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Abstract

Dominance measuring methods are an approach to deal with complex decision-
making problems with imprecise information. These methods are based on the
computation of pairwise dominance values and exploit the information in the
dominance matrix in different ways to derive measures of dominance intensity
and rank the alternatives under consideration. In this paper we propose a new
dominance measuring method to deal with ordinal information about decision-
maker preferences in both weights and component utilities. It takes advantage
of the centroid of the polytope delimited by ordinal information and builds tri-
angular fuzzy numbers whose distances to the crisp value 0 constitute the basis
for the definition of a dominance intensity measure. Monte Carlo simulation
techniques have been used to compare the performance of this method with
other existing approaches.

1. Introduction

The additive model is widely used within multi-attribute value theory (MAVT)
to rank alternatives in complex decision-making problems and it is considered
a valid approach in many practical situations for the reasons described in <20;
29>. The functional form of the additive model is

v(Ai) =

n∑
j=1

wjvj(xij), (1)

where xij is the performance over the attribute (or criterion) Xj , j = 1, . . . , n,
for the alternative Ai, i = 1, . . . ,m; and vj and wj are the value function and the
weight for the attribute Xj , respectively. Note that

∑n
j=1 wj = 1 and wj ≥ 0.
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The information available in most real complex decision-making problems
is not precise. Inputs are often described within prescribed bounds or just
satisfying certain relations. Different authors refer to this situation as decision-
making with imprecise information, incomplete information or partial informa-
tion <21; 22>.

Several reasons are given in the literature that justify why a decision-maker
(DM) may wish to provide imprecise information <27; 33>. For example, per-
formances that reflect social or environmental impacts may be intangible or
non-monetary, and performances may be taken from statistics or measurements,
which are not absolutely precise. Alternatively, DM might prefer not to reveal
his/her preferences in public or not feel confident about giving precise infor-
mation for parameters that change during the process. Besides, DMs could feel
more comfortable providing a scale to represent the importance of the attributes,
and might also have different more or less reliable sources of information. More-
over, the decision could be taken in a group decision-making situation, where a
negotiation process usually outputs imprecise information <6; 13; 17; 32>

Many papers on MAVT have dealt with imprecise information. Sarabando
and Dias <26> provided a brief overview of approaches proposed by different
authors within the multi-attribute utility theory (MAUT) and MAVT framework
to deal with imprecise information.

As attribute weights are usually the hardest parameters to elicit in multi-
attribute decision making (MADM) problems <23>, works in the literature
have mainly centered on the case in which the information regarding weights is
imprecise, which is often represented by ordinal information.

Surrogate weighting (SW) methods can be used when the DM provides or-
dinal relations regarding attribute weights. These methods select a weight
vector from a set of admissible weights to represent the set <3; 30>. The
best SW method is the rank-order centroid weights (ROC) method <26>:

wj = 1/j
n∑

k=1

1/k
, j = 1, ..., n, n being he number of attributes.

The stochastic multicriteria acceptability analysis (SMAA) method was pro-
posed for support in discrete group decision-making problems where the weight
information is missing <8>. The SMAA-2 method <10> extends the analysis
to the sets of weight vectors for any rank from best to worst for each decision
alternative and can be used to identify good compromise alternatives. SMAA-
O <9> is a variant of SMAA for problems in which criteria are measured on
ordinal scales.

The TOPSIS method has been extended to uncertain linguistic environments
<35; 36> or used for determining DM weights with interval numbers <41>.

Sage and White <24> proposed the model of imprecisely specified multi-
attribute utility theory (ISMAUT), where preference information about both
weights and utilities is assumed not to be precise. Malakooti <11> suggested an
efficient algorithm for ranking alternatives when there is imprecise information
about preferences and alternative values. Ahn <1> extended Malakooti’s work.

Another possibility described in the literature for dealing with imprecision is
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based on the concepts of pairwise and absolute dominance. The use of absolute
dominance values is exemplified by the modification of four classical decision
rules to encompass an imprecise decision context concerning weights and com-
ponent values/utilities <19; 25>, the maximax or optimist, the maximin or
pessimist, the minimax regret and the central value rules.

A recent approach for dealing with imprecise information is to compute dif-
ferent measures of dominance to derive a ranking of alternatives <2>, known as
dominance measuring methods (DMMs). DMMs are based on the computation
of a dominance matrix including pairwise dominance values, which are exploited
in different ways to derive measures of dominance to rank the alternatives under
consideration.

In this paper we propose a new DMM based on a dominance intensity mea-
sure to deal with ordinal information about the DM’s preferences. Specifically,
the DM will provide a ranking of attribute importance. Besides, the method
takes into account a ranking of the alternatives in each attribute and also a
ranking of the difference of values between consecutive alternatives.

As mentioned above, many methods accounting for ordinal information on
weights and alternative values/utilities within MAVT/MAUT can be found in
the literature. However, the ranking of the difference between the values of con-
secutive alternatives used to represent DM preferences is not so commonplace
in the literature. Sarabando and Dias <27> propose new decision rules within
MAVT to deal with such rankings on the basis of an additive model, whereas
Salo and Hamalainen <25> transform them into linear constraints in the prefer-
ence ratios in multiattribute evaluation PRIME method. In PRIME, preference
elicitation and synthesis is based on 1) the conversion of possibly imprecise ratio
judgments into an imprecisely specified preference model, 2) the use of domi-
nance structures and decision rules in deriving decision recommendations, and
3) the sequencing of the elicitation process into a series of elicitation tasks.

Ordinal information has also been used in other disciplines apart from MAVT/
MAUT, for instance in fuzzy preference relations. Xu et al. <39> propose the
ordinal consistency index to measure the degree of ordinal consistency of a fuzzy
preference relation, which is to count the unreasonable 3-cycles in a directed
graph that represents the fuzzy preference relation. The method can be used
for a strict and non-strict fuzzy preference relation. Xu et al. <37; 40; 38>
adapt the algorithms for incomplete reciprocal, inter-valued fuzzy and incom-
plete 2-tuple fuzzy linguistic preference relations, respectively.

The proposed dominance intensity measure takes advantage of the centroid
of the polytope delimited by ordinal information, builds triangular fuzzy num-
bers on the basis of this centroid and incorporates a distance notion to derive
dominance intensities to rank the alternatives under consideration.

We have also conducted a simulation study to analyze the performance of
the proposed method regarding other dominance measuring methods proposed
in the literature and Sarabando and Dias ranking method.

In Section 2, we review dominance measuring methods reported in the liter-
ature and the ranking method proposed by Sarabando and Dias. In Section 3,
we propose the new dominance measuring method. In Section 4, we describe a
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technique to find all the endpoints from a polytope delimited by constraints rep-
resenting ordinal information. We average the endpoints to derive the centroid
of the polytope, which is used in the proposed dominance measuring method.
In Section 5, a simulation study is carried out to compare the proposed method
with the dominance measuring methods reviewed in Section 2 and the method
proposed by Sarabando and Dias. Finally, some conclusions are discussed in
Section 6.

2. Review of dominance measuring methods and Sarabando and Dias’s
method

DMMs are based on the computation of a dominance matrix, D, including
pairwise dominance values:

D =


− D12 · · · D1(m−1) D1m

D21 − · · · D2(m−1) D2m

D31 D32 · · · D3(m−1) D3m

...
...

...
...

...
Dm1 Dm2 · · · Dm(m−1) −

 ,

where

Dkl = min{v(Ak)− v(Al) =
∑n
j=1 wjvk(xkj)−

∑n
j=1 wjvl(xlj)}

s.t.
vk = (vk1, . . . , vkn),vl = (vl1, . . . , vln) ∈ Vkl

w = (w1, ..., wn) ∈W

(2)

where W and Vkl define the feasible region for weights and values associated with
the alternatives Ak and Al over each attribute, respectively, which represent
imprecise information.

Note that given two alternatives Ak and Al, alternative Ak dominates Al if
Dkl ≥ 0, and there exists at least one w, vk and vl such that the overall value
of Ak is strictly greater than that of Al. This concept of dominance is called
pairwise dominance.

The DMMs exploit the information in D in different ways to derive measures
of dominance to rank the alternatives under consideration. For instance, Ahn

and Park <2> compute a dominating measure φ+
k =

m∑
l=1
l 6=k

Dkl and a dominated

measure φ−k =
m∑
l=1
l 6=k

Dlk for each alternative Ak, and then derive a net dominance

as φk = φ+
k − φ−k . Ahn and Park proposed two ranking methods for these

measures: ranking the alternatives according to either φ+
k or φk values (denoted

as the AP1 and AP2 methods, respectively).
However, the results of simulation experiments when the DM weight pref-

erences are represented by ordinal information suggest that surrogate weighting
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methods, specifically the ROC method, are better than AP1 and AP2 at se-
lecting the best alternative and ranking alternatives. The simulation study also
showed AP1 to be better than AP2. The reason is that AP2 uses duplicate
information (row and column values).

Two DMMs were proposed in <14; 15>. The first one, DME1, was based on
the same idea as implemented by Ahn and Park. It also computes dominating
and dominated measures but they are combined into a dominance intensity
rather than a net dominance index, which is used as a measure of the strength
of preference.

DME1 is implemented as follows:

1. Compute the dominating indices DIrowk+ and DIrowk− for each alternative
Ak (by row):

DIrowk+ =

m∑
l=1,l 6=k,Dkl>0

Dkl and DIrowk− =

m∑
l=1,l 6=k,Dkl<0

Dkl.

2. Compute the dominating intensity DIrowk for each alternative Ak:

DIrowk =
DIrowk+

DIrowk+ −DIrowk−

3. Compute dominated indices DIcolk+ and DIcolk− for each alternative Ak (by
column):

DIcolk+ =

m∑
l=1,l 6=k,Dlk>0

Dlk and DIcolk− =

m∑
l=1,l 6=k,Dlk<0

Dlk.

4. Compute the dominated intensity DIcolk for each alternative Ak:

DIcolk =
DIcolk+

DIcolk+ −DIcolk−

5. Calculate a global dominance intensity (GDI) for each alternative Ak:

GDIk = DIrowk −DIcolk , k = 1, ...,m

and rank the alternatives according to the GDIk values, where the alter-
native with the maximum GDIk is the best alternative.

DME1 improves AP2 by reducing the duplicate information involved in the
computations.

The second method, DME2, derives a global dominance intensity index to
rank alternatives on the basis that

Dkl ≤ wT (vk − vl) ≤ −Dlk,∀w ∈W,vk,vl ∈ Vkl.

DME2 is implemented as follows:
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1. If Dkl ≥ 0, then alternative Ak dominates Al, and the dominance intensity
of Ak over Al (DIkl) is 1, i.e., DIkl = 1.
Else (Dkl < 0):

- If Dlk ≥ 0, then alternative Al dominates Ak, and DIkl = 0.
- Else (Dlk < 0), the dominance intensity of Ak over Al, is defined as

DIkl =
−Dlk

−Dlk −Dkl
. (3)

2. Calculate a global dominance intensity (GDI) for each alternative Ak, i.e.,

GDIk =

m∑
l=1, l 6=k

DIkl,

and rank the alternatives according to the GDIk values, where the alter-
native with the maximum GDIk is the best alternative.

Another simulation study <16> was carried out to compare the DME1 and
DME2 methods with modified decision rules (maximax, maximin and minimax
regret and the central value rules) and AP1 and AP2. Two measures of efficacy
were considered, the proportion of all cases in which the method selects the same
best alternative as in the TRUE ranking (hit ratio), where the TRUE ranking is
determined beforehand, and how similar the overall alternative-ranking struc-
tures are in the TRUE and the method-driven rankings (rank-order correlation).
The results show that DME2 outperforms the other methods. The drawback of
the DME1 method is that when the dominance matrix D contains all negative
elements, that is, when all the alternatives are non-dominated, the algorithm is
unable to rank the alternatives.

These methods in <16> were adapted to account for imprecision concerning
the inputs represented by value intervals, in alternative performances, compo-
nent utilities and weights. The results of simulation studies <16> showed that
DME2 performs better than the AP1 method and the adaptation of classical
decision rules and comes quite close to the ROC method, which was identified
as the best approach. Although SMAA-2 slightly outperforms DME2, DME2
could be used when incomplete information about weights is expressed not just
as weight intervals but also as weights satisfying linear or non-linear constraints,
weights represented by fuzzy numbers or weights fitting normal probability dis-
tributions.

The performance of DME1 and DME2 is compared in <13> with other ex-
isting approaches (SW methods, modified decision rules and the AP1 and AP2
methods) when ordinal information represents imprecision concerning weights.
As regards average hit ratios, DME2 and ROC outperform the other meth-
ods and, according to the paired-samples t-test, there is no significant difference
between the two. However, ROC can be only applied when ordinal relations
regarding attribute weights are provided.

Other dominance measuring method was proposed in <7> where impre-
cise weights are represented by trapezoidal fuzzy weights. Dominance values
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Figure 1: Ranking of alternatives and differences between consecutive alternatives for the
attribute Xj .

are transformed into dominance intensity measures taking into account the dis-
tance between fuzzy numbers based on the generalization of the left and right
fuzzy numbers defined by Tran and Duckstein <31>. An example concerning
the selection of intervention strategies to restore an aquatic ecosystem contam-
inated by radionuclides illustrates the approach, and Monte Carlo simulation
techniques are again used to analyze its performance for different imprecision
levels.

As mentioned above, the ordinal information about the DM preferences con-
sidered in Sarabando and Dias <27> is the same as in this paper, i.e., a ranking
of the alternatives in each attribute and also of the difference between the val-
ues of consecutive alternatives. Therefore, Sarabando and Dias’s method can
be used to analyze the performance of the proposed method.

We denote by Vj the set of constraints concerning component values in at-
tribute Xj . For instance, A3 could be the best of five alternatives for attribute
Xj for the DM, followed by A5, A4, A2 and A1 (vj(x3j) ≥ vj(x5j) ≥ vj(x4j) ≥
vj(x2j) ≥ vj(x1j)). Moreover, the ranking of differences between consecutive
alternatives could be ∆j2 ≥ ∆j1 ≥ ∆j4 ≥ ∆j3, with ∆j2 = vj(x5j) − vj(x4j),
∆j1 = vj(x3j)− vj(x5j), ∆j4 = vj(x2j)− vj(x1j) and ∆j3 = vj(x4j)− vj(x2j),
as illustrated in Fig. 1.

Sarabando and Dias <27> used the ROC method to derive a weight vector.
Besides, they propose an adaptation of the ROC method, ∆ROC, to compute
a vector of values for each attribute that can approximately represent all the
vectors’ values compatible with the available ordinal information:
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1. Determine a rank order centroid for m− 1 variables:

∆jk =
1

m− 1

m−1∑
l=rank(∆jk)

1

l
, k = 1, ...,m− 1,

where rank(∆jk) is 1 when ∆jk is the best, 2 when it is the second best,
and so on.

2. The approximate values for the levels in attribute Xj , are:

yjt = 0, if rank(yjt) = m,

yji =

m−1∑
k=rank(yji)

∆jk, if i = 1, ...,m, and rank(yji) 6= m,

where rank(yji) is 1 when yji is the best, 2 when it is the second best,
and so on.

For the example in Figure 1 with 5 alternatives, we have ∆j2 = 25/48, ∆j1 =
13/48, ∆j4 = 7/48 and ∆j3 = 1/16. Then, yj1 = 0, yj2 = ∆j4 = 7/48,
yj3 = ∆j1 + ∆j2 + ∆j3 + ∆j4 = 1, yj4 = ∆j3 + ∆j4 = 10/48 and yj5 =
∆j2 + ∆j3 + ∆j4 = 35/48.

Finally, the additive model, see Eq. (1), is used to evaluate and rank the
alternatives under consideration.

3. A new dominance intensity method based on triangular fuzzy num-
bers and a distance notion

We consider that a DM’s preferences are represented by ordinal information, for
both weights and component values. Consequently, the DM provides a ranking
of attribute importance. Without loss of generality we assume that attribute
weights are indexed in descending order w = (w1, w2, ..., wn) ∈W : w1 ≥ w2 ≥
... ≥ wn ≥ 0,

∑n
j=1 wj = 1.

In this specific case, the optimization problem for deriving pairwise domi-
nance values is non-linear, see Eq. (2), since it incorporates the product of pairs
of variables (attribute weights and component values) in the objective function.
We can simplify the problem by applying the ROC method on the basis of the
available ordinal information about weights. This has been demonstrated to de-
rive a good representation of the set W, as cited in Section 2. The ROC method
is generalized to cases that include weak orders or partial orders in <28>. We
denote by (wc1, ..., w

c
n) the weight vector resulting from the ROC method, which

is the centroid of W.
The optimization problem is now linear since only the component values

are under consideration. Thus, this problem could be solved using the simplex
method, the dominance matrix D and the dominance measuring methods (AP1,
AP2, DME1 and DME2 ) applied to rank the considered alternatives.
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In this paper, we propose computing the following rather than pairwise dom-
inance values (Dkl):

vkl =

n∑
j=1

wcjv
c
kj −

n∑
j=1

wcjv
c
lj , (4)

where (wc1, ..., w
c
n) is the centroid or center of gravity of the polytope represent-

ing the weight space and (vck1, v
c
l1), ..., (vckn, v

c
ln) are the centroids or centers of

gravity of the polytopes in the n attributes delimited by the constraints ac-
counting for alternatives Ak and Al. Note that the centroid is considered as the
most representative point that verifies the constraints that delimit the polytope.
Moreover, Dkl ≤ vkl ≤ −Dlk.

The centroid of the polytope associated with constraints on component val-
ues in the attribute Xj for the alternatives Ak and Al is:

vcj = (vckj , v
c
lj) =

∫
[0,1]2

V klj dv∫
[0,1]2

dv
,

where V klj is the set of constraints concerning component values in the attribute

Xj for alternatives Ak and Al. Note that V klj ⊂ Vj , which includes the con-
straints concerning component values in the attribute Xj for all the alternatives.

Some techniques have been proposed to find the center of gravity of a poly-
tope, see, e.g., Lahdelma et al. <8>; Lahdelma and Salminen <10>; Mármol et
al. <12>. In Section 4 we propose a method to derive the endpoints of a poly-
tope delimited by constraints representing the ordinal information on component
utilities. The centroid can then be computed by averaging these endpoints.

As it would be very simplistic to represent a constraint set as just a point, we
have built a normalized triangular fuzzy number as follows. We assign possibility
1 to the value vkl and, as Dkl ≤ vkl ≤ −Dlk, the possibility linearly decreases
to Dkl and −Dlk. However, as vkl is computed from centroids, a better option
is to consider the following symmetric triangular fuzzy number (see Fig. 2):

Ĩkl = (ILkl, vkl, I
U
kl), (5)

where ILkl = vkl −mkl and IUkl = vkl +mkl, and

mkl = min{(−Dlk − vkl), (vkl −Dkl)},

with membership function (see Fig 2.)

µĨkl
(x) =



x− ILkl
vkl − ILkl

, if ILkl ≤ x ≤ vkl
1, if x = vkl
x− IUkl
vkl − IUkl

, if vkl ≤ x ≤ IUkl
0, otherwise

.
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Figure 2: Building Ĩkl.

Note that alternative Ak is better than Al in the positive portion of the
interval Ikl. However, alternative Al is better than Ak in the negative portion.

Then, normalized triangular fuzzy numbers Ĩkl could be used in conjunction
with a distance notion proposed in Tran and Duckstein <31>, to define a domi-
nance intensity measure as follows: If we consider the location of the triangular
fuzzy number Ĩkl regarding the crisp value 0, then we have two possibilities (see
Fig. 3): if vkl < 0, then the dominance intensity of alternative Ak over Al can

be computed as minus the distance of the fuzzy number Ĩkl to the crisp value
0. Otherwise (vkl ≥ 0), the dominance intensity is the distance of the fuzzy

number Ĩkl to the crisp value 0.
Note that in both cases we are already taking into account the possibility of

Ĩkl being located completely on the right and on the left of zero, respectively, see
cases b) and d) in Fig. 3. In the case d) alternative Ak dominates Al, whereas
in the b) Al dominates Ak. This constitutes a difference with respect to the
DME2 method, in which the dominance intensity of Ak over Al is 1 (DIkl = 1)
when Dkl ≥ 0 (alternative Ak dominates Al), whereas DIkl = 0 when Dlk ≥ 0
(alternative Al dominates Ak). Therefore, it does not consider the strength of
dominance, i.e., there is no difference between Dkl = 0.1 or Dkl = 1.5, where
DIkl = 1 in both cases. However, we use the distance of Ĩkl to zero as the
dominance intensity.

Finally, a dominance intensity measure for each alternative Ak, DIMk, is
derived as the sum of the dominance intensities of alternative Ak regarding
the other alternatives. This measure is used as a measure of the strength of
preference in the sense that greater dominance intensity is better.
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Figure 3: Locations of triangular fuzzy numbers.

Briefly, the method can be implemented as follows:

1. Compute values vkl by averaging the endpoints of the polytope delimited
by constraints representing the ordinal information on component utilities
using the method described in Section 4.

2. Build the triangular fuzzy numbers Ĩkl = (ILkl, vkl, I
U
kl). To do this, first

compute pairwise dominance values, Dkl, solving the optimization prob-
lem in Eq. (2). Note that the method proposed in Section 4 can again
be used, since one of the endpoints is the optimal solution, which can be
identified by just evaluating the endpoints in the objective function.

3. Compute the dominance intensities as follows:

• If vkl ≥ 0, then DIkl = d(Ĩkl, 0, f), where d refers to Tran and Duck-
stein’s distance <31>, and f is a weight function for differentiating
a risk-averse, risk-neutral or risk-prone DM, as explained later.

• Else (vkl < 0), DIkl = −d(Ĩkl, 0, f).

4. Compute a dominance intensity measure for each alternative Ak,

DIMk =
∑m

l=1,l 6=k
DIkl.

5. Rank alternatives according to DIMk values, where the alternatives with
the maximum and minimum DIMk are the best and worst, respectively.

The distance defined by Tran and Duckstein <31> for the generalization of
left and right fuzzy numbers (GLRFN) <4> is used in d(Ĩkl, 0, f). A fuzzy set
ã = (a1, a2, a3, a4) is called a generalization of the left and right fuzzy numbers
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(GLRFN ) when its membership function is defined as

µã(x) =



L

(
a2 − x
a2 − a1

)
, if a1 ≤ x ≤ a2

1, if a2 ≤ x ≤ a3

R

(
x− a3

a4 − a3

)
, if a3 ≤ x ≤ a4

0, otherwise,

where L and R are strictly decreasing functions defined in [0, 1] and satisfying
the conditions:

L(x) = R(x) = 1 if x ≤ 0 and L(x) = R(x) = 0 if x > 0.

Triangular fuzzy numbers are special cases of GLRFN with L(x) = R(x) =
1 − x and a2 = a3. A GLRFN is denoted as ã = (a1, a2, a3, a4)Lã−Rã and an
α-cut of ã is a crisp set that contains all the elements that have a membership
value greater than or equal to α:

ã(α) = (ãL(α), ãR(α)) = (a2 − (a2 − a1)a3L
−1
ã (α), a3 − (a4 − a3)a3R

−1
ã (α)).

Tran and Duckstein <31> define the distance between two GLFRN fuzzy
numbers ã and b̃ as

d2(ã, b̃, f) =

∫ 1

0


[
ãL(α)+ãR(α)

2 − b̃L(α)+b̃R(α)
2

]2
+

+ 1
3

[(
ãL(α)+ãR(α)

2

)2

+
(
b̃L(α)+b̃R(α)

2

)2
]
× f(α)(dα)

∫
f(α)(dα)

.

The function f(α) is positive continuous in [0, 1] and serves as a weight func-
tion. The distance is computed as the weighted sum of distances between two
intervals across all α-cuts from 0 to 1. Moreover, it flexibilizes DM participa-
tion. For example, f(α) = α looks to be reasonable when the DM is risk-neutral,
whereas a risk-averse DM would put more weight on information at a higher α
level by using functions such as f(α) = α2 or a higher power of α. A constant
(f(α) = 1), or even a decreasing function f , could be used for a risk-prone DM.

For the particular case of the distance from a triangular fuzzy number ã =
(a1, a2, a3) to a constant (specifically 0), we have:

1. If f(α) = α, then

d2(ã, 0, f) = a2
2 +

1

3
a2(a3 + a1) +

1

18
[(a3 − a2)2 + (a2 − a1)2]−

− 1

18
[(a2 − a1)(a3 − a2)].

2. If f(α) = 1, then

d2(ã, 0, f) = a2
2 +

1

2
a2(a3 + a1) +

1

9
[(a3 − a2)2 + (a2 − a1)2]−

−1

9
[(a2 − a1)(a3 − a2)].
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3. If f(α) = α2, then

d2(ã, 0, f) = a2
2 +

1

4
a2(a3 + a1) +

1

144
[(a3 − a2)2 + (a2 − a1)2]−

− 1

96
[(a2 − a1)(a3 − a2)].

4. Set of endpoints and centroid of a polytope delimited by con-
straints representing ordinal information

In this section we propose a method for deriving the set of endpoints of a
polytope delimited by the following constraints:

1. A ranking of the variables under consideration y1, ..., ym ∈ [0, 1], y1 ≥
y2 ≥ ... ≥ ym.

2. A ranking of the differences between consecutive variables in the above
ranking ∆j = yj − yj+1, j = 1, ..,m− 1.

First, we build the set of vertices for the polytope under consideration, de-
noted by V . The first vertex to be added to V is (0, 0, 0, ..., 0), since this vector
satisfies all constraints. To build a new vertex we assign a value 1 to the po-
sition corresponding to the best-ranked variable in the above vertex. Next, we
assign a value 1 to the position corresponding to the second ranked variable
in the previous vertex, leading to a new vertex, and so on, until we reach the
worst-ranked variable, which yields the vertex, (1, 1, ..., 1) .

Note that when the variables are ranked in descending order (y1 ≥ y2 ≥
... ≥ ym), then it is trivial to derive V, V = {(0, 0, 0, 0, ..., 0), (1, 0, 0, 0, ..., 0),
(1, 1, 0, 0, ..., 0), (1, 1, 1, 0, ..., 0), ..., (1, 1, 1, 1..., 1)}.

Now, we consider the ranking of the differences between consecutive variables
in the above variable ranking, ∆j = yj−yj+1, j = 1, ..,m−1. We denote by EP
and M the sets to which we add endpoints of the polytope and the differences
between consecutive variables, respectively. Both sets are initially empty, and
EP will contain all the endpoints of the polytope when the procedure ends.

Then, we progressively add toM the difference between consecutive variables
according to the available ranking, i.e., first we add the best-ranked difference,
then the second-ranked and so on. Each time a new difference is added to M ,
the vertices in V associated with the best variable of each element in M are
averaged, and the resulting vector is added to EP . The procedure ends when
all differences have been added to M , i.e., M = {∆1,∆2, ...,∆m−1}. Finally, we
add the endpoint (0,0,0,...,0) to EP .

The algorithm for deriving the endpoints is as follows:

• Step 1. Build the set of vertices V considering the ranking of the variables
y1,..., ym. Set V = ∅.

– Add (0,0,...,0) to V .

– For i = 1, ...,m:

∗ Identify the i-th best-ranked variable in the ranking, yjbest.
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∗ Assign value 1 to the element in the previous vertex added to V
corresponding to yjbest.

∗ Add the new vertex to V .

Note that there will be m+ 1 elements in V at the end of Step 1.

• Step 2. We consider the ranking of the differences between consecutive
variables ∆i = yi − yi+1, j = 1, ...,m− 1. Set M = ∅ and EP = ∅.
For i = 1, ...,m− 1:

– Add the i-th best-ranked difference to M .

– Identify the vertices associated with the best variable of each element
in M .

– Compute and add the average of the considered vertices to EP .

• Step 3. Add (0,0,...,0) and (1,1,...,1) to EP .

Finally, the EP set contains all the endpoints of the polytope, whose average
yields to the centroid of the polytope.

Next, we illustrate the method with the example shown in Fig. 1, i.e., we
consider a problem with five variables and the following rankings: y3 ≥ y5 ≥
y4 ≥ y2 ≥ y1 and ∆2 ≥ ∆1 ≥ ∆4 ≥ ∆3, with ∆1 = y3 − y5, ∆2 = y5 − y4,
∆3 = y4 − y2 and ∆4 = y2 − y1.

Then, the algorithm would work as follows:

• Step 1: From y3 ≥ y5 ≥ y4 ≥ y2 ≥ y1, we have associated the ver-
tices as follows: V={(0, 0, 0, 0, 0), y3 : (0, 0, 1, 0, 0), y5 : (0, 0, 1, 0, 1),
y4 : (0, 0, 1, 1, 1), y2 : (0, 1, 1, 1, 1), y1 : (1, 1, 1, 1, 1)}.

• Step 2: M = ∅ and EP = ∅.
i=1:

– ∆2 = y5 − y4 is the best-ranked difference, so M = {∆2}.
– y5 is the best variable corresponding to ∆2, then the vertex in V

corresponding to y5, (0,0,1,0,1), is added to EP .

i=2:

– ∆1 = y3 − y5 is the second-ranked difference, so M = {∆2,∆1}.
– y5 and y3 are the best variables corresponding to the differences in M ,

∆2 and ∆1, respectively. We compute the average of the associated
vertices, y5 : (0, 0, 1, 0, 1) and y3 : (0, 0, 1, 0, 0), which we add to EP .

EP = {(0, 0, 1, 0, 1), (0, 0, 1, 0, 1/2)}.

i=3:

– ∆4 = y2 − y1 is the third-ranked difference, so M = {∆2,∆1,∆4}.
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– y5, y3 and y2 are the best variables corresponding to the differences in
M , respectively. We compute the average of vertices y5 : (0, 0, 1, 0, 1),
y3 : (0, 0, 1, 0, 0) and y2 : (0, 1, 1, 1, 1), which we add to EP .

EP = {(0, 0, 1, 0, 1), (0, 0, 1, 0, 1/2), (0, 1/3, 1, 1/3, 2/3)}.

i=4:

– ∆3 = y4−y2 is the worst-ranked difference, soM = {∆2,∆1,∆4,∆3}.
– y5, y3, y2 and y4 are now the best variables corresponding to the dif-

ferences in M , respectively. We compute the average of vertices y5 :
(0, 0, 1, 0, 1), y3 : (0, 0, 1, 0, 0), y2 : (0, 1, 1, 1, 1) and y4 : (0, 0, 1, 1, 1),
which we add to EP .

EP = {(0, 0, 1, 0, 1), (0, 0, 1, 0, 1/2), (0, 1/3, 1, 1/3, 2/3), (0, 1/4, 1, 1/2,
3/4)}.

• Step 3: (0,0,0,0,0) and (1,1,1,1,1) are added to EP .

Finally, EP={(0,0,1,0,1),(0,0,1,0,1/2),(0,1/3,1,1/3,2/3),(0,1/4,1,1/2,3/4),(0,
0,0,0,0),(1,1,1,1,1)}, and the centroid is derived by averaging the endpoints in
EP , yielding (1/6,19/72,5/6,11/36,47/72).

Note importantly that the method proposed in this section can also be used
if we have the ranking of alternatives for each attribute under consideration,
but the information about the differences between the values of consecutive al-
ternatives is not available. This situation is less stressful on DMs and makes the
method suitable for more real decision-making problems, in which the expert is
often reluctant or may find it difficult to provide much information about his/her
preferences. Notice also that the differences between the values of consecutive
alternatives may be hard to quantify.

However, the method cannot be used if the available ordinal information
is partial rather than complete, i.e., some alternatives are not included in the
rankings available for some attributes.

5. Performance analysis based on Monte Carlo simulation techniques

In this section we analyze and compare the performance of the proposed method,
DIM , with other dominance measuring methods (AP1, DME1 and DME2 ) and
with the method proposed by Sarabando and Dias <27>, which represents the
imprecision concerning the DM’s preferences in the same way as in this paper.

We set out to carry out a simulation study for different scenarios accounting
for different numbers of alternatives and attributes. In accordance with previous
simulations performed in the literature, we identify six different levels for the
alternatives (m = 3, 5, 7, 10, 15, 20) and five different levels for the attributes
(n = 3, 5, 7, 10, 15), yielding 30 design scenarios.

The process would be as follows for each scenario:
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1. Generate component values randomly from a uniform distribution in (0,1),
yielding an m × n matrix. This matrix has to be normalized making the
smallest and largest values from each column zero and one, respectively.
Note that dominated alternatives have to be removed in the simulation
since they are not useful for analyzing the performance of the considered
methods. From each row of the above matrix we derive the ranking of
alternatives in each attribute and the ranking of the differences between
consecutive alternatives.

2. Generate attribute weights randomly. First, we select n − 1 independent
random numbers from a uniform distribution on (0, 1), and rank these
numbers. Suppose the ranked numbers are 1 ≥ rn−1 ≥ ... ≥ r2 ≥ r1 > 0.
The differences between consecutive ranked numbers are then used as the
target weights wTn = 1 − rn−1, w

T
n−1 = rn−1 − rn−2, ..., w

T
1 = r1. The

resulting weights will sum 1 and be uniformly distributed in the weight
space <5>. They are used to derive the ranking of attribute weights.
Note that these weights will be the TRUE weights. The TRUE ranking
of alternatives is computed using the component value matrix from the
previous step and the TRUE weights.

3. Compute a ranking of alternatives for each method according to their al-
gorithms using just the ordinal information obtained from the component
value matrix and weights.

4. Compare the rankings provided by each method with the TRUE rank-
ing. We use two measures of efficacy, the hit ratio and the rank-order
correlation <2; 3>. The hit ratio is the proportion of all cases in which
the method selects the same best alternative as in the TRUE ranking.
Rank-order correlation represents how similar the overall rank structures
of alternatives are in the TRUE ranking and in the ranking derived from
the method. It is calculated using Kendall’s τ (Winkler and Hays <34>):

τ = 1− 2× (number of pairwise preference violations)

total number of pair preferences
=

S

m(m− 1)/2
,

where S is the difference between the number of concordant (ordered
equally) and discordant (ordered differently) pairs and m is the total num-
ber of alternatives.
If there are tied (same value) observations then the denominator m(m −
1)/2 has to be replaced by√√√√[m(m− 1)/2−

t∑
i=1

ti(ti − 1)/2][m(m− 1)/2−
t∑
i=1

ui(ui − 1)/2],

where t is the number of tied observation sets, ti is the number of tied ob-
servations in the TRUE ranking, and ui is the number of tied observations
in the ranking derived from the method.

We ran 20,000 trials for each of the 30 design scenarios, and replications
were parallelized to save computational resources, mainly time.
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Table 1 and Fig. 4 show the average hit ratio for each of the 30 design
elements, i.e., the average values of 20,000 trials, considering a risk-neutral
DM. We have marked the maximum hit ratio for each method across all 30
design scenarios in bold. The labels along the abscissa of the chart in Fig. 4
consist of two values corresponding to the number of alternatives and attributes,
respectively. There are four columns for each label, representing the hit ratio
or rank-order correlation levels for the considered methods.

Fig. 4 shows that the hit ratio decreases as the number of alternatives that
there are for any given number of attributes grows, which is obvious. Addition-
ally, the number of attributes also affects the hit ratio; it is greater the more
attributes there are for any given number of alternatives.

DME1 and DME2 methods clearly outperform the results provided by AP1
in all scenarios. DME1 and DME2 are much better than AP1 when there are
a lot of alternatives. These results are consistent with the findings reported
in <16>, in which imprecision is represented by value intervals in alternative
performances, component values and weights, and <13>, in which ordinal infor-
mation is considered for weights. The difference in the mean hit ratios between
DME2 and AP1 is 1.236% for three and 6.262% for twenty alternatives.

We also find that the proposed method, DIM, outputs better results than
the DME1 and DME2 methods in all scenarios. DIM performs much better
than DME1 and DME2 at larger numbers of alternatives. The mean hit ratio
is 81.38 for DIM and 77.24 and 78.39 for DME1 and DME2, respectively.

DIM outputs very similar results to the SD method, and the difference
between the average hit ratio is only 0.02. DIM outperforms the SD method in
10 scenarios, but the difference is lower than 0.54 in all cases. However, there
are also five cases in which SD outperforms the DIM method, but now the
difference is less than 0.02.

Furthermore, according to the paired-samples t-test (which computes the
difference between the mean values of the two methods and tests whether the
average differs from zero), there is no significant difference between the hit ratio
means of the DIM and SD methods depending of the value of the significance
level (significance level, two-tailed: 0.02546).

Table 2 and Fig. 4 show the rank-order correlations for each of the 30 design
elements for a risk-neutral DM. Fig. 4 shows that the rank-order correlations
increases proportionally to the number of attributes. Besides, the rank-order
correlations for the DME2, DIM and SD methods also increases proportionally
to the number of attributes.

DIM again outperforms DME1 and DME2 in all the scenarios, which also
outperfoms AP1. The results output by the SD and DIM methods are again
very similar, the difference between the average rank-order correlations being
only 0.05. There are scenarios in which the DIM method is better than SD
method, mainly when there are not many attributes, whereas SD slightly out-
performs the DIM method for 10 or more alternatives. However, the difference
is always lower than 0.02.
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Figure 4: Hit ratio and rank-order correlation levels.
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According to the paired-samples t-test, there is no significant difference be-
tween the hit ratio means (significance level, two-tailed: 0.064838).

The results for risk-prone and risk-averse DMs are similar. Table 3 shows
the average hit ratios and rank-order correlations for both situations. Maximum
values are marked in bold and correspond to the DIM method in all cases. The
DIM method again outputs better results than the DME1 and DME2 methods,
which are better than AP1. The SD and DIM methods are again very similar,
and the difference between the hit ratio and rank-order correlation means of
the DIM and SD methods are not significant (significance levels, two-tailed:
0.027587 and 0.057604, respectively, for a risk-prone DM; and 0.023705 and
0.077825, for a risk-adverse DM).
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Table 1. Hit ratios. Risk-neutral DM

Alternatives Criteria Methods

AP1 DME1 DME2 DIM SD
3 3 82.13 84.91 83.73 84.68 84.14

5 84.42 85.21 84.92 85.41 85.36

7 85.32 86.39 86.12 86.62 86.64

10 85.37 86.79 86.82 87.16 87.15

15 86.12 88.09 87.95 88.30 88.29

5 3 76.56 78.91 79.72 81.74 81.68

5 77.57 80.24 80.22 81.92 81.92

7 79.22 82.27 82.13 83.46 83.46

10 79.72 82.43 82.77 83.90 83.90

15 80.25 83.43 83.49 84.76 84.76

7 3 70.83 74.79 76.65 79.42 79.41

5 74.19 76.64 77.83 80.19 80.19

7 75.50 78.56 79.28 81.21 81.21

10 76.59 80.02 80.41 82.40 82.40

15 77.14 81.29 81.38 83.70 83.70

10 3 66.44 71.35 74.65 78.58 78.57

5 70.40 73.52 75.39 78.26 78.26

7 72.05 75.38 76.80 79.64 79.64

10 73.72 77.43 78.37 81.22 81.20

15 73.58 78.72 79.08 82.51 82.51

15 3 61.62 67.52 71.95 77.68 77.67

5 66.34 69.64 71.93 76.39 76.40

7 68.97 72.08 73.80 78.38 78.38

10 70.20 73.80 75.46 80.12 80.12

15 70.86 76.00 76.96 82.26 82.27

20 3 66.44 71.00 74.70 78.85 78.84

5 63.63 67.17 70.18 74.84 74.86

7 65.70 69.25 71.66 77.42 77.42

10 67.78 71.46 73.01 79.06 79.07

15 69.03 72.98 74.34 81.31 81.29

Mean 73.92 77.24 78.39 81.38 81.36
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Table 2. Rank-order correlation (Kendall’s τ). Risk-neutral DM

Alternatives Criteria Methods

AP1 DME1 DME2 DIM SD
3 3 76.12 78.97 77.12 78.93 77.55

5 79.42 80.74 80.45 80.91 80.89

7 79.99 81.23 80.96 81.83 81.82

10 80.32 82.12 81.81 82.48 82.48

15 81.06 83.16 83.01 83.63 83.63

5 3 74.53 76.98 76.83 78.40 78.34

5 78.24 80.22 80.33 81.44 81.43

7 79.36 81.67 81.63 82.72 82.72

10 79.92 82.68 82.64 83.90 83.90

15 79.91 83.23 83.28 84.41 84.41

7 3 73.45 76.47 76.95 78.45 78.43

5 78.24 80.62 81.01 82.41 82.42

7 79.28 81.82 82.34 83.46 83.46

10 79.50 82.84 83.07 84.52 84.52

15 79.75 83.63 83.80 85.31 85.31

10 3 72.05 75.98 76.81 78.41 78.42

5 77.79 80.40 81.23 82.77 82.77

7 78.85 81.75 82.44 84.07 84.07

10 79.40 82.92 83.47 85.34 85.34

15 79.35 83.60 84.01 86.23 86.23

15 3 69.43 75.25 76.03 77.84 77.87

5 77.15 79.71 80.98 83.00 83.01

7 78.29 81.34 82.40 84.73 84.74

10 78.76 82.38 83.23 85.89 85.89

15 78.91 83.03 83.67 86.91 86.91

20 3 72.00 75.93 76.72 78.40 78.41

5 76.65 79.16 80.64 83.03 83.04

7 77.57 80.57 81.88 84.76 84.78

10 78.14 81.79 82.78 86.10 86.11

15 78.29 82.53 83.29 87.20 87.20

Mean 77.72 80.76 81.16 82.92 82.87

Table 3. Results for a risk-prone and a risk-adverse DM

Measure AP1 DME1 DME2 DIM SD
Risk-prone Hit ratio 73.78 77.10 78.30 81.27 81.25

Kendall’s τ 77.69 80.743 81.16 82.89 82.85

Risk-adverse Hit ratio 73.90 77.24 78.38 81.32 81.30

Kendall’s τ 77.70 80.74 81.18 82.92 82.86

21



6. Conclusions

We have proposed a new dominance measuring method to deal with ordinal
information about the decision-maker’s preferences, in both weights and com-
ponent values. The decision maker provides a ranking of attribute importance.
Besides, the method takes into account a ranking of the alternatives in each
attribute and also a ranking of the difference of values between consecutive
alternatives.

The proposed method uses the centroid of the polytope delimited by ordinal
information and builds triangular fuzzy numbers, whose distances to the crisp
value 0 are the basis for the definition of a dominance intensity measure.

The results of Monte Carlo simulation techniques applied demonstrate that
the proposed method is clearly better at selecting the best alternative and rank-
ing alternatives than other dominance measuring methods proposed in the liter-
ature. Its performance is very similar to the method proposed by Sarabando and
Dias, which was developed to deal with decision-making problems with ordinal
information about the decision-maker’s preferences too. The paired-samples t-
test shows that there is no significant difference between the two for a neutral,
risk-prone and risk-averse decision-maker.

Sarabando and Dias’s method is less computationally demanding, but its
application is restricted to the discussed imprecise decision-making situation.
On the other hand, the method proposed in this paper can also be used if we
have the ranking of alternatives for each attribute under consideration, but the
information about the differences between the values of consecutive alternatives
is not available. The algorithm proposed to derive endpoints in the centroid
computation still works. This situation is less stressful on DMs and makes the
method suitable for much more real decision-making problems.

As a future research line we propose the use of simulation techniques to
approximate the centroid and conduct the respective analysis of its performance
when different types of partial ordinal information are available. Moreover, we
also intend to use other types of fuzzy sets and different notions of associated
distances to derive the final ranking of alternatives.
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[12] A.M. Mármol, J. Puerto, F.R. Fernández, The use of partial information
on weights in multicriteria decision problems. J. Multi-Crit. Decis. Anal. 7
(1998) 322-329.
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