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Abstract One of the most important design constraints of
a climbing robot is its own weight. When links or legs are
used as a locomotion system they tend to be composed of
special lightweight four-bars-linkage
mechanisms are designed to reduce the weight with small

materials, or

rigidity looses. In these cases, flexibility appears and
undesirable effects, such as dynamics vibrations, must be
avoided at least when the robot moves at low speeds. The
knowledge of the real tip position requires the
computation of its compliance or stiffness matrix and the
external forces applied to the structure. Gravitational
forces can be estimated, but external tip forces need to be
measured. This paper proposes a strain gauge system
which achieves the following tasks: (i) measurement of
the external tip forces, and (ii) estimation of the real tip
position (including flexibility effects). The
advantages of the proposed system are: (a) the use of
external force sensors is avoided, and (b) a substantial

main

reduction of the robot weight is achieved in comparison
with other external force measurement systems. The
proposed method is applied to a real symmetric climbing
robot and experimental results are presented.
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1. Introduction

Force sensors [1] have been used since the 1980s in
industrial robotics when interaction tasks are required.
The most common commercial versions are based on the
Maltese-Cross force sensor which consists of a cylindrical
device with an inner element joined with elastic links and
disposed as a cross with eight (or eight pairs) strain
gauges that allows us to achieve the applied forces and
torques on the sensor [2]. The sensor is often located
between the wrist plate and the tool, and its measurement
is achieved regarding the wrist reference frame.
Additional hardware is required which is wusually
connected with the robot control unit or with an external
device via its I/O interface. The sensor measurements
allow the robot to perform different force or hybrid
position-force control tasks [3-6] when it interacts with
the environment (assembly, polishing, machining or
obtacle avoidance, if mobile robots are considered). These
tasks would be impossible to carry out without this kind
of sensorial system, although some more complex vision-
based algorithms are integrated with the whole sensorial
systems of some advanced robots (see a survey from [7]).

On the other hand, when climbing robots are developed
with different configurations or legs-based locomotion
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systems, the weight of the whole robot is an important
design constraint and it implies that links, legs, etc., have to
be built of lightweight, special materials or with typical
linkage mechanisms [8-11]. The use of lighweight links
produces a normally undesirable phenomenon which is
the flexion of the links. This flexion causes dynamics
vibrations whose frequency vibrations are related to the
rigidity and the mass distributions of the system [12]. Of
course, these vibrations are prevented by a correct selection
of the rigidity of the links in a trade-off between increasing
the flexion and preventing undesirable dynamics
vibrations along with the avoidance of high velocities of
the robot elements. But flexion can be exploited as a
positive robot functionality in special applications [13],[14]
or new robot concepts [6],[16]. Thus, when robot force
measurements are necessary, the use of external sensing
devices may be avoided by obtaining the forces from the
deflection of the robot flexible structure (or a part of it).
This is possible by employing strain gauges (as in [16],[17])
and the novel method proposed in this work.

The new method has been implemented in the MATS-
ASIBOT platform (see Figure 1 for details). It is a five
Degrees of Freedom (DOF) robotic manipulator with 11 kg
weight, 1.37 m of maximum reach and it is able to carry a 2
kg payload on each of its two tips. The most important
feature of the MATS-ASIBOT platform is that the entire
control system is on-board and it only needs a power
supply and a wireless user interface from outside. The
robot has been conceived as a symmetrical structure which
allows it to climb between static and simple docking
stations placed into its environment (details in [18]).
Additionally, it is equipped with special conical connectors
at each of its two tips which allows the robot to perform
different movements, as well as the possibility of changing
the tip tools in order to perform special tasks or
applications [19],[20].

L8 |
L
o

Figure 1. General view of MATS-ASIBOT with some docking
stations.

If two commercial sensors were installed on the robotic
platform to obtain force tip measurements (between the
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wrist and the tool, and between the other wrist and the
current docking station), it would be necessary to place
on-board (inside the inner volume of the main hollow or
in the tubular bars) additional elements which conform to
the sensor devices or redesign the structure of the robot.
Both options, however, are unfeasible. The method
proposed in this work solves the problem of the
estimation of the tip forces from both robot tips by
placing strain gauges in the two main robot links (bars)
and then computing the deflection measurements from
the robot structure. Therefore, the robot acts as a flexible
structure and the position of the free robot tip is also
computed from these measurements because it will be
slightly different than the tip position achieved under
fully rigid considerations (using kinematic transforms).

The paper is structured as follows: Section 2 is devoted to
the modelling of the robot as a flexible structure and
presents the model for measuring tip forces adapted to
the MATS-ASIBOT platform. The instrumentation system
developed is briefly described in Section 3. Experimental
results that validate the proposed method are presented
in Section 4 and conclusions are stated in Section 5.

2. Main effects of forces over a tip of the robot
2.1 Link flexibility

Figure 2 illustrates all the magnitudes implied in the
calculation of the deflection of the whole structure when
forces and torques are applied on the nodes of the robot
and the flexibility condition is assumed.

Figure 2. Generalized forces and deflections over the robot.

With respect to the base frame and taking into account
the symmetry of the structure, the stiffness matrix which
relates to the structure displacements regarding the forces
applied on the structure can be expressed as a function of
the so-called “aperture angle” & :

W(18><1) _ K(18><18)( 5). Al8x1 1)
where the vector W denotes the generalized forces and
the torques applied on the nodes of the structure, and A

denotes the linear and the angular deflections of all the
nodes. Two important properties of the stiffness matrix
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are that it is a positive-definite and symmetrical matrix.
The inverse relationship between generalized forces and
displacements is the compliance matrix which is also &-
dependant and retains the properties of the stiffness
matrix described above. Then,

A(18x1) _ g(1sx18y™ ( 5).W18x1 — C(18x18) ( gg).W18><1 @)

Vectors W and A are organized according to whether
their values are known or unknown as:

(12x1+6x1)
W, T
W- [Wk] (@ E )

u

A (12x1+6x1) T
A= [”] - (A§ ol Al o ‘AlT CDlT) 3)

T T
fix fiy fzz) and ri = (7ix 7iy 7iz)
denote the forces and torques on the node ‘i, while the

where F :(

1

linear and angular deflections are

Ai :(é‘ix §iy é‘iz )T and q)i :((ﬂix gpiy Pz )T fori= 1’ 2,

3, respectively. Subscripts ‘u” and ‘k’” indicate unknown

expressed as

and known parameters. This vector organization lets

dispose expression (1) as:

12x1+6x1 12x12 12x6 12x1+6x1
[ij( ) :(KWA Kuk ](AuJ( )

W 6x12 6x6 A
Ky Ky k

u

)

The known values of the sub-vector Wk are the
corresponding values of node 2 and the values to be
measured of node 3, while the known values of Ax are the
displacements of the robot base, which are considered
null. For the given structure, the following known
expanded sub-vectors are used, g being the gravity
constant and mz, ms the lumped masses over nodes 2,3:

Wk =
. 5)

=(0 0 —gm, 0 0 0 f, fo Afu-gm} 0 0 0)

A=(0 000 0 0) ©)

While the reaction forces and the torques on the base and
the structure displacements which compose the unknown
sub-vectors, Wu and Au respectively, are computed by
adapting expression (4) as:

A= wal '(Wk — Ky Ak) )

u
W, =Ky, ‘(Au + Ky 'Ak) (8)
Taking into account that the known displacement sub-

vector is null (see equation (6)), the deflections on the
whole structure A, and the known forces W, are
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obtained from equation (7). Expressions (2) and (7) are
rewritten in a reduced size and only K, “12) needs to

be inverted:
12x1 12x12 1 (12x12) 12x1
AP Ze ()PP ok () )
Due to the symmetry of the structure, all the coefficients
of the compliance matrix are obtained as a function of the
angle & via symbolic methods. If more complex structures
(as in [12]) were taken into consideration, the symbolic

coefficients could not be achieved and numerical
computations and tabulating are required.

The whole compliance matrix has to be computed if all
the unknown values have to be estimated. Nevertheless,
if only the knowledge of the relation between the forces
and the linear displacements is required, a much more
reduced compliance matrix can be applied. Under this
last assumption, the new reduced matrix is composed of
the following coefficients:

¢ 0 ¢z ¢y 0 ¢y

0 cp O 0 g O
6x6 _|C3 0 ¢33 ¢ 0 cy
cn 0 ¢3¢y 0 cp

0 ¢ 0 0 cgg O

Cgi 0 o3 Co; 0 cog

(10)

Finally, if only the relation between tip forces and tip
linear deformations is required (when only a tip lumped
mass allows modelling the system), the compliance
matrix becomes:

CE)7=| 0 ¢ O (11)
cg; 0 cog

where axial effects have been neglected and only bending
and torsion effects are computed:

ey (€)= %3 Ejyl sin” (&) (12)
cnlé)=en(e)= S gcos(elsin(e) 09
(%)= %3 E;m 9
calt)=5 g () a5)
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sin” (&) (16)

yl
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C19(§):C91(5)2_ZE11

cos(&)sin(&)  (17)

yl

sin” (g)j (18)

Ellzl 1°z1

cos(g‘)sin(g‘) (19)

6 B,
rr 5
€39 (§)ZC93(§):ZA1E11 1C052(§) (20)
y
Pl 2
77 () _3[Elly1 + Ezlyzjsm (¢) (21)

cos’(&)sin’(&)+  (23)

B 2 4 12
3

— + +
EZIZZ Ellzl Gllxl

3
+ L [ 1 |1 Jsin‘l(f)}
3 E2122 Ellzl

()2 T
% 3|\ B,y Byl

The coefficients showed above are a function of the

]cosz (¢) (24)

y2

Young modulus Ei, Ez, the shear modulus G, the inertia
moments of the beams Iix, Iy, Iz, Iox, Iy, 2z and the length
L. These coefficients can be simplified if identical beams
are used (E1 = E2 and Lix=lay, Tiy=l2y, li=I22 or Ik = Iy) (see
details in [12]).

After obtaining the coefficients of the compliance matrix,
expression (9) cannot be solved because the components
of the tip forces F; are still unknown. The same
conclusion is valid for equations (10) and (11) by simple
inspection of sub-vector Wk given in equation (5).

Next sub-section shows the model for obtaining the tip
forces which are responsible for the deflection of the
structure and will allow to measure these forces.

2.2 Joint Torques

Figure 3 shows the main kinematics parameters of the
first three DOF of the proposed robot and the involved
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forces. Due to the symmetry of the robot, the base and the
tip are interchangeable nodes (and joints 1,2 are
exchanged by joints 5,4), but for the sake of simplicity,
node 1 is always considered the fixed one, node 3
represents the mobile tip and the fourth and fifth DOF of
the robot are not considered here.

Figure 3. Main variables of the 3 first DOF of the robot

The main gravitational force effects on m2 results in a
flexion of the first link (bar) and a reaction torque on the
second joint. This torque is easily computed as:

Vag =—L-g-my-cos(6;) (25)

While the effect of any force on the robot tip causes a
flexion on the whole structure and reaction torques on the
joints, under quasi-static conditions, it is known [3],[4]
that the relation between the tip forces and the joint
torques is well-determined from the transpose of the
geometric Jacobian:

T, =)7(©)-F (26)

ip
where 'y =(13 73 733)T and Ftl-p =F +F3g with
By, = (0 0 -g-my )T denote the torques on the joint and
the tip forces respectively, and © = (491 0, 0, )T denotes
the three first joint angular coordinates. From Figure 3,
Denavit-Hartenberg parameters of the first three DOF of
the robot are depicted in Table 1:

i o, d; a; a;
1 o 0 0 /2
2 0, 0 L 0
3 0, 0 L 0

Table 1. Denavit-Hartenberg parameters of the first three DOF.

The geometric Jacobian of the reduced robot is obtained
from its kinematics parameters as:

—Lesy(ey+ep3)  Loey(cy+e) 0
T = —L-cy(5y+5y35) —L-si(5,+503) L-(cy+c3)| (27)
—I- C1523 -L- 51523 L. C23
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wherec; =cos(6;), s;=sin(d;), cy= COS(H2 +93) and
Sp3 = sin(é’2 +83).

Singularities of the reduced robot have to be taken into
consideration in order to invert this matrix and their
singular joint values can be obtained by solving the
following expression:

‘](6)‘ =det(](®)T)=—L3 530y +053)=0 (28)

whose solution does not depend on the first joint angle
and which allows us to obtain the singular robot
configurations

{ 6,=0 or Oy=x 29)
Cy+Cy3=0

If non-singular postures are considered, the inverse
relationship between the join torques and the tip forces is
achieved by inverting expression (27):

5153
(cp +0p3
vt 1 C1Cs
I R

53 (C2 + 623)

0 Sp3

) €163 _C1(C2+C23)

si63 —s1(cy+cp3) | (30)

—(52‘*523)

Then, the tip forces together with the gravitational force
on ms are computed from the joint torques as (inverse of
equation (26)):

(f3x f3y {f3z _g’m3})T = (]T(®))_1 -F93 (31)

Finally, from equations (25), (26), (30) and (31) the total
joint torques due to the gravitational forces on the
structure nodes and due to the tip forces are obtained as:

41 0 faz 0
Ty=|7y |=| 12 |+17@)|| f5, |+| O (32)
73 0 f32 —8 M3

and the external tip forces are obtained as:

5 7 0 0
E=(1"®@) || 7|~ ||| © (33)
73 0 81y

3. Instrumentation for tip forces” measurements

Assuming that the robot is a flexible structure composed
of two main tubular beams with finite stiffness linked
with the three main robot joints which are considered
rigid, five strain gauge sets are placed on the two main
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flexible links of the robot according to Figure 4. Four
pairs of 120 Q) Kyowa Strain gauges for sensing bending
deformation are located on the bases of both links on
opposite sides for each of the orthogonal main directions
of these links. Each pair is denoted with under scripts
~x1l and x2. The script x =1, 2 are for the gauges
located at the beginning of the first tube and the scripts x
=4, 5 are for the gauges located at the end of the last tube,
while four identical (120 Q too) gauges are placed to
measure the torques on the central joint (denoted with
under script 3k with k=1, 2, 3, 4). They are disposed as
indicated in Figure 4 at the end of the first tube together
with the beginning of the second one. Only the sets with
x =1, 2 and 3 are employed for the experiments and only
sets with x =5, 4 and 3 would be employed if the tip and
the base were exchanged.

All gauge pairs use %2 Wheatstone bridge-based
amplifiers except gauge set _3 which uses a full bridge
configuration with a 4-active-guage system. Simpler
configurations can be defined, but the same number of
bridges is needed. Single gauges can be employed for any
of the main directions of each of the links (orthogonally
disposed) and only a 4 bridge is needed to measure the
deflections. Temperature compensation has to be taken
into consideration for accuracy measurements.

Figure 4. Location of the strain gauges over the flexible tubes.

The +10 V signal output from the amplifiers are acquired
through on-board AD converters. From these voltage
values and by real-time computation of the compliance
and the Jacobian matrices, the variation in the gauge
resistor allows us to measure the joint torques produced
by the forces on the robot and to obtain the deflection of
the structure.

4. Experimental results

A general view of the MATS-ASIBOT was depicted in
Figure 1 when it was disposed in a vertical pose and
connected to one of the docking stations (resting posture
of the robot). Additionally, in Figure 1, we can see four
docking (with  different positions and
orientations) disposed on a metallic support station.

stations

J. A. Somolinos, A. Lépez, R. Morales and C. Morén:
Force Sensor of a Climbing Robot Derived from Its Own Flexible Structure



In this section, three experiments were carried out using
the MATS-ASIBOT setup. All the experiments were
performed following a similar procedure, i.e., the robot
starts the motion from its resting posture and finishes its
motion in one of the three different final selected postures
or returning to the initial posture. Different forces appear
on the robot during its movement: gravitational forces are
only considered in the two first experiments, while in the
third experiment the robot interacts with the environment
causing not only gravitational but also external tip forces.

4.1 Free motion with non-singular postures

The first experiment begins with moving the robot from
the resting posture P, (see Figure 1) to the final posture
Pfl (see Figure 5). Gravitational forces act on the masses
mz2 and ms. Figure 6 illustrates several intermediate
postures with the robot assumed rigid — plotted in red
colour — and the robot with the added flexibility effects —
green colour — (units in cm). The deformed representations
of the structure have been computed by using the reduced
compliance matrix given in expression (10) and the
coefficients (12)-(24).  Point-to-Point
trajectories with trapezoidal velocity profiles were used. In
this first case, the joint trajectories were generated from
next joint coordinates and f; =10, t; =25s:

expressed  in

6,,=0 O1p1=0
Oyy = /2 |—"—| 6y, =0 |rad (34)
b3 =0 O35y =7/2

Figure 5. Final posture Pri selected in the first experiment.

Using equation (32) for the final robot posture in the first
experiment, the following relation between the tip forces
and the join torques is achieved as

" 0 0 L O fax
72 |=| g Lomy |+|-L 0 LI\ £, (35)
73 0 L0 0) g, -gmy

Figure 7 plots the measured torque p,(t) (thin blue)
compared to the estimated torque 7, pgipareq(t) (thick
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red) which is computed from equation (32) under the
assumption that only gravitational forces act on the robot
during the movement.

1400 i Initial Posture : 1
1/

Rigid Rabot

120F e

Flexible Rebot{-

- s Final Posture |
1 : :
wl | ‘ T/ 5 |

40}

-20 0 20 40 80 80 100 120 140 160 180
Figure 6. Some rigid and flexible postures from Po to Pr.

80 I : :
¢ | = Estimated torque Y9 Estimated

| ——Measured torque Yy

40+

201 : : : : il

-20

-40

1 (N.m)
(=]
1 1 1

e
-60- : 1

80 i I I 1 i i
0 5 10 15 20 25 30 35

time (s)

Figure 7. Torque y, during trajectory from Po to Pr.

The lengths of the main links L = 0.6685 m are defined as
the distances between joints 2-3-4. Furthermore, the
values of the lumped masses have been fitted to the
values expressed in (36) after using the least-squared
methods and identifying them as a two lumped masses
model. Remember that one of the masses (m1 or ms) is
always fixed to one of the docking stations (exchangeable
nodes). In the experiment miis considered the fixed node.

my= 427 kg
m,= 246 kg (36)
my= 427 kg

Operating with equation (35) and (36), the steady state
final values of the joint torques are:

71_ final_1 0 0
V2 fina 1 |=| ~L-8(my+my)|=| -44.09 |N.m (37)
V3 _ final _1 0 0

Figure 8 depicts the measured torques y,(t)and y;(t)
versus the null desired values expressed in (32) and final
values achieved in (37).
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¥, (N.my

13 N.m)

time (s)
Figure 8. Torques yq,y3 during trajectory from Po to Pr1.

From the first final robot posture, and according to
equation (33), the tip forces are computed as:

f3x_es 1 00 -1 Y1m 0 0
fay,es = T 10 0 ||| 72 |*|L-g-my ||+ O (38)
fSZ_L's 0o 1 -1 Yam 0 gy

Computing the average values of the steady state final
measured torques depicted in Figures 7 and 8, and
replacing them into equation (37), yields:

Fax_es 00 -1 -1.9 0 0

= 0 ||| 442 |+|161]|+| 0 | (39
fay s 0.6685 (59
for 01 -1 2.4 0 41.8

The estimation of the tip forces alpplied in this experiment

Fj =(359 284 023) N  showing good
correspondence between the measured and the estimated
values. Moreover, we can see how the low resolution of

were

the used converters makes the estimation of the tip forces
not so good for components f;, and f;, near zero values.
The error achieved from f,, is considered an acceptable
error. The use of AD converters with more number of bits
and a computer-based method for placing the gauges
over the structure allow increasing the resolution of the
system and reducing the observed errors.

4.2 Free motion with singular postures

The second experiment starts moving the robot from the
resting posture (see Figure 1) to the new final posture
sz (see Figure 9). Figure 10 depicts several intermediate
postures with the robot assumed rigid and including the
additional flexibility effects due to the gravitational forces
on mz2 and ms (units in cm). Point-to-Point trajectories
with trapezoidal velocity profiles were used from next
joint coordinates with the same max velocity as in the
previous experiment:

www.intechopen.com

6,0=0 Orp2 =
Oy = 7/2 |—>| 6y, =0 |rad (40)
b3 =0 035, =0

T T T T T T T
100+
80
3
80
40y : ‘ Flexible Robot |
L L Il L

I 1 Il I 1 I 1 Il
20 0 20 40 60 80 100 120 140 160 180 200 220

Figure 10. Some rigid and flexible postures from Po to Pr.

If the second final posture Pf2 is considered, regardless
to the movement of the fourth and fifth joint, it can
clearly be seen that all postures correspond with singular
robot points and the Jacobian matrix becomes not
invertible (9, =0). Then, for the final posture sz, the
relation between tip forces and joint torques is given by:

o

0 2L 0 fx
-L-g-m, |+|0 0 2L| fy
0 0 L

7
72 |=
73

(41)

o

fz_g'mS

80 T

: :

——Estimated torque v, .. .
60 - Estimated torque Y3 Etimated
40]- H ——Measured torque Yo a

20 e R R ...| ——Measured torque v,

101 (N

Lt W YT O Py |
it ,

time (s)

Figure 11. Torques y,, 73 during trajectory from Po to Pr.
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Following a similar procedure as in the previous
experiment, Figure 11 plots the measured torque y,(t)
the estimated torque 7, roimaed(t) Wwhich is
computed from equation (32) under the assumption that
only gravitational forces act on the robot during the

versus

movement.

From equations (41) and (36), the steady state final values
of the joint torques are as follows:

Y1_ final _2 0 0
V2 final_2 | = -L- g(mz + 2m3) =] -7213 |[Nm (42)
Y3_ final_2 ~L-g-my -27.97

For the second final robot posture, the tip forces have to
be computed by using a pseudo-inverse matrix under the
assumptions that the force f;, does not produce any
structure torque and the traction on the tubular beams
has been fully neglected in coefficients (12)-(24). Then,
equation (33) becomes:

0 (o0 o(n, 0 0
f3y7es = T 05 0 O|| 7y, |*|L-g-m||+] 0 [(43)
fiz e 0 05 0)|\73, 0 gy

Again, computing the average values of the steady state
final measured torques from the signals plotted in Figure
11 and substituting them into equation (43), yields:

0 o o o)( 16 0 0
1
_— 0 0f|-719|+|161||+| 0 |(44
fay s 0.6685 )
fin 0 05 0)|(-274 0 41.8

The external tip forces were estimated again, being
F3T = (O 1.20 O.29)T N, showing a good correspondence
between the measured and the estimated values. These
errors are due to the low resolution of the AD converters
used and they are less than 1/27, n being the number of
bits. Additionally, because of the singularity of the robot
postures during the experiment, the average steady-state
torque y;
computation of the tip force due to the last zero column
of the pseudo-inverse matrix. A good correspondence is
also observed between this value and the expected value
achieved from expression (42).

shown in Figure 11 is not involved in the

4.3 Free motion with final object interaction

In this experiment, the robot starts its motion from the
resting posture (Figure 1) to the final posture Pf3 (see in
Figure 12). Then, it returns to the resting posture after
pressing an object. In this case the contact with the object
produces a tip force which is coupled with the
gravitational forces applied to the robot during the

Int J Adv Robotic Sy, 2012, Vol. 9, 2012

motion. The first three joint trajectories are generated
from the following joint coordinates:

0,,=0 53 =0 60,=0
Oy = /2 |—"{ 6, 13 =2.609 |—"—| b,y = /2 | rad (45)
b3 =0 0373 =0.899 b3 =0

140} fe L -

120

80

60

Final Pasture

201

OfF i

L | L
-180 -160 -140 -120 -100 -80 -80 -40 -20 0 20

Figure 13. Some rigid and flexible postures from Po to Ps.

Figure 13 depicts several intermediate postures during
the free robot motion under the assumption that the robot
is rigid and including the additional flexibility effects due
to the gravitational forces on mz2 and ms (units in cm). It
can clearly be seen how the flexible robot reaches the final
posture before the rigid robot does because of these
gravitational forces for the same joint coordinates. The
plotted deflections have been intentionally exaggerated.

Once the robot (assumed flexible) has reached the real
final posture, a contact force is applied on its tip. The
robot is now pressing the box and Figure 14 represents
how the robot flexion turns over the opposite sign
compared to the flexion depicted in the same final
posture (see Figure 13) when the robot was moving
freely.
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2: Obgect \/ /\\ |

h i i i L i ]
-180 -160 -140 -120 -100 -80 -60 -40 -20 o 20

Figure 14. Rigid and flexible robot when pressing the box.

Finally, applying equation (32) again for the Pf3 posture
without external tip forces, the steady state final
measured torque values computed are as follows:

yl_finul_3 0
V2 fnal 3 |=| 62:97 |N.m (46)
V3_ final _3 26.12

Figures 15 and 16 illustrate the measured torques, y,(t)
and y;(t), of this experiment versus the estimated values
of the torques caused from the gravitational forces.
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Figure 15. Torque y, during trajectory from Po-Ps-Po and the

interaction with the box.

The time interval can also be seen while the robot is
pressing the box (between t =10 s and t = 20 s) and when
estimation of the torques due to gravity does not match
real torques. This difference between estimated and
measured torques anticipates that some external forces
are being applied on the tip and it can also be used as a
contact/collision indicator (as in [21]).
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Figure 16. Torque y5 during trajectory from Po-Pr-Po and the

interaction with the box.
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By using equation (33), which requires the online
computation of the torques due to gravity and the inverse
of the Jacobian transpose as a function of its joint
coordinates, let us obtain the applied forces. Figure 17
depicts  the f5, obtained.
Components f,, and f3y are not plotted due to their
good match with noisy null values. The values of the
external tip forces during the free movement of the robot
are also plotted in Figure 17 (in red colour).
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Figure 17. Tip force f,, during interaction with the box.

It is necessary to remark that the noise levels of these
signals are typical from strain measurements when no
low-pass filters are used. All the figures have been
plotted with the values directly obtained from the AD
converters and without any kind of filter. Once the
system is calibrated, only easy algebraic operations and
scaling matrix according to the equations presented
above have been used to achieve the previous results.

5. Conclusions

A method to measure external forces applied on the tip of
a climbing robot whose structure exhibits linear flexibility
has been presented. The main advantage is the
elimination of the usual force sensors placed between the
wrists and tools in industrial robotics applications that
require force or hybrid position/force controllers.

The placement of strain gauges along the structure allows
us to measure deflections from the structure itself. The
torques produced on the robot flexible structure are
obtained from the strain gauges and the forces are
computed. It is necessary to estimate gravity torques in
order to discount them from the total measured torques if
only external forces are required to be measured.

The use of strain gauges instead of force sensors has the
following advantages: (a) the use of flexible elements can
be exploited for lightening the links/legs that conform to
different locomotion systems which make up climbing
robots, and (b) the flexibility of the structure is used to
measure the tips forces applied and only a set of strain
gauges with electronic conditioners and AD converters is
needed for acquisition. From these force measurements, the
structure deflection itself is computed through the
compliance matrix which is dependent on the joint angles.

J. A. Somolinos, A. Lépez, R. Morales and C. Morén:
Force Sensor of a Climbing Robot Derived from Its Own Flexible Structure



Experimental results illustrate the robustness of the
proposed method when only the gravitational forces act
on a robot with flexibility that could be modelled as a
lumped mass model and when it is working under
difficult trajectories such as trajectories with kinematics
singularities. When not only gravitational forces but
external ones were applied on the robot tip, the proposed
method let us obtain the forces as if it were a sensor.
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