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Abstract. A multivariate analysis on flood variables is
needed to design some hydraulic structures like dams, as the
complexity of the routing process in a reservoir requires a
representation of the full hydrograph. In this work, a bivariate
copula model was used to obtain the bivariate joint distribu-
tion of flood peak and volume, in order to know the probabil-
ity of occurrence of a given inflow hydrograph. However, the
risk of dam overtopping is given by the maximum water ele-
vation reached during the routing process, which depends on
the hydrograph variables, the reservoir volume and the spill-
way crest length. Consequently, an additional bivariate re-
turn period, the so-called routed return period, was defined in
terms of risk of dam overtopping based on this maximum wa-
ter elevation obtained after routing the inflow hydrographs.
The theoretical return periods, which give the probability of
occurrence of a hydrograph prior to accounting for the reser-
voir routing, were compared with the routed return period,
as in both cases hydrographs with the same probability will
draw a curve in the peak-volume space. The procedure was
applied to the case study of the Santillana reservoir in Spain.
Different reservoir volumes and spillway lengths were con-
sidered to investigate the influence of the dam and reservoir
characteristics on the results. The methodology improves the
estimation of the Design Flood Hydrograph and can be ap-
plied to assess the risk of dam overtopping.

1 Introduction

Univariate flood frequency analyses have been carried out
widely, focusing on the study of flood peaks, which are used
for designing most of hydraulic structures. However, univari-
ate frequency analyses do not procure a full evaluation of the

probability of occurrence of the hydrological event (Chebana
and Ouarda, 2011). Moreover, the full hydrograph is of inter-
est in the case of dam design, as the inflow peak is trans-
formed into a different outflow peak during the routing pro-
cess in the reservoir. Therefore, due to the multivariate nature
of flood events, a multivariate frequency analysis of random
variables such as flood peak, volume and duration is required
to design some structures like dams.

National laws and guidelines usually fix a given return pe-
riod for dam design. Among others, France uses a return
period of 1000 to 10 000 yr depending on the dam typol-
ogy; Austria fixes a return period of 5000 yr and Spain uses
a return period of 500 to 10 000 yr depending on the dam
typology and its downstream vulnerability (Minor, 1998;
Rettemeier and K̈ongeter, 1998). However, they do not spec-
ify whether it is the return period of either the peak, or hy-
drograph volume or the entire hydrograph. Moreover, the risk
related to a specific event can be over- or underestimated if
only the univariate return period of either the peak or volume
is analysed (Salvadori and De Michele, 2004; De Michele et
al., 2005). In addition, the return period should be defined in
terms of risk of either dam overtopping or downstream dam-
ages, instead of in terms of natural probability of occurrence
of floods, to take into account the influence of reservoir and
dam characteristics on the flood hydrograph routing process
(Mediero et al., 2010). In the case of risk of dam overtop-
ping, the maximum water level reached during the routing
process should be used to define the return period. Neverthe-
less, the relationship between a given inflow hydrograph and
its maximum water level is not straightforward, as it depends
on the reservoir volume and the spillway crest length. Con-
sequently, the routing process has to be studied in each dam.
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Hence, a multivariate analysis on flood variables should
be conducted to obtain both the natural probability of occur-
rence of a flood and the return period of a flood in terms of
risk of dam overtopping. This analysis has been traditionally
undertaken through the use of a stochastic weather genera-
tor and continuous rainfall-runoff models (Calver and Lamb,
1995; Cameron et al., 1999; Blazkova and Beven, 2004). Al-
though this approach has proven very successful, it is compu-
tationally very demanding, especially if extreme events are
the focus of the analysis and an estimation of uncertainty
is required. Copula models are a valid alternative, because
they allow generating arbitrarily long series to extend the ob-
served hydrological data with less computational effort than
continuous rainfall-runoff models.

Traditional multivariate techniques assume that the
marginal distributions should come from the same family
of distributions and the dependence between variables fol-
lows a linear relationship. However, drawbacks arise because
these assumptions could not be satisfied by the dependence
structure of flood variables. Copula models can avoid these
difficulties. A copula is a function that connects univari-
ate distribution functions to a multivariate distribution func-
tion describing the dependence among correlated variables
(Nelsen, 1999). The main advantage of copulas is that uni-
variate marginal distributions can be defined independently
from the joint behaviour of the variables involved. Hence, a
copula allows for modelling the dependence structure of ran-
dom variables regardless the family that the marginal distri-
butions belong to. Besides, joint return periods can be easily
estimated from copulas, which represents an additional ben-
efit as the study of joint return periods is essential to flood
frequency analysis.

The theory of copulas is based on the Sklar’s theorem
(Sklar, 1959), which in the case of a bivariate case can be
written in the form:

H(x, y) = C {F(x), G(y)} , x, y ∈ R, (1)

whereH(x, y) is the joint cumulative distribution function
of the random variablesX and Y , F(x) and G(y) are the
marginal distribution functions ofX and Y , respectively,
and the mapping functionC : [0, 1]2 → [0, 1] is the copula
function.

Further details about copulas can be found in Joe (1997),
Nelsen (1999) and Salvadori et al. (2007).

Although copula models have been extensively applied in
other fields such as finance, they have been only recently ap-
plied to model hydrological events such as floods, storms
and droughts. Overall, the Archimedean and extreme value
copula families are the most used in modelling flood vari-
ables. The Archimedean copulas can be constructed easily
and, as a great deal of copulas belongs to this family, a broad
kind of dependence can be considered. Some authors used
Archimedean copulas such as the Frank copula (Favre et al.,
2004) or the Clayton copula (Shiau et al., 2006) to charac-
terise the dependence structure between peak and volume

variables. Meanwhile, extreme value copulas have the advan-
tage that they are able to connect the extreme values of the
studied variables, which is very important in flood frequency
analysis. A lot of authors considered the Gumbel copula as
the copula that best represents the relation between peak and
volume (Zhang and Singh, 2006, among others).

But selection of the copula model that best fits the ob-
served data is not a trivial issue. Some works have been
carried out in recent years regarding the steps required to
select a copula model. Using a small sample, Genest and
Favre (2007) described different aspects to take into account
in the process of studying the dependence between two ran-
dom variables, in order to identify the appropriate copula
model. The importance of considering upper tail dependence
in copula selection was emphasised by Poulin et al. (2007),
in order not to underestimate the flood risk, as the upper tail
dependence is related to the degree of dependence between
the extreme values of the variables involved in the study.
Thereby, Chowdhary et al. (2011) indicated the steps needed
to select the best copula model taking into account the tail
dependence in the decision process.

Different bivariate return periods estimated by copulas
have been developed in the last years. Salvadori and De
Michele (2004) studied the unconditional and conditional re-
turn periods of hydrological events using copulas, focussing
on the joint return period in which eitherx or y are ex-
ceeded (primary return period) and on the joint return pe-
riod in which bothx andy are exceeded. An additional re-
turn period was also introduced, the secondary return period
(also called the Kendall return period), which is associated
with the realisation of dangerous events for the dam. As it is
linked to the primary return period, it can be understood as
the mean inter-arrival time of the events with a primary re-
turn period over a threshold (called critical events). Authors
such as Shiau et al. (2006) also applied joint return periods to
study the bivariate flood frequency analysis of peak and vol-
ume. A comparison of the different return period approaches
for the estimation of design events has been recently shown
by Gr̈aler et al. (2013). Other studies have been carried out
regarding multivariate flood frequency analysis using copu-
las (Grimaldi and Serinaldi, 2006; Serinaldi and Grimaldi,
2007; Zhang and Singh, 2007).

Other authors have studied dam safety more in depth using
copulas. De Michele et al. (2005) utilised the Gumbel cop-
ula to generate peak-volume pairs, in order to verify that the
maximum water level reached at the dam by the generated
hydrographs was below the crest level. Klein et al. (2010)
presented a methodology to classify floods regarding the hy-
drological risk, estimating the probability of occurrence of
peak and volume via a copula model. The maximum wa-
ter level reached at the dam by each flood was estimated,
to graphically analyse the relation between this level and the
value of the primary return period for each event.

In this paper, a bivariate flood frequency analysis was car-
ried out by a copula model to conduct a comparison between
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the return periods that estimate the natural probability of oc-
currence of floods and a return period defined in terms of
risk of dam overtopping (so-called the routed return period),
to assess the influence of the routing process on them. The-
oretical return periods based on the joint probability of oc-
currence were estimated from the fitted copula. In addition,
the fitted copula was used to generate a large set of syn-
thetic peak-volume flood pairs in the catchment. Synthetic
hydrographs were generated to ascribe a shape to the syn-
thetic peak-volume pairs. The set of synthetic hydrographs
was routed through the reservoir to obtain the maximum wa-
ter level reached at the dam during the routing process, in or-
der to assess the hydrological risk of dam overtopping. The
routed return periods based on the risk of dam overtopping
were estimated. Furthermore, a sensitivity analysis on the
reservoir volume and spillway crest length was carried out, to
investigate how the flood variables control the routed return
period depending on the dam and reservoir characteristics.
The methodology was applied to the Santillana reservoir in
Spain.

The structure of the paper is the following: the proposed
methodology is shown in Sect. 2. Section 3 presents the case
study. Then, the results obtained after applying the procedure
are included in Sect. 4. Conclusions are introduced in Sect. 5.

2 Methodology

In this section the proposed methodology is presented. First,
the steps followed to select the copula model from observed
data are described. Then, the theoretical joint return periods
are briefly described. Thirdly, the procedure to generate syn-
thetic hydrographs is presented. Finally, the procedure to ob-
tain the routed return period in terms of risk of dam overtop-
ping is offered.

2.1 Copula selection

Identification of the copula that best fits the observations is
required, as several families of copulas exist. The copula that
best represents the dependence structure between variables
will be the most appropriate. The steps involved in selecting
the appropriate copula model are (i) dependence evaluation;
(ii) parameter estimation method; (iii) goodness-of-fit tests;
and (iv) tail dependence assessment.

2.1.1 Dependence evaluation

A dependence analysis among correlated random variables
is conducted to determine if some kind of dependence can
be deduced from the data. It can be carried out by graphical
analyses or dependence measures. A graphical analysis of
dependence can be displayed by the scatter plot of the pairs
(Ri /(n + 1), Si /(n + 1)) derived from the observed data pairs
(Xi , Yi) (whereRi is the rank ofXi amongXi , . . . ,Xn and
Si is the rank ofYi amongYi , . . . ,Yn, beingi = 1, . . . ,n and

n the observed record length), and by other two rank-based
scatter plots: the Chi-plot and the K-plot.

The Chi-plot displays a measure of location of an obser-
vation regarding the whole of the observations (λi) against a
measure of the well-known Chi-square test statistic for inde-
pendence (χi). Consequently, the larger the distance between
the points and the zero value in they axis, the larger is the de-
pendence. The dependence is positive if the points are above
the upper control limit and negative if they are located below
the lower control limit (Fisher and Switzer, 1985, 2001).

The K-plot relates the order statistics (Hi) estimated from
the observed data to the expected value of these statistics
(Wi:n) generated under the null hypothesis of independence
between the marginal distributions. Therefore, the larger the
distance between the points and the diagonal line, the larger
the dependence. Hence, if the points are located above this
line, the dependence is positive. On the other hand, if the
points are below this line, the dependence is negative (Genest
and Boies, 2003).

Besides, dependence measures are needed to procure a
quantitative value of the dependence relation between vari-
ables. For this purpose, the Spearman’s rho and Kendall’s
tau rank-based non-parametric measures of dependence are
adopted and its associatedp values are estimated (indepen-
dence between variables is rejected when thep value is less
than 0.05, further details about thep value estimation can be
found in Genest and Favre, 2007). The result of this evalua-
tion provides an idea of the type of copula to be considered
in the study, since each copula supports a particular range
of dependence parameter. Michiels and De Schepper (2008)
provides ranges of admissible Kendall’s tau to different cop-
ulas for the bivariate case. Therefore, the number of feasible
copulas can be reduced using the Kendall’s tau value.

2.1.2 Parameter estimation method

The estimation of the parameter (θ) of the copula family
Cθ (u, v) that best fits the data can be performed through dif-
ferent methods. A first group consists of rank-based meth-
ods, in which the parameter estimation is independent of the
marginal functions, such as the method based on the inver-
sion of a non-parametric dependence measure (e.g. the in-
version of Kendall’s tau dependence measure) and the max-
imum pseudo-likelihood method (MPL). The former is re-
lated to the method of moments, while the MPL is a mod-
ification of the traditional maximum likelihood method, in
which the empirical marginal distributions are used instead
of the parametric marginal distributions. Other methods cer-
tainly depend on the marginal distributions, such as the in-
ference function for margins (IFM) method proposed by Joe
and Xu (1996). There is no consensus, but a large number
of authors defend the use of the rank-based estimation meth-
ods. Supporting this position, Kim et al. (2007) argue that
IFM methods are non-robust against misspecification of the
marginal distributions, as the parameter estimation depends
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on the choice of the univariate marginal distributions and
can be affected if such models do not fit adequately. Con-
sequently, in the present work two rank-based methods were
used: the inversion of Kendall’s tau method and the MPL
method.

2.1.3 Goodness-of-fit tests

The aim of a goodness-of-fit test is selecting the copula
that best represents the dependence structure of observed
variables. Graphical tools and formal tests are provided to
achieve this purpose.

A first idea of the behaviour of the copulas can be drawn
via a scatter plot, where a synthetic sample of pairs generated
from each copula of study (U1j , U2j), being j = 1, . . . , m
andm the sample size, is compared to the pairs related to the
observations (Ri /(n + 1), Si /(n + 1)). Another useful graph
can be elaborated by fitting the marginal distributions of the
random variables in order to transform the pairs generated
from the copula into their original units (Xj , Yj ), following
Eq. (2):(
Xj , Yj

)
=

(
F−1(

U1j

)
, G−1(

U2j

))
, (2)

whereF−1 andG−1 are the inverses of the marginal distri-
butions functionsF andG, respectively.

A third graph is the generalized K-plot, based on the pro-
cedure introduced by Genest and Rivest (1993), in which
a comparison of parametric and non-parametric estimates
of K(t) is conducted, beingK(t) (the so-called Kendall
function) the probability that the copula function is equal
or smaller thant ∈ [0, 1], i.e. the cumulative distribution of
the copula value. This widely used procedure has been spe-
cially designed for Archimedean copulas, so there are cir-
cumstances in which a goodness-of-fit test based on it is not
consistent. This is the case of extreme value copulas, asK(t)

is the same for all of extreme value models (Genest et al.,
2006).

Although graphical tools provide a general notion of the
goodness-of-fit, formal tests are needed to quantify it. Sev-
eral procedures have been proposed in the last years. Genest
et al. (2009) show a review and analyse various rank-based
procedures. These procedures are classified in three groups:
tests based on the empirical copula, tests based on Kendall’s
transform and tests based on Rosenblatt’s transformation.
The results indicate that overall, the Cramér-von Mises statis-
tic (Sn based on the empirical copula) has the best behaviour
for all copula models, allowing to differentiate among ex-
treme value copulas. It also emphasised the importance of
calculating thep value associated to the goodness-of-fit test
to formally assess whether the selected model is suitable.
Thep value is obtained through a parametric bootstrap-based
procedure that was validated (Genest and Rémillard, 2008).
TheSn statistic can be written as

Sn =

n∑
i=1

{
Cn

(
Ri

n + 1
,

Si

n + 1

)
− Cθn

(
Ri

n + 1
,

Si

n + 1

)}2

, (3)

where

Cn(u, v) =
1

n

n∑
i=1

1

(
Ri

n + 1
≤ u,

Si

n + 1
≤ v

)
, u, v ∈ [0, 1]. (4)

Here Cn is the empirical copula (a non-parametric rank-
based estimator of the unknown copula),Cθn the parametric
copula with the parameter previously estimated from the ob-
served data and 1(A) the indicator function of the set A.

The Sn statistic based on the empirical copula was the
goodness-of-fit test utilised in the present paper. The statis-
tic value is used to classify the copula models as thep value
can only be utilised to accept or reject each copula model
(Salvadori and De Michele, 2011). Consequently, the se-
lected copula should have the lower value of the statistic with
an admissiblep value (i.e. larger than 0.05).

2.1.4 Tail dependence assessment

Once the goodness of fit of the copula to observed data is
assessed, a tail dependence assessment is conducted to eval-
uate the copula behaviour for high return periods. The idea of
tail dependence is connected with the degree of dependence
in the upper-right-quadrant tail or lower-left-quadrant tail of
a bivariate distribution. In this work, more attention is paid
on the upper tail dependence (Serinaldi, 2008), not being rel-
evant the analysis of the lower tail dependence due to the
focus on the frequency analysis of extreme flood events for
dam safety analysis. Upper tail dependence is associated with
the capacity to link extreme flood peaks to extreme volumes.
This measure can be quantified by the upper tail dependence
coefficient,λU . Its general expression is given in Eq. (5).

λU = lim
w→1−

P (F(x) > w|G(y) > w) (5)

Equation (5) shows that the upper tail dependence is related
to the probability of the marginal distribution ofx being
larger than the thresholdw ∈ [0, 1], when the marginal dis-
tribution ofy being also larger than that threshold.

One of the main advantages of copulas is that both the
upper and lower tail dependences are inherent to the copula
model and depend on its parameter. Therefore, the previous
measure can also be estimated using copulas by means of
Eq. (6).

λC
U = lim

w→1−

1 − 2w + Cθ (w,w)

1− w
(6)

As the aim of this section is to identify the copula mod-
els that suitably reproduce the dependence in the extremes,
the upper tail coefficient obtained from each copula should
be compared to the coefficient estimated from the observed
data. Initially, a graphical analysis of the tail dependence of
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the observed data is done based on the Chi-plot (Abberger,
2005). A non-parametric estimator of the upper tail depen-
dence coefficient is also obtained in order to be compared
quantitatively to the upper tail dependence coefficient of each
selected copula. In the present study the considered estima-
tor is λ̂CFG

U (Eq. 7). The estimator was proposed by Frahm et
al. (2005). Among others, the estimator has been applied by
Serinaldi (2008).

λ̂CFG
U = 2 − 2 exp

1

n

n∑
i=1

log


√

log 1
ui

log 1
vi

log 1
max(ui ,vi )

2


 (7)

The estimator is based on the assumption that the empirical
copula can be approximated by an extreme value copula. It
also works well when this hypothesis is not fulfilled, except
in the case that the real upper tail dependence is null. By
means of this analysis, copulas that reproduce properly the
dependence in the extremes are identified. Because of a good
upper tail dependence fit does not mean a good whole data
fit, the assessment of the tail dependence is developed at this
point and not before. Therefore, the best copula is the copula
which represents properly the dependence structure of the
variables peak and volume and allows to study adequately
the extreme events.

2.2 Joint return periods

Different joint return periods estimated by the fitted copula
have been developed for the case of a bivariate flood fre-
quency analysis. The joint return periodT ∨

X,Y , so-called OR
return period, (in which the thresholdx or y are exceeded by
the respective random variablesX andY ) andT ∧

X,Y , so-called
AND return period, (in which the thresholdx andy are ex-
ceeded by the respective random variablesX andY ) were
considered.T ∨

X,Y is also known as the primary return period.
Using copulas these joint return periods are expressed as

T ∨

X,Y =
µT

P (X > x ∨ Y > y)
=

µT

1 − C(F(x), G(y))
(8)

T ∧

X,Y =
µT

P (X > x ∧ Y > y)
=

µT

1 − F(x) − G(y) + C(F(x), G(y))
(9)

whereC(F(x), G(y)) =P (X ≤ x ∧ Y ≤ y) andµT is the
mean inter-arrival time between two successive events
(µT = 1 for maximum annual events). Besides, the following
inequality is always fulfilled:

T ∨

X,Y ≤ min [TX, TY ] ≤ max[TX, TY ] ≤ T ∧

X,Y , (10)

whereTX andTY are the univariate return periods.
An additional return period is also studied, the secondary

return periodρ∨
t . The secondary return period (Eq. 11) is as-

sociated with the primary return period, as it can be defined
as the mean inter-arrival time of an event with a primary re-
turn period larger than a thresholdϑ(t). That is to say, it is
related to the probability of occurrence of an event in the

area over the copula level curve of valuet (Salvadori and De
Michele, 2004).

ρ∨
t =

µT

1 − K(t)
(11)

The three joint return periods can be easily obtained using
copulas thanks to their formulation. Once the copula selec-
tion is completed, the level curves of the fitted copula will be
the curves where the events with the same probability of oc-
currence are located, as the copula value indicates the proba-
bility of both x andy are not exceeded.

2.3 Synthetic hydrograph generation

Synthetic hydrographs were estimated from flood peak-
volume pairs obtained by means of the selected copula, in
order to be routed through the reservoir. A set of observed
hydrographs was used as a random sample to ascribe a hydro-
graph shape to each peak-volume pair. The procedure is the
following (Mediero et al., 2010): (i) The ratio between peak
and volume is calculated for each peak-volume pair gener-
ated by the copula; (ii) The shape of the observed hydrograph
with the closest ratio is selected; and (iii) The synthetic peak
value is utilised to rescale the selected hydrograph and the
synthetic volume is adjusted by modifying the hydrograph
duration. A set of 100 000 synthetic hydrographs was gener-
ated by this procedure, to have a large sample to study high
return periods.

2.4 Routed return period in terms of risk of dam
overtopping

The set of generated synthetic hydrographs was routed
through the reservoir to assess the risk of dam overtopping by
the maximum water level (MWL) reached during the routing
process. The analysis is based on the assumption that hydro-
logical risk at the dam is related to MWL, as a return period
should be defined in terms of acceptable risk to the structure.
Consequently, the routed return period related to the risk of
dam overtopping (Tdam) can be calculated as the inverse of
the probability to exceed a MWL any given year (pexc):

Tdam =
1

pexc
. (12)

For this purpose, the univariate frequency curve of MWL is
obtained and the MWL for a given return period is estimated
(Fig. 1a). Furthermore, hydrographs with different combina-
tions of peak and volume can lead to a similar MWL, which
implies a similar risk of dam overtopping and, consequently,
they can be considered to have the same return period. In
the bivariate case, these hydrographs can be represented by
a curve in the peak-volume space (Mediero et al., 2010).
Thereby, return period curves that represent the same risk
to the dam are obtained as curves in the peak-volume space
(Fig. 1b).

www.hydrol-earth-syst-sci.net/17/3023/2013/ Hydrol. Earth Syst. Sci., 17, 3023–3038,2013
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Fig. 1. Procedure to obtain the routed return period curve that represent the risk of dam overtopping (Tdam). (a) Estimation of the MWL for
the given return periodT ∗

dam (MWLT ∗

dam
) from the frequency curve of MWL.(b) Estimation of the routed return period curve by selecting

the hydrographs that reach a given water level equal to MWLT ∗

dam
.

In addition, the influence of reservoir volume and spill-
way crest length on the shape of these curves was analysed.
Different reservoir volumes and spillway crest lengths were
considered in order to study the hydrological risk at the dam
in different cases.

Finally, the curves that represent the probability of occur-
rence of floods regarding the theoretical joint return periods
based on copulas are compared to the curves that represent
the risk of dam overtopping by the routed return period, to
assess their similarity and improve the estimation of the De-
sign Flood Hydrograph.

The present study has been carried out by means of both,
the commercial software Matlab (Matlab 2009a, The Math-
Works, Inc.) and the free software R (R Development Core
Team, 2012). Specifically, the use of the R package copula
(Kojadinovic and Yan, 2010) is highlighted.

3 Case study

The Santillana reservoir was selected as a case study. It is lo-
cated in the central west of Spain on the Manzanares River,
which belongs to the Tagus basin (Fig. 2). The Santillana
reservoir has a drainage area of 325.6 km2 and a reservoir
volume of 92 hm3. The elevation of the spillway crest (E) is
889 m, being the flooded area at the spillway crest height of
5.35 km2 and the reservoir volume up to the spillway crest
of 48.9 hm3. The dam is an earthfill embankment with a
height of 40 m and a crest length (L) of 1355 m. The con-
trolled spillway has a 12 m gate and a maximum capacity of
300 m3 s−1. A set of 41 yr of observed data was recorded at
the reservoir. Observed data are composed of pairs of maxi-
mum annual flood peak (Q) and flood volume (V), the lat-
ter being the volume of the hydrograph associated to the
event with the annual maximum flood peak. As this work
is based on the flood frequency curve of maximum annual

Fig. 2.Location of the Santillana reservoir.

peak discharges, for the sake of consistency, maximum an-
nual flood volumes were assumed to be linked to hydro-
graphs corresponding to the annual maximum peaks.

The marginal distributions for both variables were fitted
to a Gumbel distribution, estimating parameters by the L-
moments estimation method (Table 1). A prior study carried
out in Spain showed that in this region, the Gumbel and the
generalised extreme value marginal distributions are appro-
priate for fitting the annual maximum flood peaks (Jiménez-
Álvarez et al., 2012). Consequently, for the sake of simplic-
ity, the Gumbel distribution was considered to fit the data.
With the aim of validating this assumption, the Kolgomorov–
Smirnov test was applied to the flood peak and volume data
set. Thep values obtained were larger than 0.05 (0.8426
and 0.9271, respectively), proving that the hypothesis can be
accepted.

Hydrol. Earth Syst. Sci., 17, 3023–3038, 2013 www.hydrol-earth-syst-sci.net/17/3023/2013/



A. I. Requena et al.: A bivariate return period based on copulas for hydrologic dam design 3029

(a) (b)

Fig. 3.Scatter plot.(a) Observed data (Qi , Vi ). (b) Ranks (Ri /(n + 1), Si /(n + 1)) derived from the observed data.

Table 1.Location parameter (µ) and scale parameter (γ) of Gumbel
distributions for the variables of peak (Q) and volume (V).

Variable µ γ

Q 30.47 22.69
V 5.87 5.70

4 Results

The proposed methodology was applied to the case study.

4.1 Copula selection

Once the univariate marginal distributions are known, the
first step consists of studying the dependence between the
two random variables: peak and volume. The scatter plot of
the observed data is displayed in Fig. 3a. The scatter plot of
the pairs (Ri /(n + 1), Si /(n + 1)) derived from the data set
shows a positive relation of dependence between variables
(Fig. 3b). This fact is also supported by the Chi-plot (Fig. 4a)
and the K-plot (Fig. 4b). In the former, the values are located
above the upper limit indicating positive dependence. In the
latter, the values are plotted over the diagonal line, so positive
interaction is also drawn.

The value of the Spearman’s rho (ρ) and Kendall’s tau
(τ ) rank-based non-parametric measures of dependence cor-
roborate the results provided by the graphical information.
The value of each dependence measure as well as its linked
p value are summarised in Table 2.

The set of copulas considered is classified into three
classes: Archimedean copulas, extreme value copulas and
other families. Ali–Mikhail–Haq, Clayton, Frank and Gum-
bel copulas belong to the first class, while Galambos, Hüsler–
Reiss, and Tawn copula are part of the extreme value copulas
family. The Gumbel copula also belongs to the second group.
Farlie–Gumbel–Morgenstern and Plackett are included into
the last class. The set of feasible copulas was reduced after

Table 2. Rank-based non-parametric measures of dependence:
Spearman’s rho (ρ) and Kendall’s tau (τ).

Dependence Value p value
measure

ρ 0.8899 1.82× 10−8

τ 0.7244 2.53× 10−11

testing the admissible range of dependence supported by
each one using the Kendall’s tau value. As result, Ali–
Mikhail–Haq (τ∈ [−0.1817, 1/3]), Tawn (τ∈ [0, 0.4184])
and Farlie–Gumbel–Morgenstern copula (τ∈ [−2/9, 2/9])
were eliminated.

Copula functions and parameter space of the copulas se-
lected in the study are presented in Table 3. The parameter of
the copulas is estimated using both rank-based methods, the
inversion of Kendall’s tau and the MPL method. The stan-
dard error (SE) is also obtained for each estimated parameter
(Kojadinovic and Yan, 2010). Although SE is not a goodness-
of-fit criterion, small values are always desirable. The results
in Table 4 show that except in the case of the Clayton and the
Plackett copula, the lowest standard error is associated with
the inversion of Kendall’s tau method. Besides, the standard
error linked with the parameter of the extreme value copulas
is the smallest.

In all, 100 000 synthetic pairs are generated from each
copula. The scatter plot of the synthetic pairs transformed
back into its original units using univariate marginal distri-
butions and the observed data are shown in Fig. 5. Only cop-
ulas whose parameter is obtained by inversion of Kendall’s
tau method are drawn. The figure shows that extreme value
copulas (Gumbel, Galambos and Hüsler–Reiss) are sharper
in the upper right corner while the other copula models are
more scattered in this area. This is so because extreme value
copulas present positive dependence in the upper tail. The
positive lower tail dependence of the Clayton copula can also

www.hydrol-earth-syst-sci.net/17/3023/2013/ Hydrol. Earth Syst. Sci., 17, 3023–3038, 2013



3030 A. I. Requena et al.: A bivariate return period based on copulas for hydrologic dam design

(a)

 36 

 1 

                                    (a)                                                                       (b) 2 

Fig. 4. (a) Chi-Plot. (b) K-plot. 3 
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Fig. 4. (a)Chi-Plot and(b) K-plot.

Fig. 5.Scatter plot of 100 000 values generated from the copulas fitted by the inversion of Kendall’s tau method and the observed data.

be observed in the graph. Extreme value copulas reproduce
the behaviour of the data leaving the largest observation on
the edge of the simulated sample, while Clayton, Frank and
Plackett copulas include this observation in the set of the gen-
erated sample, as their dependence structure in the upper tail
is more spread. A further analysis is needed to select the cop-
ula that best fits the data.

As expected, the generalized K-plot provides the same in-
formation for all of the extreme value copulas (Fig. 6). The
distance between parametric (Kθn ) and non-parametric esti-
mate (Kn) of K is greater for extreme value copulas than for
the other copula models. Consequently, this analysis shows

that extreme value copulas are slightly worse in terms of fit-
ting to the observed data.

In addition, the Sn goodness-of-fit test based on the
empirical copula and its associatedp value based on
N = 10 000 parametric bootstrap samples (which are also in-
cluded in Table 4) are estimated for each copula to select the
suitable copulas in a formal way. This test shows a good be-
haviour for all copula families and makes a distinction among
extreme value copulas. The parameter of the studied copulas
has been estimated using two different methods, the inver-
sion of Kendall’s tau and the MPL method. Consequently,
not only the comparison among all theSn values is done, but
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Fig. 6. Comparison between parametric (Kθn
) and non-parametric (Kn) estimate ofK, considering the copulas fitted by the inversion of

Kendall’s tau method.

also the comparison among theSn values provided by each
method, as the estimations provided by different methods
can lead to significant differences in results. It can be seen
that Sn leads to better results by the inversion of Kendall’s
tau method than by the MPL method for all copula models.
Hence, in this case, the inversion of Kendall’s tau method
behaves better than the MPL method.

It should be highlighted that although Frank copula with
the parameter estimated by the inversion of Kendall’s tau
method is the most appropriate in terms of fitting the bulk
of the observed data (as it has the lower value ofSn and a
suitablep value), neither of the remaining copulas could be
rejected considering thep value. Therefore, a second anal-
ysis is carried out to study the behaviour of the upper part
of the distribution by comparing the upper tail dependence
of the observed data with the upper tail dependence provided
by each copula model. This analysis is used to test which
copulas better represent the behaviour of the extreme values
of the observed data.

The graphical analysis of the upper tail dependence of the
observed data is carried out based on the Chi-plot, only con-
sidering the observations located in the upper right corner of
the scatter plot (Fig. 7). The analysis indicates that upper tail
dependence exists in the data set (what was expected for ex-
treme value data), as the points located in the right edge tend
to be far from the zero value of they axis, which is the inde-
pendence hypothesis. In addition, Table 5 shows the results

Fig. 7.Upper tail dependence analysis based on Chi-plot.

of theλC
U of the studied copulas. The coefficients were esti-

mated using the copula parameter obtained by the inversion
of Kendall’s tau method, as this method obtained better re-
sults. As Fig. 5 announced, only the extreme value copulas
show upper tail dependence. The remaining copulas show a
null result, as they have by definition an upper tail depen-
dence of zero. Then, the non-parametric estimator of the up-
per tail dependence coefficient of the observed data obtained
by means of Eq. (7),̂λCFG

U = 0.749, is compared with the up-
per tail dependence coefficient of each considered copula. As
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Table 3.Copula functions and parameter space of the considered copulas.

Copula Cθ (u, v) θ space

Clayton
[
max

(
u−θ

+ v−θ
− 1

)]−1/θ
[−1, ∞)\{0}

Frank −1
θ ln

[
1 +

(
e−θu

−1
)(

e−θv
−1

)
(e−θ −1)

]
[−∞, ∞)\{0}

Gumbel exp

[
−

(
ũθ

+ ṽθ
)1/θ

]
[1, ∞)

Galambos uv exp

[(
ũ−θ

+ ṽ−θ
)−1/θ

]
[0, ∞)

Hüsler–Reiss exp
[
−ũ8

{
1
θ +

θ
2 ln

(
ũ
ṽ

)}
− ṽ8

{
1
θ +

θ
2 ln

(
ṽ
ũ

)}]
[0, ∞)

Plackett 1
2

1
θ −1

{
1 + (θ − 1)(u + v) −

[
(1 + (θ − 1)(u + v))2 − 4θ (θ − 1)uv

]1/2
}

[0, ∞)

Note: ũ =− ln(u); ṽ =− ln(v); and8 is the univariate standard Normal distribution.

Table 4.Estimated value of the copula parameter (θn), copula parameter standard error (SE), Cramér-von Mises goodness-of-fit test (Sn) and
p value calculated based onN = 10 000 parametric bootstrap samples, according to the parameter estimation method.

Copula Parameter estimation method θn SE Sn p value

Clayton inversion Kendall’s tau 5.257 1.202 0.0223 0.3828
MPL 3.337 1.081 0.0524 0.0565

Frank inversion Kendall’s tau 12.622 2.459 0.0174 0.8402
MPL 11.774 2.858 0.0202 0.7332

Gumbel inversion Kendall’s tau 3.628 0.601 0.0218 0.3967
MPL 3.068 0.714 0.0351 0.0649

Galambos inversion Kendall’s tau 2.919 0.602 0.0219 0.3910
MPL 2.345 0.697 0.0357 0.0603

Hüsler–Reiss inversion Kendall’s tau 3.677 0.684 0.0221 0.3663
MPL 2.970 0.777 0.0379 0.0568

Plackett inversion Kendall’s tau 54.230 21.699 0.0181 0.7893
MPL 33.570 17.531 0.0308 0.2967

Table 5. Upper tail dependence coefficient of the considered
copulas.

Copula λC
U

(θ) θn λ̂C
U

Clayton 0 5.257 0
Frank 0 12.622 0
Gumbel 2− 21/θ 3.628 0.789
Galambos 2−1/θ 2.919 0.789

Hüsler–Reiss 2− 28
{

1
θ

}
3.677 0.786

Plackett 0 54.230 0

Note:8 is the univariate standard Normal distribution.

the estimator value is similar to the three values obtained for
the extreme value copulas, it can be considered that Gumbel,
Galambos and Ḧusler–Reiss copulas reproduce suitably the
dependence in the upper extreme.

In summary, the best copula should represent properly
both, the dependence structure of the observed pairs of peak
and volume and the behaviour in the upper part of the distri-
bution. Considering the whole tests, the Gumbel copula was
selected as the best copula model. It is an extreme value cop-
ula, consequently it takes into account the upper tail depen-
dence and, at the same time, shows a suitablep value repre-
senting properly the dependence structure between both vari-
ables. Besides, as the Gumbel copula is also an Archimedean
copula, it preserves the useful properties of this family, such
as the existence of an analytical expression of the Kendall
function.

A comparison between a sample generated from the fitted
Gumbel copula and the observed data is displayed in Fig. 8.
Also, contours of the fitted copula that represent the events
with the same probability of occurrence are shown.
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Table 6.Comparison between joint return periods associated to the theoretical events with peaks equal toqT and volumes equal tovT for
T = 10, 100 and 1000 yr.

Copula T =TX =TY qT vT t T ∨
X,Y

T ∧
X,Y

Kθn
(t) ρ∨

t

(m3 s−1) (h m3)

10 81.52 18.69 0.8803 8 12 0.9112 11
Gumbel 100 134.80 32.08 0.9879 83 127 0.9912 114

1000 187.12 45.21 0.9988 826 1266 0.9991 1140

10 81.52 18.69 0.8572 7 17 0.9233 13
Frank 100 134.80 32.08 0.9811 53 891 0.9979 481

1000 187.12 45.21 0.9980 503 80 226 0.9999 40 448

Fig. 8. Comparison between a sample generated from the Gumbel
copula and the observed data with the copula contours.

4.2 Joint return periods

Firstly, a brief analysis is conducted to check the results of
the copula selection by comparing the risk assumed depend-
ing on the selection of a copula model without upper tail de-
pendence (Frank copula) and a copula model with upper tail
dependence (Gumbel copula). The joint return periodsT ∨

X,Y

(Eq. 8),T∧

X,Y (Eq. 9) andρ∨
t (Eq. 11) associated to the the-

oretical events with peaks equal toqT and volumes equal
to vT for return periods (T) equal to 10, 100 and 1000 yr
are estimated for both Gumbel and Frank copula, beingqT

and vT the quantiles obtained from the Gumbel marginal
distributions.

The results presented in Table 6 indicate that although
T ∨

X,Y linked to the Gumbel copula are higher for all the re-
turn periods,T ∧

X,Y and theρ∨
t are much smaller. It can also

be seen that the higher the return period, the larger the dif-
ferences between joint return periods related to each copula.
Therefore, as expected for not being an extreme value cop-
ula, the Frank copula underestimates the risk associated to

Fig. 9. Frequency curve of MWL for the spillway real set-up
(E = 889 m,L = 12 m).

the joint return periodsT ∧

X,Y and ρ∨
t . Hence, this analysis

supports the fact that not taking into consideration the upper
tail dependence in joint extreme events modelling can lead to
an underestimation of the risk (Poulin et al., 2007).

Therefore, once the Gumbel copula was selected as the
best copula model, the joint return periodsT ∨

X,Y , T ∧

X,Y and
ρ∨

t were calculated through it.

4.3 Routed return period in terms of risk of dam
overtopping

In all, 100 000 annual synthetic hydrographs were esti-
mated by means of the 100 000 peak–volume pairs gener-
ated from the Gumbel copula using the procedure explained
in Sect. 2.3. The set of hydrographs was routed through the
reservoir, which was assumed to be uncontrolled for the sake
of simplicity. The frequency curve of the MWL reached
was obtained for the spillway real set-up (an elevation of
the spillway crest of 889 m and a spillway length of 12 m)
(Fig. 9). Maximum water level quantiles for a given return
period were estimated easily from this frequency curve (Ta-
ble 7). Return period curves in the peak–volume space re-
garding the risk to the dam were obtained as the hydrographs
that lead to a similar MWL. Thereby, Fig. 10 shows the
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(a)

(b)

(c)

Fig. 10. Comparison among return periods curves that represent
the risk to the damTdam and joint return periods curves(a) T ∨

X,Y
,

(b) T ∧
X,Y

and (c) ρ∨
t , for the spillway real set-up (E = 889 m,

L = 12 m).

comparison among the different curves that represent differ-
ent risks: (i) the theoretical curves associated with the joint
return periodsT ∨

X,Y , T ∧

X,Y andρ∨
t estimated from the fitted

copula, which are probabilistic based and show a supposed
risk of a hydrograph being harmful prior to accounting for the
effect of the routing reservoir process on it, and (ii) the curves

Table 7.Maximum water level reached for different return periods
(MWL) associated to the probability of exceeding a water level for
E = 889 m andL = 12 m.

Tdam pexc MWL
(yr) (m)

5 0.2 890.21
10 0.1 890.46
50 0.02 890.98
100 0.01 891.17
500 0.002 891.62

that represent the risk of dam overtopping by the routed re-
turn period (Tdam), which are related to a real risk for the
structure, as they are obtained based on the MWL reached.
Figure 10 provides useful information about observed and
predicted events. It can be seen that the secondary return pe-
riod curves are the most similar to the return period curves
that represent the risk to the dam. The secondary return pe-
riod is linked to the probability that an event with a copula
value higher thant occurs. The routed return period is calcu-
lated from the probability of exceeding a water level. As an
example, Table 8 summarises this information for two spe-
cific events with a copula value of 0.9 and 0.99. The results
fulfil Eq. (10).

Once the different curves were compared, a further analy-
sis is carried out on the return period related to the risk to the
dam, in order to assess its sensitivity. Figure 11 displays the
return period curves related to the risk of dam overtopping
for different reservoir volumes given by reservoir elevations
of 879, 884 and 889 m and spillway lengths of 7, 12 and 17 m.
It can be appreciated that the higher the reservoir volume,
the more horizontal the curves, while the longer the spill-
way length, the steeper the curves. Thereby, the most hori-
zontal curve is associated with the highest reservoir volume
(E = 889 m) and the shortest spillway length (L= 7 m), while
the steepest curve is linked to the smallest reservoir volume
(E = 879 m) and the longest spillway length (L= 17 m). This
is caused by flood control properties in a reservoir: the higher
the reservoir volume, the greater the capacity to store hy-
drograph water volume temporarily and, consequently, the
higher the attenuation of the flood peak. In this case, the hy-
drographs that have more influence on the risk to the dam, or
the most dangerous hydrographs, are characterised by a high
volume. Consequently,Tdam is mostly given by the marginal
return period of hydrograph volumes (the curves are more
horizontal). On the other hand, the smaller the reservoir vol-
ume, the lower the capacity to store water temporarily and the
smaller the attenuation of the flood peak. In this case, the hy-
drographs that have more influence on the risk to the dam are
characterised by a high flood peak andTdam is mostly given
by the marginal return period of flood peaks (the curves are
steeper).
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Table 8.Example of comparison among return periods. Two simulated events with a copula value of 0.9 and 0.99 are considered. All return
periods are expressed in years.

Q V t T ∨
X,Y

TX TY T ∧
X,Y

Kθn
(t) ρ∨

t MWL Tdam

(m3 s−1) (h m3) (m)

90.52 19.12 0.9 10 15 11 16 0.9261 14 890.53 13
136.41 34.43 0.99 100 107 151 168 0.9927 138 891.34 180

Fig. 11.Comparison among return period curves related to the risk to the dam depending on the reservoir volume and the spillway length.

In the case of the spillway length, the shorter the spillway
length, the lower the capacity to discharge and the higher the
need of a larger capacity to store water temporarily. The hy-
drographs that lead to higher maximum water levels will have
greater volumes andTdam is mostly given by the marginal re-
turn period of hydrograph volumes.

As available flood control volume and spillway crest
length vary, so do the location and range of critical values
per margin. For further analysis of the results, a detailed
comparison is shown in Fig. 12. The comparison is focused
on the curves related to the risk of dam overtopping when
Tdam equals 5 and 50 yr. Figure 12a shows the sensitivity

to reservoir volume for the central value of spillway crest
length (12 m), while Fig. 12b shows the sensitivity to spill-
way crest length for the central value of reservoir volume
(884 m). The former shows that as the reservoir volume in-
creases, the range of the critical peaks also increases, while
the range of the critical volumes decreases. It can also be
noted that for higher return periods, the curve slope changes
significantly with the reservoir volume, showing a severe re-
duction of the range of critical volumes, while the range of
critical peaks is increased drastically. On the other hand, the
latter exhibits that as the spillway crest length increases, the
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(a) (b)

Fig. 12.Detail of the comparison among the routed return period curves whenTdamequals 5 and 50 yr, varying with:(a) the reservoir volume
and(b) the spillway crest length.

range of the critical peaks decreases, while the range of the
critical volume increases.

5 Conclusions

In the present paper a Monte Carlo procedure to obtain the
return period linked to the risk of dam overtopping (so-called
the routed return period) was carried out by a copula model,
comparing it to the probability of occurrence of a flood. For
that purpose a bivariate flood frequency analysis of flood
peak and volume via a copula model was conducted. The
Gumbel copula was found to be the best copula after taking
into account the upper tail dependence of the data set. Dif-
ferent joint return period curves were estimated by the cop-
ula model fitted to observed data. In addition, a set of syn-
thetic flood hydrographs was generated from the fitted Gum-
bel copula and was routed through the Santillana reservoir to
obtain the maximum water level reached during the routing,
as the water lever was used as a surrogate of the hydrolog-
ical risk of dam overtopping. Curves that represent the risk
to the dam were obtained as the probability of exceeding a
water level. Comparison between both curves for different
return periods was carried out. Finally, a sensitivity analysis
of the routed return period curves related to the risk to the
dam was conducted considering different reservoir volumes
and spillway crest lengths.

The results show that tail dependence should be consid-
ered in the copula selection to avoid hydrological risk under-
estimation. The secondary return period curves turned out to
be the most similar to the routed return period curves that
represent the risk of dam overtopping. These results support
the use of the secondary return period in this study. Besides,
the use of the secondary return period in preliminary assess-
ment for dam design could be considered adequate, as this
return period is independent of reservoir and spillway config-
uration. The results also hold that the general idea of routing

a large sample through the reservoir has benefits from a con-
ceptual point of view. Accordingly, for detailed design, it
could be useful the use of the routed return period obtained
by routing a large sample of hydrographs through the reser-
voir, as it provides a more accurate assessment of the risk
of dam overtopping because this return period is specific for
the structure under analysis. In summary, in addition to con-
sider the secondary return period, flood hydrographs should
also be routed to improve the estimation of the risk of dam
overtopping, as there are differences among return periods.
It was appreciated that as the available flood control volume
increases, the routed return period curves are more depen-
dent on volume (the slope of the return period curves be-
comes more horizontal). On the other hand, as the spillway
length increases, the routed return period curves are more de-
pendent on flood peak (the slope of the return period curves
becomes steeper). The sensitivity analysis showed the role
played by flood control volume and spillway crest length on
the location and ranges per margin of return period curves.
The previous results suggest that bivariate analysis could be
asymptotically approximated by univariate analysis, for ex-
treme reservoir and spillway characteristics: for a very large
flood control volume the dominant variable is hydrograph
volume and for a very large spillway length the dominant
variable is hydrograph peak. It is also emphasised that the
shape of the curves depend not only on the reservoir volume
and spillway length, but also on the hydrograph magnitude,
given by soil properties, rainfall and physiographic charac-
teristics of the basin.

In conclusion, comparison between bivariate return period
curves that represent the risk of dam overtopping (the real
risk to the structure) and bivariate joint return period curves
that represent the probability of occurrence of a flood event
(the theoretical supposed risk without taking into account the
structure) provides valuable information about flood control
processes in the reservoir. The proposed routed return period
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can be useful in dam design, as it improves the estimation
provided by the flood event-based return periods, taking into
account the dam characteristics that exert a significant influ-
ence on the risk of dam overtopping. In addition, this study
could be replicated in terms of risk of downstream damages.
Therefore, the proposed methodology can procure useful in-
formation to estimate the Design Flood Hydrograph.
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