden OpenStack
residual, which usually raises error in a future installation of the IaaS.

It has occurred many times to redeploy the computational service. This opera-
tion has led to some problems caused by residual elements leaved by the previous
deployment. As I mentioned, each service works with a database (in our case a mysql
database) that should be deleted or cleared manually. Unfortunately, the database
is not the only residual element the service installation leaves. Sometimes the com-
pute service may crash leaving a headless instance in the cloud controller: these
files create cases of conflict, since, in the new deployment, the enumeration of VM’s
restart from the beginning. In this case, on booting a new VM, the new instance
may end in the error state and in the Nova compute service log file will appear
error messages that refers to an already existing VM. I solved the problem using
with a script that deeply cleaned the system and recreated the database (available
at appendix A).

The second big problem I encountered concerns the metadata service. If enabled
in the OpenStack configuration, a VM on booting can contact a metadata server
(for default set at 169.254.169.254) in order to retrieve some additional files needed
for the initial instance configuration (i.e. the injection of the SSH key pair). Even if
in the documentation it was not mentioned, metadata forwarding must be handled
by the gateway, and since the Openstack Nova service does not do any setup in this
mode, it must be done manually. All requests to 169.254.169.254 port 80 will need to
be forwarded to the API server. For this I inserted a set of iptables rules in order to
permit VMs to reach such service (iptables rules are available in the appendix A.4).
After that VMs could contact the metadata server and a SSH connection with public
and private key authentication could be performed.

The umpteenth problem I encountered concerns a feature that from our point of
view is very important: the possibility of choosing the physical machine on which
the new VM will run. At the exit of Folsom release, the documentation still relied
primarily based on the previous version and the above commands did not get the
required result.

This was a true case of no documentation, since in the transition to the new
version these commands have been changed radically and in spite of the guide bore
the name of the new release, it had not been completed yet. An important note
refers to the elected scheduler: if you need this kind of functionality you need to
specify in the configuration file the use of the filter scheduler a specific scheduler
that allows to indicate this kind of parameters. Even in this case the answer was
given by one of the developers on the Launchpad web application.

The documentation also omits that in order to enable the possibility of resize

104

6.2 – The Quantum Service Installation

VMs resources the migration service must be configured, even if the resize to the
same host flag is set to true in the nova.conf file. This operation requires the
creation of a shared repository accessible through the NFS protocol.

Fortunately, the documentation has improved with the updating process1. Fi-
nally I remark that in a multihost deployment scenario all compute nodes must be
aligned with their configuration and all of them must run the Nova Network service.

6.2. The Quantum Service Installation
Since the network customization capabilities offered by the Nova Network ser-

vice were so limited, I planned the changeover to the new standalone and full of
prospective network service Quantum. Unfortunately the transition has not been so
friendly.

After the release of the last stable release I decided to deploy the recently in-
troduced module expanding the already installed system so as to take advantage
of all the new introduced features. The Quantum project was created to provide a
rich and tenant-facing API for defining network connectivity and addressing in the
cloud. The Quantum project gives administrator the ability to leverage different
networking technologies to power their cloud networking.

However, with regret I noticed the new module still has significant limitations. In
order to support overlapping IP addresses between virtual networks, the Quantum
DHCP and L3 agents use Linux network namespaces by default. But Quantum
overlapping IPs do not work with Nova Security Groups or Nova Metadata Server
that is considered fundamental for our system. As a result I have been forced to not
use the Linux namespaces so that I can exploit the two services mentioned above.
Limited by these aspects I configured Quantum to use tunnels and not vLAN since
our switch can not bear this feature.

Following the installation guide of the official webpage, I got a completely in-
operative system, since the Nova Compute service that I configured to work with
the new network module, had broken. The error was given by a specific driver that
could not be loaded, even if the documentation was clear over this. I changed the
parameter and I managed to get the nova service running.

Then I tested the service obtaining an unexpected error: virtual machines were
not receiving the network configuration since the XML template, passed by the
compute service to libvirt, was getting populated with an empty network bridge
field. Taking advantage of the launchpad I asked the community that focused the
problem: the Nova compute service was not loading the drivers for virtual network

1The history of each document can be accessed at the specific section “Document Change
History”

105

6 – OpenStack Experience and Configuration Troubleshooting

interfaces (VIF). Through the OpenStack developers mailing list2 I found the correct
parameter and subsequently I solved a typo present in the documentation that made
the parameter not working and the system crash (Errors and correction available at
appendix A.2)

After solving the issue I experienced another problem: the l3 agent was contin-
uously reporting an error in its log due to the impossibility of defining an iptables
rule. This error had been classified as a system bug and reported in a page3 within
the launchpad web application. The bug had been fixed in the new (temporary
release) of Openstack Grizzly-”g1”4 and changes are pending to be uploaded to the
Ubuntu Quantal release. So, even if using an unstable version is not advisable, I
changed the Quantum module with the expectancy of resolving the problem, and
indeed I managed to get a working system where VMs could obtain the correct
Network configuration.

When I tested the developed Quantum Client I noticed that the interchanged
messages between Java client and Quantum API differ from the API reference5.
This occurrence made me readapt the developed code to the real message protocol.
But a more significant problem arose. Testing the developed client I reached the
conclusion that the transition between Nova network and Quantum had left some
problems in the Nova service.

6.2.1. A suggested Openstack Improvement
While testing in a more comprehensive way the new infrastructure, I fell into

an integration problem that hinders our programmatic interaction with the cloud
infrastructure. In the Nova Network service only two networks are defined as fixed
and no others names could be used, their names are private and public. This fea-
ture is a bit restricting, but now the matter refers to the message protocol: when
requesting a VM’s state information, the cloud controller returns a JSON message
describing the instance. In the addresses object (see listing 6.1) I find some JSON
elements referenced by a key which value is the name of the network.

Listing 6.1: Addresses’ part of a Nova service’s message.
{

" addresses ": {
" private ": [{" version ": 4, "addr ": "10.1.1.6"}] ,

2https://lists.launchpad.net/openstack/msg18632.html
3https://bugs.launchpad.net/quantum/+bug/1069966
4https://launchpad.net/quantum/+milestone/grizzly-1
5http://docs.openstack.org/api/openstack-network/2.0/content/

106

6.2 – The Quantum Service Installation

" public ": [{" version ": 4, "addr ": "192.168.0.134"}] ,
"lan02 ": [{" version ": 4, "addr ": "10.1.22.3"}] ,
"lan01 ": [{" version ": 4, "addr ": "10.1.11.3"}]

}
}

As long as the names of the networks were fixed there was no problem because
the values of the message could be easily accessed in programmatic form. But with
the arrival of Quantum, the names of the networks have started to be variable, since
the user can choose any value. This substantial change would have to make desist
to continue to use this parameter as a key value since by now reference values are
not fixed and more difficult to access in an automatic form.

In other words, as it is now, the fragment of the JSON response under addresses
does not conform to a fixed JSON schema. So each time a network name changes,
also the JSON message template changes. I found this problem while trying to parse
this message programatically. As it is structured now, a programmer can not build
an object able to represent the addresses element, since every network, inside it, is
parsed as an element of a different type, with the name of the network used as the
type.

The problem is not syntactic, but semantic and I think it must be fixed. It seems
that in all other messages of the API the key is fixed and this is the first case of
dynamic keys. My suggestion is: don’t use network names as key, but specify them
as values. This improvement will ease a lot the programmatical interaction between
nova and an external client. In this way programmers can map the JSON object to,
for example, a Java object, regardless the name of the network. A solution proposal
is offered in listing 6.2 and a bug report had been opened in Launchpad6.

Listing 6.2: Possible solution for Nova service’s message.
The message is conform to a fixed JSON schema that does not

matters the name of the network .
{
" addresses ": [

{" network ": " private ", " version ": "4", "addr ": "10.1.1.6" },
{" network ": " public ", " version ": "4", "addr ":

"192.168.0.134"} ,
{" network ": "lan02", " version ": "4", "addr ": "10.1.22.3"} ,
{" network ": "lan01", " version ": "4", "addr ": "10.1.11.3"}

]
}

6https://bugs.launchpad.net/nova/+bug/1084560

107

6 – OpenStack Experience and Configuration Troubleshooting

6.2.2. General Advice
I end this section with a series of useful tips when you want to deploy a cloud in-

frastructure based on OpenStack. First of all be sure to work with updated systems,
which satisfy the OpenStack’s requirements: it is necessary to pay attention to the
libvirt version, since some configuration settings vary according to this parameter.

We must not forget the importance of debugging tools that the software offers,
since they are the main source of information about what’s going on. Be sure that
you have configured authentication parameters of all modules that access the API
(Glance, Nova, Quantum. . .). These values must be configured on the specified file
api paste.ini and authentication through Keystone (when used) must be specified.

Sometimes, due to some problems it is necessary to clean up the file system from
residues of instances that no longer exist. Cleaning up the database, making sure
the correct repopulation, can sometimes solve problems of inconsistency.

For any other problem, I suggest you contact the OpenStack community that
will surely lead you to a correct configuration of your infrastructure.

108

Chapter 7

Virtual Networks over Openstack
- VNO

The last part of the development cycle covers the creation of the Virtual Net-
works over Openstack service (VNO). The name has been suggested by the Virtual
Networks over linuX project (VNX), an open-source virtualization tool designed to
help building virtual network testbeds automatically. Within this chapter I try to
define a possible service architecture that could be implemented using the previously
described system.

7.1. Virtual Networks over linuX - VNX
VNX is an open source project developed by the Telecommunication and In-

ternet Networks and Services (RSTI) research group of the Telematics Engineering
Department (DIT) of the Technical University of Madrid (UPM).

VNX is a tool for testing network applications/services over complex testbenchs
made of virtual nodes and networks, as well as for creating complex network lab-
oratories to allow students to interact with realistic network scenarios [50]. It is
composed by two main parts: one is a VNX specification language (based on XML)
used to describe the virtual network scenario, including virtual machine and virtual
networks specifications. The other is the VNX program that analyses the specifica-
tion file and creates the virtual environment. This program could be installed over
a single server, but it comes with a distributed version that allows the deployment
of virtual scenarios over clusters of Linux servers.

A recent publication [39] affirms that in this situation, cloud technologies seem to
be a natural environment for these scenario-based tools to work with in the future.
Some other similar tools provide a minimal integration with clouds technologies, as
they allow connecting the virtual scenarios created with virtual machines deployed

109

7 – Virtual Networks over Openstack - VNO

over private or public clouds. However, none of them are able to deploy a complete
virtual network scenario over a cloud infrastructure. Moreover, cloud technologies
do not provide in general the necessary primitives to allow the user to define the
topology.

But with the deployed Infrastructure Manager and the capabilities of the Open-
Stack infrastructure this prevision may become a reality.

I will not enter into the details of the VNX software since it is not the aim of
this work.

7.2. The VNO Service

The idea is to integrate the VNX service with the deployment of virtual machines
over OpenStack. The new service would be able to analyze the VNX specification
file and deploy the virtual network scenario over the cloud using primitive functions
offered by the Infrastructure Manager. This is an additional element that will val-
idate the previous work, offering a possible new use case and providing a starting
point for a possible future project. The VNO service will benefit from all cloud char-
acteristics presented in the former chapter, and in particular from the distribution
of resources over the infrastructure.

7.2.1. The Architecture

Since this is a prototype, the service architecture is simple but extensible. The
structure is composed of four main blocks that are installed above the infrastructure
manager system (figure 7.1). The Service block, an implementation of the Service
Interface, is the main module that analyzes and starts the virtual scenario. The
Parser is in charge of the unmarshalling of the configuration file, returning han-
dleable objects to the service module. The last module is the Connector or rather
the link between the VNO service and the Infrastructure Manager. Even in this
case the architecture follows a hierarchical design where the Service module acts as
root.

The Connector

I will start from the lower layer or rather the Connector. This is the linker to
the Infrastructure Manager that enables the deployment of the virtual scenario. It
calls the IM’s primitives in order to start all virtual instances specified by the higher
levels.

110

7.2 – The VNO Service

 VNO architecture

VNO Service

Parser
Connector

Infrastructure Manager

VNO Service Interface

Figure 7.1: VNO architecture

The Parser

The parser is the element responsible of unmarshalling the specification file. The
VNX specification file contains a set of XML tags that define the characteristic that
VMs should have. Now, the level of customization of virtual instances offered by
VNX is considerably lower than that offered by the IM; for this reason a default
adaptation must be done. With default adaptation I mean that many variables that
are required to start a new VM are not specified in the VNX XML file and for this
reason they must be set as default value. In this version of the code, the parser just
focus on VMs and networks specifications: a future implementation, accordingly
with a proper IM improvement, may lead to an exhaustive and complete system
able to add new features to VNX standard.

The Service Implementation

The Service implementation is the working center of the service since it receives
and manages the set of objects that compose the scenario. In listing 7.1 we can see
an example of virtual machine specification. We can notice that a VM is defined
by a name, an operative system, a file system type, an amount of memory and by
a list of network configurations where the interfaces of the VM are defined. It is
obvious that a lot of parameters are missing if we want to deploy this element over
the cloud.

Once obtained these values, the Service Implementation calls the Connector

111

7 – Virtual Networks over Openstack - VNO

passing the retrieved information. The Connector will contact the Infrastructure
Manager that will deploy the VM. With more than one VM definition, the system
works sequentially treating all specifications once at a time. With just one element
the example may seems trivial, but in appendix B a more exhaustive example is
provided.

Naturally it is important to remake that this system benefits of the IM service
that ease substantially the deployment task. In figure 7.2 we can see the graphical
representation of the workflow.

Listing 7.1: Example of VM in the VNX specification file (partial)
<vm name ="h2" type =" libvirt " subtype =" kvm" os=" linux">

<filesystem type =" cow ">/ usr/share/vnx/ filesystems /
rootfs_ubuntu </ filesystem >

<mem >128M</mem >
<if id ="1" net =" Net0">

<ipv4 >10.0.0.3/24 </ ipv4 >
</if >
<route type =" ipv4" gw ="10.0.0.1" > default </ route >

</vm >

7.2.2. The Test
At the end of the development we tested the service over workbench passing to

the service the VNX configuration file retrieved online in the VNX documentation1.
Such configuration file is available in the appendix B. An important VNO limitation
is the impossibility of create virtual routers since the Openstack platform now is
not providing this feature when the metadata service is enabled. For this reason we
change partially the XML file, even if in VNX virtual routers are virtual machines
with a linux OS simulating the router behavior.

At the end of the execution we can found in the cloud controller the following
result (listing 7.2). A graphical view is offered in figure 7.3.

Listing 7.2: Example of VM specification in the VNX specification file
+--------------------------------------+------+--------+--------+
| ID | Name | Status | Networks |
+--------------------------------------+------+--------+--------+
| fe82f5ba -ffd8 -4fbb -8f25 -6 f1a2f3ab2fa | h1 | ACTIVE | Net0

=10.0.0.3 |
| e05ef7bd -bcbd -4b55 -a4ba -46 c30bb9867b | h2 | ACTIVE | Net0

=10.0.0.4 |

1Available online at http://web.dit.upm.es/vnxwiki/index.php/Vnx-tutorial-ubuntu

112

7.2 – The VNO Service

| aff66a55 -b1c8 -492c -976c- ebc4b4341cac | h3 | ACTIVE | Net2
=10.0.2.4 |

| e9314b4a -aa2d -40a9 -bb17 -8 b1b99fb120c | h4 | ACTIVE | Net2
=10.0.2.3 |

+--------------------------------------+------+--------+--------+

Receive the XML File

Parse the specification
file

Create a list of Virtual
Machine and Virtual

Networks to be created

Call the Infrastructure
Manager and create the

elements

If a problem occurs,
return an Exception

Figure 7.2: VNO service activity diagram

How we can see in the figure 7.3, the scenario is still incomplete: it lacks a virtual
router able to route the network traffic outside the cloud. This improvement can be
reached only when a stable release of the Openstack Network Service could provide
the possibility of virtualize this typology of devices without restrictions.

Conclusions and Possible Extensions to the Project

This is only the starting point of a new project that does not make part of this
master thesis. Significant improvements may be made, with the aim of creating
a system able to deploy advanced network topologies, reaching and surpassing the
actual level of the tool.

113

7 – Virtual Networks over Openstack - VNO

10.0.2.0/2410.0.0.0/24

VM

VM

VR

Figure 7.3: VNO service test result, the creation of a Virtual Router is the future
goal and it is not still present

We can notice the XML file contains more parameters than those handled by us.
An example is the “exec” tag. This label brings together a series of commands that
are executed on the virtual machine in the ignition phase. This concept seems to
find a natural mapping with the metadata service of OpenStack where the user can
pass to the virtual machine a script or a initial configuration file that is executed on
booting.

VNX allows the user to load a file system tree into the new VM. Even in this
case this feature sees a similar service in the Openstack volumes service where the
user can create new storage volumes and attach them to the running instance. By
automating this process we could create this feature also in VNO.

Another possible improvement is the introduction of different access interfaces
such as REST or web interfaces improving the accessibility of the service.

Up to now we have tried to adapt the VNX format to the new system. Another
idea is to change slightly the standard used for the configuration file, while keeping
backwards compatibility, but inserting new elements that could fit with the new
features: these new features refers to the possibility of choosing adopted OS image
for each VM, or the computing power allocated to each instance.

Also an improvement is to provide mapping policies that guide the process of
allocating VMs to specific Hosts over the cloud.

These are only a small set of characteristics that describe the great potentialities
of the new Virtual Networks over OpenStack service.

114

Chapter 8

Results and conclusions

The aim of this chapter is to review the results by extracting appropriate con-
clusions and pointing possible future research lines.

To do this, I begin with a review of the goals set at the beginning of the project,
to analyze their fulfillment. After that I summarize some of the limitations and
difficulties encountered during development and finally, I enumerate some possible
future lines of work.

8.1. Results

During this Master Thesis I have established the need for a management ar-
chitecture for private IaaS clouds able to support several solutions (to avoid data
and vendor lock-in), working alone or together, and several user interfaces. To this
end I have decided to use of a generic information model developed inside the re-
search group that captures all the relevant information for the infrastructure, and a
modular architecture that can be adapted to fit several IaaS products and needs.

To validate my approach I have developed and tested a sample implementation
with support for one cloud solution (OpenStack). In previous chapters I have de-
scribed the details of this implementation, analyzing step by step each component
of the developed system.

The IM (Infrastructure Manager) allows the deployment of VMs over a private
cloud infrastructure, leaving open the possibility to use a different solution, and
allows the creation of virtual network scenarios in an automated, albeit limited,
way.

I have put my work trough test using a set of specific cases that verify the
correct behavior of the system. Additionally, I have implemented an additional
service (VNO), which uses some services provided by the Infrastructure Manager.

115

8 – Results and conclusions

8.2. Conclusions
The completion of this Master Thesis has put me in an environment where I

have been able to strengthen my knowledge and learn many concepts in the fields
of software development, software systems, network integration and web services.

During the development of the project I have improved my skills and knowledge
in the relatively new and potentially important field of cloud computing. Also,
I’ve been able to practice and improve my abilities in the use of various tools and
technologies, like integrated development environments, virtualization tools, cloud
platforms and application servers.

Finally, this work has allowed me to deepen my knowledge about the Java pro-
gramming language, especially with web services technologies. More importantly, I
have managed to familiarize with the OpenStack environment and all its services.

8.3. Future works
During the developing period of the system different ideas for new features and

improvements have emerged. Unfortunately, not all of them could be developed in
the time frame of this work. In this section I describe some of these ideas for future
work, which were not incorporated in this thesis due to the limited timescale and
resources.

The first future aim is to develop support for at least another cloud solution:
This way we will be more able to test a federation of several private clouds and
achieve a true working common management interface for multiple technologies.
Related to this, another possibility for improvement would be the implementation
of more user interfaces, which would allow the access to the service through the use
of more technologies.

The implementation of the VNO service still needs a lot of effort in order to
reach an adequate level of customization of the scenarios. This objective is tied
with the improvement of the OpenStack IaaS network features, especially its system
for managing virtual networks. The level of integration between the two services
(VNX and VNO) can be greatly improved, but the amount of work required for this
might represent another Master Thesis in on itself.

I have also left as future work the integration of the Infrastructure Manager
with a reasoning module able to automate the administration of a private cloud
platform, thus completing the creation of a full autonomous manager for private
cloud infrastructures.

Finally, the last line of work I would like to follow is the application of the
presented architecture to the management of public cloud offerings, since the interest
in hybrid clouds that mix public and private IaaS is growing steadily.

116

Appendix A

Configuration example for
OpenStack

A.1. File nova.conf with nova network
In this appendix I propose the set of configuration files used during the devel-

opment of the Infrastructure Manager. Since one of the most troubled phases had
been the OpenStack deployment, I attach the configuration set I used, in order to
assist the reader in case he wants to deploy its own IaaS.

Listing A.1: nova.conf
[DEFAULT]

LOGSTATE
verbose =True
logdir =/ var/log/nova
state_path =/ var/lib/nova
lock_path =/ var/lock/nova

#VIF
libvirt_vif_driver =nova.virt. libvirt .vif.

LibvirtHybridOVSBridgeDriver
libvirt_ovs_bridge =br -int
libvirt_vif_type = ethernet

SCHEDULER
scheduler_driver =nova. scheduler .multi. MultiScheduler
volume_scheduler_driver =nova. scheduler . chance . ChanceScheduler
compute_scheduler_driver =nova. scheduler . filter_scheduler .

FilterScheduler
scheduler_available_filters =nova. scheduler . filters .

standard_filters

117

A – Configuration example for OpenStack

scheduler_default_filters = AvailabilityZoneFilter ,RamFilter ,
ComputeFilter

NETWORK
dhcpbridge_flagfile =/ etc/nova/nova.conf
dhcpbridge =/ usr/bin/nova - dhcpbridge
force_dhcp_release =True
firewall_driver =nova.virt. libvirt . firewall . IptablesFirewallDriver
linuxnet_interface_driver =nova. network . linux_net .

LinuxOVSInterfaceDriver

QUANTUM
network_api_class = nova. network . quantumv2 .api.API
quantum_url = http ://192.168.0.1:9696
quantum_auth_strategy = keystone
quantum_admin_tenant_name = service
quantum_admin_username = user
quantum_admin_password = password
quantum_admin_auth_url = http :// b205b2 .dit.upm.es :35357/ v2.0

Change my_ip to match each host
my_ip =192.168.0.1

VOLUMES
volumes_path =/ var/lib/nova/ volumes
iscsi_helper = tgtadm

COMPUTE
libvirt_use_virtio_for_bridges =True
connection_type = libvirt
libvirt_type =kvm
compute_driver =nova.virt. libvirt . LibvirtDriver
root_helper =sudo nova - rootwrap /etc/nova/ rootwrap .conf
allow_resize_to_same_host =True

#API
ec2_private_dns_show_ip =True
api_paste_config =/ etc/nova/api -paste.ini
multi_host =True
enabled_apis =ec2 , osapi_compute , osapi_volume , metadata
metadata_host =192.168.0.1
metadata_port =8775
dmz_cidr =192.168.0.1/32

DATABASE
sql_connection =mysql ://<user >:< password >@192 .168.0.1/ nova

GLANCE
image_service =nova.image. glance . GlanceImageService

118

A.1 – File nova.conf with nova network

glance_api_servers =192.168.0.1:9292

MESSAGES
rabbit_host = 192.168.0.1

AUTHENTICATION
auth_strategy = keystone

[keystone_authtoken]
auth_host = 192.168.0.1
auth_port = 35357
auth_protocol = http
auth_uri = http ://192.168.0.1:5000/
admin_tenant_name = service
admin_user = user
admin_password = password

MIGRATION
vncserver_listen =0.0.0.0
live_migration_flag = VIR_MIGRATE_UNDEFINE_SOURCE ,

VIR_MIGRATE_PEER2PEER , VIR_MIGRATE_LIVE

RESIZE
resize_confirm_window = 1

I will focus over some important values of the nova.conf configuration file:

- The authentication method must be set to “keystone”.

- In the case the user needs to force the scheduling of VM over specific hosts
(this is the case of the Infrastructure Manager), he needs to specify the filter
scheduler option since the default one does not provide this possibility.

- The resize confirm window avoids a confirmation message in the resize opera-
tion.

- If the user needs a multi-host scenario, the multi host flag must be set with
the true value. Over multi host scenarios the resize and migrate functions are
enabled only if a common nfts folder is correctly configured.

- The data base may not necessarily reside in the same machine in which the
cloud controller has been installed.

- The libvirt vif driver must be set according to the libvirt version.

The Quantum service has been deployed using Open vSwitch - OVS [51]. Using
the OVS quantum plugin in a deployment with multiple hosts requires the using of

119

A – Configuration example for OpenStack

either tunneling or vlans in order to isolate traffic from multiple networks. This is
not the only available choice.

Make particularly attention to the following parameters that presents errors in
the official documentation.

Listing A.2: Driver configuration errors
Configuration parameters described in the documentation :

libvirt_vif_driver =nova.virt. libvirt .vif.
LibvirtHybirdOVSBridgeDriver

compute_driver = libvirt . LibvirtDriver

Correct parameters :

libvirt_vif_driver =nova.virt. libvirt .vif.
LibvirtHybridOVSBridgeDriver

compute_driver =nova.virt. libvirt . LibvirtDriver

A.2. Cleanup script

The bash script I propose ease the user to redeploy the OpenStack infrastructure
without incurring in errors caused by residual elements of the previous installation.

Listing A.3: Script for cleaning the system from nova residuals: cleanup.sh
ROOTPSW

#!/ bin/bash

rm -f /var/log/ libvirt /qemu/ instance *
rm -f /etc/ libvirt / nwfilter /nova*
rm -f /var/lib/nova/ instances /instance -*
rm -f /var/log/ libvirt /qemu/inst*
rm -f /etc/ libvirt / nwfilter /nova -*

sudo mysql -uroot -p$1 -e ’DROP DATABASE nova;’
sudo mysql -uroot -p$1 -e ’CREATE DATABASE nova;’
sudo mysql -uroot -p$1 -e "GRANT ALL PRIVILEGES ON nova .* TO ’

nova ’@ ’% ’;"
sudo mysql -uroot -p$1 -e "SET PASSWORD FOR ’nova ’@’%’ = PASSWORD

(’nova ’);"

120

A.3 – IPTables rules

A.3. IPTables rules
If the metadata service is enabled, it is necessary to set a collection of iptables

rules that routes the VM’s requests to the controller.

Listing A.4: Ipitables rules for metadata
iptables -t nat -A PREROUTING -d 169.254.169.254/32 -p tcp -m tcp

--dport 80 -j DNAT --to - destination <APISERVER >:8775

iptables -t nat -A OUTPUT -d 169.254.169.254/32 -p tcp -m tcp --
dport 80 -j DNAT --to - destination <APISERVER >:8775

121

122

Appendix B

VNX example of configuration file

In this second appendix I propose an example of configuration file used to deploy
a virtual scenario, through the VNO service.

B.1. VNX configuration file
The XML specification file comes from the official documentation of the VNX

project. Since I try to mantain the compatibility between the two services, I use an
example of configuration file offered in the official documentation of VNX [50]. The
only modification I made was the deletion of router definitions, since VNO does not
yet support such functionality.

The XML file defines 4 virtual machines (h1,h2,h3,h4) connected to different
virtual networks.

Listing B.1: VNX configuration file
<?xml version ="1.0" encoding ="UTF -8"? >

<!--
˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
VNX Sample scenarios
˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

Name: tutorial_ubuntu
Description : A simple tutorial scenario made of 6 Ubuntu virtual

machines (4 hosts: h1 , h2 , h3 and h4;
and 2 routers : r1 and r2) connected through three

virtual networks . The host participates
in the scenario having a network interface in Net3.

This file is part of the Virtual Networks over LinuX (VNX)
Project distribution .

123

B – VNX example of configuration file

(www: http :// www.dit.upm.es/vnx - e-mail: vnx@dit .upm.es)

Departamento de Ingenieria de Sistemas Telematicos (DIT)
Universidad Politecnica de Madrid
SPAIN
-->

<vnx xmlns:xsi =" http :// www.w3.org /2001/ XMLSchema - instance "
xsi: noNamespaceSchemaLocation ="/ usr/share/xml/vnx/vnx -2.00. xsd

">
<global >

<version >2.0 </ version >
<scenario_name > tutorial_ubuntu </ scenario_name >
<automac />
<vm_mgmt type =" none" />
<vm_defaults >

<console id ="0" display ="no"/>
<console id ="1" display =" yes "/>

</ vm_defaults >
</global >

<net name =" Net0" mode =" virtual_bridge " />
<net name =" Net1" mode =" virtual_bridge " />

<vm name ="h1" type =" libvirt " subtype =" kvm" os=" linux">
<filesystem type =" cow ">/ usr/share/vnx/ filesystems /

rootfs_ubuntu </ filesystem >
<mem >384M</mem >
<console id ="0" display =" yes "/>
<console id ="1" display ="no"/>
<if id ="1" net =" Net0">

<ipv4 >10.0.0.2/24 </ ipv4 >
</if >
<route type =" ipv4" gw ="10.0.0.1" > default </ route >

<filetree seq =" vnxtxt " root ="/ tmp">conf/txtfile </ filetree >

<!-- Start xeyes application -->
<exec seq =" xeyes" type =" verbatim " ostype =" xexec">xeyes </

exec >

<!-- Start xeyes application and wait until it is closed -->
<exec seq =" xeyes2 " type =" verbatim " ostype =" xsystem ">xeyes

</exec >

<!-- Start gedit , maximize the window and show a text file
-->

124

B.1 – VNX configuration file

<exec seq =" vnxtxt " type =" verbatim " ostype =" system ">chmod
666 /tmp/vnx.txt </exec >

<exec seq =" vnxtxt " type =" verbatim " ostype =" xexec">gedit /
tmp/vnx.txt </exec >

<exec seq =" vnxtxt " type =" verbatim " ostype =" xexec">sleep 3;
wmctrl -r vnx.txt -b add , maximized_vert , maximized_horz </

exec >
<exec seq =" vnxtxtoff " type =" verbatim " ostype =" system ">pkill

gedit; rm /tmp/vnx .*</exec >

<!-- Start firefox and connect to h3 web server -->
<exec seq ="www -h3" type =" verbatim " ostype =" xexec"> firefox

http ://10.0.2.2 </ exec >
<exec seq ="www -h3 -off" type =" verbatim " ostype =" system ">pkill

firefox </exec >

<!-- Start calculator -->
<exec seq =" calc" type =" verbatim " ostype =" xexec">

gcalctool </exec >
<exec seq =" calcoff " type =" verbatim " ostype =" system ">pkill

gcalctool </exec >

</vm >

<vm name ="h2" type =" libvirt " subtype =" kvm" os=" linux">
<filesystem type =" cow ">/ usr/share/vnx/ filesystems /

rootfs_ubuntu </ filesystem >
<mem >128M</mem >
<if id ="1" net =" Net0">

<ipv4 >10.0.0.3/24 </ ipv4 >
</if >
<route type =" ipv4" gw ="10.0.0.1" > default </ route >

</vm >

<vm name ="h3" type =" libvirt " subtype =" kvm" os=" linux">
<filesystem type =" cow ">/ usr/share/vnx/ filesystems /

rootfs_ubuntu </ filesystem >
<mem >128M</mem >
<if id ="1" net =" Net1">

<ipv4 >10.0.2.2/24 </ ipv4 >
</if >
<route type =" ipv4" gw ="10.0.2.1" > default </ route >
<!-- Copy the files under conf/ tutorial_ubuntu /h3 to vm /var/

www directory -->
<filetree seq =" start -www" root ="/ var/www">conf/

tutorial_ubuntu /h3 </ filetree >
<!-- Start/stop apache www server -->
<exec seq =" start -www" type =" verbatim " ostype =" system ">chmod

644 /var/www /*</exec >

125

B – VNX example of configuration file

<exec seq =" start -www" type =" verbatim " ostype =" system "> service
apache2 start </exec >

<exec seq ="stop -www" type =" verbatim " ostype =" system "> service
apache2 stop </exec >

</vm >

<vm name ="h4" type =" libvirt " subtype =" kvm" os=" linux">
<filesystem type =" cow ">/ usr/share/vnx/ filesystems /

rootfs_ubuntu </ filesystem >
<mem >128M</mem >
<if id ="1" net =" Net1">

<ipv4 >10.0.2.3/24 </ ipv4 >
</if >
<route type =" ipv4" gw ="10.0.2.1" > default </ route >
<!-- Copy the files under conf/ tutorial_ubuntu /h4 to vm /var/

www directory -->
<filetree seq =" start -www" root ="/ var/www">conf/

tutorial_ubuntu /h4 </ filetree >
<!-- Start/stop apache www server -->
<exec seq =" start -www" type =" verbatim " ostype =" system ">chmod

644 /var/www /*</exec >
<exec seq =" start -www" type =" verbatim " ostype =" system "> service

apache2 start </exec >
<exec seq ="stop -www" type =" verbatim " ostype =" system "> service

apache2 stop </exec >
</vm >

</vnx >

126

Glossary

API Application Programming Interface.

CLI Command Line Interface.

CPU Central Process Unit.

CSV Comma Separated Values.

DHCP Dynamic Host Configuration Protocol.

EC2 Elastic Compute CLoud.

EMF Eclipse Modeling Framework.

EMOF Essential Meta Object-Facility.

GCE Google Compute Engine.

GIM General Information Model.

HTTP HyperText Transfer Protocol.

IaaS Infrastructure as a Service.

IM Infrastructure Manager.

IP Internet Protocol.

KOALA Karlsruhe Open Application (for) cLoud Administration.

KVM Kernel-based Virtual Machine.

L3 Layer 3 - refers to the network layer of the OSI model.

127

Glossary

LDAP Lightweight Directory Access Protocol.

libvirt A toolkit to interact with the virtualization capabilities.

NIST National Institute of Standard and Technology.

OCCI Open Cloud Computing Interface.

OMG Object Management Group.

OS Operating System.

OVF Open Virtualization Format .

OVS Open Virtual Switch.

PaaS Platform as a Service.

qcow2 QEMU Copy On Write disk.

RAM Random Access Memory.

S3 Simple Storage Service.

SaaS Software as a Service.

SOAP Simple Object Access Protocol.

SSH Secure Shell.

Tomcat Open source web server and servlet container.

VDI Virtual Disk Image.

VHD Virtual Hard Disk.

VM Virtual Machine.

VMDK Virtual Machine Disk.

VNO Virtual Networks over OpenStack.

VNX Virtual Networks over linuX.

128

Bibliography

[1] David M. Chess Jeffrey O. Kephart Jeffrey O. Kephart. Autonomic computing:
Ibm’s perspective on the state of information technology. IEEE Computer IEEE
Computer Society, pages 41–50, 2003.

[2] J.O. Kephart and D.M. Chess. The vision of autonomic computing. Computer,
36(1):41 – 50, January 2003.

[3] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner. A
break in the clouds: towards a cloud definition. SIGCOMM Comput. Commun.
Rev., 39(1):50–55, December 2008.

[4] Twenty-one experts define cloud computing | virtualization journal. Available
online at http://virtualization.sys-con.com/node/612375. Retrieved On 27-09-
2012.

[5] Celorio Pascual A. Desarrollo de un sistema para monitorización y análisis de
plataformas de computación en la nube. Master’s thesis, Universidad Politec-
nica de Madrid - ETSIT, 2012.

[6] Timothy Grance Peter Mell. The nist definition of cloud computing. Special
Publication 800-145, September 2011.

[7] Alexander Lenk, Markus Klems, Jens Nimis, Stefan Tai, and Thomas Sand-
holm. What’s inside the cloud? an architectural map of the cloud landscape.
In Proceedings of the 2009 ICSE Workshop on Software Engineering Challenges
of Cloud Computing, CLOUD ’09, pages 23–31, Washington, DC, USA, 2009.
IEEE Computer Society.

[8] Amazon elastic compute cloud (Amazon EC2). Available online at
http://aws.amazon.com/ec2/. Retrieved on 26-09-2012.

[9] Dejan Milojiƒçiƒá, Ignacio M. Llorente, and Ruben S. Montero. Opennebula: A
cloud management tool. Internet Computing, IEEE, 15(2):11 –14, march-april
2011.

[10] Openstack - open source cloud computing software. Available online at
http://www.openstack.org/software/. Retrieved on 14-09-2012.

[11] Heroku - how it works. Available online at http://www.heroku.com/how. Re-
trieved on 26-09-2012.

129

Bibliography

[12] A. Zahariev. Google app engine. In TKK T-110.5190 Seminar on Internet-
working, pages 1–5, 2009.

[13] Cloud foundry - architectural overview. Available online at
http://docs.cloudfoundry.com/infrastructure/overview.html. Retrieved on
26-09-2012.

[14] Google docs - google docs homepage. Available online at
http://www.google.com/google-d-s/documents/. Retrieved on 14-09-2012.

[15] M. Manzano, J. A. Hernandez, M. Uruena, and E. Calle. An empirical study of
cloud gaming. In Network and Systems Support for Games (NetGames), 2012
11th Annual Workshop on, pages 1 –2, nov. 2012.

[16] Gartner’s 2012 hype cycle for emerging technologies identifies ”Tipping
point” technologies that will unlock long-awaited technology scenarios.
http://www.gartner.com/it/page.jsp?id=2124315.

[17] Anton Beloglazov, Jemal Abawajy, and Rajkumar Buyya. Energy-aware re-
source allocation heuristics for efficient management of data centers for cloud
computing. Future Generation Computer Systems, 28(5):755–768, May 2012.

[18] J. Baliga, R.W.A. Ayre, K. Hinton, and R.S. Tucker. Green cloud computing:
Balancing energy in processing, storage, and transport. Proceedings of the
IEEE, 99(1):149 –167, January 2011.

[19] Eucalyptus cloud homepage. Available online at http://www.eucalyptus.com.
Retrieved on 26-09-2012.

[20] About nimbus - nimbus. Available online at
http://www.nimbusproject.org/about/. Retrieved on 27-09-2012.

[21] G. von Laszewski, J. Diaz, Fugang Wang, and G.C. Fox. Comparison of mul-
tiple cloud frameworks. In Cloud Computing (CLOUD), 2012 IEEE 5th Inter-
national Conference on, pages 734 –741, june 2012.

[22] LLC OpenStack. Openstack install and deploy manual. Available online
at http://docs.openstack.org/folsom/openstack-compute/install/apt/content/,
2012. Retrieved on 14-09-2012.

[23] Damien Cerbelaud, Shishir Garg, and Jeremy Huylebroeck. Opening the
clouds: qualitative overview of the state-of-the-art open source vm-based cloud
management platforms. In Proceedings of the 10th ACM/IFIP/USENIX In-
ternational Conference on Middleware, Middleware ’09, pages 22:1–22:8, New
York, NY, USA, 2009. Springer-Verlag New York, Inc.

[24] P. Sempolinski and D. Thain. A comparison and critique of eucalyptus, open-
nebula and nimbus. In Cloud Computing Technology and Science (CloudCom),
2010 IEEE Second International Conference on, pages 417 –426, 30 2010-dec.
3 2010.

[25] Comparativa de las plataformas cloud abiertas: OpenStack, OpenNeb-
ula, eucalyptus y CloudStack | revista cloud computing. Available online

130

Bibliography

at http://www.revistacloudcomputing.com/2013/01/comparativa-de-las-
plataformas-cloud-abiertas-openstack-opennebula-eucalyptus-y-cloudstack/.
Retrieved on January 2013.

[26] Bernd Harzog. Microsoft launches new azure features, new iaas offering,
and performance management partnerships | the virtualization practice.
http://www.virtualizationpractice.com/news-microsoft-launches-new-azure-
features-new-iaas-offering-and-performance-management-partnerships-16365/.

[27] Git homepage. Available online at http://git-scm.com/. Retrieved on 28-09-
2012.

[28] Dropbox - simplify your life. Available online at https://www.dropbox.com/.
Retrieved on 20-10-2012.

[29] Panda Security. Panda cloud antivirus. Available online at
http://www.cloudantivirus.com. Panda Cloud Antivirus Free Edition,
Retrieved on 20-10-2012.

[30] C. Baun, M. Kunze, and V. Mauch. The KOALA cloud manager: Cloud service
management the easy way. In 2011 IEEE International Conference on Cloud
Computing (CLOUD), pages 744 –745, July 2011.

[31] Christian Baun and Marcel Kunze. The KOALA cloud management service: a
modern approach for cloud infrastructure management. In Proceedings of the
First International Workshop on Cloud Computing Platforms, CloudCP ’11,
page 1:1’Äı̀1:6, New York, NY, USA, 2011. ACM.

[32] Liutong Xu and Jie Yang. A management platform for eucalyptus-based iaas.
In Cloud Computing and Intelligence Systems (CCIS), 2011 IEEE International
Conference on, pages 193 –197, sept. 2011.

[33] Puppet labs: IT automation software for system administrators. Available
online at http://puppetlabs.com/. Retrieved on 15-01-2013.

[34] Xen. Available online at http://wiki.xen.org/wiki/Main Page.
[35] libvirt: The virtualization API. Available online at http://libvirt.org/.
[36] Anatomy of the libvirt virtualization library. Available online at

http://www.ibm.com/developerworks/linux/library/l-libvirt/. Retrieved 21-
11-2012.

[37] Eclipse modeling - EMF - home. Available online at
http://www.eclipse.org/modeling/emf/.

[38] Roy Fielding. Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, UNIVERSITY OF CALIFORNIA, IRVINE, 2000.

[39] D. Fernandez, A. Cordero, J. Somavilla, J. Rodriguez, A. Corchero, L. Tar-
rafeta, and F. Galan. Distributed virtual scenarios over multi-host linux envi-
ronments. In 2011 5th International DMTF Academic Alliance Workshop on
Systems and Virtualization Management (SVM), pages 1 –8, October 2011.

[40] Russ Miles and Kim Hamilton. Learning UML 2.0. O’Reilly, 2008.

131

Bibliography

[41] L. Youseff, M. Butrico, and D. Da Silva. Toward a unified ontology of cloud
computing. In Grid Computing Environments Workshop, 2008. GCE ’08, pages
1 –10, November 2008.

[42] OMG’s MetaObject facility. Available online at http://www.omg.org/mof/.

[43] Douglas Crockford <douglas@crockford.com>. The application/json me-
dia type for JavaScript object notation (JSON). Available online at
http://tools.ietf.org/html/rfc4627.

[44] Jackson JSON processor - homepage. Available online at
http://jackson.codehaus.org/. Retrieved October 2012.

[45] Log4J2 guide - apache log4j 2. Available online at
http://logging.apache.org/log4j/2.x/. Retrieved on 20-12-2012.

[46] Eclipse - the eclipse foundation open source community website. Available
online at http://www.eclipse.org/. Retrieved on 27-10-2012.

[47] Yoonsik Cheon and Gary T. Leavens. A simple and practical approach to unit
testing: The JML and JUnit way. In Boris Magnusson, editor, ECOOP 2002
- Object-Oriented Programming, number 2374 in Lecture Notes in Computer
Science, pages 231–255. Springer Berlin Heidelberg, January 2006.

[48] What to expect from grizzly-1 milestone. Available online at
http://fnords.wordpress.com/2012/11/23/what-to-expect-from-grizzly-1-
milestone/. Retrieved 11 Jan 2013.

[49] State of flow: EclipseMetrics::projects. Available online at
http://www.stateofflow.com/projects/16/eclipsemetrics. Retrieved on 20-
01-2013.

[50] VNX homepage. Available online at http://web.dit.upm.es/vnxwiki/index.php/Main Page.

[51] Open vSwitch homepage. Available online at http://openvswitch.org/. Re-
trieved on November 2012.

132

Author: Mattia Peirano

Date:

	Introduction
	Context
	Technical Objectives
	Didactic Objectives
	Work Plan
	Document Structure

	State of the Art
	Cloud Computing Definition
	Main Features
	Service Models
	Infrastructure as a Service - IaaS
	Platform as a Service - PaaS
	Software as a Service - SaaS

	Deployment Models
	Private Cloud
	Community Cloud
	Public Cloud
	Hybrid Cloud
	Hosted Public Cloud vs. Hosted Private Cloud

	Computing as Utility
	Cloud Sustainability
	Technologies
	Private IaaS
	Public IaaS
	PaaS Services
	SaaS Services

	Management of cloud services
	KOALA
	Scalr
	Puppet

	Virtualization
	Hypervisors
	LibVirt
	Other solutions

	Supporting technologies
	Eclipse Modeling Framework
	GitHub
	Launchpad
	REST

	Requirements Analysis
	Problem Definition
	Domain model
	Requirements
	Functional Requirements
	Non-functional Requirements

	Use cases
	Traceability

	Design
	General architecture
	Assumptions
	The Cloud Computing Information model
	EMF Model
	OpenStack Information Model

	Component Diagram
	Client Layer
	Manager Layer
	Controller Layer

	Man.O.S. detailed Design
	The Client
	System interfaces
	Manager Implementation
	The Utility Package
	Exceptions
	The Infrastructure Manager Implementation

	Test
	Introduction to Tests
	Tests in Java Environment

	Test Architecture
	Unit Tests
	Integration Tests
	System Tests

	Metrics and Statistics
	Cyclomatic Complexity
	Weighted Methods per Class
	Efferent Couplings
	Lack of Cohesion in Methods
	Number of Levels
	Number of Fields
	Number of Parameters
	Conclusions

	OpenStack Experience and Configuration Troubleshooting
	Operational Problems
	The Quantum Service Installation
	A suggested Openstack Improvement
	General Advice

	Virtual Networks over Openstack - VNO
	Virtual Networks over linuX - VNX
	The VNO Service
	The Architecture
	The Test

	Results and conclusions
	Results
	Conclusions
	Future works

	Configuration example for OpenStack
	File nova.conf with nova network
	Cleanup script
	IPTables rules

	VNX example of configuration file
	VNX configuration file

	Bibliography

