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Abstract. A multivariate analysis on flood variables is probability of occurrence of the hydrological event (Chebana
needed to design some hydraulic structures like dams, as thend Ouarda, 2011). Moreover, the full hydrograph is of inter-
complexity of the routing process in a reservoir requires aest in the case of dam design, as the inflow peak is trans-
representation of the full hydrograph. In this work, a bivariate formed into a different outflow peak during the routing pro-
copula model was used to obtain the bivariate joint distribu-cess in the reservoir. Therefore, due to the multivariate nature
tion of flood peak and volume, in order to know the probabil- of flood events, a multivariate frequency analysis of random
ity of occurrence of a given inflow hydrograph. However, the variables such as flood peak, volume and duration is required
risk of dam overtopping is given by the maximum water ele- to design some structures like dams.
vation reached during the routing process, which depends on National laws and guidelines usually fix a given return pe-
the hydrograph variables, the reservoir volume and the spill+iod for dam design. Among others, France uses a return
way crest length. Consequently, an additional bivariate re-period of 1000 to 10000yr depending on the dam typol-
turn period, the so-called routed return period, was defined irogy; Austria fixes a return period of 5000 yr and Spain uses
terms of risk of dam overtopping based on this maximum wa-a return period of 500 to 10000yr depending on the dam
ter elevation obtained after routing the inflow hydrographs.typology and its downstream vulnerability (Minor, 1998;
The theoretical return periods, which give the probability of Rettemeier and Bngeter, 1998). However, they do not spec-
occurrence of a hydrograph prior to accounting for the reserify whether it is the return period of either the peak, or hy-
voir routing, were compared with the routed return period, drograph volume or the entire hydrograph. Moreover, the risk
as in both cases hydrographs with the same probability willrelated to a specific event can be over- or underestimated if
draw a curve in the peak-volume space. The procedure wasnly the univariate return period of either the peak or volume
applied to the case study of the Santillana reservoir in Spainis analysed (Salvadori and De Michele, 2004; De Michele et
Different reservoir volumes and spillway lengths were con-al., 2005). In addition, the return period should be defined in
sidered to investigate the influence of the dam and reservoiterms of risk of either dam overtopping or downstream dam-
characteristics on the results. The methodology improves thages, instead of in terms of natural probability of occurrence
estimation of the Design Flood Hydrograph and can be ap-of floods, to take into account the influence of reservoir and
plied to assess the risk of dam overtopping. dam characteristics on the flood hydrograph routing process
(Mediero et al., 2010). In the case of risk of dam overtop-
ping, the maximum water level reached during the routing
process should be used to define the return period. Neverthe-
1 Introduction less, the relationship between a given inflow hydrograph and
its maximum water level is not straightforward, as it depends
Univariate flood frequency analyses have been carried ougp the reservoir volume and the spillway crest length. Con-

widely, focusing on the study of flood peaks, which are usedsequently, the routing process has to be studied in each dam.
for designing most of hydraulic structures. However, univari-

ate frequency analyses do not procure a full evaluation of the
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Hence, a multivariate analysis on flood variables shouldvariables. Meanwhile, extreme value copulas have the advan-
be conducted to obtain both the natural probability of occur-tage that they are able to connect the extreme values of the
rence of a flood and the return period of a flood in terms ofstudied variables, which is very important in flood frequency
risk of dam overtopping. This analysis has been traditionallyanalysis. A lot of authors considered the Gumbel copula as
undertaken through the use of a stochastic weather generdlae copula that best represents the relation between peak and
tor and continuous rainfall-runoff models (Calver and Lamb, volume (Zhang and Singh, 2006, among others).

1995; Cameron et al., 1999; Blazkova and Beven, 2004). Al- But selection of the copula model that best fits the ob-

though this approach has proven very successful, itis compuserved data is not a trivial issue. Some works have been
tationally very demanding, especially if extreme events arecarried out in recent years regarding the steps required to
the focus of the analysis and an estimation of uncertaintyselect a copula model. Using a small sample, Genest and
is required. Copula models are a valid alternative, becaus€&avre (2007) described different aspects to take into account
they allow generating arbitrarily long series to extend the ob-in the process of studying the dependence between two ran-
served hydrological data with less computational effort thandom variables, in order to identify the appropriate copula

continuous rainfall-runoff models. model. The importance of considering upper tail dependence

Traditional multivariate techniques assume that thein copula selection was emphasised by Poulin et al. (2007),
marginal distributions should come from the same family in order not to underestimate the flood risk, as the upper tail
of distributions and the dependence between variables foldependence is related to the degree of dependence between
lows a linear relationship. However, drawbacks arise becausthe extreme values of the variables involved in the study.
these assumptions could not be satisfied by the dependendéereby, Chowdhary et al. (2011) indicated the steps needed
structure of flood variables. Copula models can avoid thesdo select the best copula model taking into account the tail
difficulties. A copula is a function that connects univari- dependence in the decision process.
ate distribution functions to a multivariate distribution func-  Different bivariate return periods estimated by copulas
tion describing the dependence among correlated variablesave been developed in the last years. Salvadori and De
(Nelsen, 1999). The main advantage of copulas is that uniMichele (2004) studied the unconditional and conditional re-
variate marginal distributions can be defined independentiyturn periods of hydrological events using copulas, focussing
from the joint behaviour of the variables involved. Hence, aon the joint return period in which either or y are ex-
copula allows for modelling the dependence structure of ranceeded (primary return period) and on the joint return pe-
dom variables regardless the family that the marginal distri-riod in which bothx andy are exceeded. An additional re-
butions belong to. Besides, joint return periods can be easilyurn period was also introduced, the secondary return period
estimated from copulas, which represents an additional benfalso called the Kendall return period), which is associated
efit as the study of joint return periods is essential to floodwith the realisation of dangerous events for the dam. As it is
frequency analysis. linked to the primary return period, it can be understood as

The theory of copulas is based on the Sklar's theorenmthe mean inter-arrival time of the events with a primary re-
(Sklar, 1959), which in the case of a bivariate case can bdurn period over a threshold (called critical events). Authors
written in the form: such as Shiau et al. (2006) also applied joint return periods to

study the bivariate flood frequency analysis of peak and vol-
H(x,y) = C{F(x), GO}, x, y € R, (1) ume)./A comparison of the dcilfferen): retur¥1 perioz approaches
where H (x, y) is the joint cumulative distribution function for the estimation of design events has been recently shown
of the random variableX andY, F(x) and G(y) are the by Grdler et al. (2013). Other studies have been carried out
marginal distribution functions o and Y, respectively, regarding multivariate flood frequency analysis using copu-
and the mapping functiod : [0, 1]2 — [0, 1] is the copula las (Grimaldi and Serinaldi, 2006; Serinaldi and Grimaldi,

function. 2007; Zhang and Singh, 2007).
Further details about copulas can be found in Joe (1997), Other authors have studied dam safety more in depth using
Nelsen (1999) and Salvadori et al. (2007). copulas. De Michele et al. (2005) utilised the Gumbel cop-

Although copula models have been extensively applied inula to generate peak-volume pairs, in order to verify that the
other fields such as finance, they have been only recently apnaximum water level reached at the dam by the generated
plied to model hydrological events such as floods, stormshydrographs was below the crest level. Klein et al. (2010)
and droughts. Overall, the Archimedean and extreme valugresented a methodology to classify floods regarding the hy-
copula families are the most used in modelling flood vari- drological risk, estimating the probability of occurrence of
ables. The Archimedean copulas can be constructed easilgeak and volume via a copula model. The maximum wa-
and, as a great deal of copulas belongs to this family, a broater level reached at the dam by each flood was estimated,
kind of dependence can be considered. Some authors used graphically analyse the relation between this level and the
Archimedean copulas such as the Frank copula (Favre et alvalue of the primary return period for each event.

2004) or the Clayton copula (Shiau et al., 2006) to charac- In this paper, a bivariate flood frequency analysis was car-
terise the dependence structure between peak and volunréd out by a copula model to conduct a comparison between
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the return periods that estimate the natural probability of oc-n the observed record length), and by other two rank-based
currence of floods and a return period defined in terms ofscatter plots: the Chi-plot and the K-plot.
risk of dam overtopping (so-called the routed return period), The Chi-plot displays a measure of location of an obser-
to assess the influence of the routing process on them. Thesation regarding the whole of the observationg @gainst a
oretical return periods based on the joint probability of oc- measure of the well-known Chi-square test statistic for inde-
currence were estimated from the fitted copula. In addition,pendence (). Consequently, the larger the distance between
the fitted copula was used to generate a large set of syrthe points and the zero value in thaxis, the larger is the de-
thetic peak-volume flood pairs in the catchment. Syntheticpendence. The dependence is positive if the points are above
hydrographs were generated to ascribe a shape to the sythe upper control limit and negative if they are located below
thetic peak-volume pairs. The set of synthetic hydrographghe lower control limit (Fisher and Switzer, 1985, 2001).
was routed through the reservoir to obtain the maximum wa- The K-plot relates the order statistics;{istimated from
ter level reached at the dam during the routing process, in orthe observed data to the expected value of these statistics
der to assess the hydrological risk of dam overtopping. ThgW;.,,) generated under the null hypothesis of independence
routed return periods based on the risk of dam overtoppingoetween the marginal distributions. Therefore, the larger the
were estimated. Furthermore, a sensitivity analysis on thalistance between the points and the diagonal line, the larger
reservoir volume and spillway crest length was carried out, tothe dependence. Hence, if the points are located above this
investigate how the flood variables control the routed returnline, the dependence is positive. On the other hand, if the
period depending on the dam and reservoir characteristicgoints are below this line, the dependence is negative (Genest
The methodology was applied to the Santillana reservoir inand Boies, 2003).
Spain. Besides, dependence measures are needed to procure a
The structure of the paper is the following: the proposedquantitative value of the dependence relation between vari-
methodology is shown in Sect. 2. Section 3 presents the casables. For this purpose, the Spearman’s rho and Kendall's
study. Then, the results obtained after applying the proceduréau rank-based non-parametric measures of dependence are
are included in Sect. 4. Conclusions are introduced in Sect. 5adopted and its associatgdvalues are estimated (indepen-
dence between variables is rejected whenghalue is less
than 0.05, further details about tipevalue estimation can be
2 Methodology found in Genest and Favre, 2007). The result of this evalua-
. . . .__tion provides an idea of the type of copula to be considered
In this section the proposed methodology is presented. Firs in the study, since each copula supports a particular range
the steps followed to select the copula model from observe f dependence parameter. Michiels and De Schepper (2008)

data are describ_ed. The_n, the theoretical joint return periOdfbrovides ranges of admissible Kendall's tau to different cop-
are briefly described. Thirdly, the procedure to generate SYNylas for the bivariate case. Therefore, the number of feasible

thgnc hydrographs is pre_senFed. Finally, _the procedure to Obéopulas can be reduced using the Kendall's tau value.
tain the routed return period in terms of risk of dam overtop-

ping is offered. 2.1.2 Parameter estimation method

2.1 Copula selection The estimation of the parameter)(6f the copula family

Identification of the copula that best fits the observations isCo (. v) that best fits the data can be performed through dif-

required, as several families of copulas exist. The copula thatérént methods. A first group consists of rank-based meth-
best represents the dependence structure between variab/@dS: in which the parameter estimation is independent of the
will be the most appropriate. The steps involved in selectingMarginal functions, such as the method based on the inver-
the appropriate copula model are (i) dependence evaluatiorsion Of @ non-parametric dependence measure (e.g. the in-
(i) parameter estimation method; (iii) goodness-of-fit tests; version of Kendall's tau dependence measure) and the max-

and (iv) tail dependence assessment. imum pseudo-likelihood method (MPL). The former is re-
lated to the method of moments, while the MPL is a mod-
2.1.1 Dependence evaluation ification of the traditional maximum likelihood method, in

which the empirical marginal distributions are used instead
A dependence analysis among correlated random variablesf the parametric marginal distributions. Other methods cer-
is conducted to determine if some kind of dependence canainly depend on the marginal distributions, such as the in-
be deduced from the data. It can be carried out by graphicalerence function for margins (IFM) method proposed by Joe
analyses or dependence measures. A graphical analysis ahd Xu (1996). There is no consensus, but a large number
dependence can be displayed by the scatter plot of the pairsf authors defend the use of the rank-based estimation meth-
(Ril(n + 1), S;/(n + 1)) derived from the observed data pairs ods. Supporting this position, Kim et al. (2007) argue that
(X;, Y;) (whereRr; is the rank ofX; amongX;, ..., X, and IFM methods are non-robust against misspecification of the
S; is the rank ofY; amongy;, ...,Y,, beingi=1, ...,n and marginal distributions, as the parameter estimation depends
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on the choice of the univariate marginal distributions and n R s R S 2
can be affected if such models do not fit adequately. Con-S, = » | {Cn <m - 1: 1) - Cy, (n +l T m>} e
sequently, in the present work two rank-based methods were =1
used: the inversion of Kendall's tau method and the MPL,, 1o
method.

1< R; Si
2.1.3 Goodness-of-fit tests Cal, v) =~ ,2; 1 (n 1=, s ”) cus v € [0,1]. (4)

The aim of a gOOdneSS-Of—fit test is Selecting the COpUIaHere Cn is the empirica' Copu|a (a non_parametric rank-
that best represents the dependence structure of observg@ised estimator of the unknown copul@), the parametric
variables. Graphical tools and formal tests are provided tozopula with the parameter previously estimated from the ob-
achieve this purpose. served data and 1(A) the indicator function of the set A.

A first idea of the behaviour of the copulas can be drawn The g, statistic based on the empirical copula was the
via a scatter plot, where a synthetic sample of pairs generategoodness-of-fit test utilised in the present paper. The statis-
from each copula of study @/, Uz;), beingj =1, ...,m tjc value is used to classify the copula models asgthalue
andm the sample size, is compared to the pairs related to th@an only be utilised to accept or reject each copula model
observations (H(n + 1), Si/(n +1)). Another useful graph  (salvadori and De Michele, 2011). Consequently, the se-

can be elaborated by fitting the marginal distributions of the|ected copula should have the lower value of the statistic with
random variables in order to transform the pairs generate@yn admissible value (i.e. larger than 0.05).

from the copula into their original units (XY;), following
Eq. (2): 2.1.4 Tail dependence assessment

(X;,7)) = (F_l(Ulj), G_l(UZj)), 2) Once the goodness of fit of the copula to observed data is
assessed, a tail dependence assessment is conducted to eval-
uate the copula behaviour for high return periods. The idea of
butions functions andG, respectively. _tail dependen_ce is connected. with the degree of depen_dence
A third graph is the generalized K-plot, based on the pro-IN the upper-right-quadrant tail or lower-left-quadrant tail of
cedure introduced by Genest and Rivest (1993), in which® bivariate dlstrlbutlon. In this WOI’.k, more attention is paid
a comparison of parametric and non-parametric estimate&" the upper tail dependence (Serinaldi, 2008), not being rel-
of K(1) is conducted, beingk (+) (the so-called Kendall evant the analysis of the Iowe_r tail dependence due to the
function) the probability that the copula function is equal focus on the freqqency analy_S|s of extreme_ﬂood eyents fqr
or smaller tharr € [0, 1], i.e. the cumulative distribution of dam safety analy5|s. Upper tail dependence is associated with
the copula value. This widely used procedure has been spéhe, capacity to link extreme.fl'ood peaks to extre.me volumes.
cially designed for Archimedean copulas, so there are cir- IS measure can be quantified by the upper tail dependence
cumstances in which a goodness-of-fit test based on it is ngtC€fficient.Ay . Its general expression is given in Eq. (5).
consistent. This is the case of extreme value copulak(as
is the same for all of extreme value models (Genest et al.
2006).
Although graphical tools provide a general notion of the - ! SRR >
goodness-of-fit, formal tests are needed to quantify it. Sevi0 the probability of the marginal distribution of being
eral procedures have been proposed in the last years. Gené@fger than the.thresholﬂb €[0, 1], when the marginal dis-
et al. (2009) show a review and analyse various rank-baseffiPution of y being also larger than that threshold.
procedures. These procedures are classified in three groups: ON€ Of the main advantages of copulas is that both the
tests based on the empirical copula, tests based on Kendall'$°Per and lower tail dependences are inherent to the copula

transform and tests based on Rosenblatt’s transformatioHﬁOdel and depend on its !oarameter_. Therefore, the previous
The results indicate that overall, the Crémvon Mises statis- €asure can also be estimated using copulas by means of

tic (S, based on the empirical copula) has the best behaviouFd- (6)-

for all copula models, allowing to d|fferent|ate_ among ex- c 12w+ Co(w,w)

treme value copulas. It also emphasised the importance ofy = lim

. . . w—1" 1-w

calculating thep value associated to the goodness-of-fit test

to formally assess whether the selected model is suitableAs the aim of this section is to identify the copula mod-

The p value is obtained through a parametric bootstrap-baseels that suitably reproduce the dependence in the extremes,

procedure that was validated (Genest agsnRlard, 2008).  the upper tail coefficient obtained from each copula should

The S, statistic can be written as be compared to the coefficient estimated from the observed
data. Initially, a graphical analysis of the tail dependence of

where F~1 andG ! are the inverses of the marginal distri-

hy = lim_P(F() > wlG(y) > w) (5)

Equation (5) shows that the upper tail dependence is related

(6)
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the observed data is done based on the Chi-plot (Abbergegrea over the copula level curve of valugalvadori and De
2005). A non-parametric estimator of the upper tail depen-Michele, 2004).

dence coefficient is also obtained in order to be compared
quantitatively to the upper tail dependence coefficient of eactp,” = e —
selected copula. In the present study the considered estima- 1- K@
tor is .5FC (Eq. 7). The estimator was proposed by Frahm etThe three joint return periods can be easily obtained using
al. (2005). Among others, the estimator has been applied byopulas thanks to their formulation. Once the copula selec-
Serinaldi (2008). tion is completed, the level curves of the fitted copula will be
the curves where the events with the same probability of oc-
currence are located, as the copula value indicates the proba-
I (7)  bility of both x andy are not exceeded.

(11)

A 1
ACFG—2 _2exp| =Y o
i p n; g

2.3 Synthetic hydrograph generation
The estimator is based on the assumption that the empirical

copula can be approximated by an extreme value copula. ISynthetic hydrographs were estimated from flood peak-
also works well when this hypothesis is not fulfilled, except volume pairs obtained by means of the selected copula, in
in the case that the real upper tail dependence is null. Byorder to be routed through the reservoir. A set of observed
means of this analysis, copulas that reproduce properly thétydrographs was used as a random sample to ascribe a hydro-
dependence in the extremes are identified. Because of a goataph shape to each peak-volume pair. The procedure is the
upper tail dependence fit does not mean a good whole datfollowing (Mediero et al., 2010): (i) The ratio between peak
fit, the assessment of the tail dependence is developed at thad volume is calculated for each peak-volume pair gener-
point and not before. Therefore, the best copula is the copulated by the copula; (i) The shape of the observed hydrograph
which represents properly the dependence structure of thwith the closest ratio is selected; and (iii) The synthetic peak
variables peak and volume and allows to study adequatelyalue is utilised to rescale the selected hydrograph and the

the extreme events. synthetic volume is adjusted by modifying the hydrograph
_ . duration. A set of 100 000 synthetic hydrographs was gener-
2.2 Joint return periods ated by this procedure, to have a large sample to study high

. . . . ] return periods.
Different joint return periods estimated by the fitted copula

have been developed for the case of a bivariate flood fre2.4 Routed return period in terms of risk of dam

quency analysis. The joint return perldfqy, so-called OR overtopping

return period, (in which the threshaidor y are exceeded by

the respective random variabl&sandY) andTy, ,, so-called The set of generated synthetic hydrographs was routed
AND return period, (in which the thresholdandy are ex-  through the reservoir to assess the risk of dam overtopping by
ceeded by the respective random variabfeand Y) were  the maximum water level (MWL) reached during the routing
consideredTy , is also known as the primary return period. process. The analysis is based on the assumption that hydro-
Using copulas these joint return periods are expressed as logical risk at the dam is related to MWL, as a return period
should be defined in terms of acceptable risk to the structure.
Consequently, the routed return period related to the risk of
dam overtopping (§am can be calculated as the inverse of
the probability to exceed a MWL any given yeaktg:

T\/ — nr _ MT (8)
XY™ pX>xvY>y 1—C(Fx),G®Y»)

o — nr _ nr ( )
YT PX>xAY >y 1-F@x) -GG +CFR).GH)

whereC(F(x), G(y))=P(X <x AY < y) andur is the Toan = 1 (12)
mean inter-arrival time between two successive events o Pexc
(nr =1 for maximum annual events). Besides, the following

inequality is always fulfilled: For this purpose, the univariate frequency curve of MWL is

obtained and the MWL for a given return period is estimated

7Y, < min[Ty, Ty] < max[Ty, Ty] < T, (10) (Fig. 1a). Furthermore, hydrographs with different combina-
T N o tions of peak and volume can lead to a similar MWL, which
whereTy andTy are the univariate return periods. implies a similar risk of dam overtopping and, consequently,

An additional return period is also studied, the secondarythey can be considered to have the same return period. In
return periodp,”. The secondary return period (Eq. 11) is as- the bivariate case, these hydrographs can be represented by
sociated with the primary return period, as it can be definec® curve in the peak-volume space (Mediero et al., 2010).
as the mean inter-arrival time of an event with a primary re- Thereby, return period curves that represent the same risk
turn period larger than a thresholdr). That is to say, itis O the dam are obtained as curves in the peak-volume space
related to the probability of occurrence of an event in the(Fig. 1b).

www.hydrol-earth-syst-sci.net/17/3023/2013/ Hydrol. Earth Syst. Sci., 17, 3023-303&013
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+ Hydrographs: MWL < MWLT‘*
dam
Hydrographs: MWL > MWL
dam
1 OSSO P SUOU PR UOUPOPN SUPRORYN J outt SO 4
E & i
= = E
5
.| 3 =
; d
= >
T*dam (MWL = MWL)
T*dam 1 25 5b 100 200 500 o,
Tgam Lyears] (@ Q[m’s™] (b)

Fig. 1. Procedure to obtain the routed return period curve that represent the risk of dam overtogging(éy Estimation of the MWL for
the given return perioa"c;"alm (MWL Td*am) from the frequency curve of MWL(b) Estimation of the routed return period curve by selecting

the hydrographs that reach a given water level equal to M(}/a\rlnL

In addition, the influence of reservoir volume and spill- N ) 7
way crest length on the shape of these curves was analysec 4 ey, FINGE g

i i ; & Spain Ny
Different reservoir volumes and spillway crest lengths were 2 e A,

considered in order to study the hydrological risk at the dam River /777 >

in different cases. - N ,...f---""“v‘i'? ?/
Finally, the curves that represent the probability of occur- 8 = 22, | Kt\,_

rence of floods regarding the theoretical joint return periods § 3 ® 0 N

based on copulas are compared to the curves that represe@ £ v/’/* A <A

the risk of dam overtopping by the routed return period, to < o Wiz 4 '

assess their similarity and improve the estimation of the De- : < "

sign Flood Hydrograph.
The present study has been carried out by means of both

the commercial software Matlab (Matlab 2009a, The Math- x“-(\ (___“___x_,.-w’f — ] =1
Works, Inc.) and the free software R (R Development Core "-&___;" i )
Team, 2012). Specifically, the use of the R package copula /’\T‘T‘\'"““““ Sea

AN

(Kojadinovic and Yan, 2010) is highlighted.

Fig. 2. Location of the Santillana reservaoir.

3 Case study
peak discharges, for the sake of consistency, maximum an-

The Santillana reservoir was selected as a case study. Itis Iawual flood volumes were assumed to be linked to hydro-
cated in the central west of Spain on the Manzanares Rivegraphs corresponding to the annual maximum peaks.

which belongs to the Tagus basin (Fig. 2). The Santillana The marginal distributions for both variables were fitted
reservoir has a drainage area of 325.6kand a reservoir  to a Gumbel distribution, estimating parameters by the L-
volume of 92 hm. The elevation of the spillway crest j moments estimation method (Table 1). A prior study carried
889 m, being the flooded area at the spillway crest height ofout in Spain showed that in this region, the Gumbel and the
5.35kn? and the reservoir volume up to the spillway crest generalised extreme value marginal distributions are appro-
of 48.9hn¥. The dam is an earthfill embankment with a priate for fitting the annual maximum flood peaks (8imez-
height of 40m and a crest length (L) of 1355m. The con-Alvarez et al., 2012). Consequently, for the sake of simplic-
trolled spillway has a 12 m gate and a maximum capacity ofity, the Gumbel distribution was considered to fit the data.
300 s~1. A set of 41 yr of observed data was recorded atWith the aim of validating this assumption, the Kolgomorov—
the reservoir. Observed data are composed of pairs of maxiSmirnov test was applied to the flood peak and volume data
mum annual flood peak (Q) and flood volume)(the lat-  set. Thep values obtained were larger than 0.05 (0.8426
ter being the volume of the hydrograph associated to theand 0.9271, respectively), proving that the hypothesis can be
event with the annual maximum flood peak. As this work accepted.

is based on the flood frequency curve of maximum annual

Hydrol. Earth Syst. Sci., 17, 3023-3038, 2013 www.hydrol-earth-syst-sci.net/17/3023/2013/
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Fig. 3. Scatter plot(a) Observed data (Q V;). (b) Ranks (R/(n + 1), S;/(n + 1)) derived from the observed data.

Table 1.Location parameter (1) and scale parametgmfyGumbel Table 2. Rank-based non-parametric measures of dependence:

distributions for the variables of peak (Q) and volumé.(V Spearman’s rho (pand Kendall's tau (.
Variable n y Dependence Value p value
0 30.47 22.69 measure
1% 587 5.70 0 0.8899 1.82x 1078
T 0.7244 2531011
4 Results

The proposed methodology was applied to the case study. testing the ad_missible range of dependence supported_by
each one using the Kendall's tau value. As result, Ali—

4.1 Copu|a selection MikhaiI—Haq (TG [—0.1817, 1/3]), Tawn (‘E [O, 0.4184])
and Farlie-Gumbel-Morgenstern copula(f-2/9, 2/9])

Once the univariate marginal distributions are known, thewere eliminated.
first step consists of studying the dependence between the Copula functions and parameter space of the copulas se-
two random variables: peak and volume. The scatter plot ofected in the study are presented in Table 3. The parameter of
the observed data is displayed in Fig. 3a. The scatter plot ofhe copulas is estimated using both rank-based methods, the
the pairs (R/(n + 1), S;/(n + 1)) derived from the data set inversion of Kendall’'s tau and the MPL method. The stan-
shows a positive relation of dependence between variabledard error (SE) is also obtained for each estimated parameter
(Fig. 3b). This fact is also supported by the Chi-plot (Fig. 4a) (Kojadinovic and Yan, 2010). Although SE is not a goodness-
and the K-plot (Fig. 4b). In the former, the values are locatedof-fit criterion, small values are always desirable. The results
above the upper limit indicating positive dependence. In thein Table 4 show that except in the case of the Clayton and the
latter, the values are plotted over the diagonal line, so positivéPlackett copula, the lowest standard error is associated with
interaction is also drawn. the inversion of Kendall’s tau method. Besides, the standard

The value of the Spearman’s rho)(and Kendall's tau error linked with the parameter of the extreme value copulas
() rank-based non-parametric measures of dependence cas the smallest.
roborate the results provided by the graphical information. In all, 100000 synthetic pairs are generated from each
The value of each dependence measure as well as its linkecbpula. The scatter plot of the synthetic pairs transformed
p value are summarised in Table 2. back into its original units using univariate marginal distri-

The set of copulas considered is classified into threebutions and the observed data are shown in Fig. 5. Only cop-
classes: Archimedean copulas, extreme value copulas angdlas whose parameter is obtained by inversion of Kendall's
other families. Ali-Mikhail-Haq, Clayton, Frank and Gum- tau method are drawn. The figure shows that extreme value
bel copulas belong to the first class, while Galambasslef—  copulas (Gumbel, Galambos andister—Reiss) are sharper
Reiss, and Tawn copula are part of the extreme value copulais the upper right corner while the other copula models are
family. The Gumbel copula also belongs to the second groupmore scattered in this area. This is so because extreme value
Farlie—Gumbel-Morgenstern and Plackett are included intacopulas present positive dependence in the upper tail. The
the last class. The set of feasible copulas was reduced aftgrositive lower tail dependence of the Clayton copula can also
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Fig. 5. Scatter plot of 100 000 values generated from the copulas fitted by the inversion of Kendall’s tau method and the observed data.

be observed in the graph. Extreme value copulas reproducthat extreme value copulas are slightly worse in terms of fit-
the behaviour of the data leaving the largest observation oning to the observed data.
the edge of the simulated sample, while Clayton, Frank and In addition, the S, goodness-of-fit test based on the
Plackett copulas include this observation in the set of the genempirical copula and its associated value based on
erated sample, as their dependence structure in the upper tail =10 000 parametric bootstrap samples (which are also in-
is more spread. A further analysis is needed to select the cogeluded in Table 4) are estimated for each copula to select the
ula that best fits the data. suitable copulas in a formal way. This test shows a good be-
As expected, the generalized K-plot provides the same in‘haviour for all copula families and makes a distinction among
formation for all of the extreme value copulas (Fig. 6). The extreme value copulas. The parameter of the studied copulas
distance between parametricg X and non-parametric esti- has been estimated using two different methods, the inver-
mate (k;) of K is greater for extreme value copulas than for sion of Kendall's tau and the MPL method. Consequently,
the other copula models. Consequently, this analysis showsot only the comparison among all tl§g values is done, but
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Fig. 6. Comparison between parametricy{X and non-parametric (§ estimate ofK, considering the copulas fitted by the inversion of
Kendall's tau method.

also the comparison among tl§g values provided by each 1 !
method, as the estimations provided by different methods 08t L
can lead to significant differences in results. It can be seen 06t A .
that S, leads to better results by the inversion of Kendall's 0al 5

tau method than by the MPL method for all copula models.
Hence, in this case, the inversion of Kendall's tau method

0zt :

behaves better than the MPL method. oo -
It should be highlighted that although Frank copula with R O AR
the parameter estimated by the inversion of Kendall's tau 04
method is the most appropriate in terms of fitting the bulk 08¢
of the observed data (as it has the lower value,pfand a o8}
suitablep value), neither of the remaining copulas could be y . i .
rejected considering the value. Therefore, a second anal- ! o ; o8 !

ysis is carried out to study the behaviour of the upper part i

of the distribution by comparing the upper tail dependencerig. 7. Upper tail dependence analysis based on Chi-plot.
of the observed data with the upper tail dependence provided
by each copula model. This analysis is used to test which

copulas better represent the behaviour of the extreme values ) o )
of the observed data. of the »§ of the studied copulas. The coefficients were esti-

The graphical analysis of the upper tail dependence of thénated using the copula parameter obtained by the inversion
observed data is carried out based on the Chi-plot, only conof Kendall’s tau method, as this method obtained better re-
sidering the observations located in the upper right corner ofUlts. As Fig. 5 announced, only the extreme value copulas
the scatter plot (Fig. 7). The analysis indicates that upper taifhow upper tail dependence. The_ remaining COP“'?S show a
dependence exists in the data set (what was expected for eQUIl result, as they have by definition an upper tail depen-
treme value data), as the points located in the right edge teng@nce of zero. Then, the non-parametric estimator of the up-
to be far from the zero value of theaxis, which is the inde-  Per tail dependence coefficient of the observed data obtained

pendence hypothesis. In addition, Table 5 shows the result8y means of Eq. (7)3*8%:_ 0.749, is compared with the up-
per tail dependence coefficient of each considered copula. As
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Table 3.Copula functions and parameter space of the considered copulas.
Copula Co (u, v) 0 space
-1/0

Clayton [max u=t v — 1)] / [—1,00)\{0}

1 ol G
Frank 7 In|1+ W [—OO, OO)\{O}

1/6
Gumbel exp [— (129 + 179) / [1,00)
-1/6
Galambos  uvexp (12‘9 + 5—9) / [0, 00)
Husler-Reiss ex(:—ﬁCD {% + % In (%)} -7 {% + % In (%)” [0, c0)
1/2

Placlett 1A {14 @ - Dw+v) = [A+6 - D@+ )2 -406 - Duo] / } [0, 00)

Note:ii =—In(u); v=—In(v); and® is the univariate standard Normal distribution.

Table 4.Estimated value of the copula parameter(@€opula parameter standard error (SE), Ggamron Mises goodness-of-fit test,(sand
p value calculated based &= 10 000 parametric bootstrap samples, according to the parameter estimation method.

Copula

Parameter estimation method 6, SE Sn p value
Clayton inversion Kendall’s tau 5.257 1.202 0.0223 0.3828
MPL 3.337 1.081 0.0524 0.0565
Frank inversion Kendall's tau 12.622 2.459 0.0174 0.8402
MPL 11.774 2.858 0.0202 0.7332
Gumbel inversion Kendall's tau 3.628 0.601 0.0218 0.3967
MPL 3.068 0.714 0.0351 0.0649
Galambos inversion Kendall's tau 2.919 0.602 0.0219 0.3910
MPL 2.345 0.697 0.0357 0.0603
Husler—Reiss inversion Kendall's tau 3.677 0.684 0.0221 0.3663
MPL 2.970 0.777 0.0379 0.0568
Plackett inversion Kendall's tau 54230 21.699 0.0181 0.7893
MPL 33.570 17.531 0.0308 0.2967

Table 5. Upper tail dependence coefficient
copulas.

of the considered

Copula 250 On AG
Clayton 0 5.257 0
Frank 0 12.622 0O
Gumbel 2-21/8 3.628 0.789
Galambos 21/6 2.919 0.789
Husler-Reiss 224 [3] 3677 0.786
Plackett 0 54.230 0

Note: @ is the univariate standard Normal distribution.

the estimator value is similar to the three values obtained forA

the extreme value copulas, it can be considered that Gumb
Galambos and tisler—Reiss copulas reproduce suitably the
dependence in the upper extreme.

Hydrol. Earth Syst. Sci., 17, 3023-3038, 2013

In summary, the best copula should represent properly
both, the dependence structure of the observed pairs of peak
and volume and the behaviour in the upper part of the distri-
bution. Considering the whole tests, the Gumbel copula was
selected as the best copula model. It is an extreme value cop-
ula, consequently it takes into account the upper tail depen-
dence and, at the same time, shows a suitahlalue repre-
senting properly the dependence structure between both vari-
ables. Besides, as the Gumbel copula is also an Archimedean
copula, it preserves the useful properties of this family, such
as the existence of an analytical expression of the Kendall
function.

A comparison between a sample generated from the fitted
Gumbel copula and the observed data is displayed in Fig. 8.

I Iso, contours of the fitted copula that represent the events

SWwith the same probability of occurrence are shown.

www.hydrol-earth-syst-sci.net/17/3023/2013/
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Table 6. Comparison between joint return periods associated to the theoretical events with peaks gguaidosolumes equal toy for

T =10, 100 and 1000 yr.

Copula T=Tx=Ty qTr v t T)\(/ y T)? y Kg, (1) ,Otv
m3sh  (hmd)
10 81.52 18.69 0.8803 8 12 0.9112 11
Gumbel 100 134.80 32.08 0.9879 83 127 0.9912 114
1000 187.12 45.21 0.9988 826 1266 0.9991 1140
10 81.52 18.69 0.8572 7 17 0.9233 13
Frank 100 134.80 32.08 0.9811 53 891 0.9979 481
1000 187.12 45.21 0.9980 503 80226 0.9999 40448
1 892 . ' ' . - B
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Fig. 9. Frequency curve of MWL for the spillway real set-up
(E=889m,L=12m).

Fig. 8. Comparison between a sample generated from the Gumbelhe joint return periods’y' ,, and p,”. Hence, this analysis

copula and the observed data with the copula contours.

4.2 Joint return periods

Firstly, a brief analysis is conducted to check the results of
the copula selection by comparing the risk assumed dependO—‘

supports the fact that not taking into consideration the upper
tail dependence in joint extreme events modelling can lead to
an underestimation of the risk (Poulin et al., 2007).

Therefore, once the Gumbel copula was selected as the
best copula model, the joint return periofl§ ,, Ty , and
were calculated through it.

ing on the selection of a copula model without upper tail de-4 3 Routed return period in terms of risk of dam

pendence (Frank copula) and a copula model with upper tail

dependence (Gumbel copula). The joint return periﬂy§
(Ea. 8),%; y (Eq. 9) andp,” (Eg. 11) associated to the the-
oretical events with peaks equal ¢ and volumes equal
to vy for return periods (T equal to 10, 100 and 1000 yr
are estimated for both Gumbel and Frank copula, bging

overtopping

In all, 100000 annual synthetic hydrographs were esti-

mated by means of the 100000 peak—volume pairs gener-
ated from the Gumbel copula using the procedure explained
in Sect. 2.3. The set of hydrographs was routed through the

and vr the quantiles obtained from the Gumbel marginal reservoir, which was assumed to be uncontrolled for the sake

distributions.

of simplicity. The frequency curve of the MWL reached

The results presented in Table 6 indicate that althoughyas obtained for the spillway real set-up (an elevation of
T}ZY linked to the Gumbel copula are higher for all the re- the spillway crest of 889 m and a spillway length of 12 m)
turn periodsTy , and thep,” are much smaller. It can also (Fig. 9). Maximum water level quantiles for a given return

be seen that the higher the return period, the larger the difperiod were estimated easily from this frequency curve (Ta-
ferences between joint return periods related to each copulale 7). Return period curves in the peak—volume space re-
Therefore, as expected for not being an extreme value copgarding the risk to the dam were obtained as the hydrographs
ula, the Frank copula underestimates the risk associated tthat lead to a similar MWL. Thereby, Fig. 10 shows the

www.hydrol-earth-syst-sci.net/17/3023/2013/ Hydrol. Earth Syst. Sci., 17, 3023-303&013
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Table 7.Maximum water level reached for different return periods
(MWL) associated to the probability of exceeding a water level for
E=889mand.=12m.

Tdam Pexc MWL
(yn (m)

5 0.2 890.21
10 0.1 890.46
50 0.02  890.98
100 0.01 891.17
500 0.002 891.62

thatrepresent the risk of dam overtopping by the routed re-
turn period (Fam), which are related to a real risk for the
structure, as they are obtained based on the MWL reached.
Figure 10 provides useful information about observed and
predicted events. It can be seen that the secondary return pe-
riod curves are the most similar to the return period curves
that represent the risk to the dam. The secondary return pe-
riod is linked to the probability that an event with a copula
value higher tham occurs. The routed return period is calcu-
lated from the probability of exceeding a water level. As an
example, Table 8 summarises this information for two spe-
cific events with a copula value of 0.9 and 0.99. The results
fulfil Eq. (10).

Once the different curves were compared, a further analy-
sis is carried out on the return period related to the risk to the
dam, in order to assess its sensitivity. Figure 11 displays the
return period curves related to the risk of dam overtopping
for different reservoir volumes given by reservoir elevations
of 879, 884 and 889 m and spillway lengths of 7, 12 and 17 m.
It can be appreciated that the higher the reservoir volume,
the more horizontal the curves, while the longer the spill-
way length, the steeper the curves. Thereby, the most hori-
zontal curve is associated with the highest reservoir volume
(E =889 m) and the shortest spillway length£ZZ m), while
the steepest curve is linked to the smallest reservoir volume
(E =879 m) and the longest spillway length €17 m). This
is caused by flood control properties in a reservoir: the higher
the reservoir volume, the greater the capacity to store hy-
drograph water volume temporarily and, consequently, the
higher the attenuation of the flood peak. In this case, the hy-

Fig. 10. Comparison among return periods curves that represendrographs that have more influence on the risk to the dam, or

the risk to the danTyam and joint return periods curvea) T} o
(b) T)?y and (c) p,’, for the spillway real set-upH=889m,
L=12m).

the most dangerous hydrographs, are characterised by a high
volume. Consequentifyamis mostly given by the marginal
return period of hydrograph volumes (the curves are more
horizontal). On the other hand, the smaller the reservoir vol-
ume, the lower the capacity to store water temporarily and the

comparison among the different curves that represent differsmaller the attenuation of the flood peak. In this case, the hy-
ent risks: (i) the theoretical curves associated with the jointdrographs that have more influence on the risk to the dam are

return periodsTy ,, Ty'y and p,” estimated from the fitted

characterised by a high flood peak dfidm is mostly given

copula, which are probabilistic based and show a supposelly the marginal return period of flood peaks (the curves are
risk of a hydrograph being harmful prior to accounting for the steeper).
effect of the routing reservoir process on it, and (ii) the curves

Hydrol. Earth Syst. Sci., 17, 3023-3038, 2013
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Table 8.Example of comparison among return periods. Two simulated events with a copula value of 0.9 and 0.99 are considered. All return
periods are expressed in years.

] 1% t T){Y Tx Ty T)?’Y Ko, () pY MWL  Tyam
m3s7Y)  (hmd) (m)
90.52 19.12 0.9 10 15 11 16 0.9261 14 890.53 13

136.41 3443 0.99 100 107 151 168 0.9927 138 891.34 180
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Fig. 11.Comparison among return period curves related to the risk to the dam depending on the reservoir volume and the spillway length.

In the case of the spillway length, the shorter the spillwayto reservoir volume for the central value of spillway crest
length, the lower the capacity to discharge and the higher théength (12 m), while Fig. 12b shows the sensitivity to spill-
need of a larger capacity to store water temporarily. The hy-way crest length for the central value of reservoir volume
drographs that lead to higher maximum water levels will have(884 m). The former shows that as the reservoir volume in-
greater volumes anf};,,, is mostly given by the marginal re- creases, the range of the critical peaks also increases, while
turn period of hydrograph volumes. the range of the critical volumes decreases. It can also be

As available flood control volume and spillway crest noted that for higher return periods, the curve slope changes
length vary, so do the location and range of critical valuessignificantly with the reservoir volume, showing a severe re-
per margin. For further analysis of the results, a detailedduction of the range of critical volumes, while the range of
comparison is shown in Fig. 12. The comparison is focuseccritical peaks is increased drastically. On the other hand, the
on the curves related to the risk of dam overtopping whenlatter exhibits that as the spillway crest length increases, the
Tgam €quals 5 and 50yr. Figure 12a shows the sensitivity
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Fig. 12.Detail of the comparison among the routed return period curves @Efgrequals 5 and 50 yr, varying witl&) the reservoir volume
and(b) the spillway crest length.

range of the critical peaks decreases, while the range of tha large sample through the reservoir has benefits from a con-
critical volume increases. ceptual point of view. Accordingly, for detailed design, it

could be useful the use of the routed return period obtained

by routing a large sample of hydrographs through the reser-

5 Conclusions voir, as it provides a more accurate assessment of the risk

, of dam overtopping because this return period is specific for

In the present paper a Monte Carlo procedure to obtain thene sirycture under analysis. In summary, in addition to con-

return period linked to the risk of dam overtopping (so-called gjqer the secondary return period, flood hydrographs should
the routed return period) was carried out by a copula modelg sy pe routed to improve the estimation of the risk of dam

comparing it to the probability of occurrence of a flood. For o ertgnping, as there are differences among return periods.
that purpose a bivariate flood frequency analysis of flood; a5 appreciated that as the available flood control volume

peak and volume via a copula model was conducted. Th,reases, the routed return period curves are more depen-
Gumbel copula was found to be the best copula after takingyant on volume (the slope of the return period curves be-

into account the upper tail dependence of the data set. Dift, a5 more horizontal). On the other hand, as the spillway

ferent joint return period curves were estimated by the copyengih increases, the routed return period curves are more de-
ula model fitted to observed data. In addition, a set of Synenqent on flood peak (the slope of the return period curves
thetic flood hydrographs was generated from the fitted Gumyecomes steeper). The sensitivity analysis showed the role

bel c.opula and was routed through the Santillgna reservqir t?)layed by flood control volume and spillway crest length on
obtain the maximum water level reached during the routing,ine '|ocation and ranges per margin of return period curves.

as the water lever was used as a surrogate of the hydrologrpe previous results suggest that bivariate analysis could be

ical risk of dam overtopping. Curves that represent the riskyqy mptotically approximated by univariate analysis, for ex-
to the dam were obtained as the probability of exceeding

¢ ; &reme reservoir and spillway characteristics: for a very large
water level. Comparison between both curves for differenty .4 control volume the dominant variable is hydrograph

return periods was carried out. Finally, a sensitivity analysis,,q|ume and for a very large spillway length the dominant

of the routed return pefio‘_’ cu_rves_related to the risk to theyariaple is hydrograph peak. It is also emphasised that the
dam was conducted considering different reservoir vqumesShape of the curves depend not only on the reservoir volume
and spillway crest lengths. and spillway length, but also on the hydrograph magnitude,

The results show that tail dependence should be considy;en by soil properties, rainfall and physiographic charac-
ered in the copula selection to avoid hydrological risk under-iqistics of the basin.

estimation. The secondary return period curves turned outto |, conclusion, comparison between bivariate return period

be the most similar to the routed return period curves that, ,es that represent the risk of dam overtopping (the real
represent the risk of dam overtopping. These results SUPPOHgy 1 the structure) and bivariate joint return period curves
the use of the secondary return period in this study. Besidesya¢ represent the probability of occurrence of a flood event

the use of the secondary return period in preliminary asseS§yne theoretical supposed risk without taking into account the

ment for dam design could be considered adequate, as thig,ctyre) provides valuable information about flood control

return period is independent of reservoir and spillway config-nqcesses in the reservoir. The proposed routed return period
uration. The results also hold that the general idea of routing
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can be useful in dam design, as it improves the estimatiorGenestC. and Favre, A.-C.: Everything you always wanted to know
provided by the flood event-based return periods, taking into about copula modeling but were afraid to ask, J. Hydrol. Eng.-
account the dam characteristics that exert a significant influ- ASCE, 12, 347-368, 2007.
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